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DO TECHNOLOGY SHOCKS DRIVE
HOURS UP OR DOWN? A LITTLE
EVIDENCE FROM AN AGNOSTIC
PROCEDURE
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This paper analyzes the robustness of the estimate of a positive productivity shock on
hours to the presence of a possible unit root in hours. Estimations in levels or in first
differences provide opposite conclusions. We rely on an agnostic procedure in which the
researcher does not have to choose between a specification in levels or in first differences.
We find that a positive productivity shock has a negative impact effect on hours, but the
effect is much shorter lived, and disappears after two quarters. The effect becomes
positive at business-cycle frequencies, although it is not significant.
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1. INTRODUCTION

According to real-business-cycle models, hours worked should rise after a positive
permanent shock to technology. However, the empirical validity of this theoretical
implication has been questioned in the recent literature. For example, Gali (1999)
identifies technology shocks as the only shocks that have an effect on labor pro-
ductivity in the long run, and estimates a persistent decline of hours in response
to a positive technology shock. As Gali (1999) points out, this result is more
consistent with the predictions of a New Keynesian model than those of standard
real-business-cycle models. Other papers have reached similar conclusions [see,
e.g., Shea (1999), and Francis and Ramey (2001)], which spurred a line of research
aimed at developing general equilibrium models that can account for this empirical
finding [see, e.g., Francis et al. (2003), Uhlig (2003), and Gali and Rabanal (2004)].

In a recent paper, Christiano et al. (2003) challenge these empirical results.
Using the same identifying assumption as Gali (1999), Christiano et al. (2003)
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find evidence that a positive technology shock drives hours worked up, not down. It
seems that the estimated effects of technology shocks crucially depend on whether
the empirical analysis is specified in levels or in differences. In fact, Gali (1999),
Shea (1999), and Francis and Ramey (2001) specify hours in first differences
and report that hours worked fall after a positive technology shock. On the other
hand, Christiano et al. (2003) use hours in levels and report that hours worked
increase. In the words of Christiano et al. (2003, p. 2) “the difference must be due
to different maintained assumptions. As it turns out, a key culprit is how we treat
hours worked.”

Whether hours worked is a stationary or an exactly integrated process is then
a key assumption in the current debate on the effects of technology shocks on
business cycles. However, it is practically difficult to choose between specifications
in levels or in first differences on the basis of unit root tests because of their low
power. Pesavento and Rossi (2003) show that, in the presence of a root close to
unity, impulse response function estimates and confidence bands that rely on unit
root pretests have bad small sample properties (in terms of median unbiasedness
and coverage rates). Impulse responses based on VAR’s estimated in levels or first
differences have bad coverage properties as well, unless the true data generating
process is not persistent (in which case, levels are appropriate) or it has an exact
unit root (in which case, first differences are appropriate).

We provide empirical evidence based on an agnostic empirical estimation pro-
cedure proposed by Pesavento and Rossi (2003). The estimation is agnostic in
that it does not impose either a unit root or stationarity. These authors show that
their method is robust to the presence of highly persistent processes and thus it is
appropriate if the researcher aims at analyzing the long-run effect of technology
shocks on hours worked without making assumptions on the order of integration
of the series. We find that a positive productivity shock has a negative impact
effect on hours worked, but this effect disappears more quickly than in Francis
and Ramey (2001) (after only two quarters), and it becomes quickly positive.

2. METHODOLOGY

Let the data generating process (hereafter DGP) be

(I − ΦL)wt = ut, t = 1, 2, . . . T , (1)

where wt = [nt ft]′ is a (2 × 1) vector of variables, where nt is the log of per-
capita hours worked in the business sector and ft is average labor productivity; ut

is a (2 × 1) stationary and ergodic moving-average sequence,

ut = Θ(L)εt, (2)

εt is a martingale difference sequence with covariance matrix Σ,Θ(L) ≡∑∞
i=0 ΘiL

i,Θ0 = I, I is the (2 × 2) identity matrix, and Ω1/2 ≡ Θ(1)�1/2

is invertible.
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Note that (1) and (2) are simply another way of writing a VAR, in terms of the
roots rather than in the usual linear expression with lagged endogenous variables.
This representation is convenient for our purposes because it distinguishes the
long-run dynamics, captured by Φ, from the short-run dynamics, described by
Θ(L). In fact, to allow a unit root in ft and high persistence in nt , we let

