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The dynamics of gravity currents are believed to be strongly influenced by dissipation
due to turbulence and mixing between the current and the surrounding ambient
fluid. This paper describes new theory and experiments on gravity currents produced
by lock exchange which suggest that dissipation is unimportant when the Reynolds
number is sufficiently high. Although there is mixing, the amount of energy dissipated
is small, reducing the current speed by a few percent from the energy-conserving value.
Benjamin (J. Fluid Mech. vol. 31, 1968, p. 209) suggests that dissipation is an essential
ingredient in gravity current dynamics. We show that dissipation is not important at
high Reynolds number, and provide an alternative theory that predicts the current
speed and depth based on energy-conserving flow that is in good agreement with
experiments. We predict that in a deep ambient the front Froude number is 1, rather
than the previously accepted value of

√
2. New experiments are reported for this case

that support the new theoretical value.

1. Introduction
This paper provides an analysis of the motion of a gravity current produced by

lock exchange. In a lock exchange experiment, fluids of different densities initially at
rest are separated by a vertical barrier – the lock gate – in a tank. When the gate
is removed, differences in the hydrostatic pressure cause the denser fluid to flow in
one direction along the bottom boundary of the tank, while the lighter fluid flows in
the opposite direction along the top boundary of the tank. Figure 1 shows the initial
configurations for lock exchange flows: a full-depth release when the depths of heavy
and light fluid on both sides of the gate are equal is shown in (a) and a partial-depth
release when the dense fluid occupies only a fraction of the full depth is shown in (b).

Figure 2 shows the flow resulting from a full-depth lock release experiment. In this
case the densities on the two sides of the lock gate are very similar (the density ratio
γ = ρ1/ρ2 < 1 is close to unity). A dense gravity current travels to the right along the
lower boundary and a buoyant current travels to the left along the upper boundary.
Visually the flows are very nearly symmetric, and the dense and light fronts travel at
almost the same speeds (figure 2b). The currents occupy about half the channel depth
in each case, although they may be shallower immediately behind the head where
there is mixing.

The speeds of the two currents are constant within experimental resolution. Previous
similar observations led Benjamin (1968) to develop a theory for the propagation of
a steadily advancing current. He considered one half of the flow shown in figure 2(a),
say the dense current only. In a frame of reference moving with the current, the front
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(a)

(b)
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Figure 1. A schematic of the lock release initial conditions. The flow is started by removing
the gate vertically. The dense fluid ρ2 > ρ1 occupies the depth H in a full-depth release (a) and
a depth D < H in a partial depth release (b). For complete symmetry in the full-depth release
the upper boundary should be rigid, as is the case in figure 2.

is at rest and it is possible to develop a hydraulic theory which equates the fluxes of
mass and momentum into and out of a control volume bounded by the upper and
lower boundaries of the channel, and vertical planes upstream and downstream of
the front. Benjamin showed that there was a range of possible solutions depending
on the depth of the current, and a further condition is needed to determine the depth
of the current. Benjamin (1968) showed that if he assumed that the energy fluxes
into and out of this volume were also the same, these solutions reduced to two cases.
The first is when the depth of the current is zero and the second is when the current
occupied exactly one-half the depth. This latter solution is close to the depth seen
in figure 2, and the speed predicted in this case is very close to that found from the
data in figure 2(b). So, despite the mixing clearly visible in the shadowgraph images
and other dissipation due to turbulence and viscous stresses, a theory which assumes
conservation of energy seems to describe the experiments satisfactorily.

Early evidence for the existence of half-depth, energy-conserving currents was
provided by Gardner & Crow (1970) and Wilkinson (1982), who carried out
experiments with air cavities intruding into a water-filled channel. When surface
tension effects were small, they observed that the cavities could occupy half the depth
and that the free surface was smooth implying almost no loss of energy, consistent
with Benjamin’s energy-conserving theory. In fact, as we discuss below, the theory
by Benjamin (1968) is, strictly speaking, only valid for a current in which all the
fluid inside the current is at rest in the moving frame: indeed Benjamin developed it
specifically for a cavity in a liquid. Although the experiments on cavity flows include
surface tension, Gardner & Crow (1970) and Wilkinson (1982) extended Benjamin’s
analysis to account for surface tension effects. They showed that surface tension slows
the cavity, and the measured speeds were consistent with the theory.

The cavity flows have large density differences, and the fluids are immiscible. Early
experiments with Boussinesq miscible gravity currents in a channel found current
speeds that were also consistent with Benjamin’s energy-conserving prediction. For a
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Figure 2. The gravity currents produced by lock-exchange in a channel. The upper and
lower boundaries are rigid, and the density ratio γ = 0.993. Shadowgraph images and the
positions of the two fronts are shown in (a) and (b), respectively. In (b) the front position x is
non-dimensionalized by the channel depth H , and the dimensionless time t∗ = t

√
g(1 − γ )/H .
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Boussinesq current with density ρ2 in an ambient fluid of density ρ1, the dimensionless
speed is expressed as a Froude number FH = U/

√
g′H , where U is the current speed,

H is the channel depth and g′ = g(ρ2 − ρ1)/ρ2. Benjamin’s energy-conserving theory
predicts FH = 1

2
. Keulegan (1958) found that the speed of the current was independent

of the ratio of the channel width and depth, and measured a small increase in FH with
Reynolds number Re = UH/ν, where ν is the kinematic viscosity, from FH = 0.42 at
Re = 600 to FH = 0.48 at Re = 150 000. Barr (1967) carried out experiments with both
a free and a rigid upper surface, and used both temperature and salinity, separately,
to provide the density difference. His results show that FH increased with Reynolds
number; the variation is most pronounced for Re from 200 to 1000, and there is some
slight evidence that a small increase in FH occurs for Re � 1000. The free-surface
cases have higher values of FH . For the rigid upper surface, values of FH for both
currents are comparable, and vary from about 0.42 at Re = 200, to about 0.46 for
Re � 1000.

Unfortunately, the speed of the current is an insensitive test of the whether the
current is energy conserving. As we discuss below, the difference in speeds between
a current with maximum dissipation, according to Benjamin’s theory, which has
a depth of h/H = 0.347 and FH = 0.527 and the energy-conserving current with
h/H = 0.5 and FH = 0.50 is very hard to resolve from experimental measurements.
However, the difference in depths is large enough to be a distinguishing feature.

Recently Lowe, Linden & Rottman (2002) repeated experiments on symmetric
intrusions propagating along a sharp density interface first conducted by Britter &
Simpson (1981). Such an intrusion can be considered as a gravity current propagating
along a free-slip boundary and reflected in that boundary. In both of these studies,
the shape and speed of the intrusion was found to be well predicted by Benjamin’s
energy-conserving theory. Lowe et al. (2002) also showed that the relative flow
within the intrusion was small, consistent with Benjamin’s cavity theory. These
experiments suggest that Benjamin’s energy-conserving gravity currents are observed
for Boussinesq, miscible fluids.

However, none of these previous experiments have measured the depth of the
current in an objective and unambiguous way. Usually, as in the case of Lowe et al.
(2002), the depth is inferred from visual observations. And as can be seen from
figure 2, the top of the current is not clearly defined and is irregular and unsteady.

Additionally, most gravity currents, produced either by lock exchange or arising
in other ways in the laboratory or in nature, do not occupy half the depth of the
ambient fluid. Currents with depths significantly less than half the total depth can be
easily achieved in the laboratory by using a partial-depth lock, as shown in figure 1(b).
An example of a current produced by a lock containing dense fluid of initial depth
equal to one-half the total depth is shown in figure 3. Figure 4 shows the flow when
the lock depth D = 0.83H . In both cases a dense current travels to the right as in
the full-depth release, but now the disturbance travelling to the left takes the form
of a wave of rarefaction propagating on the interface. Apart from the fact that the
dense current occupies significantly less than half the channel depth, qualitatively it
looks much the same as the dense current shown in figure 2, except there is a more
pronounced raised head near the front of the shallower current (figure 3) and the top
of the current has a more pronounced slope. The second and third images in figures 3
and 4 are taken at constant time intervals, and it can be seen that the speed of the
front is constant in these cases also. These currents have large Reynolds numbers
so that viscous effects are small. However, there are frictional losses on the lower
boundary and losses from mixing that eventually cause these currents to decelerate.
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Gravity currents produced by lock exchange 5

Figure 3. Time sequence of the flow from a partial-depth lock release. The initial depth
D = 0.5H , and γ = 0.989.

Figure 4. Time sequence of the flow from a partial-depth lock release. The initial depth
D = 0.83H , and γ = 0.990.

We are concerned here with the constant-speed phase of propagation before these
effects are significant.

