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OSCILLATIONS FOR ORDER STATISTICS
OF SOME DISCRETE PROCESSES

ANDREA OTTOLINI,∗ Stanford University

Abstract

Suppose k balls are dropped into n boxes independently with uniform probability, where
n, k are large with ratio approximately equal to some positive real λ. The maximum box
count has a counterintuitive behavior: first of all, with high probability it takes at most
two values mn or mn + 1, where mn is roughly ln n

ln ln n . Moreover, it oscillates between
these two values with an unusual periodicity. In order to prove this statement and various
generalizations, it is first shown that for X1, . . . , Xn independent and identically dis-
tributed discrete random variables with common distribution F, under mild conditions,
the limiting distribution of their maximum oscillates in three possible families, depend-
ing on the tail of the distribution. The result stated at the beginning follows from the
ensemble equivalence for the order statistics in various allocations problems, obtained
via conditioning limit theory. Results about the number of ties for the maximum, as well
as applications, are also provided.
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1. Introduction

1.1. Extreme value theory

Even though outliers are often disregarded in statistical models, an understanding of rare
and extreme events plays a central role in a variety of situations. An important example, which
is analyzed in more detail later, is the occurrence of coincidences for big earthquakes.

It is well known (see [14]) that for independent and identically distributed (i.i.d.) random
variables X1, . . . , Xn with common distribution function F(x), in order for a law of large num-
bers for X(n) = max1≤i≤n Xi to hold, it is necessary and sufficient for the Xi to have a slowly
varying tail. More precisely,

there exists mn such that X(n) − mn −→ 0 in probability if and only if

lim
x→+∞

1 − F(x + y)

1 − F(x)
= 0, for all y > 0. (1)

In the case that the above condition holds, necessary and sufficient conditions for the existence
of a limiting distribution for X(n), after rescaling, are also standard in the literature, and the
limits have been widely studied. For a survey on the subject, as well as generalizations and
applications, the reader is referred to [11,13].

It is worth mentioning that (1) fails to capture the maxima of a variety of distributions. In
particular, if the Xi only take integer values, the above condition cannot be satisfied, since for
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704 A. OTTOLINI

0 < y < 1 and x ∈N the above limit is one. The goal of this paper is to investigate the limiting
behavior of X(n) when condition (1) is not satisfied.

In this paper, ‘clustering’ refers to the extent to which X(n) fails to satisfy a law of large
numbers. Roughly speaking, it will be shown that the decay of the mass function determines
the size of the cluster. As an instance, for Poisson random variables (whose mass function
decays faster than geometrically) X(n) clusters at two values with high probability, while for
negative binomial random variables (whose mass function has a geometric decay) X(n) is spread
onto all integers with high probability.

The first rigorous result in this direction is due to Anderson [3]. He classified the cluster size
for maxima of discrete random variables in terms of their tails. A further analysis was carried
out in [18], where lower-order statistics were taken into account, as well as in [6], where the
authors studied the number of ties.

The first result of this paper completes the discussion given in [3].

Theorem 1. Let X1, . . . , Xn be i.i.d. discrete random variables with common distribution F.
Suppose the support of F is not bounded from above, and that, for some γ ∈ [0, 1],

lim
n→+∞

1 − F(n + 1)

1 − F(n)
= γ . (2)

Then there exist two sequences {mn} ⊂N, {pn} ⊂ [0, 1] such that

• γ = 0 ⇒ P(X(n) = mn) ∼ pn, P(X(n) = mn + 1) ∼ 1 − pn;

• γ ∈ (0, 1) ⇒ for all x ∈Z, P(X(n) ≤ mn + x) ∼ pγ x

n ;

• γ = 1 ⇒ for all x ∈Z, P(X(n) ≤ mn + x) ∼ pn.

In the first case, there exists an increasing sequence {Ni}i∈N ⊂N, with Ni − Ni−1 → ∞,
such that, for n → ∞, n 
∈ {Ni}, we have pn+1 ≤ pn and pn+1 − pn → 0.

Remark 1. The last part of Theorem 1 is where the expression ‘oscillations’ originates. Indeed,
a more informal way of interpreting the result is the following: if the endpoints of [0, 1] are
identified to obtain a circle (and the orientation on [0, 1] induces a counterclockwise orien-
tation on the circle), then pn = e−2π iqn , where the sequence {qn} is increasing and satisfies
qn − qn−1 → 0, lim sup qn = +∞. In words, under this identification the sequence of the pn

will move clockwise on the circle with smaller and smaller steps, winding around the origin
infinitely many times.