Φ =
[

ρ 0

0 1

]
,

where ρ is close to 1 in a sense made precise below.
The objects of interest are the structural shocks, denoted by ηt, which are related

to the VAR’s residuals εt by the following relationship:

εt = A0ηt (3)

We let ηt = [ ηm
t ηz

t ]′ where {ηz
t } and {ηm

t } denote, respectively, the sequence of
technology and nontechnology shocks. Following Gali (1999), we identify the
technology innovation as the only shock that can have a permanent effect on
productivity. This long-run identification imposes a lower triangular structure to
Θ (I) A0 that allows the identification of the technology shock.

Let us first provide some intuition about how our “agnostic” method works by
discussing what our method would deliver at long horizons. As in Pesavento and
Rossi (2003), we use a local-to-unity asymptotic theory to improve the asymptotic
approximation to highly persistent processes in small samples. That is, we model
the largest root associated with hours, ρ, as local-to-unity:

ρ = 1 + 1

T
c (4)

To obtain better asymptotic approximations to IRF’s in small samples, we also
assume that the lead time of the impulse response function, h, is a fixed fraction
of the sample size,

h

T
–––→
T →∞

δ. (5)

Note that, because of assumption (5), the method works very well at horizons (h)
that are large relative to the available sample size, which is what we refer to as
“long horizons.”

Considering the two assumptions (4) and (5) together, we have

ρh –––→
T →∞

ecδ.

Pesavento and Rossi (2003) show that the IRF of the effect of a technology shock,
ηz

t , on nt can be approximated by

∂nt+h

∂ηz
t

� ecδi ′1Θ (1) A0i2, (6)
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where is denotes the sth column of the m × m identity matrix. This provides
a simple, closed-form formula for the IRF’s at long horizons as a monotone
increasing function of c. This formula can easily be used to construct confidence
intervals for the IRF at long horizons.1

To construct IRF’s that are valid at short horizons as well, which is what we do
in this paper, the method is implemented in practice as follows:

(i) We construct a confidence interval for c [denoted by (cL; cU )] by inverting the
acceptance region of a unit root test for hours. One could use any unit root test; in
this paper, we use the Augmented Dickey-Fuller (ADF) test and Hansen’s (1995)
CADF test. In our case, the estimated ADF test statistic is −2.068. Thus, directly
from Stock (1991, Table A1, pp. 455–456), inverting the ADF test delivers a
confidence interval for c equal to (−13.73, 2.411).

(ii) We run a VAR’s in quasi differences, (I− Φ̂L)wt,2 to estimate Θ(L), and construct
a 95% confidence interval for Θ(L)A0 by using a standard Monte Carlo simulation
method [see Hamilton (1994) and Lütkepohl (1993) for details], where A0 has been
identified as above. More in detail, the confidence interval for Θ (L) A0 is obtained
by simulating a confidence interval for Θ (L), and for every value belonging to
the confidence interval, we estimate A0 that satisfies the identification restriction,
which we then use to obtain a confidence interval for Θ (L) A0.

(iii) For every horizon, we calculate a confidence interval for [i ′
1Θ (L) A0i

′
2] at the

relevant horizon; call it (Lh, Uh). For example, at horizon h = 1 this confidence
interval is (−0.435, 0.096).

(iv) Finally, the Bonferroni confidence interval for the response of hours to a technology
shock is (ecLδLh, e

cU δUh). In the example for h = 1, since ecLδ = 0.881 and
ecU δ = 1.023, we have the confidence interval for the IRF that is (−0.383, 0.098).3

While confidence bands constructed in this way have good coverage properties at
short horizons and are robust to the presence of a root close to unity, this comes at
the cost of being pointwise and conservative [see Pesavento and Rossi (2003)].4

In the empirical section, we also report results by using Wright’s (2000) method.
The latter method is implemented by steps (i)–(iv) above, but replacing step (ii)
with the following:

(ii′): Θ (L) A0 is reestimated conditional on every value of c within a grid over
(cL, cU )—not only at the extremes, as we do. According to Pesavento and Rossi
(2003), asymptotically the estimate of Θ(L) is consistent anyway, and we gain in
computational simplicity and smaller confidence bands.