The application of Benjamin’s theory to this case implies that the energy flux
entering the control volume upstream is larger than that leaving downstream of the
front. He interpreted this inequality as a result of dissipation within the control
volume and associated it with waves, turbulence and mixing produced by the billows
on the interface behind the front of the current. Indeed, Benjamin expected that this
dissipation would normally be significant and wrote that ‘steady cavity flows with
[depths between 0.347H and 0.5H ] would be difficult, if not impossible, to produce
experimentally’. Probably this view came from the fact that dissipation is an essential
feature of a free-surface hydraulic jump, a closely related flow. However, as we point
out above, energy-conserving cavity flows were observed by Gardner & Crow (1970)
and Wilkinson (1982).

Despite the intrusion observations of Britter & Simpson (1981), it is still believed
that dissipation is important in the gravity currents in miscible fluids with similar
densities. Klemp, Rotunno & Skamarock (1994) calculate the behaviour of lock-
exchange gravity currents in a channel using both shallow-water theory and two-
dimensional numerical simulations. They argue that dissipation must be included
and state that ‘energy-conserving gravity currents which require [half-depth] cannot
be physically realized for this type of initial value problem’. From considerations
of propagation along characteristics, Klemp et al. (1994) argue that the maximum
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achievable depth is 0.347H , which Benjamin’s theory gives as the depth for the current
with the maximum speed and the maximum dissipation.

There is a classical result by von Kármán (1940) for an energy-conserving current
propagating in an ambient fluid of infinite depth. In that case he predicts the front
speed U to be

Fh =
U√
g′h

=

√
2

γ
, (1.1)

where g′ = g(ρ2 − ρ1)/ρ2 = g(1 − γ ) is the reduced gravity and h is the depth of
the current. Benjamin suggests that since von Kármán applied Bernoulli’s theorem
along the interface on the top of the current to obtain this result, his argument is
wrong since there is dissipation there. Benjamin then provides an alternative argument
that applies Bernoulli’s theorem along a streamline far above the current where the
ambient fluid is at rest, and obtains the same result. This Froude number corresponds
to the zero-depth, energy-conserving current found by Benjamin (1968), in the limit
h/H → 0 obtained as H → ∞.

From experiments with Boussinesq currents (γ � 1), Huppert & Simpson (1980)
suggest that, in a deep ambient fluid, the numerical value of this dimensionless
speed Fh is 1.19, significantly less than the theoretical value

√
2. They attribute this

discrepancy to the dissipation in the flow. In this case the depth h of the current used
in the definition of Fh is taken from visual observations and Huppert & Simpson
(1980) state that they take as the value of h the depth ‘just behind the head’.

The purpose of this paper is to determine the form of the gravity current produced
by lock exchange. We conduct experiments on full-depth lock-exchange currents and
make objective measurements of the current depth in an attempt to determine whether
energy-conserving currents can be observed in the Boussinesq limit for miscible fluids.
We then consider the relation of these currents to those generated by partial-depth
lock exchange, where the current is significantly shallower than the half-depth of the
channel.

We develop a theory for these partial-depth releases that is a generalization of Yih
(1965) in which he calculates the energy-conserving flow of a symmetric, full-depth
lock exchange. Yih presents results of his MS thesis (Yih 1947) in which he compares
the speed from experiments with his theory which predicts the same Froude number
as Benjamin’s half-depth current. We show that for these partial-depth releases,
energy and momentum is communicated between the two sides of the lock, and that
this affects the propagation speed for shallow releases. In particular, we predict a
Froude number based on the current depth Fh = 1 for propagation into an infinite
environment.

We first describe Benjamin’s (1968) theory in § 2. We examine the assumptions
in his theory and show, by reference to experiments, how they apply to Boussinesq
gravity currents. New experiments for Boussinesq lock releases are described in § 3. In
§ 4 we discuss the results of full-depth and partial-depth releases. In § 5 we develop a
new energy-conserving theory for partial-depth releases. This theory, like Benjamin’s,
is an approximate hydraulic theory, and we compare the results with the experiments
described in § 4. We discuss how the new theory connects with Benjamin’s theory in
§ 6 by discussing wave propagation in the system. The link with shallow-water theory
is explored in § 7. We consider the case of a deep ambient flow in § 8 and present new
experiments in which we measure the front Froude number unambiguously. Finally,
§ 9 provides conclusions and comparisons with other results on gravity currents.
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Figure 5. A schematic diagram of an idealized gravity current in the rest frame
of the current.

2. Benjamin’s theory
Benjamin (1968) derived a theory for the steady propagation of a gravity current

in a rectangular channel, in which the flow may be considered as two-dimensional.
He assumed that the flow far upstream and downstream of the front was hydrostatic
and that within the current there was no relative flow. Hence, in a frame of reference
moving with the front, the fluid in the current is at rest. In fact, as mentioned above,
Benjamin (1968) developed his theory for a cavity of zero-density fluid propagating
into a stationary liquid. The use of a cavity removes the need to specify the relative
flow within the current. In the theory presented here we keep the two densities as ρ1

and ρ2, but still assume that the whole current moves as a slug without internal flow
relative to the advancing front. This seems to be a good assumption as the velocity
measurements in an intrusion by Lowe et al. (2002) show that internal velocities are
typically about 10% of the current speed.

We consider a current of density ρ2, propagating with constant velocity U into fluid
of density ρ1, and work in the rest frame of the current as shown in figure 5. We
denote the depth of the current far behind the front where the interface is flat by h,
and suppose that the velocity in the ambient fluid there is u1 (assumed uniform with
depth). Continuity implies that

UH = u1(H − h). (2.1)

Since there are no horizontal external forces acting on the flow, the net flux of
horizontal momentum into a control volume including the front is zero. Consider the
control volume consisting of two vertical planes, one downstream of the front at BE
and one upstream at CD, and the top and bottom boundaries of the channel. (The
reason for this seemingly strange lettering will become clear in § 5.)

Conservation of the horizontal component of the momentum flux may then be
written as ∫ E

B

p dz +

∫ E

B

ρu2 dz =

∫ D

C

p dz +

∫ D

C

ρU 2 dz. (2.2)

The pressure distributions along the two lines BE and CD may be determined since
the flow is assumed to be hydrostatic. Along BE

p =

{
pB − gρ2z, 0 <z <h,

pB − gρ2h − gρ1(z − h), h < z < H,
(2.3)
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Figure 6. The Froude number FH (—) and the dimensionless volume flux Q/
√

g′H 3 (- - - -)
plotted against the dimensionless current depth h/H .

where pB is the pressure at B. Similarly along CD

p = pC − gρ1z, (2.4)

where pC is the pressure at C.
We define the pressure at the stagnation point O to be pO . Since, in this reference

frame, the velocity within the current is zero, application of Bernoulli’s equation along
BO gives pB = pO , and along OC gives pC =pO − 1

2
ρ1U

2. Substitution of (2.3) and
(2.4) into the momentum balance (2.2) and use of the continuity equation (2.1) gives

U 2

gH
=

(1 − γ )

γ
f (h), (2.5)

where

f (h) =
h(2H − h)(H − h)

H 2(H + h)
. (2.6)

The Froude number FH ≡ U/
√

g(1 − γ )H and the volume flux Q are plotted as
functions of h/H in figure 6. The speed of the current increases to a maximum value
of FH = 0.527 at h/H =0.347 and then decreases again to FH = 0.50 at h/H =0.50.
The volume flux Q is a monotonically increasing function of the current depth. Values
of h/H > 0.5 can only be achieved by an external energy input (see figure 7) and so
are not plotted.

In order to completely determine the flow it is necessary to use a further condition
to specify h. As Benjamin (1968) showed, if there is no dissipation in the flow we
may apply Bernoulli’s equation along another streamline to determine h. The choice
of either the upper boundary of the channel or the interface between the two fluids
gives the same result

U 2

gH
= 2

(1 − γ )

γ

h(H − h)2

H 3
, (2.7)
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Gravity currents produced by lock exchange 9

as the flow is hydrostatic far upstream. Equating the two expressions for the current
speed U , gives two solutions for the current depth

h

H
= 0 or

h

H
=

1

2
. (2.8)

The second of these solutions shows that an energy-conserving current occupies
one-half the depth of the channel and travels with a non-dimensional speed

U 2

gH
=

1

4

(1 − γ )

γ
. (2.9)

For a Boussinesq current, γ ≈ 1, (2.9) shows that the Froude number defined in terms
of the reduced gravity and the channel depth is

FH =
U√

g(1 − γ )H
=

U√
g′H

=
1

2
. (2.10)

Gravity currents that occupy less than half the channel depth do not conserve
energy, in the sense that the energy fluxes through the vertical sections of the control
volume are not equal. The energy flux Ė across a vertical plane is given by

Ė =

H∫
0

(
p + 1

2
ρu2 + gρz

)
u dz. (2.11)

Substituting for the vertical profiles of velocity, density and pressure gives at the
upstream plane CD,

ĖCD =p0UH, (2.12)

and, at the downstream plane BE,

ĖBE = pOUH − g(ρ2 − ρ1)UHh + ρ1

U 3H 3

2(H − h)2
. (2.13)

Subtracting (2.13) from (2.12) and using (2.5) we obtain the net energy flux entering the
control volume BECD from upstream (i.e. from the right in figure 5) �Ė ≡ ĖCD −ĖBE .
Substituting for the current speed U from (2.5), we obtain the dimensionless energy
flux entering from upstream

� ̂̇E =
�Ė

ρ1g′3/2H 5/2
=

h5/2(H − 2h)(2H − h)1/2

2H (H + h)3/2(H − h)1/2
. (2.14)

The dimensionless net energy flux � ̂̇E is plotted in figure 7. The energy flux
increases from zero with h, reaches a maximum when h = 0.347H , the same depth at
which the current has the maximum speed, and then decreases to zero, as expected,

for the energy-conserving current h = 1
2
H . Over this range of h/H , � ̂̇E > 0, implying

that energy entering the control volume upstream at CD is greater than that leaving
at the downstream section BE. Benjamin (1968) interpreted this change in energy as
a loss caused by some dissipative process, and calculated an equivalent head loss.

