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We prove optimal improvements of the Hardy inequality on the hyperbolic space.
Here, optimal means that the resulting operator is critical in the sense of Devyver,
Fraas, and Pinchover (2014), namely the associated inequality cannot be further
improved. Such inequalities arise from more general, optimal ones valid for the
operator Pλ := −Δ

HN − λ where 0 � λ � λ1(HN ) and λ1(HN ) is the bottom of the
L2 spectrum of −Δ

HN , a problem that had been studied in Berchio, Ganguly, and
Grillo (2017) only for the operator Pλ1(HN ). A different, critical and new inequality

on HN , locally of Hardy type is also shown. Such results have in fact greater
generality since they are proved on general Cartan-Hadamard manifolds under
curvature assumptions, possibly depending on the point. Existence/nonexistence of
extremals for the related Hardy-Poincaré inequalities are also proved using
concentration-compactness technique and a Liouville comparison theorem. As
applications of our inequalities, we obtain an improved Rellich inequality and we
derive a quantitative version of Heisenberg-Pauli-Weyl uncertainty principle for the
operator Pλ.

Keywords: Hyperbolic space; optimal Hardy inequality; extremals
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1. Introduction

The Hardy inequality on (Euclidean) domains has been studied intensively for the
last few decades. Much of the interest has centred on optimal improvements of the
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inequality and the effect of the domain on the Hardy constant. Its generalization
to Riemannian manifolds was intensively pursued after the seminal work of Carron
[15], see for instance [9,10,18,29–31,40]. Let (M, g) be a Riemannian manifold
and let �(x) be a weight function satisfying the Eikonal equation |∇g�| = 1 and
Δg� � C/(�) where C > 0 a positive constant. By [15] there holds∫

M

|∇gu|2 dvg �
(
C − 1

2

)2 ∫
M

u2

�2
dvg ∀ u ∈ C∞

c (M \ �−1{0}). (1.1)

In the case of a Cartan-Hadamard manifold M of dimension N (namely, a mani-
fold which is complete, simply-connected, and has everywhere nonpositive sectional
curvature), the geodesic distance function d(x, x0), where x0 ∈M , satisfies all the
assumptions of the weight � and the above inequality holds with the best constant
((N − 2)/2)2, see [31]. In particular, considering the most important example of
Cartan-Hadamard manifold, namely the hyperbolic space HN , inequality (1.1) reads∫

HN

|∇HNu|2 dvHN �
(
N − 2

2

)2 ∫
HN

u2

r2
dvHN , ∀ u ∈ C∞

c (HN \ {x0}) (1.2)

with r := d(x, x0) and x0 ∈ HN is a fixed pole.
The effect of curvature has been exploited in [29–31,40] to improve inequality

(1.1) (in the sense of adding nonnegative terms in the right side of the inequality) on
Cartan-Hadamard manifolds. This is in contrast to what happens in the Euclidean
setting where the operator −ΔRN − ((N − 2)/2)2/(|x|2) is known to be critical in
RN \ {0} (see [19]) and improvements of such quadratic form inequality are not
possible. However, there is a huge literature about improved Hardy inequalities
on bounded Euclidean domains after the seminal works of Brezis and Marcus [13]
and Brezis and Vazquez [14]. See also [5–7,20–24] and references therein. We now
describe qualitatively the contributions given in the present paper.

• Critical improvements of the Hardy inequality with optimal constant.
It is known that the operator, −ΔHN − ((N − 2)/2)2/(r2) is subcritical oper-
ator in HN \ {x0}, and the existence of a remainder term for inequality (1.2)
involving a multiple of the L2-norm is also known by [40]. Furthermore, a new
type of improvement of (1.2), and more generally of (1.1) on Cartan-Hadamard
manifolds, has been recently provided in [31] by showing that more curvature
implies more powerful improvements, see remark 2.4 below. Nevertheless, as far
as we are aware, the criticality of the resulting ‘improved’ operators has never
been studied.

The first goal of the present paper is to address this topic by looking for a
weight V � 0 such that the following improved Hardy inequality holds true∫

HN

|∇HNu|2 dvHN �
(
N − 2

2

)2 ∫
HN

u2

r2
dvHN

+
∫

HN

V u2 dvHN ∀u ∈ C∞
c (HN ) (1.3)

and the associated operator −ΔHN − ((N − 2)/2)2/(r2) − V is critical in HN \
{x0}. Hence, the inequality is not true when V is replaced by W � V , W �= V ,
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and this is the reason why we will call such V an optimal weight. In this respect,
we note that for any second-order elliptic subcritical operator P in HN , and any
compactly supported, positive perturbation V of P in HN , there always exists
λ0 s.t. P − λ0 V is critical in HN (see [37]). So qualitatively we aim at finding
a potential that is as large as possible at infinity and such that inequality (1.3)
is not improvable.