In our empirical section, we also report IRF’s obtained from standard VAR’s
using nt in levels as well as first differences. To estimate the confidence bands in
both VAR’s, we simulate the IRF distribution under a normality assumption with
1,000 Monte Carlo replications.

3. EMPIRICAL RESULTS

We use the same data as in Christiano et al. (2003), where per-capita hours
are measured as the natural logarithm of hours worked in the business sector
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Estimated responses of nt to a forecast 
error empulse in  productivity with two-standard erroor bounds
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FIGURE 1. Estimation of VAR in differences: estimated IRF (solid line) and IRF confidence
bands (dotted line) of hours worked to a 1%-standard deviation increase in the productivity
shock.

divided by a measure of the population. Productivity is measured as the natural
logarithm of output per hour in the business sector. Data are quarterly observa-
tions from 1948:1 to 2001:4 and are ultimately taken from the DRI Economics
Database.5 As in the previous literature, we identify innovations to technology as
the only shocks that have a permanent effect on the level of labor productivity.
Figures 1 and 2 report the 90% confidence intervals and the estimated responses of
per-capita hours to a 1%-standard-deviation positive shock to productivity by using
either a VAR in differences or a VAR in levels.6 Results from the VAR estimated
in differences (Figure 1) are very similar to the results of Gali (1999) and Francis
and Ramey (2001): Hours worked show a negative and persistent response to
a technology shock in the short run. According to point estimates, the negative
effect persists for one year (four quarters). Eventually, the effect becomes positive
in the long run (although not significantly different from zero). When the VAR is
estimated by using hours in levels, our results indicate that the initial response of
hours is positive, although not significantly different from zero. The response is
positive and statistically significant after 1 quarter, and for roughly 20 quarters.

Table 1 shows that, indeed, hours are a persistent process. The table provides
both results on unit root tests on hours and empirical evidence on the magnitude
of the persistence by using various methods to construct confidence intervals for
the largest root. The methods are the Stock (1991) median unbiased method and
those of Hansen (1995), Elliott et al. (1996), and Elliott and Jansson (2003). The
Stock (1991) method is implemented as follows: First, we calculate the ADF test
statistic for the time-series process of hours with four lags; then, by using the
“inversion” Table A1 in Stock (1991), pp. 455–456, we recover the confidence
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FIGURE 2. Estimation of VAR in levels: estimated IRF (solid line) and IRF confidence
bands (dotted line) of hours worked to a 1%-standard-deviation increase in the productivity
shock.

interval for the largest root. Confidence intervals for the other methods are obtained
in a similar fashion, although in the latter cases the inversion table may depend
on nuisance parameters and thus needs to be calculated by the researcher for the
specific database.

According to the Stock (1991) method, the largest root is between 0.93 and
1.01, with a median estimate equal to 0.98. With such a persistent process, it is
not surprising that none of the tests is able to reject a unit root at 5% level (note
that the CADF test rejects at 10%).

TABLE 1. Unit root tests on per-capita hours

Largest Root

Unit root 5% Median 95% confidence
Testa test statistic Critical value estimate interval

ADF −2.068 −2.88 0.977 (0.929; 1.015)
PT 23.192 3.17 1.003 (0.988; 1.022)
EJ 16.857 3.34 0.999 (0.982; 1.021)
CADF −2.437 −2.65 0.971 (0.925; 1.007)
CADF∗ −3.072 −2.54 0.951 (0.897; 0.997)