From a probabilistic point of view, in the case γ = 0 the sequences {pn}, {1 − pn} repre-
sent, for n large, the relative frequency of X(n) = mn, X(n) = mn+1 respectively. Therefore, a
histogram of many samples from X(n) − mn will not converge to a given shape, it will instead
consist of two adjacent columns whose heights oscillate between 0 and 1. Moreover, for every
fixed p ∈ [0, 1], it is possible to find a subsequence along which the height of the left column
will converge to p (and correspondingly, the height of the right one will converge to 1 − p).
This again justifies the term ‘oscillations’.

Another natural question concerns the number of times the maximum is expected to occur
in a sequence of independent and identically distributed samples from a discrete distribution.
This question is only addressed here in the case γ = 0, where the result is the following.
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Theorem 2. Let X1, . . . , Xn be i.i.d. with common distribution F such that

lim
n→+∞

1 − F(n + 1)

1 − F(n)
= 0.

Then, for pn, mn as in Theorem 1,

P(at least k ties for the maximum) ∼ pn + 1 − pn

k∑
j=0

ln j
(

1
pn

)
j! . (3)

As a by-product, the probability of having no ties is given by −pn ln pn, which thus oscillates
between 0 and 1

e .
In the proof of the theorem, it will be clear that in order to determine the number of ties,

we first flip a pn-biased coin to determine whether the maximum X(n) will assume the value
mn or mn + 1. If the former happens, then we expect, for all fixed k, to have at least k ties with
high probability as n gets larger; if the latter happens, the number of ties is Poisson distributed
with parameter ln

( 1
pn

)
. In the case where pn = 0 or pn = 1 for some n, the right-hand side of

(3) equals one (according to the convention 0 ln 0 := 0). Therefore, along subsequences of {pn}
converging to 0 (resp. 1), the kth-order statistic X(n−k) for any fixed k will be mn (resp. mn + 1)
with high probability, so that an arbitrarily large number of ties is expected.

Now, suppose that the pn-biased coin gives X(n) = mn. It is interesting to determine how
many ties are expected to occur, letting k grow with n. This is answered by the following.

Theorem 3. Let X1, . . . , Xn be as before, and let c > 0 be fixed. Then there exists a sequence
{zn} such that

• if c < 1, P(Xn−czn > mn − 1) → 1;

• if c > 1, P(Xn−czn > mn − 1) → 0.

In other words, there is a phase transition for the number of ties in the top position, the
critical point being zn. It is worth mentioning that zn oscillates as well.

1.2. Multinomial allocations and their Bayesian counterparts

In order to adapt all previous results to the case of dependent random variables, one
approach is to use Poissonization. This standard technique has been widely exploited in a vari-
ety of situations: various combinatorial problems in probability [9], cycle structure [19] and
longest increasing subsequence [2] of random permutations, ensemble equivalence in statistical
mechanics [21], and many others.

When the randomization leads to an exponential family, from which the original distribution
can be obtained by means of conditioning with respect to a sufficient statistic, the results belong
to conditioning limit theory. The case where the sufficient statistic is given by

∑
ixi is treated

in [5], while here the focus will be on the sum, already considered in [12].
In the following, two different allocation problems are considered. Suppose k balls are

dropped into n boxes, and we denote the box counts by Y = (Y1, . . . , Yn). If different balls
are dropped independently, Y has a multinomial distribution; if the probabilities of falling
into a certain box are unknown, it is natural to consider a Dirichlet mixture of multinomial
distributions.

The starting point is the conditional representation

P(max(Y1, . . . , Yn) ∈ A) = P

(
max(X1, . . . , Xn) ∈ A

∣∣∣∑ Xi = k
)

.
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In the case when Y is multinomial with parameters (k, p1, . . . , pn), the Xi can be chosen in
such a way that X1 ∼ Poi(λp1), . . ., Xn ∼ Poi(λpn) for every λ. If the Y are a mixture of multi-
nomial distributions with symmetric Dirichlet kernel with hyperparameter r, then the Xi can
be chosen to be in the negative binomial family with parameter NB(r, p). Bayes’ theorem then
implies that

P(max(Y1, . . . , Yn) ∈ A) = P(max(X1, . . . , Xn) ∈ A)
P
(∑

X̃i = k
)

P
(∑

Xi = k
) , (4)

where X̃i is the law of Xi conditioned on max (X1, . . . , Xn) ∈ A. Notice that all three terms
on the right-hand side only involve independent random variables. The idea is that, under the
appropriate choice of the Xi on the right-hand side, the ratio appearing there is approximately
one, so that

P(max(Y1, . . . , Yn) ∈ A) ∼ P(max(X1, . . . , Xn) ∈ A).

Notice that in general this does not require either side to have a limit: the only important
aspect is that the distribution of max (X1, . . . , Xn) and max (Y1, . . . , Yn) merge together, and
then everything about the former (e.g. convergence, limit points, etc.) carries over to the lat-
ter. For different notions of merging, corresponding to different notions of distance between
fn(X1, . . . , Xn) and fn(Y1, . . . , Yn), the reader is referred to [1].