For the case of h > 1
2
H , the energy leaving the downstream section is greater than

that entering from upstream. This is clearly impossible unless there is an alternative
energy supply within the control volume.

As mentioned in § 1, in an infinitely deep environment, the energy-conserving
solution h/H =0 is non-trivial. It corresponds to the limit H → ∞, keeping h finite,
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Figure 7. The dimensionless net energy flux � ̂̇E plotted against the dimensionless current
depth h/H .

Figure 8. A full depth-lock release with Benjamin’s (1968) potential flow solution (dashed
curve) for the shape near the front superimposed on both the heavy and light currents. These
local solutions are joined by a horizontal straight line.

and in that limit (2.5) gives the Froude number Fh based on the current depth as
√

2,
the same result (1.1) as found by von Kármán (1940).

It is interesting to note that, even when the energy dissipation is a maximum, it only
represents about 10% of the rate of loss of potential energy in the lock exchange.
Indeed, Benjamin (1968) predicted the shape of the current for the energy-conserving
case (it is a potential flow solution similar to the Stokes wave of maximum amplitude,
which he calculated using a conformal transformation). His prediction is compared
with a Boussinesq lock-exchange current in figure 8. Clearly the shape agrees well.
Similar agreement for an intrusion was reported by Lowe et al. (2002).

Despite evidence of this kind, the determination of the current depth remains an
open question. We address this question by the experiments described in the next
section.

3. Experiments
The experiments are straightforward. As shown in figure 1(b), fluid of density ρ1

is separated by a vertical barrier – the lock gate – at the mid-point of a rectangular
channel of depth H from fluid of density ρ2, with ρ2 >ρ1. The dense fluid occupied
a depth D � H . Most of the experiments were conducted in a channel 2 m long,
0.2 m wide and was filled to a depth of H = 0.2m. In most experiments the upper
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Gravity currents produced by lock exchange 11

surface was free, but in some cases the upper boundary was rigid and consisted of
two sheets of Perspex in contact with the fluid surface, and separated by a thin gap
to allow the lock to be removed. The flow was started by rapidly removing the lock
gate vertically through the gap. In some experiments different sized channels were
used. The dimensions of these channels are given below.

The flow was visualized either by adding dye to the dense fluid or by using a
shadowgraph, created by covering the front of the tank with tracing paper and
positioning a projector behind the tank. Video and still photographs were made of
the flow, which were used to measure the depths and front positions of the gravity
current interface. The video images were digitized with a time resolution of 1/30 s,
allowing the velocity of the two fronts to be determined. Care was taken to avoid
parallax errors.

The less dense fluid ρ1 was freshwater and the denser fluid ρ2 was a solution of
sodium chloride. Densities were measured using a density meter with an accuracy of
10−2 kgm−3.

There have been many similar experiments in the past, but most have been restricted
to short locks, with lengths that are a small fraction of the total length of the tank.
In almost all the present experiments the lock gate was halfway along the tank to
avoid the effects of a finite-length lock, and the heavy and light currents propagated,
uninfluenced by the finite length of the tank, until one of the currents got close to an
endwall. At that point the experiment was terminated.

Density differences were chosen so that the currents had Reynolds numbers
Re =UH/2ν > 1000. It is believed (Simpson 1997, p. 152) that for these values of
the Reynolds numbers viscous effects are unimportant. Flows were also restricted
to Boussinesq currents with γ > 0.90. A total of 140 experiments were carried
out covering a range of partial lock depths 0.11 � D/H � 1. Vertical error bars
on the figures represent two standard deviations obtained from the scatter in the
measurements from repeated experiments with the same conditions. In every case
this scatter is larger than any imprecision in the measurements, and probably results
mainly from disturbances caused by removing the lock gate.

We have conducted some experiments specifically designed to measure the front
Froude number in a deep ambient fluid. We used a deeper tank for these experiments,
0.5 m deep, 0.15 m wide and 2.37 m long. We carried out partial-depth lock-release
experiments for light currents which flowed along the surface. The tank was filled
to a depth of 0.485 m, and the lock gate was placed closer to one end of the tank
and had a length of 0.73 m. The currents were measured during the time before the
rarefaction wave reached the end of the lock, so its finite length was unimportant. The
lock was filled with water and dyed with a trace of potassium permanganate, and the
density of the ambient fluid was approximately 1050 kg m−3. The lock depths were
approximately 55 mm, giving fractional depths D/H = 0.11, smaller than we were able
to achieve in the original tank. The Reynolds numbers of the currents based on the

lock depth, Re =
√

g′D3/2ν, were about 4500, so viscous effects were unimportant.
Other experiments were run in this tank with H =0.20 m, giving D/H = 0.21.

We also carried out experiments on full-depth lock releases that were designed to
measure the depth of the current objectively. These were done in different channels and
the dimensions are given in the relevant figure captions. As with the deep-ambient fluid
experiments, the fluid on one side the lock was dyed with potassium permanganate.
The currents were backlit and filmed at 24 frames per second with a digital video
camera with a green filter over the lens. The light is absorbed by the dye and the
intensity of the image is related to the dye concentration along the light path from
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12 J. O. Shin, S. B. Dalziel and P. F. Linden

the back to the front of the tank. With this arrangement the reduction in intensity is
exponentially related to the dye concentration. Since potassium permanganate diffuses
at about the same rate as sodium chloride (in both cases diffusion is negligible for this
flow), the dye concentration is a surrogate for the salt concentration and, therefore,
the density. The intensity measurements then give the width-average density in the
current. These measurements were analysed to determine both the front speed U and
the current depth h, and subsequently the Froude number.

For the purposes of determining the local Froude number of the current the depth
h of the current is not determined directly. The denominator of the Froude number
(1.1) requires the product g′h, which is the driving pressure for the current, and is
unambiguously given by the vertical integral of the density

g′h(x, t) = g

∫ H

0

ρ (z) − ρ1

ρ2

dz. (3.1)

Use of (3.1) removes the need to make a subjective judgement of the depth of the
current, in contrast with most previous experiments.

The values g′h(x, t) were determined at each time step by plotting the summed
intensity along vertical lines, located at each horizontal pixel, that span the image
from the boundary to deep into the ambient fluid. The sum gives the integral of the
density difference between the current and the ambient fluid, and so is equivalent to
the driving pressure g′h(x, t) defined by (3.1).

In circumstances where the depth is needed, it is defined by

h(x, t) =
g′h(x, t)

g′
0

, (3.2)

where g′
0 is the initial reduced gravity in the lock. If the interface between the fluids

was sharp and there had been no mixing, then h(x, t) would be the height of the
interface at each horizontal location. The effect of mixing is to reduce the local g′

and smear out the interface, so that if the dye is placed on the dense side of the lock,
h(x, t) will be smaller than the maximum height of the dye.

4. Results
4.1. Full-depth locks

Figure 2 shows images and front positions for a full-depth release. In this case the
speeds of the light and heavy currents are constant and nearly the same. There is
a slight offset as the upward motion of the gate allows the heavy current to start
first, but the slopes of the lines are indistinguishable within experimental accuracy.
The flow is symmetrical about the centreline, with the leading part of each current
occupying about one half of the depth. Despite some mixing the mean shape of the
interface between the two counter-flowing layers is stable, and is at mid-depth at the
lock gate position. The speed for both fronts in this case corresponds to FH =0.48.

Figure 9 shows the evolution of a gravity current for which quantitative
measurements of the depth were made. Superimposed on this figure is the depth,
shown as the red curve, defined by (3.2). The energy-conserving depth h = 1

2
H and the

maximum-dissipation depth h = 0.347H are also shown in the figure. It is clear that
the depths of both the heavy and the light currents are greater than the maximum-
dissipation depth and are much closer to the energy-conserving half-depth. Possibly
the light current is closer to the energy-conserving depth, but the heavy current is
very close to it also. The speed of the heavy current is FH =0.44.
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t* = 1.9

3.8

5.7

7.6

9.5

11.4

Figure 9. A full depth-lock release with g′ =29.7 mm s−2 and H = 0.2 m. The red curve corres-
ponds to the depth h(x, t) of the current, and the blue line corresponds to the energy-conserving
depth 0.5H and the green line to the maximum-dissipation depth 0.347H . The position of the
lock is marked by the yellow dashed line and times t∗ are non-dimensionalized as in figure 2. An
animation of this experiment is available as a supplement to the online version of the paper.