In corollary 2.3 below we show that an optimal radial weight V � 0 such that
(1.3) holds is

V (r) = (N − 2) +
(N − 2)(N − 3)

4
g(r), (1.4)

where g(r) = (r coth r − 1)/(r2) > 0 and r > 0. In particular, g satisfies g(r) ∼
1/3 as r → 0+ and g(r) ∼ 1/r as r → +∞. It is clear from (1.4) that V (r)
yields, as a byproduct, an L2 improvement of the Hardy inequality (1.2) and
we point out that, to our knowledge, the constant N − 2 we get in front of
the L2-term is greater than the existing known bounds in literature, cf. [40].
Though, except for N = 3, the optimality of the weight V does not imply that
N − 2 is the best constant in obvious sense. It is also interesting to note that our
optimal inequality is closely related to the improved Hardy inequality studied
in [31], we refer to remark 2.4 for a detailed discussion. Here we only mention
that the main result on the Hardy inequality given in [31], when considered on
HN , follows as a particular case of our results. Also the extension of our results
to more general Cartan-Hadamard manifolds is obtained under less restrictive
assumptions than in [31]. Indeed, we only require curvature bound in the radial
direction, see § 4 and, besides, we allow for curvature bounds varying with the
point.

• Hardy-type improvements of the Poincaré inequality. It is worth noting
that the weight V (r) in (1.4) originates from a suitable family of Hardy weights
improving Poincaré-type inequalities on HN with N � 2. Indeed, the validity
of the Poincaré inequality (or L2-gap inequality, see [35] for generalizations)
on HN with best constant

λ1(HN ) := inf
u∈C∞

c (HN )\{0}

∫
HN

|∇HNu|2 dvHN∫
HN

u2 dvHN

=
(
N − 1

2

)2

(1.5)

makes it natural to inquire whether, for any given λ � λ1(HN ), a Hardy-type
inequality associated with the family of nonnegative operators Pλ := −ΔHN − λ
holds. More precisely, for any λ � λ1(HN ), one looks for functions Vλ � 0 such
that the following inequality holds true∫

HN

|∇HNu|2 dvHN − λ

∫
HN

u2 dvHN �
∫

HN

Vλ u
2 dvHN ∀u ∈ C∞

c (HN ),

(1.6)

and the operator Pλ − Vλ is critical in HN \ {x0} so that (1.6) does not hold
for any Wλ � Vλ, Wλ �= Vλ.
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When λ = λ1(HN ) and N � 3, a weight such that the above condition is satisfied
is known to exist. More precisely, inequality (1.6) holds with λ = λ1(HN ) and

Vλ1(HN )(r) =
1
4

1
r2

+
(N − 1)(N − 3)

4
1

sinh2 r
. (1.7)

Furthermore, the operator Pλ1(HN ) − Vλ1(HN ) is critical in HN . The inequality has
been shown first in [2] and then, with different methods, adaptable to larger classes
of manifolds, in [9], where criticality has also been shown. We refer the interested
reader to [8] and [10] for higher order and Lp version of inequality (1.6) for λ = λ1,
respectively, and to [12] for other functional inequalities in the same setting but
involving the Green’s function of the Laplacian.

Hence, a further goal of this work is to complete the study of (1.6) for λ < λ1(HN )
and to address the criticality issue when N = 2, a case which was not dealt with in
[9]. Clearly, from the validity of (1.6) with λ = λ1(HN ) and Vλ = Vλ1(HN ) as given
above, it is readily deduced that for any λ < λ1(HN ) an optimal radial weight for Pλ
is V λ(r) = (λ1(HN ) − λ) + Vλ1(HN )(r). In theorem 2.1 below we provide a second
optimal radial weight Vλ which coincides with Vλ1(HN ) if λ = λ1(HN ), while it gives
inequality (1.3) with the weight in (1.4) if λ = N − 2. Moreover, for N � 3 and any
λ � λ1(HN ), Vλ satisfies

Vλ(r) ∼
(
N − 2

2

)2 1
r2

as r → 0+.

The same asymptotic holds for V λ, hence both Vλ and V λ tend to reproduce the
classical Hardy weight near the origin but it can be shown that Vλ is larger than
V λ, see remark 2.2 below. Clearly, when N = 2 one cannot expect an improvement
with a Hardy term like in higher dimensions. Indeed, near the origin we have

Vλ(r) ∼ (1 +
√

1 − 4λ)(1 + 3
√

1 − 4λ)
12

as r → 0+

for any λ � λ1(H2) = 1/4.