The main results of this paper for the allocation models are the following.

Theorem 4. Let (Y1, . . . , Yn) be multinomial with parameters
(
k, 1

n , . . . , 1
n

)
. Suppose that λ =

k
n is fixed. If mn, pn are defined as in Theorem 1 for F the distribution function of a Poisson
with parameter λ, then we have

P(Y(n) = mn) ∼ pn, P(Y(n) = mn + 1) ∼ 1 − pn.

Theorem 5. Let (Y1, . . . , Yn) be multinomial with parameters
(
k, 1

n , . . . , 1
n

)
. Let λ = k

n be
fixed. If mn, pn, zn are defined as in Theorems 2 and 3 for F the distribution function of a
Poisson with parameter λ, then we have:

• as n → +∞,

P(at least t ties at Y(n)) ∼ pn + 1 − pn

t∑
j=0

ln j
(

1
pn

)
j! ;

• as n → +∞,

if c < 1, P(Xn−czn > mn − 1) → 1,

if c > 1, P(Xn−czn > mn − 1) → 0.

Theorem 6. Let (Y1, . . . , Yn) be a (symmetric) Dirichlet mixture of multinomials with param-
eters (k, r). Let n, k be chosen in such a way that for some fixed p, rp

1−p = k
n is fixed. If mn, pn are

defined as in Theorem 1 for F the distribution function of a negative binomial random variable
with parameters (r, p), then, for every x ∈Z,

P(Y(n) ≤ mn + x) ∼ pγ x

n .

Borrowing language from statistical mechanics, in the multinomial allocations problem (as
well as in its Bayesian version), several features involving the top-order statistics can be
equivalently studied in the microcanonical and canonical picture [8].
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2. The independent case

Let X1, . . . , Xn be i.i.d. random variables with common distribution F, satisfying assump-
tion (2). Denote by F := 1 − F the tail of the distribution. A real extension G of F will be
considered, with the properties

• G(n) =F(n) for n ∈Z;

• G is continuous;

• G is decreasing;

• G is log-convex.

Such an extension always exists; for example, the log-linear one provided by Anderson in
[3] works (yet, sometimes, this is not the most natural one, as in the Poisson case). Notice that
the assumption of log-convexity ensures, for example, the existence of

lim
x→+∞

G(x + 1
2

)
G(x)

,

since the function x → G
(

x+ 1
2

)
G(x) is decreasing. Combined with (2), we have

lim
x→+∞

G(x + 1
2

)
G(x)

= √
γ . (5)

In a similar way, because G is continuous and log-convex, for every ε ∈ (0, 1) we have

lim
x→+∞

G(x + ε)

G(x)
= γ ε. (6)

Let xn be a solution to G(xn) = 1
n . Owing to the continuity and monotonicity of G, such a

solution exists and it is unique. Set mn to be the floor of xn + 1
2 . By definition, mn ∈ [xn −

1
2 , xn + 1

2

]
. Also define

θn := G(mn)

G(xn)
, pn := e−θn . (7)

Finally, let

zn := − ln

(
G(mn − 1)

G(xn)

)
.

Remark 2. While the above definitions of mn, xn, pn, and zn depend on the particular choice
of G, all the results stated in the above theorems are equivalent for all such choices.

Consider the case γ ∈ (0, 1) in Theorem 1, the other results being analogous. Let G and G̃ be
two different extensions of F , and let x̃n, m̃n, p̃n be the quantities corresponding to xn, mn, pn,
obtained by using the extension G̃ instead. The first claim is that

xn − x̃n → 0.

Indeed, first notice that the floor of both xn and x̃n is the largest integer tn such that F(tn) ≥ 1
n .

Therefore, xn = tn + εn and x̃n = tn + ε̃n, with εn, ε̃n ∈ [0, 1). Suppose, toward contradiction,
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that along some subsequence |εn − ε̃n| ∼ ε > 0 for some fixed ε. In this case, applying (6)
leads to

F(tn)γ εn ∼ G(xn) = 1

n
= G̃(x̃n) ∼F(tn)γ ε̃n ,

which in turn implies γ ε = 1 in the limit, a contradiction.
Therefore, along subsequences of {xn} (and thus {x̃n}, since xn − x̃n → 0) that are bounded

away from half-integers, the definition of mn and m̃n will eventually be the same, and conse-
quently pn will eventually be the same (since pn depends on G only via mn) regardless of the
choice of G.

Along subsequences of {xn} (and {x̃n}) for which xn − xn� → 1
2 , it may be the case that mn

and m̃n, defined from xn and x̃n respectively, differ by one.
Without loss of generality, assume that along some subsequence mn − xn → − 1

2 and m̃n −
x̃n → 1

2 . In this case, combining (7) and (5), we obtain

pn ∼ e
− 1√

γ , p̃n ∼ e−√
γ .