Thus the gravity current shown in figure 9 is an example of a current that is
described well by Benjamin’s energy-conserving theory. Figure 10 shows another
example in the same tank with almost identical parameters. The main difference in
this experiment is that the lock gate was not vertical but was initially at an angle
of about 40◦. The slope of the gate was such that the base was to the right of
the top (i.e. in the direction of the current motion). In this case the light current
again seems quite close to the energy-conserving depth, but the heavy current is
significantly shallower. This seems to be a result of the considerable disturbance
caused by removing the gate, which was pulled out parallel to its original orientation.
This disturbance is visible in the first two panels of figure 10. This causes the interface
between the heavy and light currents to have a significant slope, and the depth of
the current to be significantly lower than the energy-conserving current and closer
to the maximum-dissipation depth. We found considerable variability in the current
depths in what were essentially repeat experiments. The speeds in all cases were within
5–10% percent of the energy-conserving value FH = 0.5, but the depths, especially of
the heavy current varied from about 0.35H to 0.5H .

The conclusion from these experiments is that the depth of the current produced
from a full-depth lock release is not unique, but varies over a range depending on the
initial conditions. On the other hand the range of variability is not large and, when
the initial disturbances are small, the current is described to first order by Benjamin’s
energy-conserving theory. Given the other approximations in the theory, for example
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t* = 1.9

3.8

5.7

7.6

9.5

11.4

13.3

Figure 10. A full depth-lock release with g′ = 29.1 mm s−2 and H = 0.2 m and the lock gate
at an angle. The red curve corresponds to the depth h(x, t) of the current, and the blue
line corresponds to the energy-conserving depth 0.5H and the green line to the maximum-
dissipation depth 0.347H . The position of the lock is marked by the yellow dashed line and
times t∗ are non-dimensionalized as in figure 2. An animation of this experiment is available
as a supplement to the online version of the paper.

that it is assumed that there is no internal flow within the current, it seems to provide
a reasonable description.

4.2. Partial-depth locks

However, it is clear that Benjamin’s energy-conserving theory cannot be even a
first-order description for very shallow currents that can easily be produced by
partial-depth releases. Figures 3 and 4 show the flow for partial-depth releases with
D/H = 0.5 and 0.83, respectively. Both show that the current has an elevated head
near the front followed by a shallower flow. The interface slopes gently down from the
position of the lock until it reaches the head. There is a disturbance that propagates
to the left which takes the form of a rarefaction wave in figure 3 and has a more
bore-like shape in figure 4. Although the data are not shown here, both the current
and the rarefaction travel at constant speeds as has been observed by others in the
past.

A difference between the partial-depth and full-depth releases is shown in figure 11.
This figure shows a false colour representation of the buoyancy g′h on an x–t plot.
The region is black before the arrival of the dense fluid, and the front is marked
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Figure 11. The buoyancy g′h shown by the false colour on an x–t plot for (a) a partial-release
D/H = 0.21 and (b) a full-depth release D/H = 1. The intensities are normalized by the initial
buoyancy g′

0D in the lock. The front position at any time is the location at the edge of the
black region, and the constant front speed is shown by the straight line fit to this in (a). The
blue regions behind the front are elevated values of the buoyancy indicating deep regions of
the current. They travel towards the front in (a), but are almost stationary in (b).

by the transition to red. The partial-depth release is shown in figure 11(a) and the
full-depth release is shown in figure 11(b). The light current (or refraction wave in
(a)) is also visible and seen to travel at a constant speed. Behind the front are a series
of disturbances shown by the blue streaks. These are associated with waves on the
interface giving rise to perturbations to the current depth. The point of interest here
is that these disturbances propagate forwards in (a), but are almost stationary in (b).
This suggests that there may be communication from the rear by these waves in the
case of partial-depth releases. We will discuss this issue in § 6.

Before presenting quantitative data for the partial-depth lock releases, we investigate
the consequences of an energy-conserving theory for these currents.

5. Partial-depth lock releases
A full analysis of the partial-depth lock release must include a discussion of the

whole system, as was first done for the full-depth release by Yih (1965). In particular,
there is a possibility that energy and momentum may be transferred along the
interface by internal waves, so that the properties of the current in the region of the
head are modified by these inputs. We will show that energy and momentum can be
transferred towards the current front for partial-depth locks less than about 0.76H ,
but for deeper locks the current travels faster than long interfacial waves. Hence, for
lower fractional depths Benjamin’s (1968) analysis requires modification to allow for
this energy transfer.

We consider the flow from a partial-depth lock as shown in figure 12. We observe
that, for sufficiently large Reynolds numbers, the current and the wave of depression
travel at constant speeds. We develop a hydraulic model for the unsteady flow,
including both the current front and the wave of depression. We assume that the
front and the wave are joined by a horizontal interface and, in the spirit of a hydraulic
theory, that the flow in each layer is independent of depth. This assumed form of
the flow is, of course, only an approximation to the real flow. It is chosen because
it is simple enough to allow an analytical theory to be developed, and we will show
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Figure 12. Schematic of a partial-depth lock release in a channel (a) before release and
(b) after release. The symbols in are defined in the text.

that it provides a very satisfactory agreement with experiment. We will discuss the
limitations of the model in § 9.

5.1. Mass and momentum conservation

Figure 12(a) illustrates the lock release schematically. Dense fluid of height D and
density ρ2 lies initially behind the lock gate. Light fluid of density ρ1 lies on top of
the dense fluid, as well as in front of the lock, so that the total height of fluid on
both sides of the lock position is H . Fluid is initially at rest everywhere, and lies
between two smooth, rigid horizontal boundaries. When the dense fluid is released, it
forms a gravity current that moves away from the lock at a constant speed U from
left to right. A disturbance is also formed, which travels in the opposite direction at
constant speed Ur as shown in figure 12(b).

The fluid is assumed to be inviscid and immiscible and the flow is assumed to be
irrotational in each layer. The shape of the interface is approximated by a horizontal
middle section of height h and two advancing fronts. The two fronts are assumed to
move at constant speeds and to have constant shapes in time. As in Benjamin’s (1968)
analysis, the exact shapes of the fronts do not matter as long they remain steady. As
discussed in § 6, the backward disturbance is, in general, a rarefaction wave rather
than a front of constant shape. Away from the advancing fronts the flow is assumed
to be horizontal and, consequently, the vertical pressure gradient is assumed to be
hydrostatic.

We now apply conservation of mass across the current and disturbance fronts,
respectively. This gives

UH = (U + u1)(H − h) (5.1)
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and

UrD = (U + Ur )h. (5.2)

Thus

u1 =
Uh

H − h
(5.3)

and

Ur =
Uh

D − h
. (5.4)

We now consider the horizontal momentum balance inside the fixed box ABCDEF
shown in figure 12, which contains both the current and disturbance, so that it
includes all the fluid affected by the lock release at all times. The fluid outside the
box is therefore always at rest. In contrast to Benjamin’s analysis we consider a mass
and momentum balance over the whole box, which includes both the current and the
disturbance which is responsible for the release of potential energy that drives the
current.

We apply horizontal momentum conservation over ABCDEF. Since no fluid enters
or leaves ABCDEF in the laboratory frame, the only contribution to the momentum
flux into the control volume comes from pressure forces acting on the sides CD and
AF. Thus the rate of change of horizontal momentum Ṁ is

Ṁ =

∫ F

A

p dz −
∫ D

C

p dz, (5.5)

where the pressure distributions are given by hydrostatic formulae similar to (2.3)
and (2.4). After integration, (5.5) yields

Ṁ = 1
2
g(ρ2 − ρ1)d

2 − (pD − pF )H, (5.6)

where pD and pF are pressures at points D and F, respectively.
The rate of increase of momentum inside the control volume ABCDEF is given by

Ṁ = ρ2(U + Ur )Uh − ρ1(U + Ur )u1(H − h). (5.7)

Using (5.1) and (5.4) and equating the two expressions (5.6) and (5.7), we find that
the pressure difference along the upper boundary satisfies

(pD − pF )H =(ρ2 − ρ1)

[
U 2 Dh

D − h
+

1

2
gD2

]
. (5.8)

Assuming that energy is conserved in the top layer, the time-dependent Bernoulli
equation can be applied there to find the pressure difference between D and F. In this
case Bernoulli’s equation is

pF + ρ1

∂φ1

∂t

∣∣∣∣
F

= pD + ρ1

∂φ1

∂t

∣∣∣∣
D

, (5.9)

where φ1 is a velocity potential for the upper layer flow.
An approximation to the upper-layer velocity is to assume it is horizontal with x-

component u given by

u =


0 for x <xr ,

−u1 for xr < x <xf ,

0 for x >xf ,

(5.10)
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where xr and xf are the positions along the x-axis of the disturbance front and the
current front, respectively. This velocity field ignores the spatial variation of both
acceleration of the flow over the head and the deceleration at the disturbance wave,
assuming, instead, that both occur instantaneously.