• A new critical quadratic form inequality on the hyperbolic space. We
shall show the validity of a new quadratic form inequality on HN , which is
locally of Hardy type. The inequality reads∫

HN

|∇HNu|2 dvHN �
(
N − 2

2

)2 ∫
HN

u2

sinh2 r
dvHN

+
1
4

∫
HN

u2

sinh2 r (log (tanh(r/2)))2
dvHN

+
N(N − 2)

4

∫
HN

u2 dvHN . (1.8)

It will also be shown that the operator

−ΔHN −
(
N − 2

2

)2 1
sinh2 r

− 1

4 sinh2 r
(
log
(
tanh r

2

))2 − N(N − 2)
4
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is critical in HN \ {x0} and the constant (N(N − 2))/4 is sharp in the obvious
sense. For a somewhat related inequality on the geodesic ball and for radial
functions, see [16, proposition 1.8], optimality issues not being discussed there.

• General Cartan-Hadamard manifolds. It is important to comment that all
the above results in fact hold under the curvature bound KR � −1, KR being
the sectional curvature in the radial direction of a Cartan-Hadamard manifold
with a pole (or, with some modifications, if KR � −c < 0), see theorem 4.1 and
its corollaries. We have so far stated them in the special case of HN for greater
readability only. In fact, theorem 4.1 proves suitable integral inequalities even
under more general curvature bounds that can depend on the point. Inequality
(1.8) can be extended to general Cartan-Hadamard manifolds as well, in fact,
a new critical inequality is proved in theorem 4.5. It is important to stress that
such inequality will be shown under the assumption that curvature is strictly
negative at infinity, more precisely it can be allowed to vanish as the distance
from a given pole tends to infinity but not faster than quadratically.

• Existence of extremals for optimal inequalities. Coming back to inequal-
ity (1.6) with N � 3, we also take the different attitude of fixing Vλ(r) =
(I(λ))/(r2) and looking for the best constant I = I(λ) > 0 such that (1.6) holds.
In other words, the following infimum problem arises

I(λ) := inf
u∈C∞

c (HN )\{0}

∫
HN

|∇u|2 dvHN − λ
∫

HN
u2 dvHN∫

HN
(u2/r2) dvHN

. (1.9)

Clearly, I(0) = ((N − 2)/2)2 while, by (1.7), I(λ1(HN )) = 1/4.
In theorems 2.7 and 2.8 we investigate existence/nonexistence of extremals

of I(λ) for any λ ∈ [0, λ1(HN )]. Furthermore, we provide a lower and an upper
bound of the maximum value of λ such that I(λ) = ((N − 2)/2)2, namely of
the best constant in front of the L2-type remainder term for (1.2).

• Further results. The rest of the paper is, on one hand, devoted to present a
further remarkable application of (1.6), namely the derivation of suitable quan-
titative versions of Heisenberg-Pauli-Weyl uncertainty principle for the shifted
Laplacian in the hyperbolic setting; the corresponding inequalities should be
compared with those obtained in [29–31]. Besides, we also generalize the Hardy-
type inequalities to more general ones in which the energy term may involve
weights as well, and also prove improved, weighted Rellich inequalities in the
spirit of [9], with optimal Rellich term.

• Plan of the paper. The paper is organized as follows. In § 2, we state
theorem 2.1 in HN , namely our family of optimal inequalities (1.6), and some
interesting inequalities derived from theorem 2.1, among which the inequality
(1.3) associated with the weight (1.4). Finally, we state theorems 2.7 and 2.8
related to the study of existence/nonexistence of extremals for (1.9). Section 3
is devoted to the application of theorem 2.1 to obtain the above mentioned
quantitative versions of Heisenberg-Pauli-Weyl uncertainty principle involving
the shifted Laplacian in the hyperbolic space setting. In § 4, we discuss the
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extension of our results to general Cartan-Hadamard manifolds. Sections 6, 7
and 8 are devoted to the proofs of the statements of §§ 2 and 4. Finally, in the
Appendix we state some Hardy-Maz’ya type inequalities in dimension 2 related
to the inequalities of § 2.

2. Main results

We start by providing a suitable family of optimal Hardy weights for the operators
Pλ := −ΔHN − λ. We comment here and once for all that, although stated for
functions compactly supported away from the pole, most inequalities also hold
without such requirement by density arguments: in fact, for example, in the next
theorem formula (2.1) holds without such requirement if N � 3.

Theorem 2.1. Let N � 2. For all λ � λ1(HN ) = ((N − 1)/2)2 and all u ∈
C∞
c (HN \ {x0}) there holds
∫

HN

|∇HNu|2 dvHN − λ

∫
HN

u2 dvHN

� (γN (λ) + 1)2

4

∫
HN

u2

r2
dvHN +

γN (λ)(γN (λ) + 1)
2

∫
HN

g(r)u2 dvHN

+
(N − 1 + γN (λ))(N − 3 − γN (λ))

4

∫
HN

u2

sinh2 r
dvHN ,

(2.1)

where γN (λ) :=
√

(N − 1)2 − 4λ and g is defined by

g(r) =
r coth r − 1

r2
> 0. (2.2)

The function g is strictly decreasing and satisfies

g(r) ∼ 1
3

as r → 0+ and g(r) ∼ 1
r

as r → +∞.