In particular, the use of the extension G̃ leads to the same asymptotic obtained by using G,
since

P(X(n) ≤ mn + x) = P(X(n) ≤ m̃n − 1 + x) ∼ (p̃n)γ
−1+x ∼ e−γ

− 1
2 +x ∼ pγ x

n .

Remark 3. The freedom in the choice of G is not merely an abstract curiosity. As previously
mentioned, there are cases (e.g. Poisson distribution) where a certain G can be obtained by
appropriately replacing a sum with an integral (in the Poisson distribution case, an incomplete
gamma function), and such G can be easily checked to be log-convex (for a classical discrete
distribution, this often boils down to the log-convexity of the gamma function). In those cases,
it is much easier to use such extensions in order to obtain numerical approximations for mn

and pn, rather than using the artificial log-linear extension introduced by Anderson [3].

2.1. Proofs of Theorems 1, 2, and 3

Proof of Theorem 1. Owing to the i.i.d. assumption, for all x ∈Z,

P(X(n) ≤ x) = (
1 −F(x)

)n.

In the following, note that, for z > −1,

z

1 + z
≤ ln (1 + z) ≤ z. (8)

Thus, for every x ∈Z,

P(X(n) ≤ x) = (
1 −F(x)

)n =
(

1 − F(x)

G(xn)

1

n

)n

∈
[

exp

{
− F(x)

F(x)G(xn)

}
, exp

{
− F(x)

G(xn)

}]
,

(9)

where the definition of G(xn) = 1
n is used in the second equality, while the bounds are derived

from (8) applied to z = − F (x)
nG(xn) (so that 1 + z = F(x)).
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It is convenient to split the proof into the two cases γ = 0 and γ > 0.
Case γ = 0: The choice of x = mn − 1 leads to

P(X(n) ≤ mn − 1) ≤ exp

{
− F(mn − 1)

G(xn)

}
≤ exp

{
− G(xn − 1

2

)
G(xn)

}
→ 0,

where the first inequality follows from the upper bound in (9) and the second follows from
both the monotonicity of G and that mn ∈ [xn − 1

2 , xn + 1
2

]
. The last step is a consequence of

the assumption γ = 0 and equation (6). If x = mn + 1, then the lower bound in (9) is attained
and the very same argument leads to

P(X(n) ≤ mn + 1) ≥ exp

{
− G(xn + 1

2

)
G(xn)F(mn + 1)

}
→ 1.

This result proves the clustering effect on the two values mn, mn + 1. In general, the same
computations lead to

P(X(n) ≤ mn) ∼ exp

{
− G(mn)

G(xn)

}
= pn,

from which the result

P(X(n) ≤ mn) ∼ pn, P(X(n) = mn + 1) ∼ 1 − pn

follows. As for the last statement in the theorem, notice that, by the definition of xn,

G(xn+1)

G(xn)
=

1
n+1

1
n

→ 1.

Suppose, toward contradiction, that xn+1 − xn → ε > 0 along some subsequence. Owing to (6),
the limit � := limn→+∞ G(xn+ε)

G(xn) exists, and it is equal to zero (thanks to the assumption γ = 0).
Thus, necessarily, xn+1 − xn → 0. By the continuity of G,

G(xn) − G(xn+1) → 0.

Define Ni as the increasing sequence of natural numbers for which xNi ≤ i + 1
2 , xNi+1 > i + 1

2
for all integers i. Consider xn for n 
∈ {Ni}i∈N, and recall that mn is the floor of xn + 1

2 . For such
n, we have mn = mn+1, and consequently pn+1 ≤ pn (owing to the monotonicity of G and (7)),
and pn+1 − pn → 0 (owing to the continuity of G). Finally, notice that Ni+1 − Ni → ∞ since
xn → +∞, xn+1 − xn → 0, which concludes the proof of this case.

Case γ > 0: For all fixed x ∈Z we have, owing to (9) and (2),

F(mn + x)

G(xn)
∼ F(mn + x)

G(xn)F(mn + x)
∼ G(mn)γ x

G(xn)
.

Therefore, in this case

P(X(n) ≤ mn + x) = (
1 −F(mn + x)

)n
∼ exp

{
− G(mn)

G(xn)
γ x
}

= pγ x

n ,

which concludes the proof (notice that if γ = 1, we have γ x ≡ 1). �
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Proof of Theorem 2. First of all, notice that the assumption γ = 0 guarantees that zn → +∞.
Moreover, since, by definition, nF(mn − 1) = zn, and mn → +∞, it follows that zn = o(n).
Now, consider the binomial formula for the order statistics:

P(X(n−k) ≤ x) =
k∑

j=0

(
n
j

)
[F(x)]n−j[1 − F(x)] j. (10)

If x = mn − 1, j is fixed, and n → +∞, we have

(
n
j

)(
1 − zn

n

)n−j( zn

n

)j

∼ zj
n

j! e−zn → 0.