A possible choice of φ1, which satisfies (5.10) and is continuous for all x, is given
by

φ1 =


0 for x <xr ,

−u1(x − xr ) for xr < x <xf ,

−u1(xf − xr ) for x >xf .

(5.11)

Substituting this potential function into (5.9), we obtain†
pD − pF = ρ1u1(ẋf − ẋr ), (5.12)

and so

pD − pF = ρ1u1(U + Ur ). (5.13)

Using the continuity equations (5.1) and (5.4) in (5.13), and substituting the result
into (5.8), after some algebra one finds an expression for the speed of the current:

U 2

gH
=

(ρ2 − ρ1)D(D − h)(H − h)

2hH (ρ2(H − h) + ρ1h)
. (5.14)

As in Benjamin’s analysis, conservation of mass and momentum does not close the
problem and the speed of the current depends on its depth h. Indeed, to derive (5.14)
it has been necessary to assume that there is no dissipation in the upper layer, so that
Bernoulli’s equation may be applied along the upper boundary. It is also clear that
the current speed given in (5.14) does not, in general, reduce to the Benjamin limit
(2.5) and (2.6) when D = H . We will discuss the reasons for this discrepancy later.

5.2. Energy conservation

As in Benjamin’s analysis we need another condition to determine the flow completely,
and we assume that the flow is energy conserving. In this case, however, we conserve
energy in the whole control volume ABCDEF, since there are no energy fluxes in and
out of its boundaries.

The rate of increase of energy ĖG consists of the kinetic energy of the current and
the disturbance and the increase of potential energy associated with the propagation
of dense fluid to the right of BE, the initial lock location. Using the assumed velocity
field, this rate of energy gain is

ĖG = 1
2
ρ2U

2(U + Ur )h + 1
2
ρ1u1

2(U + Ur )(H − h) + 1
2
g(ρ2 − ρ1)Uh2. (5.15)

This energy is supplied by the loss of potential energy ĖL as a result of the lowering
of the interface to the left of the lock position BE at a rate

ĖL = 1
2
g(ρ2 − ρ1)Ur (D

2 − h2). (5.16)

Assuming that energy is conserved inside ABCDEF, we equate (5.15) and (5.16) and
obtain a further relation for the current speed:

U 2

gH
=

(ρ2 − ρ1)(D − h)(H − h)

H (ρ2(H − h) + ρ1h)
. (5.17)

† Introducing a non-hydrostatic steady contribution to φ1 in the neighbourhood of the fronts
will not change this result, since it does not affect (5.9).
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The additional constraint of global energy conservation gives a unique value for the
depth h of the current. Comparing (5.14) and (5.17) we find that the only non-trivial
case is

h =
D

2
. (5.18)

Thus an energy-conserving gravity current produced by a partial-depth lock release
has a depth that is half the initial lock depth before release. This result is consistent
with Benjamin’s result (2.8) for a full-depth release D = H . From (5.18), the speed of
the current is given by

U 2

gH
=

(ρ2 − ρ1)D(2H − D)

2H (ρ2(2H − d) + ρ1D)
, (5.19)

and the speed of the backward disturbance is equal to the current front speed

Ur =U. (5.20)

Consequently, application of mass, momentum and energy conservation yield a
unique gravity current with properties determined by the initial densities and depths
on the two sides of the lock. In general, the current does not occupy the half-depth
of the channel, and does so only in the case of a full-depth lock release.

The above energy-conserving solution was derived without using the Boussinesq
approximation. It is, therefore, theoretically valid for any pair of densities ρ1 and
ρ2. We expect the above model to break down for non-Boussinesq fluids however.
The model assumes that the current and disturbance sides can be matched by a
flat interface in the middle section, where velocities are horizontal and conditions are
uniform. Although laboratory experiments show that this assumption is approximately
valid for Boussinesq flows and cavity flows, experiments by Keller & Chyou (1991)
and Rottman & Linden (2001) show that this assumption is likely to be invalid
for non-Boussinesq dense gravity currents. A discussion of the non-Boussinesq lock-
exchange problem is given in Lowe, Rottman & Linden (2004) and Birman, Martin
& Meiburg (2004).

Restricting attention to Boussinesq currents, γ ≈ 1, (5.19) reduces to

FH =
U√

g(1 − γ )H
=

1

2

√
D

H

(
2 − D

H

)
. (5.21)

In the limit of a full-depth lock D =H , (5.21) reduces to the Benjamin result FH = 1
2
,

so that both theories give the same result for that case. However, as has already been
pointed out, for partial-depth locks the results of the present theory differ significantly
from Benjamin’s result.

As noted above, Yih (1965) applied energy conservation globally, similar to the
analysis in the present section, to derive an expression for the speeds of the two
counter-flowing gravity currents in a Boussinesq, full-depth lock release. The present
theory also agrees with his result in the limit D = H .

5.3. Comparison with experiments

Speeds are given here in terms of the Froude number

FD =
U√
g′D

, (5.22)

based on the lock depth D. The depth of the current h, which, in the present analysis
is the depth where the interface is flat behind the front, is measured at the position of
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Figure 13. Comparison of measurements with the theoretical prediction (solid line) of the
depth of the gravity current for partial-depth lock releases. Equation (5.18) predicts that
h/D = 1/2 for all lock depths. Vertical error bars in this and the later figures represent two
standard deviations in the scatter in the data from repeated experiments.

the lock. Since there is almost no mixing at this location the depth can be determined
accurately. As can be seen from figures 3 and 4 the interface slopes down slightly
from this depth near the head. This slope is associated with the transfer of energy
and momentum from the disturbance side to the current, and will be discussed in § 6.

Figures 13 and 14 show the results for the current depths and Froude numbers as
functions of the fractional depth of the lock D/H . The theoretical values given by
(5.18) and (5.21) are shown as the solid lines on the figures, and the agreement is
very good. The depth h is, generally, slightly lower than the predicted value (see also
the Appendix), but the discrepancy is always within the scatter of the measurements.
For full-depth releases D/H = 1, the mean depth is clearly larger than 0.347H , as
discussed in § 4.1. The observed velocities are also very close to the values predicted by
the present theory over the whole range of D/H . The currents are slightly slower than
predicted, but the discrepancy is at most about 10% and is usually much less, and
is due mainly to bottom drag. This agreement is much better than can be obtained
using Benjamin’s theory (Shin 2002), except when D/H ≈ 1, when the two theories
give the same speed. Thus it seems that the present energy-conserving theory provides
an acceptable description of the experiments for the full range of lock depths tested.

6. Resolution of the energy paradox
As discussed in § 5, Benjamin’s theory only agrees with experiments for near half-

depth, energy-conserving currents generated by full-depth lock releases. On the other
hand, the new model agrees well with experiments for all initial fractional depths.
This difference suggests that current and disturbance sides interact in a lock release,
so that Benjamin’s analysis is not valid in general. The amount of interaction is
difficult to quantify. Benjamin’s (1968) model assumes that no energy and momentum
can be transferred between disturbance and current sides and does not consider the
possibility of long waves entering the system. Obviously waves can propagate along
the interface between the denser and lighter fluid and these waves can carry energy
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Figure 14. Gravity current speeds, expressed non-dimensionally as Froude numbers based on
the depth of the lock D, compared with the theoretical values (5.21) shown as the solid curve.

and momentum – see figure 11. This transfer modifies the energy and momentum
balance on the current side, so that Benjamin’s analysis is, in general, not appropriate.

As explained in § 2, dissipation must be introduced in Benjamin’s analysis to enable a
steady current to occupy less than half the channel depth. This dissipation is no longer
needed in the new model, where disturbance and current sides are both considered
in the energy balance. The disturbance continually releases potential energy as it
advances through the fluid. This introduces additional terms in the energy equation
that balance the energy terms on the current side, allowing energy to be conserved
overall. Benjamin’s analysis which considers the energy fluxes into a control volume
surrounding only the current shows, correctly, that the net energy flux is non-zero
when the current is not a half-depth current. Benjamin concludes that the difference in
energy fluxes is dissipated. We argue that it results from transfers from the disturbance
side which are excluded from Benjamin’s analysis.

