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Natural swimmers rely for their survival on sensors that gather information from
the environment and guide their actions. The spatial organization of these sensors,
such as the visual fish system and lateral line, suggests evolutionary selection, but
their optimality remains an open question. Here, we identify sensor configurations
that enable swimmers to maximize the information gathered from their surrounding
flow field. We examine two-dimensional, self-propelled and stationary swimmers that
are exposed to disturbances generated by oscillating, rotating and D-shaped cylinders.
We combine simulations of the Navier–Stokes equations with Bayesian experimental
design to determine the optimal arrangements of shear and pressure sensors that
best identify the locations of the disturbance-generating sources. We find a marked
tendency for shear stress sensors to be located in the head and the tail of the swimmer,
while they are absent from the midsection. In turn, we find a high density of pressure
sensors in the head along with a uniform distribution along the entire body. The
resulting optimal sensor arrangements resemble neuromast distributions observed in
fish and provide evidence for optimality in sensor distribution for natural swimmers.

Key words: swimming/flying

1. Introduction
The capability of aquatic animals to accurately perceive their environment plays a

crucial role in their survival. Many fish species employ specialized organs to obtain
visual, olfactory and tactile cues from their environment which often complement
each other. Predator detection by fish using visual or olfactory cues (Hara 1975;
Ladich & Bass 2003; Valentinčič 2004) is crucial for providing early warning, since
mechanical disturbances may be imperceptible at large distances. On the other hand,
sensory organs specialized for detecting mechanical disturbances (Schwartz 1974) take
precedence when fish operate in deep or turbid waters, where visual and other sensory
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FIGURE 1. (a) The lateral line in juvenile zebrafish, with neuromasts visible as bright dots
on the body surface (adapted with permission from Sapède et al. (2002)). We observe a
high density of neuromasts in the head and the tail, with sparser distribution along the
midsection. (b) A schematic representation of the distribution of mechanoreceptors along
the fish body. (c) The neuromasts bend in response to flow, which generates a neuronal
response from sensory cells located at the base (adapted with permission from Kottapalli
et al. (2013)).

mechanisms may become ineffective. In these situations, the burden of collecting
sensory information falls primarily on the ‘lateral line’ organ in fish (Dijkgraaf
1963; Kroese & Schellart 1992; Coombs, Hastings & Finneran 1996; Coombs &
Netten 2005; Bleckmann & Zelick 2009). These organs are comprised of hair-like
mechanoreceptors called neuromasts (figure 1), which generate neuronal impulses
when deflected by either the flow shear (superficial neuromasts – Engelmann et al.
(2000)) or non-zero pressure gradients (sub-surface ‘canal’ neuromasts – Bleckmann
& Zelick (2009)). An array of such sensors allows fish to discern both the direction
and speed of disturbances generated in their surrounding flow (Chambers et al. 2014;
Asadnia et al. 2015).

These flow sensors are distributed in distinctive patterns on the body, with the canal
neuromasts distributed evenly along the midline from head to tail (Ristroph, Liao &
Zhang 2015), and superficial neuromasts found in dense clusters near the head and
tail, with a sparser distribution along the midsection (figure 1). The fact that they
are not distributed uniformly over the body, as well as differences in distribution
among species inhabiting different hydrodynamic environments (Atema et al.
1988; Engelmann et al. 2000; Bleckmann & Zelick 2009), suggest that neuromast
distribution may be optimized for characterizing hydrodynamic disturbances.

Experimental studies have demonstrated that a well-functioning lateral line is
crucial for a range of routine behaviour, such as schooling (Pitcher, Partridge &
Wardle 1976; Partridge & Pitcher 1980), predator evasion (Blaxter & Fuiman 1989),
prey detection/capture (Hoekstra & Janssen 1985), reproduction (Satou et al. 1994),
rheotaxis (Dijkgraaf 1963; Kanter & Coombs 2003), obstacle avoidance (Hassan 1989)
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and station-keeping by countering the effects of unsteady gusts (Sutterlin & Waddy
1975). Disrupting the normal functioning of the lateral line, either via chemical or
mechanical means, hinders a fish’s ability to perform these tasks effectively. Liao
(2006) demonstrated that disabling the lateral line system influences a fish’s ability
to harness energy from unsteady flows. The sensory system also plays a vital role
in ‘hydrodynamic imaging’, where fish devoid of visual cues swim past walls and
unknown objects repeatedly to form a hydrodynamic ‘map’ of their surroundings
(Hassan 1989; Coombs & Montgomery 1999; Montgomery, Coombs & Baker 2001;
Coombs & Braun 2003). Certain species such as the blind cave fish, which have
evolved degenerated sight, rely heavily on this technique for navigation, and for
inferring the shape and size of unfamiliar objects (von Campenhausen, Riess &
Weissert 1981; de Perera 2004; Windsor, Tan & Montgomery 2008).

The lateral line system has inspired the design of artificial sensory arrays, given
their potential to transform underwater navigation of robotic vehicles (Yang et al.
2006, 2010; Ježov et al. 2012; Kottapalli et al. 2012; Kruusmaa et al. 2014; Asadnia
et al. 2015; Strokina et al. 2016; Triantafyllou, Weymouth & Miao 2016; Kottapalli
et al. 2018; Yen, Sierra & Guo 2018). Such mechanoreceptors would be a vital
addition to the already available suite of visual and acoustic sensors, with the added
advantage of low energy-consumption, since they operate via passive mechanical
deformation. These vibration-detecting sensors would be crucial for navigation,
detection and tracking in low-light conditions, or in scenarios where the use of
onboard lights or sonar is undesirable, either for maintaining stealth, or for minimally
intrusive observation of animals. Current prototypes of such artificial sensors are based
on arrays of pressure transducers (Fernandez et al. 2011; Venturelli et al. 2012; Xu
& Mohseni 2017) and mechanically deforming hair-like structures (Yang et al. 2006;
Tao & Yu 2012; Abdulsadda & Tan 2013; Dagamseh et al. 2013; DeVries et al.
2015; Triantafyllou et al. 2016).

The importance of the lateral line as an essential sensory organ in fish, and
its immense potential for driving the bio-inspired design of artificial sensors, has
stimulated numerous experimental and model-based studies. The structure and
function of these sensory arrays has been investigated via biological experiments,
to characterize their response to pressure differences and object-induced vibrations in
water (Gray 1984; Denton & Gray 1988; Kroese & Schellart 1992; Coombs et al.
1996; Ćurčić-Blake & van Netten 2006). Experiments using artificial fish models
have tried to emulate these biological studies, using pressure transducers and hair-like
sensors to characterize the frequency and range of oscillating spheres (Montgomery
& Coombs 1998) and Kármán vortex streets (Venturelli et al. 2012). Moreover,
there have been a number of mathematical model-based studies, that have combined
potential-flow solutions with simplified representations of fish-swimming to study
the functioning of the lateral line (Hassan 1992; Franosch et al. 2009; Bouffanais,
Weymouth & Yue 2011; Ren & Mohseni 2012; Colvert & Kanso 2016). A few of
these studies have attempted to infer the optimal arrangement of sensors on rigid
objects exposed to various flow conditions. Colvert & Kanso (2016) determined
the optimal placement of a single sensor-pair on an elliptical body, moving at
different orientations in uniform flow. Ahrari et al. (2017) used simplified analytical
representations to determine optimal sensor-arrangement and -orientation on a rigid
hydrofoil, which could best characterize a dipole source with six degrees of freedom
in three dimensions.

While model-based studies provide important insight regarding sensing, they
suffer from certain drawbacks owing to simplified hydrodynamics, and simplistic
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representations of fish-swimming (e.g. ellipses and rigid airfoils). Neglecting the
effects of viscosity in potential-flow based studies is a notable disadvantage,
especially when considering larvae swimming at relatively low Reynolds numbers
(Re). Moreover, viscous effects play a substantial role in the operation of the lateral
line (Triantafyllou et al. 2016), given that superficial neuromasts are immersed
in the fish’s boundary layer, and canal neuromasts encounter low Re flow inside
constricted channels. The Reynolds number that animals operate at can also have
a considerable impact on the functioning of the lateral line (Webb 2014), which
cannot be accounted for via inviscid assumptions. The importance of viscous effects
has also been demonstrated by Rapo et al. (2009), who studied the impact of an
oscillating sphere on the boundary layer of a vibrating flat plate, albeit using analytical
simplifications to circumvent the high computational cost of three-dimensional
numerical simulations. Recent studies using two-dimensional viscous computations
have attempted to classify wake patterns behind an oscillating airfoil using artificial
neural networks (Alsalman, Colvert & Kanso 2018; Colvert, Alsalman & Kanso
2018). Using flow sensors placed in the wake of the airfoil, they determine that both
the spatial distribution of the sensors as well as the flow variable being measured
influence the accuracy for predicting wake characteristics. Here, we investigate the
role of hydrodynamics in determining the sensor distribution observed in fish, using
two-dimensional Navier–Stokes simulations of self-propelled swimmers to overcome
the limitations mentioned above. We determine the optimal spatial distribution of
sensors via Bayesian optimal experimental design, and we find that the resulting
patterns are closely related to sensory layouts found in natural swimmers.