When k is fixed, since there are only finitely many terms in (10) and each of these converges
to 0, we conclude that

P(X(n−k) ≤ mn − 1) → 0.

Now fix p ∈ (0, 1), and look at a subsequence pn → p (where for simplicity the pnk subsequence
was renamed pn). Then, since P(X(n) > mn + 1) → 0, along this subsequence,

P(X(n−k) = mn + 1) ∼ P(X(n−k) > mn)

= 1 −
k∑

j=0

(
n
j

)(
1 − θn

n

)n−j(
θn

n

)j

→ p

(
1

p
−

k∑
j=0

ln j
( 1

p

)
j!

)
,

where we used that F(mn) = F (mn)
G(xn) G(xn) = G(mn)

G(xn)

(
1
n

)
= θn

n . �

Before moving on to the proof of Theorem 3, recall the incomplete gamma function

�(k, z) =
∫ z

0
tk−1et dt.

Notice that for k an integer, integration by parts shows that

e−z
+∞∑
j=k

z j

j! = �(k + 1, z)

�(k + 1)
. (11)

To find asymptotics for �(k, z), it is useful to recall the Laplace asymptotic formula (see, e.g.,
[4, Theorem 3.5.3]):

Theorem 7. (Laplace asymptotic formula.) Let S(x) be a smooth function on (a, b).

• If S′(x) < 0 for all x ∈ (a, b), then

∫ b

a
e−mS(x)f (x) dx = 1

m

1

S′(b)
f (b)e−mS(b)

(
1 + O

(
1

m

))
, m → +∞.
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• If S has a unique nondegenerate minimum x0 in (a, b), then

∫ b

a
e−mS(x)f (x) dx =

√
2π

mS′′(x0)
f (x0)e−mS(x0)

(
1 + O

(
1

m

))
, m → +∞.

Proof of Theorem 3. Using (10),

P(X(n−czn+1) > mn − 1) = 1 −
czn−1∑

j=0

(
n
j

)
[F(mn − 1)]n−j[1 − F(mn − 1)] j

=
n∑

j=czn

(
n
j

)(
1 − zn(1 + o(1))

n

)n−j( zn(1 + o(1))

n

)j

.

Now, given c ∈ (0, +∞), consider m = m(c) large (to be fixed later). The sum above can be
split into

P(X(n−czn+1) > mn − 1) =
mczn−1∑
j=czn

(
n
j

)(
1 − zn(1 + o(1))

n

)n−j( zn(1 + o(1))

n

)j

+
n∑

j=mczn

(
n
j

)(
1 − zn(1 + o(1))

n

)n−j( zn(1 + o(1))

n

)j

=: A + B.

First, consider the second summand: since

(
n
j

)
≤ nj

j! , each term can be bounded:

(
n
j

)(
1 − zn(1 + o(1))

n

)n−j( zn(1 + o(1))

n

)j

≤ zj
n

j! → 0.

By choosing m large enough that mc > e, using

zj+1
n

(j + 1)! ≤ zj
n

j!
zn

j
≤ zj

n

j!
1

mc
,

B can be bounded by a geometric series. Therefore, using crude bounds with Stirling’s
approximation,

B ≤
n∑

j=mczn

zj
n

j! ≤ mc

mc − 1

zmczn
n

(mczn)! ≤ mc

mc − 1

( e

mc

)mczn → 0.

Going back to the first summand, to finish the proof it is enough to show that

A =
mczn−1∑
j=czn

(
n
j

)(
1 − zn(1 + o(1))

n

)n−j( zn(1 + o(1))

n

)j
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converges to 0 if c > 1 and converges to 1 if c < 1, regardless of m. In this regime, j → +∞,
j = o(n), so

A ∼
mczn−1∑
j=czn

e−zn zj
n

j! ∼
+∞∑
czn

e−zn zj
n

j! ,

where the last step follows from the fact that B → 0. Using (11),

A ∼ �(czn + 1, zn)

�(kn(c))
=
∫ zn

0 tczne−t dt

(czn)! .

Changing the variable t = czns and using Stirling’s approximation, we obtain

A ∼ 1

(czn)!
∫ 1

c

0
czn exp

(− sczn + czn ln (czn) + czn ln s
)

ds

∼ czn

e−czn
√

2πczn

∫ 1
c

0
e−czn[s−ln s] ds.

Since the function S(s) = s − ln s has a global minimum at s = 1, with S(0) = 1, S′′(1) = 1, if
c > 1 then the first part of Theorem 7 gives

A ∼
√

czn

e−czn
√

2π

1

1 − 1
c

e(−czn)
(

1
c +ln c

)
→ 0,

since 1 < 1
c + ln c. In the case c > 1, the second part of Theorem 7 leads to

A ∼
√

czn

e−czn
√

2π

√
2π√
czn

e−czn = 1,

which concludes the proof. �

2.2. Some examples: Poisson, negative binomial, and discrete Cauchy

Consider the case where X1 ∼ Poi(λ). Anderson [3] already proved the result

P(X(n) ∈ {mn, mn + 1}) → 1.