The speed of long waves on the interface can be obtained from shallow-water
theory. As shown in Baines (1995) the speed of long waves c± is given by

c±

U
=

H − 2h

H − h
±

√
g(1 − γ )

U 2

h(H − h)

H
− h

H − h
, (6.1)

where c+ and c− refer to right- and left-propagating waves, respectively. Substituting
for the current speed from (5.21) we have, in the Boussinesq limit,

c±

U
=

H − 2h

H − h
±

√
H − 2h

H − h
. (6.2)

In terms of the initial lock depth D, (6.2) is

c±

U
=

2(H − D)

2H − D
±

√
2(H − D)

2H − D
. (6.3)

These wave speeds are plotted against the fractional depth of the release in
figure 15. The right-travelling wave c+ has speed U , when 2(H − D)/(2H − D) =
1
2
(3 −

√
5) = 0.382, which occurs when D =0.76H . For shallower locks the current
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Figure 15. The speeds c±/U of waves on the top of the current plotted against the fractional
depth D/H of the release. Waves travelling to the left are always slower than the current,
while waves travelling to the right are faster for D/H < 0.76.

travels slower than long waves and energy and momentum may be transferred from
the disturbance side to the current side. Thus Benjamin’s theory cannot apply for
partial-depth releases with D < 0.76H , and the theory presented here applies. For locks
with D > 0.76H , the current travels faster than all long waves and Benjamin’s theory
should be approximately correct. Comparison of (2.5) and (5.21), taking the current
depth in the former to be close to half the lock depth, gives very close numerical
agreement. For example taking a lock release of D = 0.8H , the two theories give
values of the Froude number FD of the current as 0.49 and 0.52, respectively.

This dependence on the initial lock depth is illustrated in figure 15, which shows
that c+/U increases with decreasing D/H and reaches a limit of 2 in the limit of very
shallow locks D → 0. This ability of the long interfacial waves to travel faster than the
current as the current becomes shallower results from two effects. First, the current
itself travels more slowly as the depth increases and, second, the wave speed depends
on the depths of both layers, and so waves can propagate faster on the deeper upper
layer in this limit.

Long waves travel in general much faster towards the right than towards the left:
about ten times faster for D = 0.12H and about 35 times faster for D = 0.05H . The
asymmetry occurs because the velocity in the upper layer decreases as the current
becomes shallower. Assuming that the energy flux is proportional to the group
velocity, long waves carry more energy towards the right than towards the left at
lower fractional depths. Interaction between the disturbance and current sides is,
therefore, expected to be strongest at lower fractional depths.

These theoretical results are in agreement with the observations in figure 11, which
show waves travelling faster than the front for a shallow current, but slower for a
deeper current.

The structure of the disturbance depends on whether it travels faster than
infinitesimal long waves on the undisturbed interface. The speed c of the latter
is given by standard theory (see e.g. Turner 1973, § 2.1.7)

c2

g(1 − γ )H
=

D(H − D)

H 2
. (6.4)
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Comparison with (5.20) shows that the disturbance will be a bore provided

2H − D > 4(H − D), (6.5)

and this occurs when D > 2
3
H . For shallower depth releases the disturbance will be

a rarefaction wave. This behaviour is in agreement with our observations shown in
figures 2, 3 and 4, and the observations of Rottman & Simpson (1983).

7. Two-layer shallow-water theory
The hydraulic theory presented in § 5 assumes that the flow is hydrostatic and that

regions of the flow exist where the interface is flat. It is also assumed that each layer
moves like a plug, so that there is no relative flow near each front. These assumptions
are necessary to obtain an analytical solution. An alternative to these approximations
can be obtained by noting that, apart from the initial stages immediately after the
removal of the lock gate and near the front of the current, the vertical scales of the
flow are much smaller than the horizontal scales. Consequently, in the later stages
the flow, in regions away from the front of the current, may be described by shallow-
water theory. This theory expresses conservation of mass and momentum (but not
necessarily energy) for a flow in which the velocity is assumed to be independent of
depth. The closure condition in this theory is obtained from specifying the Froude
number of the front, as first proposed by Abbott (1961).

This methodology was first exploited for a two-layer flow by Rottman & Simpson
(1983) who solved the initial value problem corresponding to the lock release shown
in figure 1(b). Details of the calculation are not given here, but as Rottman & Simpson
(1983) show, shallow-water theory reduces to solving ordinary differential equations
for the speeds and the depths of both layers. For the Boussinesq case, these equations
are (see Rottman & Simpson 1983)

h
dU

dh
− (1 − 2a)U + λ± =0, (7.1)

along characteristics

dx

dt
= λ±, (7.2)

where

λ± = U (1 − a) ±
√

U 2a2 + g′h(1 − b) (7.3)

and, consistent with the notation used by Rottman & Simpson (1983),

a =
h

H − h
, b =

h

H
+

U 2

g′H

H 2

(H − h)2
. (7.4)

The initial conditions are that the fluid is everywhere at rest, and that the initial
depth of the dense fluid is

h(x, t = 0) =

{
D for x < 0,

0 for x > 0.
(7.5)

Two further conditions are needed. If the backward disturbance from the lock is a
rarefaction wave, the velocity of the dense fluid is zero at the leading edge of the
disturbance, so that

U = 0, when h =D. (7.6)
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Figure 16. Gravity current speeds, expressed non-dimensionally as Froude numbers based on
the depth of the lock D, compared with shallow-water theory (solid curve) based on Benjamin’s
front condition, for the full range of lock depths. The data shown here include the present
experiments (�) and those by Rottman & Simpson (1983) (�).

As mentioned above, the final condition is set by imposing the front speed. Rottman &
Simpson (1983) used a condition

Uf
2

g′hf

= β2 (H − hf )(2H − hf )

2H (H + hf )
, (7.7)

where Uf and hf are current speed and depth at the front, and β is a dimensionless
constant. This front Froude number reduces to Benjamin’s (1968) Froude number
equation (2.6) when β2 = 2.

Figure 16 shows a comparison of this theory with measurements of the front speed
from the present experiments and those of Rottman & Simpson (1983). Because of
the difficulty in determining the front depth hf in experiments, we have presented
the results in terms of the Froude number FD based on the initial lock depth D and
defined in (5.22). The two sets of experiments are consistent, although Rottman &
Simpson (1983) used short locks so that the rarefaction wave reached the endwall of
the tank and then reflected back towards the front. As Rottman & Simpson (1983)
show, the speed of the front is constant and independent of the reflected disturbance,
which, for a full-depth release is a two-layer bore, until the reflected disturbance
catches the front. Hence the agreement between the experiments is expected. The
theoretical curve with β2 = 2 overestimates the speeds by about 20%. Rottman &
Simpson (1983) arbitrarily reduced the constant β2 = 1, and then got good agreement
with their experiments, but there is no theoretical justification for this value.

The theory given in § 5 provides an alternative front condition. From (5.18) and
(5.19)

Uf
2

g′hf

= 1 − hf /H. (7.8)

In the present theory the current and the disturbance sides are assumed to be matched
by uniform conditions in the middle section. As shown in § 6 the disturbance is a
rarefaction wave for shallow lock releases D/H < 0.67. In this case the disturbance
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Figure 17. Gravity current speeds, expressed non-dimensionally as Froude numbers based
on the depth of the lock D, compared with shallow-water theory (solid curve) using a front
condition based on the present theory.

condition is given by (7.6). For deeper lock releases D/H > 0.67 a bore forms and
the boundary condition is replaced by (5.20). The characteristic equation (7.2) is
integrated forward in the direction of decreasing h until the front condition (7.8) is
satisfied.

Figure 17 shows the front speed calculated with this new front condition and
the comparison with the present experiments. In this case there is no adjustable
constant in the front condition (7.8) and the agreement is very good. For shallower
lock releases the agreement is significantly better than the calculations based on
Benjamin’s theory (figure 16), although the two calculations converge for full-depth
releases as expected. Comparison with figure 14 shows that shallow-water theory gives
predictions comparable to, but slightly slower than, the energy-conserving theory. The
numerical differences in the predicted Froude numbers FD are within 5%.

The agreement between the energy-conserving theory, shallow-water theory and the
experiments is encouraging. Both theories conserve mass and momentum. The energy-
conserving theory also conserves energy and assumes that the flow is uniform in each
layer and that the interface between the two fronts is flat. Shallow-water theory does
not make these assumptions and allows for spatial and temporal variations in the
current speed and interface height. It, however, is not valid until some time after the
release, and is not valid at the gravity current front where the flow is non-hydrostatic.
It seems, though, that these various approximations are not particularly important to
the description of the bulk propagation of the currents.