2. Methods
The present study relies on two-dimensional simulations of a self-propelled

swimmer possessing shear stress and pressure gradient sensors on its surface. The
swimmer is exposed to disturbances generated by cylinders located at various positions
in the environment. The sensor locations are identified by formulating a Bayesian
optimal experimental design with the goal of maximizing the information gain of the
swimmer in its environment.

2.1. Numerical methods
We conduct two-dimensional simulations of viscous flows past multiple bodies by
discretizing the vorticity form of the incompressible Navier–Stokes equations

∂ω

∂t
+ (u · ∇)ω= ν∇2ω+ λ∇× (χ(us − u)), (2.1)

where u is the flow-velocity and ω = ∇ × u is the vorticity. The penalty term,
λ∇ × (χ(us − u)) models the interaction of objects with the surrounding fluid
(Coquerelle & Cottet 2008), where 0 < χ 6 1 indicates the solid body. Here λ is
the penalization parameter and us represents the combined translational, rotational
and deformational velocity of the solid object. The equations are discretized using
remeshed vortex methods (Koumoutsakos & Leonard 1995) and wavelet adapted
grids (Rossinelli et al. 2015), and the penalty term is integrated via the fully implicit
backward Euler method. Additional details for the computational methods may be
found in Gazzola et al. (2011) and Rossinelli et al. (2015). The simulation domain
is a unit square, with an effective resolution of 40962 grid points. The fish length is
L= 0.2 units, with approximately 800 grid points along its midline.
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(a) (b)

FIGURE 2. (a) A larva-shaped swimmer detecting disturbances generated by a rotating
cylinder (angular velocity = 10 rotations s−1). Regions with positive vorticity are coloured
in red, and those with negative vorticity are coloured in blue. (b) An adult-shaped
swimmer detecting an oscillating cylinder (amplitude = 0.075L, frequency = 10 Hz).
Animations for these two cases are shown in supplementary Movie 1 and Movie 2 and
are available online at https://doi.org/10.1017/jfm.2019.940.

2.2. Swimmer shape and kinematics
We consider two distinct scenarios for the swimmer behaviour to identify the optimal
distribution of sensors: one where external disturbances are detected by a static
fish-shaped body, and the other involving a self-propelled swimmer. Furthermore,
we examine the influence of body geometry on optimal sensor distribution by
considering two shapes for the swimmers modelled after zebrafish in their larval
and adult stages. The larva shape, shown in figure 2(a), is based on silhouettes
extracted from experiments, whereas the adult fish is modelled using a geometric
combination of circular arcs, lines and parabolic sections (figure 2b) (Gazzola, Van
Rees & Koumoutsakos 2012). Details regarding shape parameterization for both
cases are provided in appendix A: (A 1) and (A 2). The swimmers propel themselves
by imposing a sinusoidal wave travelling along the body. Details of the swimming
kinematics are also provided in appendix A.

2.3. Disturbance-generation and detection
The sensory cues detected by the rigid and swimming bodies described in § 2.2 are
generated using oscillating and rotating cylinders of diameter D = 0.25L (figure 2),
and a D-shaped half-cylinder of diameter 0.5L. The amplitude and frequency of the
horizontally oscillating cylinders are set to Acyl = 0.075L and fcyl = 10 Hz, whereas
the angular velocity of the rotating cylinders is set to 20π rad s−1 (10 rotations s−1).
The cylinders are placed at various locations within a prescribed region in the
computational domain (in the prior-region), as shown in figure 3.

We distinguish two types of sensors on the swimmer body. Shear stress sensors
estimate the local shear stress by measuring the tangential flow velocity in the
reference frame of the swimmer at two grid cells away from the body, corresponding
to a physical distance of 0.0024L. These sensors are analogous to superficial
neuromasts in fish that protrude into the boundary layer and measure tangential
velocity (Kroese & Schellart 1992; Bleckmann & Zelick 2009; Asadnia et al. 2015).
In addition, we consider pressure gradient sensors that correspond to canal neuromasts
observed in natural swimmers. We compute pressure gradient along the swimmers’
surface by fitting a least-squares cubic spline to surface pressure, in order to minimize
derivative noise. We note that the sensor measurements are scalar quantities, since
both the shear stress and pressure gradient are projected along the surface tangent
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FIGURE 3. Set-up used for determining the optimal sensor distribution on a fish-like body
swimming past a cylinder located within the rectangular area, which is referred to as
the prior-region. The sensor placement algorithm attempts to find the best arrangement
of sensors that allows the swimmer to identify the correct cylinder position with minimal
uncertainty.

vector at each measurement location on the body. This is done so that the measured
scalar quantities are a close representation of the flow-induced forces that deflect the
hair-like sensory structures in real fish.

In the case of self-propelled swimmers, measurements are taken towards the end of
a coasting phase to allow self-generated disturbances to subside sufficiently, and are
averaged over a small time window from 15.750T to 15.875T . For motionless larvae,
the disturbance sources start moving at 0 s, and time averaging of the recorded data
is done between 0.95 s and 1.0 s. This allows transients from the initial cylinder
start-up to dissipate sufficiently. Time averaging for the D-cylinder simulations is
done from 18 s to 20 s, which allows adequate time for vortex shedding to exhibit
a periodically repeating pattern. These measurements are then used to determine
the optimal arrangement of sensors on the swimmer body, via the Bayesian optimal
experimental design algorithm described in § 2.4.

2.4. Bayesian optimal sensor placement
2.4.1. Bayesian estimation of disturbance location

We consider a disturbance-generating source (for example an oscillating or rotating
cylinder) located at coordinates r = (x, y) in the region shown in figure 3. The
uncertainty in the values of the coordinates of the cylinder is quantified by a
probability distribution that is updated based on measurements collected on the surface
of the swimmers. The cylinder location can be detected provided that disturbances
induced by the cylinder to the surrounding fluid are detected by sensors located on
the swimmer surface. The problem of optimal placement implies that we identify the
configuration of sensors that can provide the best estimate for the coordinates of the
cylinder (r). We assume that the sensor locations are placed symmetrically on both
sides of the two-dimensional swimmer and they are described by a vector s∈Rn, that

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

94
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.940


Optimal sensor placement 884 A24-7

is the midline coordinate of each sensor pair, with values in [0, L] (see figure 3). The
shear stress or the pressure gradient are measured on the surface points corresponding
to the positions s, and are listed in a vector y ∈ R2n.

We denote as F(r; s) the predictions of shear stress/pressure gradient at sensor
locations s, obtained by solving the Navier–Stokes equations with a disturbance-
generating source located at r. Moreover, we assume that we have prior knowledge
about the parameter r, encoded in a prior probability distribution p(r).

After observing the measurements y from sensors s, we use Bayesian inference
to update our prior belief for the plausible values of parameter r, by identifying
the posterior probability distribution p(r|y, s). Following Bayes’ rule, the posterior
distribution p(r|y, s) of the model parameters is proportional to the product of the
prior distribution p(r) and the likelihood p(y|r, s). The likelihood function represents
the probability that a particular measurement y for a given sensor arrangement s
originates from the disturbance source located at r. We assume a prediction error,
ε(s), as the difference between the measurements y and the predictions F(r; s) such
that

y=F(r; s)+ ε(s). (2.2)

The prediction error term (ε(s)) represents errors that can be attributed to measurement-
and model-errors, as well as numerical errors due to spatio-temporal discretization of
the Navier–Stokes equations. Following the maximum entropy criteria the prediction
error ε(s) follows a multivariate Gaussian distribution N (0,Σ(s)) with zero mean and
covariance matrix Σ(s) ∈ R2n×2n. The likelihood function p(y|r, s) is then expressed
as

p(y|r, s)=
1

√
(2π)n det(Σ(s))

exp
(
−

1
2
(y−F(r; s))TΣ−1(s)(y−F(r; s))

)
. (2.3)

2.4.2. Optimal sensor placement based on information gain
The goal of the optimal sensor placement problem is to find the locations s of

the sensors such that the data measured in these locations are most informative
for estimating the position r of the disturbance. A measure of information gain is
provided by the Kullback–Leibler divergence between the prior and the posterior
distribution. We postulate that the optimal sensor configuration maximizes a utility
function that represents the information gain, or equivalently, the Kullback–Leibler
divergence defined as

u(s, y) :=
∫
R

p(r|y, s) ln
p(r|y, s)

p(r)
dr. (2.4)

We note that in the experimental design phase, the measurements y are not available.
Thus, the prediction error model (2.2) is used to generate measurements for given
model parameter values r and sensor configuration s. We identify the best sensor
arrangement by maximizing a utility function, defined as the expected value of the
Kullback–Leibler divergence over all possible values of the measurements simulated
by (2.2) (Ryan 2003):

U(s) :=Ey|s[u(s, y)] =
∫
Y

u(s, y) p(y|s) dy

=

∫
Y

∫
R

p(r|y, s) ln
p(r|y, s)

p(r)
p(y|s) dr dy. (2.5)
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The expected utility function involves a double integral over the parameter space r and
over the measured data y. An efficient estimator of this double integral using sampling
techniques is provided by Huan & Marzouk (2013). A similar estimator is used in the
present work,

Û(s)=
1

Ny

Ny∑
j=1

Nr∑
i=1

wip(r(i))

[
ln p(y(i,j)|r(i), s)− ln

(
Nr∑

k=1

wkp(r(k))p(y(i,j)|r(k), s)

)]
. (2.6)

A detailed derivation and discussion of the estimator is provided in appendix B.
Our estimator employs a quadrature technique to evaluate the integral over the
two-dimensional parameter space r. In (2.6), r(i) and wi denote Nr quadrature points
and corresponding weights related to discretization of the two-dimensional prior-region
(figure 3). A total of Nr distinct Navier–Stokes simulations are conducted, with
a cylinder positioned at various discrete points r(i), and the quadrature is evaluated
using the trapezoidal rule. Based on the prediction error defined in (2.2), the measured
data y(i,j) in (2.6) are given by

y(i,j) =F(r(i); s)+ ε( j), (2.7)

where ε( j), with j= 1, . . . , Ny, are vectors sampled from the distribution N (0, Σ(s)).
Ny is set to 100 in the current work, which results in a smoother estimate of Û(s) in
(2.6).