In the language of this paper, the Poisson distribution falls into the case γ = 0 of Theorem 1,
since

F(x) → e−λ λx+1

�(x + 2)
.

Notice that the most natural choice for G in this case is given by the incomplete gamma func-
tion, rather than the log-linear extension. Following the proof of Theorem 1, it is easy to see
that

P(X(n) 
∈ {mn, mn + 1}) ≤
(

λ

xn + 1

)mn−xn

.
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This bound is important, as it shows that the clustering may emerge even for small values of n,
provided that λ is small. As for the value of mn, in [17] it is shown that, to a first approximation,

xn ∼ ln n

ln ln n
. (12)

However, this estimate is extremely poor, as is shown in [7]. In particular, if W(z) is the solution
to eW(z)W(z) = z (known as the Lambert function, see [10]), then a much better approximation
is given by

x̃n = yn + ln λ − λ − 1
2 ln (2π ) − 3

2 ln (yn)

ln (yn) − ln λ
, yn = ln n

W
( ln n

λe

) .

The negative binomial distribution N(r, p) falls into the second category of Theorem 1 with
γ = p, since

F(n + 1)

F(n)
= �(n + 2 + r)

�(n + 1)�(r)

�(n + 1)�(r)

�(n + 1 + r)

∫ p
0 tn+1(1 − t)r−1 dt∫ p

0 tn(1 − t)r−1 dt
,

and, using 7 and the property of the gamma function, it is easy to obtain

F(n + 1)

F(n)
= n + 1 + r

n + 1
p

(
1 + o

(
1

n

))
→ p.

Finally, the discrete Cauchy distribution falls into the third regime, since in that case

F(n + 1)

F(n)
=

1
1+(n+1)2

1
1+n2

→ 1.

3. The dependent case

As explained in the introduction, it is possible to export the previous results to a certain
class of allocation problems. The main ingredient is the local central limit theorem (see, e.g.,
[15]).

Lemma 1. (Local central limit theorem.) Let X1, . . . , Xn be discrete i.i.d. random variables,
with E(X1) = μ, Var(X1) = σ 2, such that the values taken on by X1 are not contained in some
infinite progression a + qZ for integers a, q with q > 1. Then, for every integer t,

P

(
n∑

i=1

Xi = t

)
= 1√

2πnσ
exp

(
− (t − nμ)2

2nσ 2

)
+ o

(
1√
n

)
,

the error being uniform in t.

3.1. Multinomial allocations

First, consider the case of multinomial allocations, all boxes being equally likely.

Proof of Theorem 4. Let X1, . . . , Xn be i.i.d. with X1 ∼ Poi(λ). By means of (4),

P(Y(n) ∈ A) = P(X(n) ∈ A)
P
(∑

Xi = k, X(n) ∈ A
)

P
(∑

Xi = k
) .
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Notice that

P(X(n) = mn) ∼ pn, P(X(n) = mn+1) ∼ 1 − pn

owing to Theorem 1. Moreover,
∑n

i=1 Xi ∼ Poi(k), so that

P

(
n∑

i=1

Xi = k

)
= e−k kk

k! ∼ 1√
2πk

.

It remains to estimate the “tilded” version of the Xi. If A = m̃n, where m̃n = mn or m̃n = mn + 1,
then {X̃i}n−1

i=1 = {Xi}n
i=1 \ X(n) are still independent and identically distributed according to

P
(
X̃1 = t

)= e−λ λt

t!
F(m̃n)

, t = 0, . . . , m̃n,

F being the cumulative Poisson distribution as in Section 2.2. By symmetry, each Xi is equally
likely to be the maximum, so that P(X(n) = Xi) = 1

n . Therefore,

P

(
n∑

i=1

Xi = k | X(n) = m̃n

)
= P

(
n−1∑
i=1

X̃i = n − m̃n

)
,

which can now be estimated by means of Theorem 1 (notice that the condition that X1 does not
belong to a subprogression is obviously satisfied). The first moment is

E
(
X̃1
)= 1

F(m̃n)

m̃n∑
j=0

e−λ jλj

j! = λ
F(m̃n − 1)

F(m̃n)
= λ(1 + o(1)).

Similarly, the variance is given by

Var
(
X̃2

1

)=
∑mn

j=0 e−λ j2λj

j!
F(m̃n)

− λ2(1 + o(1))

= λ2F(m̃n − 2) + λF(m̃n − 1)

F(m̃n)
− λ2(1 + o(1))

= λ(1 + o(1)).