8. Gravity currents in a deep ambient fluid
In many geophysical and industrial flows the gravity current propagates in an

ambient fluid of effectively infinite depth. As discussed in § 1 this case was considered
by both von Kármán (1940) and Benjamin (1968). Taking the limit of large ambient
depth h/H → 0 in either (2.6) or (2.7) gives (1.1). In the limit of infinite ambient depth
this gives Fh =

√
2. On the other hand, in this deep ambient fluid limit h/H → 0, the

present theory (5.21) with h = 1
2
D, which accounts for energy transfers between the
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two sides of the lock, predicts

Fh =
U

g′h
= 1. (8.1)

As also discussed in § 1, Huppert & Simpson (1980) suggest, on the basis of their
own and a compilation of other experiments, that the observed Froude number
Fh = 1.19, smaller than the value

√
2 predicted by von Kármán (1940) and Benjamin

(1968). In fact, Huppert & Simpson (1980) suggest the empirical relation

Fh =

{
1.19 for 0 <h/H < 0.075,

(h/H )−1/3 for h/H > 0.075.
(8.2)

The deep ambient fluid limit of 1.19 of these experimental values lies inconveniently
between the classical prediction of

√
2 and the new limit of Fh = 1. A possible

explanation for this discrepancy is in the value of the current depth h used in
determining Fh. Huppert & Simpson (1980) state that they use ‘the depth of the
current just behind the head’. As can be seen from our experiments (figures 3 and 4)
this depth is difficult to define unambiguously due to local mixing. The deep ambient
fluid limit reported by Huppert & Simpson (1980) would be consistent with our
theory if they used a measured depth hm = 0.71h. We noted in § 4 that the depth just
behind the head is less than that further back, and this smaller value may account
for the difference.

An example of the flow structure for a surface current for the case D/H = 0.11
is shown in figure 18. The current has a deep head with billows and mixing at the
rear. Immediately at the rear of the head the current is shallower than both the head
and also the current further behind. The mixing region is confined to within one
or two head heights of the front, after which the edge of the current is stable and
there is no appreciable mixing. These images of the current confirm the accepted
view as described, for example, by Simpson (1997). The depth is shallowest in and
just behind this breaking region, and then slopes gently to a constant-depth region.
This extended field of view shows more clearly than the images taken in the smaller
tank that the assumption of a constant current depth is reasonable. The larger slopes
seen in figures 3 and 4 are a result of the short length of the current. The present
experiment shows that the slope is less significant as the current propagates further
from the lock.

From these images we create a plot of the average intensities at each horizontal pixel
and for each time image, and plot g′h, defined by (3.2), as a function of horizontal
position at each time. An example of such an x–t intensity plot for a surface current
is shown in figure 19. The intensities are given by the false colour image. The motion
of the front is shown by the edge of the intensities, and since this edge is straight we
see that the current travels at a constant speed. The slight periodic deviations from
the straight edge are a result of small-amplitude surface waves that are generated
when the gate is removed. These are unavoidable for a surface current, but they
can be removed from the data to get an accurate measure of the front speed. The
advantage of the surface current is that the boundary is a closer approximation to
the stress-free boundary assumed by the theory and it is exactly horizontal, so that
the current speed is not biased by a mean boundary slope. These data are recorded
for each experiment and the speed U of the front determined by a least-squares fit to
the slope of the intensity edge.

From figure 19 we see that g′h is maximum just behind the front. This maximum
is associated with the raised head near the front. Behind this there are regions where
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Figure 18. A surface gravity current. The images are taken at 1 s intervals and the field of
view is 890 mm by 148 mm. The initial depth of fluid in the lock is D = 55 mm, and the
tank depth H = 485 mm, so that D/H = 0.11. The predicted value of the Froude number Fh is
0.97, and the measured value is 1.02 ± 0.11. An animation of this experiment is available as a
supplement to the online version of the paper.

the values of g′h are lower than either the head or the region behind. These occur
where there are billows and the current is shallower. The flow is unsteady in this
region, indicative of mixing. Further to the rear we see that the values of g′h become
constant. Numerically this constant value is very close to one-half the initial value
g′h in the lock, as predicted.

From these data we calculate the Froude number Fh = U/
√

g′h. For comparison
with the energy-conserving theory we use the value of g′h at the original position if
the lock, although from figure 19 it is clear that we could use any position behind
the head where the interface is flat. The predicted values from our theory give an
average value of Fh = 1.02 ± 0.11, while the theoretical value is Fh = 0.97. Thus the
experiments give Froude numbers 5% larger than that predicted by the present theory.
The measured values are much smaller than those cited by Huppert & Simpson (1980)
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Figure 19. The buoyancy g′h = g
∫ H

0 (ρ(z) − ρ1)/ρ2 dz in the current shown in figure 18 in the
x–t plane. The field of view is 890 mm by 8.33 s. The intensities are normalized by the initial
buoyancy g′

0D in the lock. The straight front shows that the current speed is constant. The
higher intensities there correspond to the elevated head, and the wave-like features correspond
to the billows. The buoyancy is observed to be constant for a significant, and growing, region
from the lock forwards. The lock gate is at x = 0.

because of the definition of g′h used. As can be seen from figure 18 using a value
of h determined close behind the head will lead to a significantly larger Froude
number.

It is disappointing that out experiments give values that exceed the theoretical
value, as we expected friction to reduce the speed slightly from the energy-conserving
theory. However, it turned out to be difficult to get a more precise value from the
measurements, and the theory falls within the scatter of the data. It is possible to
observe slight variations in the current speed, which depend on precisely how the
front position is determined, that also produce uncertainties of a few percent in the
Froude number.

We conclude that these data show that the observed front Froude number is
much closer to the present theory than the classical value of

√
2. Analysis of previous

experiments, that suggested a larger Froude number, did not determine the equivalent
depth of the current as we have done through (3.1). The reason why previous
experiments have recorded a larger Froude number is probably because the depth
was chosen closer to the head where, as figure 19 shows, the current is shallowest.

9. Conclusions
This paper has addressed the following question. Given that Benjamin’s theory

for energy-conserving gravity currents predicts that the current will occupy half the
depth of a channel, how do we account for observations of currents that have small
fractional depths? Benjamin (1968) argued that dissipation is important in the latter
cases, but since the only difference between the flows is a removal of an upper
boundary to large distances it is hard to see why. Benjamin apparently believed that
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all gravity currents are dissipative, but laboratory evidence (Gardner & Crow 1970;
Wilkinson 1982) clearly shows non-dissipative cavity flows.

Our analysis, like that of Benjamin, uses a hydraulic approach. This has strengths
and weaknesses. The strength is that if the flow is broadly hydrostatic, even if regions
of the flow are distinctly non-hydrostatic, then mass, momentum and energy balances
can be applied over suitable control volumes. We have done this over a control volume
that includes both sides of a lock release. Benjamin only considered one side and
ignored the possibility of communication between the two. Since the gravity current
is driven by the release of potential energy from the disturbance, this is a significant
omission. Both von Kármán (1940) and Benjamin (1968) ignore the possibility that
energy may enter the control volume along the interface behind the current. We
have shown that waves travel faster than the front when the current is shallow. They
transport energy and momentum towards the front and must be included in the
relevant budgets.

As can be seen from figures 3, 4 and 18, the flows are more complicated than
the approximate model and the hydraulic approach assumed here. An approach that
may be more accurate is to use two-layer shallow-water theory for these flows, as
first done by Rottman & Simpson (1983). However, shallow-water theory cannot deal
with the gravity current front and so a front condition must be imposed. If the front
speed given by our hydraulic model (5.19) is used then the gravity current speeds can
be predicted. The results are shown in figure 17, and we see that good agreement is
found.

Both Benjamin (1968) and Klemp et al. (1994) argue that currents with fractional
depths h/H > 0.347 cannot be realized in practice, since the current travels faster
than long interfacial waves. Klemp et al. (1994) state that ‘limitations on the fastest-
moving disturbances preclude the possibility of reaching a supercritical state at the
front’. They support their argument by referring to the maximum fractional depth of
about 0.3 found by Simpson & Britter (1979) who measured the depth of unmixed
fluid immediately behind the head of the current. This choice may not be appropriate
for comparison with Benjamin’s theory or the present theory, since conditions must
become uniform to apply Bernoulli’s theorem. On the other hand, support for the limit
on the depth comes from the two-dimensional numerical simulations of a full-depth
release of Härtel, Meiburg & Neckar (2000). They find that depth of the current,
based on a vertical integral of the density (see their figure 14) is considerably less
then the energy-conserving value and is closer to the maximum-dissipation value of
0.35. On the other hand, they also show that the instantaneous front shape (see their
figure 13) is in close agreement with the theoretical shape determined by Benjamin
(1968). The numerical simulations of Klemp et al. (1994) also support this limit (see
their figure 12 b) since the depth based on the buoyancy integral is always less than
the 0.347H limit.

However, our measurements unambiguously show that deeper Boussinesq currents
can be produced by lock exchange. The restriction of h/H < 0.347 comes from a
consideration of the speed of characteristics, as though this is a classical piston
problem. However, since the flow in the vicinity of the front is not hydrostatic, it is
not governed by the characteristics of shallow-water theory and thus the possibility
of a front with constant velocity and depth travelling faster than the maximum
characteristic speed is not precluded. For example, with a full-depth release, the
energy-conserving half-depth solution away from the front is a valid solution of the
shallow water equations, despite the fact that the characteristics are stationary in that
case. The shallow-water solution delivers fluid to the non-hydrostatic front, allowing
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the front to advance. Support for this picture of non-propagating characteristics is
found in our observations (see figures 2 and 11) that the billows in the full-depth
release are stationary. We note, however, that if the depth of the flow were to fall
below the energy-conserving solution in the hydrostatic flow far from the front, then
the behaviour of the characteristics would prevent the half-depth solution being
regained, thus explaining our observations of the reduced depth seen with different
initial conditions (see figure 10).