a Unit root tests are as follows: ADF is the Augmented Dickey Fuller t-test; PT is the Elliott et al. (1996) test. EJ and
CADF are, respectively, Elliott and Jansson (2003) and Hansen (1995) tests, which use information on the stationary
covariate, the first difference of productivity. The ADF, PT, and EJ tests are implemented with four lags, whereas
the CADF test is implemented both with four lags and four leads (CADF) and with four lags (CADF∗). Note that
all tests reject the null hypothesis of a unit root when the test statistic is smaller than the critical value.
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Given that unit root tests do not strongly support the presence of a unit root,
it may not be desirable to take a stand on whether the process has a unit root
or not. Kilian and Chang (2000) and Pesavento and Rossi (2003) show that in
the presence of large roots the coverage rates of confidence intervals for impulse
response functions constructed from VAR’s in first differences or levels can be
very bad in finite samples. The intuition is that a model that imposes a root
equal to 1 when one of the variables is not I(1) is misspecified. On the other
hand, in small samples, a model in levels underestimates the largest root and
the persistence of shocks. These apparently small mistakes and biases become
extremely important at medium to long horizons, where the difference between
stationary and nonstationary processes becomes more and more important. As
a result, VAR’s in levels and first differences have a very small probability of
containing the true impulse response function, almost zero. Unit root pretests do
not solve the problem because the actual coverage of impulse response bands
obtained after a pretest can be quite different from the nominal one (due to the low
power of unit root tests against persistent alternatives). Furthermore, even if the
tests reject a unit root, asymptotic approximations that rely on highly persistent
regressors are expected to provide better approximations in small samples. Thus,
we use the Pesavento and Rossi (2003) agnostic method to estimate median
unbiased impulse response functions and their confidence bands, which does not
require the researcher to choose between the two specifications. By using the local-
to-unity parameterization, we model the persistency of the process as a function
of the location parameter c (see the preceding section for details), which measures
how close to unity the largest root of the process is.

Figure 3 reports results for the agnostic method. It shows a negative and very
short-lived impact effect, which is very much in accordance with the findings
of Francis and Ramey (2001). The negative effect lasts only two quarters, less
than in Francis and Ramey (2001), and it is significant on impact. At business-
cycle frequencies, the median point estimate of the impulse responses is positive,
although not significantly different from zero. The confidence bands show that the
effect is very likely to be positive at long horizons and at business-cycle frequencies
(between six quarters and eight years). Comparing our median unbiased estimate
of the response with that of VAR’s in differences, we find some evidence that the
medium and long horizon effect is more positive and slightly larger in magnitude.
On the other hand, the effect that we estimate is also more persistent than that
obtained from VAR’s in levels. Finally, for comparison, Figure 4 reports results
obtained by using methods such as Wright (2000).7 The results are similar, except
that the confidence bands are larger. We also checked the robustness of the results to
the use of Hansen’s (1995) unit root test, which exploits information on stationary
covariates, and we find very similar results (see Figure 5).8

Our results are also similar to those obtained by using the Anderson and Rubin
(1949) robust confidence intervals, which also were reported by Vigfusson (2004,
pp. 11–12). In fact, Vigfusson (2004) finds that, in a VAR’s estimated in levels,
the impact response of hours to a 1-standard-deviation shock can be negative
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FIGURE 3. Agnostic estimation: estimated IRF confidence bands of hours worked to a
1%-standard-deviation increase in the productivity shock.

[the confidence interval is (−0.05, 0.11) percent] and becomes more positive at
business-cycle frequencies (the confidence interval is (0.05, 0.27) percent after
six quarters). In the present paper (see Figure 3), the agnostic estimation shows
an impact effect that is negative, but the upper bound of the confidence interval
is very close to zero; in addition, after five to six quarters, the confidence interval
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FIGURE 4. Wright method: estimated IRF confidence bands of hours worked to a 1%-
standard-deviation increase in the productivity shock.
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FIGURE 5. Agnostic estimation CADF: estimated IRF confidence bands of hours worked
to a 1%-standard-deviation increase in the productivity shock based on the Hansen (1995)
test.

shifts more toward positive values, which is very much in line with what Vigfusson
(2004) finds.

4. CONCLUSIONS

This paper analyzes the robustness of the estimate of the effect of a positive
productivity shock on hours worked to the presence of a possible unit root in
hours. Whereas the literature focuses on the cases in which hours are estimated
either in levels or in first differences (a sort of “atheist” view), we rely on an
agnostic procedure in which the researcher does not have to choose between the
two specifications. We find that a positive productivity shock has a negative impact
on hours, as in Francis and Ramey (2001), but the effect is much shorter lived than
previously found, and disappears after only two quarters. The effect then becomes
positive at business-cycle frequencies, as in Christiano et al. (2003), although it is
not significantly different from zero.