Hence, the local central limit theorem leads to

P

(
n−1∑
i=1

X̃i = n − m̃n

)
= 1√

2π (n − 1)λ
exp

{
(k − m̃n − (n − 1)λ(1 + o(1))

2(n − 1)λ

}

∼ 1√
2πk

exp

{
(λ − m̃n)2

2k

}

∼ 1√
2πk

,
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where the last step follows from m̃2
n = o(k), a consequence of m̃n ∼ ln n

ln ln n and k = λn.
Therefore, as desired,

P(Y(n) = mn) ∼ P(X(n) = mn) ∼ pn, P(Y(n) = mn + 1) ∼ 1 − pn. �
For the proofs of Theorem 5, the very same argument can be applied. Indeed, the only dif-
ference is that the number of copies of X̃ is now n − t, n − tn(c) respectively. However, this
does not affect the central limit theorem, since t and tn(c) are much smaller than n (so that the
asymptotic in the central limit theorem remains the same).

3.2. A Bayesian version

Consider now the Bayesian variant of the multinomial allocation problem. The idea is again
the same, but a proof is sketched for the sake of completeness.

Proof of Theorem 6. Fix x ∈Z. By means of (4) and the conditional representation of a
Dirichlet mixture of multinomials as negative binomials, it suffices to show that, for X1, . . . , Xn

i.i.d. with Xi ∼ NB(r, p) and rp
1−p = k

n ,

P

(
n∑

i=1

Xi = k

)
∼ P

(
n∑

i=1

Xi = k | X(n) ≤ mn + x

)

as n, k → +∞. As before, the right-hand side can be rewritten as

P

(
n∑

i=1

X̃i = k

)
,

where X̃i is the tilded version of Xi given by

P
(
X̃i = s

)= P(X1 = s)

P(X1 ≤ mn + x)
, s ≤ mn + x.

Since both the mean and the variance are asymptotically the same for Xi and X̃i (using that
mn + x → +∞), the local central limit theorem can be applied to conclude the proof. �

4. Numerical results and applications

While theoretically satisfactory, the question remains whether these asymptotic results are
of any use in simulations or real models (or whether n has to be unreasonably large for the
effect to be manifest). Here are the main conclusions from some simulations for i.i.d. discrete
random variables and random allocation models:

• The merging of dependent and independent cases works well for reasonable values of
k and n. If the theory gives good approximations in some regime for the independent
random variables, it also works for the dependent ones.

• In order to detect the oscillations of the maxima (as well as the other features) in the
Poisson case, the quantity λ

xn+1 has to be small. Since xn grows sublogarithmically, n

has to be extremely large compared to λ (in particular, it is necessary to have n � eλ).
This explains why simulations essentially fail for λ � 1, why they work for λ = O(1)
provided n is large (for λ = 1, in order to obtain pn within an error of ε, it is necessary to

have at least n ≥ e
1
ε ), and why they are excellent for λ � 1, even with relatively small n.
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TABLE 1: Values of mn, xn, and pn from Theorem 1 as functions of n (with λ = 1). The value xn can be
obtained, e.g., by approximating the Lambert function as in [10], or by means of numerical methods.

n xn mn pn

103 4.635 91 5 0.586 946 74
104 5.842 99 6 0.477 417 67
105 6.957 12 7 0.400 555 02
106 8.006 08 8 0.362 963 53
109 10.895 30 11 0.462 259 72
109 + 107 10.8993 11 0.458 734 97
1050 40.0255 40 0.333 090

TABLE 2: Comparison between pn and the relative frequency fn for mn out of 1000 trials of the exper-
iment ‘drop λn balls into n boxes’. The last column represents the fraction on of maxima outside the

cluster values mn, mn + 1.

n λ mn pn fn on

105 0.1 3 0.675 268 0.69 0.005
105 1 7 0.400 555 02 0.353 0.11
105 10 25 0.325 168 0.162 0.467

4.1. The role of the mean

Table 1 presents some numerical values for mn, xn, and pn depending on n. For now, we
take λ = 1 (but, as explained above, soon λ will be small). Here are some observations from
the table:

• The value xn grows slowly. At first sight it seems logarithmic, as the factor ln ln n in the
asymptotic (12) is hard to detect for reasonable values of n. Only the last entry gives an
insight in this direction.

• The absence of a law of large numbers, as well as the oscillations, are already emerging
in this picture: the value of pn does not exhibit any limiting behavior.

• The period of the oscillations (i.e. the difference Ni+1 − Ni in the language of
Theorem 1) is increasing in n.

A thousand trials of the experiment ‘drop λn balls into n boxes independently’ were
simulated. Because of Theorem 4, the maximum box count should be mn or mn + 1 with prob-
abilities pn or 1 − pn, respectively. The outcomes are presented in Table 2. Here are some
observations:

• For large λ, the approximation is useless. This is not surprising since the quantity λ
xn+1

is far from being negligible.