Besides, the operator −ΔHN − λ− Vλ(r) with the positive potential Vλ being given
by

Vλ(r) :=
(γN (λ) + 1)2

4
1
r2

+
γN (λ)(γN (λ) + 1)

2
g(r)

+
(N − 1 + γN (λ))(N − 3 − γN (λ))

4
1

sinh2 r

(2.3)

is critical in HN \ {x0} in the sense that the inequality
∫

HN

|∇HNu|2 dvHN − λ

∫
HN

u2 dvHN �
∫

HN

V u2 dvHN ∀u ∈ C∞
c (HN \ {x0})

is not valid for all u ∈ C∞
c (HN \ {x0}) given any V � Vλ.
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Remark 2.2 (Asymptotics of Vλ(r)). We investigate here the behaviour of Vλ at
zero and at infinity. For any λ � λ1(HN ), there holds

Vλ(r) =
(
N − 2

2

)2 1
r2

+RN (λ) + o(r) as r → 0+,

where RN (λ) := (λ1(HN ) − λ) + 2/3
√
λ1(HN ) − λ− ((N − 1)(N − 3))/12 and the

map (−∞, λ1(HN )] 
 λ �→ RN (λ) is decreasing. Hence, among the weights Vλ,
Vλ1(HN ), is the ‘smallest’ near the origin. On the other hand, if we consider the
weights V λ(r) = (λ1(HN ) − λ) + Vλ1(HN )(r) as defined in the Introduction, we have
that

V λ(r) =
(
N − 2

2

)2 1
r2

+RN (λ) + o(r) as r → 0+,

where RN (λ) := (λ1(HN ) − λ) − ((N − 1)(N − 3))/12. Since RN (λ) < RN (λ) for
any λ < λ1(HN ), we conclude that Vλ is larger than V λ near the origin.

We also note that when N = 2 the first term in the above expansion of Vλ
vanishes, furthermore, λ1(H2) = 1/4 and we have

Vλ(r) =
(1 +

√
1 − 4λ)(1 + 3

√
1 − 4λ)

12
+ o(r) as r → 0+.

Let us turn to the asymptotic behaviour at infinity. For any N � 2, there holds

Vλ(r) ∼ γN (λ)(γN (λ) + 1)
2r

if λ < λ1(HN ) and Vλ1(HN )(r) ∼
1

4r2
as r → +∞,

while

V λ(r) ∼ (λ1(HN ) − λ) as r → +∞.

Hence, for λ < λ1(HN ), V λ is larger than Vλ near infinity.

The above difference in the behaviour at infinity of Vλ(r) between λ = λ1 and
λ < λ1 might be related to a well-known phenomenon for the Euclidean Laplacian,
where λ1(RN ) = 0. The Hardy weight 1/(|x|2) is at the borderline of short/long
range potentials at infinity for −Δ in RN . In particular, the potential (1 + |x|)−α
is a small perturbation of the −Δ in RN for N � 3 if and only if α > 2 (see e.g.,
the discussion in [19, example 1.1]). On the other hand, for λ < 0 the potential
(1 + |x|)−α is a small perturbation of −Δ − λ in RN if and only if α > 1. We
do not claim that 1/r for λ < λ1(HN ) is a border line potential in the hyperbolic
setting, however, it would be interesting to further investigate the (sharp) borderline
behaviour of the potential at infinity in HN for λ < λ1(HN ).

In the following, we highlight some remarkable inequalities derived from theorem
2.1 by making specific choices of the parameters involved. The basic idea behind
our choices is either to maximize the constant in front of the L2-term, namely to
maximize the gain at infinity, or to maximize the constant in front of the classical
Hardy weight 1/(r2), namely to maximize the gain at the origin.

The maximum value of the constant in front of the L2-term is clearly achieved
for λ = λ1(HN ). Since γN (λ1(HN )) = 0, for this choice of λ the constant in front
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of the function g(r) in (2.3) vanishes so that Vλ coincides with the potential in
(1.7) which was introduced in [2,9]. Therefore, (2.1) includes the sharp Poincaré
inequality of [9, theorem 2.1].

Next, we consider the constant ((γN (λ) + 1)2)/4 in front of the weight 1/(r2) in
(2.3). For N � 3 its value cannot exceed the Hardy constant and its maximum is
achieved for γN (N − 2) = N − 3, namely for λ = N − 2. For this choice of λ the
coefficient in front of the term involving 1/(sinh2 r) vanishes and theorem 2.1 yields
the following sharp Hardy inequality on HN .