We note that the computational effort for evaluating Û(s) in (2.6) depends primarily
on the number of Navier–Stokes simulations, Nr, which are required to evaluate
F(r(i), s) for different disturbance locations r(i), and subsequently to determine y(i,j)
using (2.7). The computational burden does not depend on the number of measured
samples Ny, since there are no additional time-consuming simulations involved in
generating ε( j). Thus the computational effort scales linearly with the number Nr of
model parameter points r(i).

We assume that the prior distribution p(r) for the location of the disturbance source
is uniform over the prior-region shown in figure 3, i.e. the probability of finding
the source is constant for all locations. Moreover, the only available information we
have is a description of the prior-region where the disturbance may be found. Using
Bayes’ theorem, and the fact that the prior distribution is uniform, we can assert that
the posterior distribution of a disturbance location r, p(r|y, s), is proportional to the
likelihood function p(y|r, s).

The covariance matrix Σ(s) depends primarily on the sensor positions s, and is
diagonal if the errors at the given sensor positions are independent of each other. In
the current work, the prediction errors are assumed to be correlated for measurements
collected on the same side of the swimmer (i.e. left- or right-lateral surfaces), and
decorrelated if the measurements originate from opposite sides. An exponentially
decaying correlation is assumed for the covariance matrix

Σij(s)=


σ 2 exp

(
−
‖x(si)− x(sj)‖

`

)
, if 1 6 i, j 6 n,

Σi−n,j−n(s), if n< i, j 6 2n,
0, otherwise,

(2.8)

where x(si) corresponds to the coordinates of the ith sensor on the right-lateral surface
of the swimmer, ` > 0 is the prescribed correlation length and σ is the correlation
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strength. For all the simulations described in this work, the correlation length is
set to be ` = 0.01L. The correlation strength σ is a fixed percentage (30 %) of the
mean sensor-measurement, which is computed over all available instances of r and at
all points discretizing the swimmer skin. This form of the correlation error reduces
the information gain when sensors are placed too close together (Papadimitriou &
Lombaert 2012; Simoen, Papadimitriou & Lombaert 2013), and prevents excessive
clustering of sensors within confined neighbourhoods.

Finally, we provide an intuitive interpretation of how (2.6) relates to information
gain. Let us assume that a particular set of sensors is able to characterize the
disturbance sources quite effectively. Moreover, we assume that the measurement y(i,j)
has been generated by a disturbance located at r(i). This implies that the posterior
p(r|y(i,j), s), which indicates the probability that a particular disturbance source r has
generated the measurement y(i,j), is peaked and centred around the true source location
r(i). Since the prior distribution is uniform, the likelihood p(y(i,j)|r, s) is proportional
to the posterior, and is also peaked and centred around r(i). Thus, the first term in
(2.6) is large, whereas most of the terms in the second sum are close to zero, since
the probability of measurement y(i,j) originating from source r(k) is small due to the
peaked nature of the posterior (except for k = i). In this case, the expected utility
value computed using (2.6) is large. On the other hand, a poor sensor arrangement
which cannot characterize source positions well, yields flatter likelihood and posterior
distributions due to high uncertainty. Thus, different source positions yield similar
measurements at the selected sensors, which makes the second sum in (2.6) larger
(non-zero p(y(i,j)|r(k), s) even for k 6= i), thereby reducing the utility value.

2.4.3. Optimization of the expected utility function
The optimal sensor arrangement is obtained by maximizing the expected utility

estimator Û(s) described in (2.6). However, optimal sensor placement problems
are characterized by a relatively large number of multiple local optima. Heuristic
approaches, such as the sequential sensor placement algorithm described by
Papadimitriou (2004), have been demonstrated to be effective alternatives. In this
approach, the optimization is carried out iteratively, one sensor at a time. First, Û(s)
is computed for a single sensor-pair s = s1, and the optimal solution s?1 is obtained
by identifying the maximum in Û(s). Then, Û(s) is recomputed with s = (s?1, s2),
and it is optimized with respect to the second sensor-pair, resulting in an optimal
solution s?2. We can generalize this procedure for all subsequent sensors, by defining
Ûi(s)= Û(s?1, . . . , s?i−1, s). The optimal solution for the ith sensor is given as

s?i = argmax
s

Ûi(s) and Û?
i =max

s
Ûi(s). (2.9a,b)

We note that the scalar variable s denotes the position of a single sensor-pair, whereas
the vector s holds the position of all sensor-pairs along the swimmer’s midline.

The sequential placement procedure is carried out for a number of sensors, Ns,
and it terminates when the last sensor in the optimal configuration is identified
s? = (s?1, . . . , s?Ns

). Papadimitriou (2004) has demonstrated that the heuristic
sequential sensor placement algorithm provides a sufficiently accurate approximation
of the global optimum. Moreover, using the sequential optimization approach, Ns
one-dimensional problems have to be solved, instead of one Ns-dimensional problem.
We solve each one-dimensional problem of identifying the maximum of Ûi via a grid
search, where the swimmer midline is discretized using the points {k1s, k=0, . . . ,Ng},
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(a) (b) (c)

(d) (e) (f)

FIGURE 4. Snapshots of the vorticity field around a static larva profile in the presence
of a horizontally oscillating cylinder. The snapshots are taken at regular intervals over a
single oscillation period, with positive vorticity shown in red and negative vorticity shown
in blue. A corresponding animation is shown in supplementary movie 3.

with 1s = L/Ng and Ng = 1000. Thus, for each iteration of sequential optimization,
the utility estimator in (2.6) has to be evaluated Ng + 1 times.

We remark that the Bayesian optimal design procedure is computationally
demanding, as it entails model simulations for several different sensor configurations s.
To minimize the relevant computational cost, we run Nr distinct Navier–Stokes
simulations for all disturbance locations r(i) (i= 1 . . . , Nr), and store the shear stress
and pressure gradient at all available discretization points along the swimmer skin
offline. This allows us to reuse simulation data for a particular disturbance source,
without having to re-run Navier–Stokes simulations for different sensor configurations.
We note that the skin discretization may not correspond to the Ng points used for
computing Û?

i . Thus, the output quantities of interest are averaged at appropriate
locations along the swimmer surface, over a small neighbourhood of size 0.01L.

3. Results
We first examine the optimal arrangement of shear stress and pressure gradient

sensors on motionless larva in the presence of oscillating, rotating and D-shaped
cylinders. We then consider self-propelled swimmers, which are exposed to cylinder-
generated disturbances.

3.1. Stationary swimmer in the vicinity of oscillating/rotating cylinders
We first consider the set-up of a stationary larva-shaped swimmer and a cylinder that
either oscillates parallel to the ‘anteroposterior’ axis of the body, or rotates with a
constant angular velocity. The oscillating-cylinder set-up is shown in figure 4, and
depicts the vorticity generated by the cylinder along the larva’s body. These two set-
ups allow us to analyse mechanical cues (i.e. vibrations in the flow field) without
interference from a self-generated boundary layer, which has a tendency to obscure
external signals in the case of towed and self-propelled bodies. The simulation domain
extends from [0, 1] in x and y, and the rectangular prior-region in both the set-ups
corresponds to rmin = (0.357, 0.375) and rmax = (0.7, 0.47). A total of 11× 37= 407
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FIGURE 5. Utility plots for a stationary, larva-shaped body with (a) oscillating and
(b) rotating cylinders. The curves indicate the utility for placing the first shear stress sensor
at a given location s. The utility curves were not computed in the region 0.95< s/L 6 1,
to avoid potential numerical issues resulting from sharp corners at the tail. (c,e) Standard
deviation of horizontal and vertical velocity caused by oscillating cylinders, with larger
deviation shown in yellow and lower values shown in black. The standard deviation was
computed across nine distinct simulations (six time-snapshots recorded in each simulation),
with a single oscillating cylinder placed at nine locations uniformly in the prior-region.
(d, f ) Standard deviation of velocity components for the rotating cylinders. (g) Optimal
sensor distribution determined using sequential placement. Sensors for detecting oscillating
cylinders are shown as black squares, whereas those for detecting rotating cylinders are
shown as blue circles. The numbering indicates the sequence determined by the optimal
placement algorithm.

potential r(i) locations are distributed uniformly throughout the region, and the static
object’s centre of mass is located at (0.5, 0.3). The kinematic viscosity is set to ν =
1× 10−4 in these simulations.