• For small λ, the approximation works well, and the theory can be fully appreciated for
reasonable n, since the quantity λ

xn+1 is small.
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TABLE 3: Oscillation of pn for n = 1000 × 2m, m ∈ {1, . . . , 9}, and λ = 0.01. For each n, the experi-
ment of dropping λn balls into n boxes is simulated 10 000 times. As before, fn denotes the relative

frequency of mn.

n mn pn fn

2000 1 0.8902 0.9073
4000 1 0.8039 0.8171
8000 1 0.6602 0.6646
16000 1 0.4492 0.4548
32000 1 0.2106 0.2047
64000 1 0.0469 0.0357
128000 1 0.0023 0.0017
256000 1 0.0000 0.0000
512000 2 0.9103 0.9181

TABLE 4: The results of 10 000 simulations of dropping 160 balls into 16 000 boxes (λ = 0.01,
pn = 0.449 241 15) and counting the number of ties t. The relative frequencies fn are compared

to the theoretical probabilities tn.

t tn fn

0 0.359 48 0.3613
1 0.143 82 0.1431
2 0.038 36 0.0385
3 0.0076 0.008

• If λ increases, the value of mn also increases. However, the λ correction in xn (and hence
in mn) is rather small. This is the reason why small λ is preferable in order to see the
results from the theory.

• Notice that since xn grows sublogarithmically, for fixed λ we need to significantly
increase n to see an improvement. On the other hand, once λ is small, the theory works
even for n small (e.g. n = 1000).

That being said, the focus will be now on the regime λ = 0.01 in order to even better capture
the ‘oscillating behavior’ of pn. Table 3 shows the results of an experiment of dropping λn balls
into n boxes for various values of n. The oscillation is visible in the last step: pn ‘refreshes’ at
1 after xn − mn changes its sign, a phenomenon that happens on a long scale.

Moving to the number of ties, Theorem 2 implies that the probability of having t ties at the
value of the maximal order statistic is given by

P(t ties for the maximal order statistic) ∼ p
lnt+1

(
1
p

)t+1

(t + 1)! .

Table 4 shows a simulation of the process. The results are very accurate for small numbers of
ties.
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TABLE 5: Occurrence of earthquakes in a given hour across three different decades, with corresponding
estimators with a negative binomial model.

Decade E(X1) Var(X1) r p

1970s 0.012 264 97 6.089 × 10−4 0.0496 0.0472
1980s 0.013 824 25 7.112 × 10−4 0.0514 0.0489
1990s 0.016 691 77 8.6302 × 10−4 0.0517 0.0489

TABLE 6: Maximum number of earthquakes in a single hour within a day. The notation a – b – c denotes
the percentages of days with 0, 1, or 2 as a maximum.

Decade Theory Numerics Empirical data

1970s 75.17 – 23.49 – 1.28 75.06 – 24.08 – 0.81 76.01 – 23.11 – 0.84
1980s 72.52 – 25.92 – 1.48 72.34 – 26.65 – 0.97 74.24 – 24.89 – 0.95
1990s 67.88 – 30.24 – 1.79 67.65 – 31.07 – 1.22 69.52 – 29.30 – 1.01

Finally, here are the simulation results for the cluster size on the top two spots for the same
values of n and λ: the theoretical result is that about 156.65 boxes should have a count of 1 or
2 balls. The average of 10 000 experiments gives the result 159.21.

4.2. Coincidence for earthquakes

In the popular imagination, big earthquakes are one of the main instances of randomness in
natural events. Heuristically, big earthquakes are not independent of each other (as everyone
who lives in a seismic area knows), and they instead tend to clump together. As such, a reason-
able model is that of inter-arrival times (forgetting about any geographic information) which
are distributed according to a negative binomial (see [16]), which is suitable for representing
positively correlated events.

In the following, we adopt this model and use our theory to study the occurrence of multiple
big earthquakes in a given window of time, using data from [20]. For instance, can we explain
the occurrence of multiple earthquakes in a given hour by purely statistical arguments, without
any ‘cause–effect’ arguments?

In the language of the previous section, Xi is the number of earthquakes of magnitude above
6 which occurred in hour i of the day, with i running from 1 to 24. We consider realizations
over three periods of time: the 1970s, the 1980s, and the 1990s, which correspond respectively
to 3652, 3653, and 3652 instances of the Xi; the data are shown in Table 5.

In Table 6 we compare the results given by our theory, 106 simulations of negative binomial
random variables with the same parameter, and the empirical data. We expect the maximum
number of earthquakes in a single hour within a day to be either 0, 1, or 2 (theoretically,
numerically, and empirically it is almost impossible to observe more than 3 earthquakes in a
given hour).
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