Corollary 2.3. Let N � 3. For all u ∈ C∞
c (HN \ {x0}) there holds∫

HN

|∇HNu|2 dvHN �
(
N − 2

2

)2 ∫
HN

u2

r2
dvHN + (N − 2)

∫
HN

u2 dvHN

+
(N − 2)(N − 3)

2

∫
HN

g(r)u2 dvHN , (2.4)

where g(r) is as given in (2.2). Besides, the operator

−ΔHN −
(
N − 2

2

)2 1
r2

− (N − 2) − (N − 2)(N − 3)
2

g(r)

is critical in HN \ {x0} in the sense that the inequality∫
HN

|∇HNu|2 dvHN �
∫

HN

V u2 dvHN ∀u ∈ C∞
c (HN \ {x0})

is not valid for all u ∈ C∞
c (HN \ {x0}) given any

V �

(
N − 2

2

)2 1
r2

+ (N − 2) +
(N − 2)(N − 3)

2
g(r).

Moreover, the constant ((N − 2)/2)2 is sharp by construction, while the constants
(N − 2) and ((N − 2)(N − 3))/2 are ‘jointly’ sharp in the sense that no inequality
of the form∫

HN

|∇HNu|2 dvHN �
(
N − 2

2

)2 ∫
HN

u2

r2
dvHN

+
(N − 2)(N − 3)

2

∫
HN

g(r)u2 dvHN + c

∫
HN

u2 dvHN

holds for all u ∈ C∞
c (HN \ {x0}) when c > N − 2. Similarly, no inequality of the

form ∫
HN

|∇HNu|2 dvHN �
(
N − 2

2

)2 ∫
HN

u2

r2
dvHN + (N − 2)

∫
HN

u2 dvHN

+ c

∫
HN

g(r)u2 dvHN

holds for all u ∈ C∞
c (HN \ {x0}) when c > ((N − 2)(N − 3))/4.
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Remark 2.4. Several contributions are available about Hardy inequality on the
hyperbolic space see for example, [15,18,29,30,40]. Yet, its improvements and
related criticality issues still present open problems. In [40], for N � 3, the authors
show that

∫
HN

|∇HNu|2 dvHN � (N − 2)2

4

∫
HN

u2

r2
dvHN + CN

∫
HN

u2 dvHN u ∈ C∞
c (HN ),

(2.5)

where CN � (N − 1)/4. The explicit value of CN is not known and there is no
information whether we can add more remainder terms in the right-hand side of
the inequality. See also [29, theorem 3.1] for a Euclidean L2-type improvement of
inequality (1.2).

More recently, a new type of improved Hardy inequality has been proved in [31,
theorem 4.1]. In terms of the function g(r) defined in theorem 2.1, the inequality
in [31, theorem 4.1] reads:

∫
HN

|∇HNu|2 dvHN �
(
N − 2

2

)2 ∫
HN

u2

r2
dvHN +

(N − 1)(N − 2)
2

∫
HN

g(r)u2 dvHN ,

(2.6)

for N � 3 and all u ∈ C∞
c (HN ). By noting that g(r) � 1/3 for every r > 0, it is

readily deduced that inequality (2.6) follows from our inequality (2.4). Hence, in
particular, inequality (2.4) is stronger than that of (2.6) proved in [31, theorem 4.1].

For what remarked above, although we do not have a proof of optimality of the
constant given in corollary 2.3 for the L2-remainder term, our result improves the
existing ones. See theorems 2.7 and 2.8 below and the related discussion for further
interesting consequences of corollary 2.3.

Remark 2.5. Corollary 2.3 follows by theorem 2.1 by taking λ = N − 2 in the
potential given in (2.3), so that the coefficient in front of 1/(r2) assumes its maxi-
mum value, meanwhile the coefficient in front of g(r) is positive, while the last term
in the expression of the weight Vλ vanishes. Besides, when N − 2 < λ � λ1(HN ),
then γN (N − 2) < N − 3 and all the coefficients in the definition (2.3) are nonneg-
ative, and even positive if λ �= λ1(HN ). Instead, when λ < N − 2, the coefficient in
front of 1/(r2) in (2.3) still increases but since γN (N − 2) > N − 3 the coefficient
in front of 1/(sinh2 r) becomes negative. However, since 1/(r2) > 1/(sinh2 r) for
r > 0, Vλ is still positive, indeed we have

Vλ(r) �
(
N − 2

2

)2 1
sinh2 r

+
γN (λ)(γN (λ) + 1)

2
g(r).

As already explained in remark 2.2, these weights become larger and larger near
the origin as λ decreases.
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Going on with our analysis of consequences of theorem 2.1, we focus on the case
N = 2 that was not studied in [9]. Taking N = 2 in (2.3), for any λ � 1/4, we get

Vλ(r) :=
(
√

1 − 4λ+ 1)2

4

(
1
r2

− 1
sinh2 r

)
+

(
√

1 − 4λ)(
√

1 − 4λ+ 1)
2

g(r).