3.1.1. The utility function, and sensor placement
The optimal distribution of sensors along the larva’s body can be determined using

the estimator Û(s) defined in (2.6). Higher utility values indicate that measurements
taken at the corresponding locations are more informative. More specifically, the utility
at location s is high if a sensor placed there can more effectively differentiate between
signals originating from distinct cylinder locations. The utility curves computed from
signals generated by the oscillating and rotating cylinders are shown in figures 5(a)
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and 5(b). The maxima in these curves suggest that the best location for detecting both
oscillating and rotating cylinders, using shear stress sensors, is at s/L = 0.033. We
remark that this location involves a notable change in body-surface curvature, as can
be discerned from the swimmer silhouettes shown in the figures.

We postulate that the best sensor positions are those that are exposed to large
variations in the quantity of interest, namely the shear stress or pressure gradient, since
this would allow the sensors to best distinguish between different disturbance sources
more readily. We confirm that this is indeed the case, by visualizing the standard
deviation of velocity components in regions surrounding the larva, in figures 5(c)–5( f ).
The standard deviation measures the variation among simulations when cylinders are
placed at different positions in the prior-region shown in figure 3. The colour scales
are identical for panels 5(c) and 5(e) (the oscillating cylinder scenario), but different
from the colour scales in panels 5(d) and 5( f ) (the rotating cylinder scenario). The
colour scales in 5(d) and 5( f ) have been saturated by approximately 30 times, so
that weaker flow disturbances created by the rotating cylinders are adequately visible.

We observe from figures 5(c) and 5(e) that changing the position of an oscillating
cylinder gives rise to significant differences in the tangential velocity (shear stress)
close to the head and the tail. This implies that signals measured by sensors in these
regions differ markedly from one simulation to the other, which arguably would
make it easier to estimate the position of a particular cylinder. A large variation
in horizontal velocity u occurs close to a change in body curvature at s/L ≈ 0.033,
which also corresponds to the global maximum in Û1(s) (figure 5a). The utility curve
exhibits consistently high values for s/L 6 0.15, which results from large variations
in u and v in regions surrounding the head. We note that large variations in the
lateral velocity v occur primarily at the head- and tail-tip (figure 5e), with almost
no variation along the midsection (0.2< s/L 6 1). This can be attributed to v being
almost zero in these regions (across all simulations), owing to negligible recirculation
along these relatively straight body sections. The large variation in v at the head/tail
tip may be explained by the flow turning at the corners, as is evident from the
time-series snapshots shown in figure 4. We note that while u appears to exhibit
large deviation around the midsection (0.4 6 s/L 6 0.6 in figure 5c), the utility curve
in figure 5(a) does not show a corresponding spike. This may be related to the fact
that the standard deviation plots were compiled using a small subset of nine cylinder
locations out of the 407 used for the utility plot. Furthermore, a close inspection of
figure 5(c) indicates that these large deviations in u near the midsection occur beyond
the detection range of the sensors, i.e. too far away to be picked up by microscopic
neuromasts that are 0.0024L in length.

As in the case of oscillating cylinders, the standard deviation plots for rotating
cylinders in figures 5(d) and 5( f ) can be correlated to the utility curve in figure 5(b);
high utility values (s/L 6 0.15, figure 5b) correspond to large deviations in both u
and v near the head (figure 5d, f ). Based on the utility curve, the highest sensitivity
for measuring flow perturbations corresponds to the head and posterior sections of
the body. This suggests that the head and tail are the most informative regions
for detecting shear stress fluctuations for a static larva, regardless of the type of
disturbance being considered. This observation is consistent with the distribution
of neuromasts shown in figure 1, where the surface neuromasts are visible in high
concentrations in the head and posterior regions of fish, but show sparse presence
along the midsection.
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FIGURE 6. (a) Utility curves for placing the first three sensors on a static larva that
detects oscillating cylinders (figure 4). The solid green curve corresponds to Û1(s), the
dashed purple curve to Û2(s) and the red dash-dot curve to Û3(s). (b) The optimal utility
Û?

n for the nth sensor can be determined as maxs Ûn(s) using the curves shown in panel (a)
(see also (2.9)).

3.1.2. Sequential sensor placement
In the previous section we discussed the case of a single sensor on the swimmer

body. We now examine the optimal arrangement of multiple sensors, where the best
location for the nth sensor is determined provided that n−1 sensors have already been
placed. Assume that the first sensor has been placed at s?1 using the global maximum
in utility curve Û1(s). The next best sensor-location is determined by recomputing the
utility function Û2(s) as described in § 2.4.3. Following this procedure, the optimal
location of all sensors is determined sequentially.

Figure 5(g) shows the optimal distribution of 20 sensors for the static larva
determined in this manner. We first examine the optimal arrangement for detecting
oscillating cylinders, with the corresponding sensors depicted as black squares. We
observe that out of the first 10 sensors, numbers 1, 3, 5, 9 are placed at the head,
whereas numbers 2, 4, 6, 7, 8, 10 are found towards the posterior. This suggests
a large information gain via sensors located in the head and the tail. For detecting
rotating cylinders (sensors shown as blue circles in figure 5g), sensors 1, 3, 4, 6, 8,
10 are found in the head, and sensors 2, 5, 7, 9 are placed in the posterior section.

We also examine the utility curves for placing the first three oscillation-detecting
shear stress sensors in figure 6(a). We observe that Û2(s1)≈ Û1(s1), which indicates
that placing a second sensor at the same location as the first (s1/L= 0.033) would not
lead to an appreciable increase in the utility value (i.e. no gain in useful information).
The maximum in Û2(s) occurs at s/L= 0.95, which yields the optimal location s?2 for
the second sensor. Another notable aspect of curve Û2(s) is a pronounced ‘v-shaped’
depression in the vicinity of s?1, which results from using a non-zero correlation
length in (2.8). The low utility values in this region impede the placement of sensors
too close to each other. Using a zero correlation length would have resulted in
an abrupt drop in Û2(s) at s?1 (instead of the smooth depression), and could lead to
excessive clustering of sensors within confined neighbourhoods. Figure 6(b) shows the
cumulative utility value for an increasing number of sensors placed on the swimmer
body. We observe that after a rapid initial rise for the first three to five sensors, the
utility of placing subsequent sensors increases very slowly. This indicates that using
a limited number of optimal sensor locations should be sufficient to characterize
disturbance sources with reasonably good accuracy.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

94
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.940


884 A24-14 S. Verma and others

(a) (b)

(c) (d)

FIGURE 7. Snapshots of the vorticity field around a static larva in the wake of a D-shaped
cylinder with diameter 0.5L. The D-cylinder is oriented at a 10◦ angle with respect to a
uniform horizontal flow to promote vortex shedding. The snapshots are shown at regular
time intervals, with positive vorticity shown in red and negative vorticity shown in blue.
A corresponding animation is shown in Movie 4.

3.2. Motionless larva in the wake of a D-cylinder
We now consider simulations where a rigid larva-shaped profile is placed in
the unsteady vortex-wake generated by a D-shaped half-cylinder (figure 7). This
configuration is inspired by the pioneering work of Liao et al. (2003) who examined
the fluid dynamics of trout placing themselves behind rocks. A uniform horizontal
flow of 1L s−1 is imposed throughout the computational domain, and the rigid
bodies are held stationary. The D-cylinder is located at (0.2, 0.5), and the rectangular
prior-region for placing the larvae extends from rmin= (0.3, 0.43) to rmax= (0.79, 0.57).
A total of 11× 36= 396 potential r(i) locations are distributed uniformly throughout
the prior-region. The Reynolds number is Re = 200 based on the cylinder diameter,
and Re= 400 based on the swimmer length.

Figure 8 shows the utility curve for placing the first shear stress sensor on the static
larva, as well as the sensor distribution resulting from sequential placement. The utility
values for 0.26 s/L6 0.6 are close to zero, which implies that placing the first sensor
along the midsection would provide minimal information gain. Using the sequential-
placement procedure described in § 2.4.3, we determine that all of the first 10 sensors
are placed at the head, with no sensors present in the tail. Our results indicate that
sensors at the head are far more significant than sensors in the mid- and posterior-
sections of the body for detecting the unsteady wake behind a half-cylinder.