We have provided an energy-conserving hydraulic theory for gravity currents
produced by lock release. Our theory, although of course an approximation to
the flow, is in good agreement with experiments on high-Reynolds-number gravity
currents over a wide range of initial lock depths, from shallow locks to full-depth
releases. The discrepancies in the observed and predicted velocities are within a few
percent and are probably due to losses associated with boundary friction and mixing.
Indeed, the effect of the no-slip condition on the lower boundary is to raise the most
forward part of the current a small distance from the boundary. This effect can, by
itself, reduce the front speed by a few percent. But these losses are not important in
describing the order-one dynamics, which are captured by a dissipationless theory.

The reason for the small amounts of dissipation seems clear. As Benjamin (1968)
pointed out, potential flow over a semi-infinite current with a flat interface has zero
drag. There is probably some form drag associated with the raised head observed on
a shallow current but it is small. And, although the mixing looks quite dramatic in
shadowgraphs like those shown in figure 2, the extraction of energy from the flow in
stratified flows is small. As Linden (1979) shows, mixing is responsible for at most
20–30% of the energy losses in a turbulent flow. Frictional losses at the boundaries
are also small for high-Reynolds-number currents.

In deep ambient fluids our theory predicts that the Froude number Fh, based on the
current depth h, approaches 1 in the limit of an infinitely deep environment, rather
than the larger value of

√
2 predicted by the classical work of von Kármán (1940) and

Benjamin (1968). We have carried out new experiments to test the theory and find
experimental values for Fh consistent with, but slightly larger than, our predictions.
However, the experiments are certainly not consistent with the classical value.

In the limit of an infinitely deep ambient fluid, the only length scale that can be used
to define the Froude number is the depth h of the current. As previous experiments
and the examples given in this paper show, the value of h depends on the position
in the current. The front has a raised head, followed by a region where its depth
is a minimum and then it increases again, becoming constant further to the rear of
the current. Hydraulic theory assumes that the flow is hydrostatic and requires that
it is applied where the current depth is constant. Thus for both Benjamin’s and our
theory it is necessary that the ends of the control volume be away from the region of
the head and the region of minimum depth behind the head. We have chosen to take
h as the value at the lock, which lies mid-way between the leftward and rightward
propagating disturbances. Previous empirical fits to laboratory data have used a value
close to the point of minimum depth behind the head (Huppert & Simpson 1980).
This choice gives a larger value for the Froude number, but does not seem to be an
appropriate choice for the application of hydrostatic pressure relations. In fact, as
Lowe et al. (2002) show, vertical velocities are largest in this region. For full-depth
releases the depth of the current is almost constant and so the location at which the
depth is measured is less problematic.

The present energy-conserving hydraulic theory predicts that the depth of the
current at the lock is one-half the initial lock depth D. If instead, single-layer
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shallow-water theory is applied, the depth at the lock is 4
9
D. As we show in the

Appendix our deep-ambient experiments are slightly closer to this value than 1
2
D as

predicted by the hydraulic theory. We also find that the shallow-water solution con-
serves energy in this limit.

A further feature that complicates the definition of the current depth is that the
interface is, in general, unstable. Benjamin (1968) shows that for a current occupying
half the depth, the interface on the top of a heavy current is linearly unstable at
all wavelengths. For the light current there is a range of stable wavelengths, which
depends on the density ratio γ . For the experiment shown in figure 2(a) the interface is
stable for wavelengths longer than about 6h. Even though the density ratio γ =0.993
suggests that this flow is Boussinesq, there is a small asymmetry visible, with the light
current appearing to be slightly more stable and deeper than the heavy current. Thus
our deep-ambient surface current may conform more closely to the hydraulic theory
than the more commonly studied dense bottom currents.

Similar values of the Froude number to our experiments were reported by Armi &
Farmer (1986) in their study of two-layer exchange flows. When a strong opposing
flow produced an arrested current, they predicted and observed a Froude number
equal to 1. Although the flows are different since the exchange flow is affected by
the changing channel geometry, the agreement in the Froude number value suggests
similar dynamics are occurring.

Finally, we note that this approximate hydraulic theory and supporting experiments
resolve a number of outstanding questions concerning gravity current dynamics. The
theory also provides a closure front condition that can be used in conjunction with
shallow-water theory to obtain a more accurate description of the flow than hydraulic
theory provides.

Ryan Lowe and James Rottman collaborated on the experiments shown in figures 2
and 8, and we are grateful for their generosity in allowing us to include them in
this paper. We have also benefitted enormously from many discussions with them
both about gravity currents. We wish to also thank Jake Hacker, James Rottman and
Bruce Sutherland for helpful and detailed comments on an early version of this paper.
PFL was supported, in part, by the National Science Foundation under Grant No.
CTS-0209194. SBD wishes to acknowledge support from the Natural Environment
Research Council under grant number NER/A/S/2001/01132.

Appendix. Single-layer shallow-water theory
It is of interest to note some properties of the single-layer shallow-water calculation

as a model for a lock release of dense fluid into an infinitely deep environment.
Consider a lock, depth D, containing fluid of negative buoyancy g′. The front of the
lock is at x = 0, and the ambient fluid is infinitely deep. Fluid is released from the lock
at t = 0. In a variation on the classical St. Venant problem, Abbott (1961) assumed
that the front was specified by a constant local Froude number Fh =U/c = F , where
U is the front speed, c =

√
g′h and h is the current depth at the leading edge. He

showed that

U =
2FC

F + 2
, (A 1)

where C =
√

g′D. Note that the St. Venant limit of h = 0 at the front gives F → ∞
and U = 2C.
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Figure 20. The depth of the surface current shown in figure 18 at the lock position plotted
against time t . The theoretical value of 4

9
is shown as the broken line.

The full solution is (see also Klemp et. al. 1994)

h

D
=



1,
x

Ct
< 1,

1

9

(
2 − x

Ct

)2

, −1 �
x

Ct
�

2(F − 1)

F + 2
,

4

(F + 2)2
,

2(F − 1)

F + 2
<

x

Ct
<

2F

F + 2
;

(A 2)

U

C
=



0,
x

Ct
< 1,

2

3

(
1 +

x

Ct

)
, −1 �

x

Ct
�

2(F − 1)

F + 2
,

2F

(F + 2)2
,

2(F − 1)

F + 2
<

x

Ct
<

2F

F + 2
.

(A 3)

This solution shows that the depth at the lock is h/D = 4
9
, for all values of the

front Froude number F � 1. We can compare this with a measured time series of the
depth at the lock shown in figure 20. This experiment is the one shown in figure 18,
and figure 20 shows the concentration field at the lock position as a function of
time. These values give the depth, provided there is no mixing at the lock, which
seems a good assumption from the visual observations of the flow shown in figure 18.
Figure 20 shows that the depth is very close to the shallow-water prediction, and
slightly less than the value 0.5 predicted by the energy-conserving theory given in § 5.

Note that the shallow-water solution (A 2) and (A 3) predicts that the depth and
speed of the current are constant behind the front. This region extends back to the
lock at x = 0 for the case F = 1. As discussed in § 9 it seems likely that such a region
also exists in the two-layer energy-conserving flow.

It is relevant to examine the energetics of the shallow-water solution. In the
following the energies are all per unit width and the density of the fluid is set equal to
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unity. The potential energy PE of the current between the front and the rarefaction
wave is

PE=
1

2
ρg′

∫ 2F
F+2 Ct

−Ct

h2 dx =
3F 5 + 30F 4 + 120F 3 + 240F 2 + 240F + 160

10(F + 2)5
ρDC3t (A 4)

and the initial potential energy PE0 of this region is

PE0 =
1

2
ρg′

∫ 0

−Ct

D2 dx =
1

2
ρDC3t. (A 5)

The kinetic energy KE of the same region is

KE =
1

2
ρ

∫ 2F
F+2 Ct

−Ct

u2h dx =
F 2(F 3 + 10F 2 + 40F + 80)

5(F + 2)5
ρDC3t. (A 6)

Under the shallow-water approximation the pressure is everywhere hydrostatic, so
the front applies a force 1

2
ρg′hf

2 on the ambient fluid. The motion of the front does
work W per unit width

W =
16F

(F + 2)5
ρDC3t. (A 7)

The dissipation ε in the region is equal to the change in potential energy minus the
change in kinetic energy and the work done by the front. Using the above expressions
we find that ε ≡ 0 for all times. Thus, for a Boussinesq current, energy is conserved
by the one-layer shallow-water solution, irrespective of the value of the front Froude
number F .
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