In particular, for λ = λ1(H2) = 1/4, theorem 2.1 yields the following sharp
improved Poincaré inequality:

Corollary 2.6. For all u ∈ C∞
c (H2 \ {x0}) there holds:∫

H2
|∇H2u|2 dvH2 − 1

4

∫
H2
u2 dvH2 � 1

4

∫
H2

(
1
r2

− 1
sinh2 r

)
u2 dvH2 . (2.7)

Moreover, the operator, −ΔH2 − 1/4 − 1/4 (1/(r2) − 1/(sinh2 r)) is critical in H2 \
{x0}, that is, the inequality∫

H2
|∇H2u|2 dvH2 − 1

4

∫
H2
u2 dvH2 �

∫
H2
Wu2 dvH2 ∀u ∈ C∞

c (H2 \ {x0})

is not valid for any W � 1/4 (1/(r2) − 1/(sinh2 r)).
In particular, all the constants in (2.7) are sharp. In particular, no inequality of
the form ∫

H2
|∇H2u|2 dvH2 − 1

4

∫
H2
u2 dvH2

� C

∫
H2

(
1
r2

− 1
sinh2 r

)
u2 dvH2 ∀u ∈ C∞

c (H2 \ {x0})

holds when C > 1/4.

In the next results, we change our point of view, taking the attitude of fixing
the Hardy weight for the operator −ΔHN − λ to be I/(r2) for some I > 0 and
investigating the properties of the best constant. In other words, for any 0 � λ �
λ1(HN ), we study the infimum problem (1.9) which also reads∫

HN

|∇HNu|2 dvHN − λ

∫
HN

u2 dvHN � I(λ)
∫

HN

u2

r2
dvH2 ∀u ∈ C∞

c (H2 \ {x0}).
(2.8)

We have already remarked that I(0) = ((N − 2)/2)2 and I(λ1(HN )) = 1/4. Since
the map λ �→ I(λ) is nonincreasing and concave, hence continuous, the following
number is well-defined

λ̂N := max

{
λ ∈ [0, λ1(HN )] : I(λ) =

(
N − 2

2

)2
}
. (2.9)

Namely, λ̂N is the best constant in front of the L2-term such that (2.5) holds.
When N = 3, the Hardy constant and the Poincaré constant are both equal to

1/4. Hence, from corollary 2.3 (or [9, theorem 2.1], see also [9, remark 2.2]) it follows
that λ̂3 = λ1(H3) = 1 and the following statement holds:
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Theorem 2.7. Let N = 3. For any λ � 1, I(λ) = 1/4 and the infimum in (1.9) is
not achieved, that is, the inequality in (2.8) is strict for u �= 0.

For higher dimensions the situation is more complicated and we have the
following:

Theorem 2.8. Let N > 3 and let λ̂N be as defined in (2.9). Then,

N − 2 � λ̂N < min
{
λ1(HN ), N − 2 +

(N − 2)(N − 3)
6

}

and the following three cases occur:

(i) for 0 � λ � λ̂N , I(λ) = ((N − 2)/2)2 and the infimum in (1.9) is not achieved,
that is, the inequality in (2.8) is strict for u �= 0;

(ii) for λ̂N < λ < λ1(HN ), ((1 + 2
√
λ1(HN ) − λ)/2)2 < I(λ) < ((N − 2)/2)2 and

the infimum in (1.9) is achieved by a unique (up to a multiplicative con-
stant) positive function u ∈ H1(HN ); in particular, the corresponding operator
is critical.

(iii) for λ = λ1(HN ), I(λ1(HN )) = 1/4 and the infimum in (1.9) is not achieved,
that is, the inequality in (2.8) is strict for u �= 0.

Remark 2.9. Note that for N � 6 there holds

min
{
λ1(HN ), N − 2 +

(N − 2)(N − 3)
6

}
= N − 2 +

(N − 2)(N − 3)
6

.

Open problems related to theorem 2.8:

• Theorem 2.8 does not give the explicit value of λ̂N . The strict inequality in
the lower bound provided for I(λ) in the statement (ii) of theorem 2.8 and the
inequality

⎛
⎝1 + 2

√
λ1(HN ) − λ̂N

2

⎞
⎠

2

�
(

1 + 2
√
λ1(HN ) − (N − 2)

2

)2

=
(N − 2)2

4

suggest the conjecture that λ̂N > N − 2 but we do not have a proof of this fact;

• By theorem 2.8 it is readily deduced that the operator

−ΔHN − λ− I(λ)
r2

,

is critical for λ̂N < λ < λ1(HN ) while it is subcritical for 0 � λ < λ̂N and
for λ = λ1(HN ) (subcriticality for λ = λ1(HN ) comes from [9, theorem 2.1],
namely from the existence of the weight (1.7)). We do not have a proof of the
subcriticality/criticality of the operator when λ = λ̂N .
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2.1. A second Hardy-type inequality on the hyperbolic space and a
further upper bound on λ̂N

Now we study a different Hardy-type inequality on the hyperbolic space which
resembles the classical Hardy one near the pole x0. It is quite natural to consider a
Hardy weight related to the defining function of HN as a model manifold, namely
to the quantity sinh r, that behaves like r near pole and decays exponentially near
infinity. We shall produce an optimal Hardy-type inequality, in particular, we have
the following result.