3.3. Self-propelled swimmers: shear stress sensors
Fish generate vorticity on their bodies by their undulatory motion. Their flow-sensing
neuromasts are completely immersed in this self-generated flow field, which likely
has a significant impact on their ability to detect external disturbances. To include the
influence of these self-generated flows on optimal sensor placement, we now consider
simulations of self-propelled swimmers that are exposed to oscillating and rotating
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FIGURE 8. (a) Utility curve Û1(s) for larvae in a D-cylinder’s wake. (b) Sequential
placement of 20 sensors, with the order of placement shown.

cylinders (figure 2). These swimmers utilize an intermittent swimming gait referred
to as ‘burst and coast’ swimming, which allows for improved sensory perception
(Kramer & McLaughlin 2001), as self-generated disturbances subside during the
coasting phase. The swimmers perform four full burst-coast swimming cycles starting
from rest, before the cylinder starts oscillating or rotating, as depicted in movie 1 and
movie 2. In the initial transient phase, the swimmer gains a speed of approximately
0.7L s−1, which corresponds to a Reynolds number of Re = uL/ν ≈ 280 (with
L= 0.2 and ν = 1× 10−4). At the start of the fifth coasting phase, the cylinder starts
moving, which simulates the startle/attack response of a prey/predator present in the
swimmer’s vicinity. The rectangular prior-region for initializing the cylinders extends
from rmin = (0.25, 0.375) to rmax = (0.7, 0.5), with a total of 11× 37= 407 potential
r(i) locations distributed uniformly throughout the region. The swimmer’s centre of
mass is located at (0.5, 0.3).

To determine the extent to which body shape influences optimal placement, we
perform simulations using a larva-shaped profile, and a simplified model of an adult.
Figure 9 compares the utility curves and sensor distributions for these two distinct
swimmers. Based on the utility curves in figures 9(a) and 9(c), we deduce that the
head is the most suitable region for placing the first sensor, as was the case for the
motionless profiles examined in the previous sections. We also observe that the utility
curves are correlated to the surface curvature of their respective body profiles; in the
case of the larva, there is marked variation in Û1(s) for s/L6 0.2, which corresponds
to large curvature changes in the body surface. The utility curve also shows a gradual
variation for s/L > 0.6, which corresponds to a gentler change in curvature of the
surface. Similarly, the utility curves and body curvature for the adult vary rapidly for
s/L 6 0.05 and more gradually for s/L > 0.6. Furthermore, we note that the blue
utility curves in figures 9(a) and 9(c) are close to 0 for s/L > 0.2. This suggests that
the head is the most useful region for placing rotation-detecting shear stress sensors,
irrespective of differences in body shape.

The optimal sensor arrangements observed in figures 9(b) and 9(d) are listed in
table 1. There is strong indication that the head is the most important region for
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FIGURE 9. (a) Utility curves for the first shear stress sensor, Û1(s), on a larva-
shaped swimmer (black squares, oscillating cylinders; blue circles, rotating cylinders).
(b) Sequential placement of 20 sensors along the body, with the order of placement shown.
(c) Utility curves for an adult-shaped swimmer. (d) Sensor placement for the adult, with
results from horizontal and rotating disturbances shown separately for clarity.

detecting shear stress caused by external disturbances, followed by the posterior
section; the midsection appears to be insensitive to shear-stress variations altogether,
as evidenced by the lack of sensors in this region. Moreover, the posterior section
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Head Midsection Posterior

Larva Oscillating 1, 2, 4, 5, 8, 9 — 3, 6, 7, 10
Rotating 1, 2, . . . , 10 — —

Adult Oscillating 1, 2, 4, 6, 9, 10 — 3, 5, 7, 8
Rotating 1, 2, . . . , 10 — —

TABLE 1. Optimal distribution of the first 10 shear stress sensors for the self-propelled
swimmers. The body has been divided into three distinct segments: the head (0 6 s/L<
0.2), the midsection (0.2 6 s/L< 0.6) and the posterior (0.6 6 s/L 6 1).

appears to be insensitive to rotating disturbances regardless of the body shape. These
observations agree well with surface neuromast distributions observed in live fish
(figure 1a), where large numbers are found in the head and the tail, with sparser
clustering in the midsection.

3.4. Optimal sensor placement using combined datasets
Fish are subject to a multitude of external stimuli over the course of their lifetime.
Hence, it is conceivable that neuromasts may be attuned to diverse sources of
disturbance. We emulate this situation for optimal sensor placement by considering
data collected from the five different simulation set-ups simultaneously, namely,
motionless larvae with oscillating, rotating and D-shaped cylinders, and self-propelled
larvae with oscillating and rotating cylinders. The sequential-placement procedure
described in the previous sections is followed, with a slight modification to
the definition of the utility function. The combined utility for the five different
configurations may be expressed as a sum of the individual utility functions,
due to the conditional independence of the measurements on the sensor locations
(see appendix C). The resulting utility curve for the shear stress sensors is shown
in figure 10, along with the optimal sensor distribution. We observe predominant
placement of sensors in the head and tail, corresponding to large utility values in these
regions. Moreover, we find that virtually no sensors are located in the midsection.
The dense clustering of sensors in the head and tail, with sparse distribution in
the midsection, yet again resembles surface neuromast patterns found in live fish
(figure 1), and indicates that fish extremities may be ideal for detecting variations in
shear stress.

3.5. Optimal pressure gradient sensors
We now consider the optimal placement of pressure gradient sensors on the larva’s
body. These sensors are analogous to canal neuromasts found in live fish, which
display markedly similar distribution patterns across a variety of fish species (Ristroph
et al. 2015). The canal is usually present in a continuous line running from head to
tail, and shows a high concentration of neuromasts in canal branches found in the
head (Coombs, Janssen & Webb 1988; Ristroph et al. 2015). We use a combination
of the five distinct flow configurations, described earlier, to determine the optimal
arrangement of pressure gradient sensors by following the procedure described in § 3.4.
The resulting utility curve and sensor distribution are shown in figure 11. The most
notable difference between the arrangement of pressure gradient sensors (figure 11b),
and that of shear stress sensors (figure 10b), is observed in the midsection of the
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FIGURE 10. (a) Utility curve for the first shear stress sensor, Û1(s), on a larva-shaped
swimmer, using a combination of all five flow configurations described in the paper.
(b) Sequential placement of 20 shear stress sensors along the body.
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FIGURE 11. (a) Utility curve for the first pressure gradient sensor, Û1(s), on a larva-
shaped swimmer, using a combination of all five flow configurations described in the paper.
(b) Sequential placement of 20 pressure gradient sensors along the body.

body. We find a consistent distribution of pressure gradient sensors in the midsection,
which is not the case for shear stress sensors. Out of the 20 pressure gradient sensors
placed, 10 are found clustered densely in the head (s/L 6 0.1, which corresponds to
high utility values in figure 11a), and the other 10 are spaced regularly throughout the
body. This arrangement is similar to the neuromast distribution found in subsurface
canals, which yet again suggests that this sensory structure may have evolved for
detecting changes in pressure gradients with high accuracy. In fact, the utility curve
shown in figure 11(a) agrees qualitatively with the canal density reported by Ristroph
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et al. (2015), especially for s/L < 0.2. However, a direct comparison must be made
with care, given that our simulations are two-dimensional, whereas the distributions
reported by Ristroph et al. (2015) display significant three-dimensional branching in
the head.

3.6. Inference of disturbance-generating source
Having determined the optimal distribution of sensors on the swimmer body, we now
assess how effectively these arrangements can characterize the disturbance sources. For
a given set of sensors s, this involves estimating the probability that a particular sensor
measurement may originate from different cylinder positions within the prior-region.
For this, we consider the measurements y(GT) at the sensor locations, generated from a
single cylinder located at r(GT) (the superscript GT denotes ‘ground-truth’). For a given
sensor configuration s, the measurements y(GT) are computed using the prediction error
model y(GT)

=F(r(GT)
; s)+ε(s), where F(r(GT)

; s) is obtained by simulating the Navier–
Stokes equations with an oscillating cylinder located at r(GT), and ε(s) is a vector
sampled from the Gaussian distribution N (0, Σ(s)). Assuming that the disturbance
position r(GT) is unknown, the swimmer attempts to identify it by assigning probability
values to all possible cylinder locations r within the prior-region (i.e. by determining
the posterior distribution p(r|y(GT), s)). The highest probability value yields the best
estimate for the cylinder position. This process is analogous to a fish attempting to
localize the position of a predator or prey. Using the fact that the prior distribution of
the disturbance location is uniform, the required posterior probability distribution of
the disturbance location is proportional to the likelihood p(y|r(GT), s) defined in (2.3),
where y are the measurements recorded along the swimmer body.

The resulting probability distribution for estimating the correct r(GT) is depicted in
figure 12, with the rows showing results for an increasing number of sensors. The
left column shows probability estimates from a self-propelled swimmer attempting to
identify the position of an unknown disturbance source, based on flow measurements
from optimal sensor locations which are indicated on the body. The right column
depicts estimates made by a swimmer using suboptimal sensor distributions. The
probability distributions indicate that the swimmer on the left (using optimal sensor
distributions) is able to provide a much more accurate estimate of the correct
location of the disturbance source. We observe that the uninformed placement of
a single sensor in figure 12(b) leads to a large spread in the probability distribution,
making it difficult to locate the disturbance source accurately. In comparison, the
first optimal sensor in figure 12(a) yields a noticeably narrower spread, centred close
to the correct position of the signal-generating cylinder (i.e. the ground-truth). The
probability distributions in both cases become narrower with increasing number of
sensors, making it easier to locate the disturbance source. In all cases, the optimal
arrangement of sensors performs noticeably better than the uniform distribution for
identifying the correct cylinder location.