Our empirical evidence extends the results of Christiano et al. (2003) in an im-
portant and crucial way. In their framework, the level specification implies that the
first difference specification is misspecified whereas the difference specification
implies that the level specification is correctly specified. The latter follows from
the fact that the level VAR’s allows for a unit root. Although this is true at very
short horizons, this does not need to hold at horizons that are large relative to the
sample size, where the possibly downward-biased estimate of the root becomes
important. The importance of these biases depends on the economic problem at
hand and on the particular parameters that the researcher faces. Our results show
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that neglecting this effect may lead to very different economic results in measuring
the effects of productivity shocks.

Possible alternative estimation methods include Bayesian methods, as described
by Sims and Uhlig (1991). We do not attempt to pursue this approach in the present
paper, but a thorough investigation of the performance of Bayesian methods in
constructing confidence bands for impulse responses is provided by Kilian and
Chang (2000).

NOTES

1. Simply use (6) to obtain the confidence interval as follows: [ecl ,δ i′1Θ̂(1)Â0i2; ecl ,δ i′1Θ̂(1)Â0i2],
where “hats” denote estimated values.

2. The quasi differences are obtained by taking the residuals of a VAR(1). In our empirical appli-
cation,

Φ̂ =
(

0.986 0.002
−0.009 0.995

)
.

As pointed out by a referee, since the estimated value of ρ (0.986) is very close to 1, quasi differencing
gives very similar results to first differencing at short horizons.

3. The last two steps are equivalent (by monotonicity) to the following proceedure. For a given
horizon h = [δT ], for each point on a grid within the confidence interval for ΘiA0, construct two new
sequences by multiplying each of the points in the confidence intervals by ecLδ and ecU δ , respectively;
call these sequences ecLδΘiA0 and ecU δΘiA0. The overall confidence interval for the IRF of hours
to a productivity shock at horizon h is then obtained as the minimum over the first sequence and
the maximum over the second sequence: (min ecLδi′1ΘiA0i2; max i′1e

cU δΘiA0i2). By the Bonferroni
inequality, the confidence interval should have a coverage of at least 90% at each horizon h. Because
exponential functions are always positive, this procedure gives the same result as the procedure
described in the main text. Intuitively, relative to simply using (6) with a consistent estimate of Θ (I)
as described in a previous note, step (ii) adds information on the sampling variability of the short-run
parameters, Θ (L), thus improving the performance of the method at short horizons.

4. Pesavento and Rossi (2003) investigate a variety of methods, all of which have good coverage.
These methods build on the inversion of the following test statistics: ADF as in Stock (1991), Elliott
et al. (1996), Elliott and Jansson (2003), Elliott and Stock (2001), and Elliott et al. (2005). Although
we report results based on ADF only, our results are qualitatively robust to the use of the other methods
mentioned above.

5. The mnemonics for business labor productivity, business hours, and the civilian population over
the age of 16 are, respectively: LBOUT, LBMN, and P16. We thank Christiano et al. (2003) for the
data.

6. The IRF’s are multiplied by 100 so a value of 0.10 corresponds to a response of 0.10%. Following
the cited literature, we include a constant, but not a time trend. We focus on a bivariate VAR with hours
worked and the productivity measure. As in Francis and Ramey (2001) and in Christiano et al. (2003),
we do not expect our results to change if we include additional variables. We use four lags (chosen by
the BIC criterion) in order to compare our results directly to those of Francis and Ramey (2001) and
Christiano et al. (2003). Results are robust to different lags (e.g., 1 to 6) if we use quasi differences to
estimate the short-run dynamics.

7. The method originally proposed by Wright (2000) is univariate. We apply a method that is, in
spirit, very similar to his, but it is extended to a multivariate VAR with one large root.

8. In unreported simulations, we found that the results for the Hansen’s (1995) test are robust to
whether the CADF test is estimated with both leads and lags (as in Figure 5) or with lags only. We
also found that the results are robust to the use of other methods to construct confidence intervals for
a unit root, such as the Elliott et al. (1996) PT test and the Elliott and Jansson (2003) test.
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