Theorem 2.10. Let N � 3. For all u ∈ C∞
c (HN \ {x0}) there holds∫

HN

|∇HNu|2 dvHN �
(
N − 2

2

)2 ∫
HN

u2

sinh2 r
dvHN

+
1
4

∫
HN

u2

sinh2 r (log (tanh(r/2)))2
dvHN

+
N(N − 2)

4

∫
HN

u2 dvHN . (2.10)

Besides, the operator

−ΔHN −
(
N − 2

2

)2 1
sinh2 r

− 1
4 sinh2 r (log (tanh(r/2)))2

− N(N − 2)
4

(2.11)

is critical in HN \ {x0} in the sense described in theorem 2.1. Moreover, the constant
(N(N − 2))/4 is sharp in the sense that no inequality of the form∫

HN

|∇HNu|2 dvHN �
(
N − 2

2

)2 ∫
HN

u2

sinh2 r
dvHN + c

∫
HN

u2 dvHN

holds for all u ∈ C∞
c (HN \ {x0}) when c > (N(N − 2))/4.

As an immediate consequence, we get the following result.

Corollary 2.11. Let N � 3 and let λ̂N be as defined in (2.9). Then:

λ̂N � N(N − 2)
4

.

Remark 2.12. One sees that (N(N − 2))/4 < N − 2 + ((N − 2)(N + 3))/6 if and
only if N < 6, whereas of course (N(N − 2))/4 < λ1(HN ) for all N . Hence, the
above corollary provides a better upper bound for λ̂N than in remark 2.9 for
dimension N = 4, N = 5.

3. Heisenberg-Pauli-Weyl uncertainty principle for the shifted
Laplacian in the hyperbolic space

In this section, we state some quantitative versions of Heisenberg-Pauli-Weyl uncer-
tainty principle (HPW) that can be derived from theorem 2.1. Firstly we recall that
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HPW principle in the hyperbolic setting reads

(∫
HN

|∇HNu|2 dvHN

)(∫
HN

r2u2 dvHN

)
� N2

4

(∫
HN

u2 dvHN

)2

(3.1)

for all u ∈ C∞
c (HN \ {x0}). The constant (N2)/4 is sharp and the equality is not

attained for u �= 0. We refer to [31] for a description of a complete scenario of HPW
principle on complete Riemannian manifolds.

For what remarked in the Introduction, one may wonder what happens if we
replace the first term in (3.1) with the quadratic form associated with the family of
nonnegative operators Pλ = −ΔHN − λ with λ � λ1(HN ). Clearly, the related best
constant must be nonincreasing with respect to λ. In corollary 3.1 below we provide
a lower bound for the constant which reflects this monotonicity property. Indeed, by
combining theorem 2.1 with Cauchy-Schwarz inequality, one immediately obtains
the following quantitative version of HPW principle in HN :

Corollary 3.1. Let N � 2. For all u ∈ C∞
c (HN \ {x0}),

• if λ � N − 2 there holds

(∫
HN

(|∇HNu|2 − λu2
)
dvHN

) (∫
HN

r2u2 dvHN

)

�
(
N − 2

2

)2(∫
HN

u2 dvHN

)2

;

• if N − 2 < λ � λ1(HN ) there holds

(∫
HN

(|∇HNu|2 − λu2
)
dvHN

) (∫
HN

r2u2 dvHN

)

� (γN (λ) + 1)2

4

(∫
HN

u2 dvHN

)2

where γN (λ) is as defined in theorem 2.1.

Notice that when λ = λ1(HN ) and N � 3, corollary 3.1 was already known from
[10]. However, since the map λ ∈ [N − 2, λ1(HN )] �→ ((γN (λ) + 1)2)/4 decreases
from ((N − 2)/2)2 to 1/4, the validity of the HPW principle for λ = λ1(HN ) does
not yield the HPW principle for λ < λ1(HN ).

When N � 3 and λ > N − 2, by repeating the same argument of corollary 3.1,
but with a finer exploitation of theorem 2.1, we derive the following improved HPW
principle:
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Corollary 3.2. Let N � 3 and N − 2 < λ � λ1(HN ). For all u ∈ C∞
c (HN \

{x0}), there holds
(∫

HN

(
|∇HNu|2 − λu2

)
dvHN

) (∫
HN

r2u2 dvHN

)

� (γN (λ) + 1)2

4

(∫
HN

u2 dvHN

)2

+

(∫
HN

r2u2 dvHN

)
×

×
(∫

HN

(
γN (λ)(γN (λ) + 1)

2
g(r) +

(N − 1 + γN (λ))(N − 3 − γN (λ)

4 sinh2 r

)
u2dvHN

)
,

where g(r) > 0 and 0 � γN (λ) < N − 3 are as defined in theorem 2.1.