4. Discussion
While the present work attempts to represent realistic flow conditions, it is important

to keep in mind its limitations and the simplifying assumptions used in the simulations
and data analyses. Most importantly, we note that flexural dynamics of the sensory
structures are not accounted for in the current study. In actual fish, the extent to
which the hair-like sensory structures are deflected by the flow can influence their
sensing effectiveness (Hudspeth & Corey 1977; Ćurčić-Blake & van Netten 2006;
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(a) (b)

(c) (d)

(e) (f)

FIGURE 12. Plots showing the probability that the signal being measured by a
self-propelled swimmer originates from a particular location in the prior-region. (a,c,e)
Swimmer using flow measurements from optimal sensor locations indicated on the body,
panels (b,d, f ) show estimates made by a swimmer using suboptimal sensor distributions.
Brighter areas indicate regions of higher probability. The relevant sensor arrangement
is shown using red ‘×’ symbols on the swimmers’ bodies. The actual position of the
signal-generating cylinder is marked with red diamonds. (a,c,e) Probability distributions
computed using measurements from 1, 3 and 5 optimal sensors on both sides of the body.
(b,d, f ) Probability distributions for 1, 3 and 5 uniformly distributed sensors on both sides.

Van Trump & McHenry 2008; Bleckmann & Zelick 2009). For instance, beyond a
certain locomotion speed, the superficial neuromasts may suffer from saturation effects
during forward motion, when the hair cells are fully deflected and may no longer
be able to detect external stimuli effectively. In addition to natural swimmers, such
dynamics have been included in artificial lateral lines employed in robotic devices
(Fan et al. 2002). Similarly, the canal neuromasts are located in recessed channels
under the skin, which alter the flow experienced by the sensory structures considerably.
This is compensated for in real fish through the introduction of resonant hair cell
structures (Ó Maoiléidigh, Nicola & Hudspeth 2012), but is not accounted for in
our simulations. All of these aspects may play an important role in determining the
observed distribution of sensors on a fish’s body, in addition to the fluid-flow induced
by external stimuli. However, our two-dimensional simulations do not account for
these factors, in an attempt to keep the complexity of the Navier–Stokes simulations
to manageable levels.

Furthermore, we note that detecting flows by a stationary swimmer in a quiescent
fluid with external perturbations is not equivalent to flow measurements by moving
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swimmers; the latter suffer from separation effects of the boundary layer, which can
influence the location of optimal sensors. Consequently, we must be careful when
considering sensor placement using the combined datasets, as done in figures 10
and 11. Inspecting the individual scenarios in figures 5(g), 8(b) and 9(b), we observe
that the sensor distributions for the stationary and moving swimmers are not entirely
dissimilar, which gives us confidence in using the combined dataset for sensor
placement in figures 10 and 11.

In our approach, a sensor-pair is placed on the body surface symmetrically around
the fish centre line. We anticipate that re-evaluating the simulations with a left–right
flip, i.e. changing the orientation of the fish with respect to its approach to the
cylinder, may lead to some differences in the exact sensor locations. However, once
the fish is experiencing the cylinder’s wake on its pressure and shear sensors, we
expect that the overall sensor arrangement will remain unchanged, i.e. we will
still observe a dense distribution of sensors in the head and the tail. We have
found that the dominant factor in determining sensor placement is not the approach
to the flow but rather the body geometry and motion. This is evident when we
compare sensor distributions across very dissimilar scenarios, i.e. the three different
flow-configurations involving stationary fish, self-propelled fish, and rigid fish placed
in the D-cylinder’s wake (figures 5g, 9b and 8b).

The present approach is computationally demanding as it requires conducting a
large number of direct numerical simulations (DNS) for the Navier–Stokes equations,
each of which takes four to seven hours to complete on a 12-core central processing
unit (CPU) node depending on the flow configuration. The computational cost is
substantial, given that close to 400 distinct simulations have to be evaluated for each
of the considered flow configurations, resulting in a total of approximately 3000
simulations. At the same time, we must emphasize that all DNS computations are
performed once (offline) and the sequential sensor placement algorithm is rather
inexpensive, with the computations taking of the order of five minutes using a single
CPU core.

Hence, it is imperative to store DNS data containing all possible sensor-measure-
ments offline, and to process them for sequential sensor placement as required.
We remark that if the same study were to be conducted in a three-dimensional
setting using DNS, the computational cost of each simulation would increase by
approximately three orders of magnitude, since the computational grid would increase
in size from 4096 x 4096 cells for the present two-dimensional (2-D) cases, to
approximately 4096 x 4096 x 1024 cells for the three-dimensional (3-D) cases. This
would represent a significant increase in computational cost, especially considering
the need to run approximately 3000 DNSs to examine all of the cases discussed in
the present work. We remark that if, for 3-D flows, we use instead approaches such
as large eddy simulations and unsteady Reynolds-averaged Navier–Stokes calculations
we do not expect to have higher computational costs than the ones required herein
for the 2-D DNS. In closing, we argue that the availability of computational power
and automation in the near future will make approaches such as the one presented
herein amenable to further computational (and experimental) studies.

5. Conclusion

We have combined 2-D Navier–Stokes simulations with Bayesian optimal experi-
mental design, to identify the best arrangement of sensory structures on self-propelled
swimmers’ bodies. The study is inspired by the particular distribution of flow-sensing
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mechanoreceptors found in many fish species, referred to as the lateral-line organ,
where a large number of sensory structures are located in the head.

We optimize sensor arrangements on two different swimmer shapes under the
influence of various sources of disturbance. We find optimal arrangements that
resemble those found in fish bodies, suggesting that such arrangements may allow
them to gather information from their surroundings more effectively than other
layouts. We demonstrate that the optimal configuration of these sensors depends
on the body shape and the type of disturbance being perceived. This is explored
using a variety of simulations involving both static and swimming configurations,
using distinct body profiles resembling fish larvae and adults, and using disturbances
generated by oscillating cylinders, rotating cylinders and by D-shaped half-cylinders.
Despite certain differences that exist in sensor distributions among the various cases
considered, there is a marked tendency for a large number of shear stress sensors to
be located in the head and the tail of the swimmer, with virtually no sensors found
in the midsection. In the case of pressure gradient sensors, we observe a high density
of sensors placed in the head, followed by regularly spaced distribution along the
entire body. These observations closely reflect the structure of the sensory organ in
live fish.

To assess the effectiveness of the sensor placement algorithm, we compare
the performance of optimal arrangements to that of uninformed uniform sensor
distributions. The results confirm that optimal distribution patterns lead to more
accurate identification of external disturbances, which suggests that these distinctive
distributions may allow fish to assimilate maximum information from their surround-
ings using the fewest number of neuromasts. We believe that the present work is a
positive step towards understanding mechanosensing in fish, and we hope that the
proposed methodology can assist in the development of optimal sensory-layouts for
engineered swimmers.
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Appendix A. Shape parameterisation and swimming kinematics
The adult shape used in the simulations is modelled using three piecewise

polynomials

h(s)=


√

2shhead − s2, 0 6 s< shead,

hhead − (hhead − htail)

(
s− shead

stail − shead

)2

, shead 6 s< stail,

hparabola, stail 6 s 6 L.

(A 1)

Here, s denotes the curvilinear coordinate running from the head to the tail along
the body midline, and h is the half-width of the body. The constant parameters that
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determine the final shape are shead = 0.04L, stail = 0.95L, hhead = 0.04L, htail = 0.01L.
The parabolic section that defines the smooth tail is computed as follows:

a= htail, (A 2a)

b=
htail − hhead

stail − shead
, (A 2b)

c=
−b(L− stail)− htail

(L− stail)2
, (A 2c)

hparabola = a+ b(s− stail)+ c(s− stail)
2. (A 2d)

The larva shape used in the simulations is based on silhouettes of zebrafish
extracted from experiments. (The authors thank the Engert Lab at Harvard University
for providing the experimental images.) The segmented shape is parameterized using
a natural cubic spline comprised of seven piecewise sections, with the following knots
and polynomial coefficients:

(s0, . . . si, . . . , s7)/L= (0.0, 0.018, 0.058, 0.098, 0.198, 0.238, 0.698, 1.0), (A 3a)

ai,j =



0.000000 3.152700 −44.18100 145.49
0.043282 1.703600 −36.32400 300.38
0.072530 0.239460 −0.278770 −54.342
0.078185 −0.043688 −6.799800 38.155
0.043973 −0.258990 4.646700 −37.601
0.038641 −0.067740 0.134620 −0.12819
0.023488 −0.025271 −0.042293 −0.43563


. (A 3b)

Here, subscript i ∈ [1, 7] denotes the polynomial segment between knots si−1 and si.
The corresponding cubic polynomial describing the body half-width in each of the
seven sections is given by

hi(s)= ai,1 + ai,2(s− si−1)+ ai,3(s− si−1)
2
+ ai,4(s− si−1)

3. (A 4)

The swimmers propel themselves by imposing a sinusoidal wave travelling along the
body. This wave is specified by the spatially and temporally varying curvature κ(s, t)
of the midline,

κ(s, t)= A(s) sin
(

2πt
T
−

2πs
L
+ φ

)
, (A 5)

where A(s) is described using a natural cubic spline, with six control points located at
(si, Ai) = ((0, 0.82), (0.15L, 1.47), (0.4L, 2.57), (0.65L, 3.75), (0.9L, 5.09), (1L, 5.7)).
Here, s denotes the curvilinear coordinate running from the head to the tail along
the body midline. The time period of body undulation is set to T = 0.4, and the
phase difference φ is initially set to 0. The time-varying curvature is imposed
as a function of the arclength s, ensuring that the swimmer’s length remains
constant during deformation. The lateral and longitudinal coordinates (as well as
the deformation velocities) of the midline points are recovered from the curvature
using the Frenet–Serret formulas. The travelling waveform yields steadily swimming
fish. However, several species employ an intermittent swimming mode referred to as
‘burst and coast’ swimming (Weihs 1974). The ‘burst and coast’ mode may not only
be energetically efficient, but it also allows fish to better accumulate information about
external disturbances, by stabilizing the sensory fields (Kramer & McLaughlin 2001).
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The ‘burst and coast’ strategy is observed in blind cave fish, where they accelerate
and glide past unfamiliar objects and obstacles repeatedly (von Campenhausen et al.
1981). This allows them to form a ‘hydrodynamic image’ of their surroundings,
by perceiving reflections of their self-generated motion. Intermittent swimming has
also been shown to be critical for avoiding collisions when approaching a wall
(Windsor et al. 2008). The gliding phase during burst-coast swimming may minimize
self-generated ‘noise’ in the boundary layer on the body, thereby allowing signals
of external origin to permeate through to the neuromasts. Modelling the burst-coast
motion for the swimmers involves multiplying the curvature amplitude A(s) with a
smoothly varying piecewise function f (t), as described in Verma et al. (2017) as
follows:

f (t)=


1, t ∈1tsteady,

1− 3λ2
coast + 2λ3

coast, t ∈1tdecel,
0, t ∈1tcoast,

3λ2
burst − 2λ3

burst, t ∈1taccel.

(A 6)

Here, λcoast, λburst ∈ [0, 1] are ramp functions increasing linearly from 0 to 1 within the
intervals 1tdecel and 1taccel. The four time intervals describing the burst-coast phases
are set to 1tsteady = 1.5T , 1tdecel = 0.375T , 1tcoast = 1.0T and 1taccel = 0.375T . At the
end of each coasting phase, the phase angle in (A 5) is updated to φ= (π− 2πtSA/T),
where tSA denotes the time at the start of the acceleration phase (or, equivalently, at the
end of the coasting phase). This introduces mirror symmetry between tail-beats from
one burst-coast cycle to another, and allows the fish to swim on a relatively straight
trajectory.

Appendix B. Derivation of the utility estimator
By applying Bayes’ theorem (2.5) can be written equivalently as

U(s)=
∫
Y

∫
R

ln
p(y|r, s)
p(y|s)

p(r) p(y|r, s) dr dy, (B 1)

where we have used the assumption that p(r) = p(r|s). We approximate the integral
over R with a quadrature rule on the points r(i) and weights wi for i = 1, . . . , Nr.
Then (B 1) is approximated by

U(s)≈
Nr∑

i=1

wi p(r(i))
∫
Y

ln
p(y|r(i), s)

p(y|s)
p(y|r(i), s) dy. (B 2)

For each i in the summation, the integral over Y is approximated by Monte Carlo
integration using Ny points {y(i,j)}Ny

j=1 from py( · |r(i), s), leading to

U(s)≈
Nr∑

i=1

Ny∑
j=1

wi p(r(i))
Ny

[ln p(y(i,j)|r(i), s)− ln p(y(i,j)|s)]. (B 3)

The quantity p(y(i,j)|s) is approximated with the same quadrature rule,

p(y(i,j)|s) =
∫
R

p(y(i,j)|r, s) p(r) dr

≈

Nr∑
k=1

wk p(y(i,j)|r(k), s) p(r(k)). (B 4)

Finally, substituting (B 4) into (B 3), the estimator for U(s) is given by (2.6).
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Appendix C. Utility of combined experiments

We assume that the measurements y1 and y2 are independent conditioned on s. We
want to show that the utility function using both experiments U1,2 is equal to the sum
of the individual utility functions, U1 and U2.

U1,2(s) =
∫
Y1

∫
Y2

∫
Θ

ln
p(y1, y2|r, s)
p(y1, y2|s)

p(r) p(y1, y2|r, s) dr dy1 dy2

=

∫
Y1

∫
Y2

∫
Θ

ln
p(y1|r, s)p(y2|r, s)

p(y1, y2|s)
p(r) p(y1, y2|r, s) dr dy1 dy2

=

∫
Y1

∫
Θ

ln p(y1|r, s) p(r) p(y1|r, s) dr dy1

+

∫
Y2

∫
Θ

ln p(y2|r, s) p(r) p(y2|r, s) dr dy2 − h(y1, y2|s), (C 1)

where

h(y1, y2|s)=
∫
Y1

∫
Y2

∫
Θ

ln p(y1, y2|s) p(r) p(y1, y2|r, s) dr dy1 dy2. (C 2)

Using (B 1), it is easy to check that

Ui(s)=
∫
Yi

∫
Θ

ln p(yi|r, s) p(r) p(yi|r, s) dr dyi − h(yi|s), (C 3)

for i= 1, 2, where h(yi|s) is given by

h(yi|s)=
∫
Y

∫
R

ln p(yi|s) p(r) p(yi|r, s) dr dyi. (C 4)

Substituting (C 3) into (C 1),

U1,2(s)=U1(s)+U2(s)− [h(y1, y2|s)− h(y1|s)− h(y2|s)]. (C 5)

Using (C 2) and (C 4), along with the fact that y1 is independent of y2 conditioned on
s, the term inside the brackets is equal to zero, leading to

U1,2(s)=U1(s)+U2(s). (C 6)

The assumption of conditional independency is valid in our case since knowledge of
the measurements of one experiment y1 and the location of the sensors s does not
provide any additional information for the measurements of the other experiment
compared to the case of knowledge only of the sensor location. Equivalently,
p(y2|y1, s)= p(y2|s).
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ĆURČIĆ-BLAKE, B. & VAN NETTEN, S. M. 2006 Source location encoding in the fish lateral line

canal. J. Expl Biol. 209 (8), 1548–1559.
DAGAMSEH, A., WIEGERINK, R., LAMMERINK, T. & KRIJNEN, G. 2013 Imaging dipole flow sources

using an artificial lateral-line system made of biomimetic hair flow sensors. J. R. Soc. Interface
10 (83), 20130162.

DENTON, E. J. & GRAY, J. A. B. 1988 Mechanical Factors in the Excitation of the Lateral Lines
of Fishes, pp. 595–617. Springer.

DEVRIES, L., LAGOR, F. D., LEI, H., TAN, X. & PALEY, D. A. 2015 Distributed flow estimation
and closed-loop control of an underwater vehicle with a multi-modal artificial lateral line.
Bioinspir. Biomim. 10 (2), 025002.

DIJKGRAAF, S. 1963 The functioning and significance of the lateral-line organs. Biol. Rev. 38 (1),
51–105.

ENGELMANN, J., HANKE, W., MOGDANS, J. & BLECKMANN, H. 2000 Neurobiology: hydrodynamic
stimuli and the fish lateral line. Nature 408 (6808), 51–52.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

94
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.940


Optimal sensor placement 884 A24-27

FAN, Z., CHEN, J., ZOU, J., BULLEN, D., LIU, C. & DELCOMYN, F. 2002 Design and fabrication
of artificial lateral line flow sensors. J. Micromech. Microengng 12 (5), 655–661.

FERNANDEZ, V. I., MAERTENS, A., YAUL, F. M., DAHL, J., LANG, J. H. & TRIANTAFYLLOU,
M. S. 2011 Lateral-line-inspired sensor arrays for navigation and object identification. Mar.
Technol. Soc. J. 45 (4), 130–146.

FRANOSCH, J. M. P., HAGEDORN, H. J. A., GOULET, J., ENGELMANN, J. & VAN HEMMEN, J. L.
2009 Wake tracking and the detection of vortex rings by the canal lateral line of fish. Phys.
Rev. Lett. 103, 078102.

GAZZOLA, M., CHATELAIN, P., VAN REES, W. M. & KOUMOUTSAKOS, P. 2011 Simulations of
single and multiple swimmers with non-divergence free deforming geometries. J. Comput.
Phys. 230, 7093–7114.

GAZZOLA, M., VAN REES, W. M. & KOUMOUTSAKOS, P. 2012 C-start: optimal start of larval fish.
J. Fluid Mech. 698, 5–18.

GRAY, J. 1984 Interaction of sound pressure and particle acceleration in the excitation of the lateral-
line neuromasts of sprats. Proc. R. Soc. Lond. B 220 (1220), 299–325.

HARA, T. J. 1975 Olfaction in fish. Prog. Neurobiol. 5, 271–335.
HASSAN, E. S. 1989 Hydrodynamic imaging of the surroundings by the lateral line of the blind cave

fish Anoptichthys jordani. In The Mechanosensory Lateral Line (ed. S. Coombs, P. Görner &
H. Münz), pp. 217–227. Springer.

HASSAN, E. S. 1992 Mathematical description of the stimuli to the lateral line system of fish derived
from a three-dimensional flow field analysis. Biol. Cybern. 66 (5), 443–452.

HOEKSTRA, D. & JANSSEN, J. 1985 Non-visual feeding behavior of the mottled sculpin, Cottus
bairdi, in Lake Michigan. Environ. Biol. Fish. 12 (2), 111–117.

HUAN, X. & MARZOUK, Y. M. 2013 Simulation-based optimal Bayesian experimental design for
nonlinear systems. J. Comput. Phys. 232 (1), 288–317.

HUDSPETH, A. J. & COREY, D. P. 1977 Sensitivity, polarity, and conductance change in the response
of vertebrate hair cells to controlled mechanical stimuli. Proc. Natl Acad. Sci. USA 74 (6),
2407–2411.

JEŽOV, J., AKANYETI, O., CHAMBERS, L. D. & KRUUSMAA, M. 2012 Sensing oscillations in
unsteady flow for better robotic swimming efficiency. In 2012 IEEE International Conference
on Systems, Man, and Cybernetics (SMC), pp. 91–96. Institute of Electrical and Electronics
Engineers (IEEE).

KANTER, M. J. & COOMBS, S. 2003 Rheotaxis and prey detection in uniform currents by Lake
Michigan mottled sculpin (Cottus bairdi). J. Expl Biol. 206 (1), 59–70.

KOTTAPALLI, A. G. P., ASADNIA, M., MIAO, J. M., BARBASTATHIS, G. & TRIANTAFYLLOU, M. S.
2012 A flexible liquid crystal polymer MEMS pressure sensor array for fish-like underwater
sensing. Smart Mater. Struct. 21 (11), 115030.

KOTTAPALLI, A. G. P., ASADNIA, M., MIAO, J. M. & TRIANTAFYLLOU, M. S. 2013 Electrospun
nanofibrils encapsulated in hydrogel cupula for biomimetic MEMS flow sensor development.
In 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS),
pp. 25–28. Institute of Electrical and Electronics Engineers (IEEE).

KOTTAPALLI, A. G. P., BORA, M., SENGUPTA, D., MIAO, J. & TRIANTAFYLLOU, M. S. 2018
Hydrogel-CNT biomimetic cilia for flow sensing. In 2018 IEEE SENSORS, pp. 1–4. Institute
of Electrical and Electronics Engineers (IEEE).

KOUMOUTSAKOS, P. & LEONARD, A. 1995 High-resolution simulations of the flow around an
impulsively started cylinder using vortex methods. J. Fluid Mech. 296, 1–38.

KRAMER, D. L. & MCLAUGHLIN, R. L. 2001 The behavioral ecology of intermittent locomotion.
Am. Zool. 41 (2), 137–153.

KROESE, A. B. & SCHELLART, N. A. 1992 Velocity- and acceleration-sensitive units in the trunk
lateral line of the trout. J. Neurophysiol. 68 (6), 2212–2221.

KRUUSMAA, M., FIORINI, P., MEGILL, W., DE VITTORIO, M., AKANYETI, O., VISENTIN, F.,
CHAMBERS, L., EL DAOU, H., FIAZZA, M., JEŽOV, J. et al. 2014 FILOSE for Svenning: a
flow sensing bioinspired robot. IEEE Robot. Autom. Mag. 21 (3), 51–62.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

94
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.940


884 A24-28 S. Verma and others

LADICH, F. & BASS, A. H. 2003 Underwater Sound Generation and Acoustic Reception in Fishes
with Some Notes on Frogs, pp. 173–193. Springer.

LIAO, J. C. 2006 The role of the lateral line and vision on body kinematics and hydrodynamic
preference of rainbow trout in turbulent flow. J. Expl Biol. 209 (20), 4077–4090.

LIAO, J. C., BEAL, D. N., LAUDER, G. V. & TRIANTAFYLLOU, M. S. 2003 Fish exploiting vortices
decrease muscle activity. Science 302, 1566–1569.

MONTGOMERY, J. C. & COOMBS, S. 1998 Peripheral encoding of moving sources by the lateral
line system of a sit-and-wait predator. J. Expl Biol. 201 (1), 91–102.

MONTGOMERY, J. C., COOMBS, S. & BAKER, C. F. 2001 The mechanosensory lateral line system
of the hypogean form of astyanax fasciatus. Environ. Biol. Fishes 62 (1), 87–96.

Ó MAOILÉIDIGH, D., NICOLA, E. M. & HUDSPETH, A. J. 2012 The diverse effects of mechanical
loading on active hair bundles. Proc. Natl Acad. Sci. USA 109 (6), 1943–1948.

PAPADIMITRIOU, C. 2004 Optimal sensor placement methodology for parametric identification of
structural systems. J. Sound Vib. 278 (4), 923–947.

PAPADIMITRIOU, C. & LOMBAERT, G. 2012 The effect of prediction error correlation on optimal
sensor placement in structural dynamics. Mech. Syst. Signal Process. 28, 105–127.

PARTRIDGE, B. L. & PITCHER, T. J. 1980 The sensory basis of fish schools: relative roles of lateral
line and vision. J. Compar. Physiol. 135 (4), 315–325.

DE PERERA, T. B. 2004 Fish can encode order in their spatial map. Proc. R. Soc. Lond. B 271
(1553), 2131–2134.

PITCHER, T. J., PARTRIDGE, B. L. & WARDLE, C. S. 1976 A blind fish can school. Science 194
(4268), 963–965.

RAPO, M. A., JIANG, H., GROSENBAUGH, M. A. & COOMBS, S. 2009 Using computational fluid
dynamics to calculate the stimulus to the lateral line of a fish in still water. J. Expl Biol.
212 (10), 1494–1505.

REN, Z. & MOHSENI, K. 2012 A model of the lateral line of fish for vortex sensing. Bioinspi.
Biomim. 7 (3), 036016.

RISTROPH, L., LIAO, J. C. & ZHANG, J. 2015 Lateral line layout correlates with the differential
hydrodynamic pressure on swimming fish. Phys. Rev. Lett. 114, 018102.

ROSSINELLI, D., HEJAZIALHOSSEINI, B., VAN REES, W. M., GAZZOLA, M., BERGDORF, M. &
KOUMOUTSAKOS, P. 2015 MRAG-I2D: multi-resolution adapted grids for remeshed vortex
methods on multicore architectures. J. Comput. Phys. 288, 1–18.

RYAN, K. J. 2003 Estimating expected information gains for experimental designs with application
to the random fatigue-limit model. J. Comput. Graph. Stat. 12 (3), 585–603.

SAPÈDE, D., GOMPEL, N., DAMBLY-CHAUDIÈRE, C. & GHYSEN, A. 2002 Cell migration in the
postembryonic development of the fish lateral line. Development 129 (3), 605–615.

SATOU, M., TAKEUCHI, H.-A., NISHII, J., TANABE, M., KITAMURA, S., OKUMOTO, N. & IWATA, M.
1994 Behavioral and electrophysiological evidences that the lateral line is involved in the inter-
sexual vibrational communication of the himé salmon (landlocked red salmon, Oncorhynchus
nerka). J. Compar. Physiol. A 174 (5), 539–549.

SCHWARTZ, E. 1974 Lateral-Line Mechano-Receptors in Fishes and Amphibians. pp. 257–278.
Springer.

SIMOEN, E., PAPADIMITRIOU, C. & LOMBAERT, G. 2013 On prediction error correlation in Bayesian
model updating. J. Sound Vib. 332 (18), 4136–4152.

STROKINA, N., KÄMÄRÄINEN, J., TUHTAN, J. A., FUENTES-PÉREZ, J. F. & KRUUSMAA, M.
2016 Joint estimation of bulk flow velocity and angle using a lateral line probe. IEEE Trans.
Instrum. Meas. 65 (3), 601–613.

SUTTERLIN, A. M. & WADDY, S. 1975 Possible role of the posterior lateral line in obstacle
entrainment by brook trout (Salvelinus fontinalis). J. Fish. Res. Board Can. 32 (12), 2441–2446.

TAO, J. & YU, X. 2012 Hair flow sensors: from bio-inspiration to bio-mimicking – a review. Smart
Mater. Struct. 21 (11), 113001.

TRIANTAFYLLOU, M. S., WEYMOUTH, G. D. & MIAO, J. 2016 Biomimetic survival hydrodynamics
and flow sensing. Annu. Rev. Fluid Mech. 48 (1), 1–24.
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