The proof of corollary 3.2 is similar to that of corollary 3.3 below, hence we omit
it.

Coming back to corollary 3.1, for λ = 0 it yields a weaker inequality than (3.1).
Nevertheless, in the spirit of corollary 3.2, a finer exploitation of theorem 2.1 yields
a more powerful quantitative HPW principle in HN :

Corollary 3.3. Let N � 2. For all u ∈ C∞
c (HN \ {x0}) there holds

(∫
HN

|∇HNu|2 dvHN

)(∫
HN

α(r) r2u2 dvHN

)
� N2

4

(∫
HN

u2 dvHN

)2

, (3.2)

with

α(r) =
1

1 + [(2(N − 1))/N2] r2
(
Ng(r) − (2/(sinh2 r))

) > 0

and g(r) > 0 as defined in theorem 2.1. Moreover, there exists R = R(N) > 0 such
that

α(r) � 1 ∀ 0 � r � R and α(r) < 1 ∀ r > R. (3.3)

It is worth noting that, even if we do not know whether the inequality in corollary
3.3 is sharp, the behaviour of the function α(r) outlined in (3.3) indicates that
inequality (3.2) does not follow from (3.1). Besides, inequality (3.2) becomes more
powerful than inequality (3.1) for functions having support outside the ball BR(0).

Proof of corollary 3.3. It suffices to notice that, by Cauchy-Schwarz inequality and
theorem 2.1 for λ = 0:∫

HN

u2 dvHN =
∫

HN

|u|√
V0(r)

|u|
√
V0(r) dvHN

�
(∫

HN

u2

V0(r)
dvHN

)1/2(∫
HN

|u|2V0(r) dvHN

)1/2

�
(∫

HN

u2

V0(r)
dvHN

)1/2(∫
HN

|∇HNu|2 dvHN

)1/2

,
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where

V0(r) =
N2

4

(
1
r2

− 1
sinh2 r

)
+

(N − 2)2

4
1

sinh2 r
+
N(N − 1)

2
g(r).

Inserting the value of V0 in the formula above and defining
α(r) = (N2)/(4V 2

0 (r)r2) we obtain (3.2). Also by rewriting V0 we obtain α(r)
as defined in the statement and hence, using the fact that α(r) < 1 ⇔ Ng(r) >
2/(sinh2 r), we obtain R = R(N) > 0 such that (3.3) holds true. �

4. Improved Hardy inequalities on general Cartan-Hadamard manifolds

In the present section, we state a generalization of the improved Hardy inequality of
theorems 2.1 and 2.10 to more general manifolds under suitable curvature assump-
tions. Denote by KR the sectional curvature in the radial direction of a Riemannian
manifold with a pole x0. We assume throughout the bound

KR(x) � −G(r(x)) � 0 ∀x ∈M, (4.1)

where G is a given function and r(x) = d(x, x0). In particular, we are assuming
that M is Cartan-Hadamard. We also define ψ to be the solution to the Cauchy
problem {

ψ′′(r) −G(r)ψ(r) = 0 r > 0,
ψ(0) = 0, ψ′(0) = 1.

(4.2)

Clearly, by the sign assumption on G, ψ is positive convex function, and in par-
ticular, by the initial condition we have ψ(r) � r for all r � 0. One can adapt the
present results to manifolds with pole being positively curved somewhere, under
suitable smallness conditions.

We shall use the well-known strategy of constructing barriers using Hessian com-
parison and equations posed on the Riemannian model Mψ associated with ψ
constructed above. Namely, we consider the N -dimensional Riemannian manifold
Mψ admitting a pole x0, whose metric is given in spherical coordinates by

ds2 = dr2 + ψ2(r) dω2, (4.3)

where dω2 is the standard metric on the sphere SN−1. The coordinate r represents
the Riemannian distance from the pole x0, see for example, [26,36] for further
details. For Riemannian models the curvature condition in (4.1) holds with an
equality. Clearly, for ψ(r) = r one has Mψ = RN , while for ψ(r) = sinh r one has
Mψ = HN .

Now we are in a position to state the counterpart of theorem 2.1 under more
general curvature conditions.

Theorem 4.1. Let N � 2 and let M be an N -dimensional Cartan-Hadamard man-
ifold such that the curvature condition (4.1) holds. Let ψ be defined in (4.2) and let
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λ � ((N − 1)/2)2. Then, for all u ∈ C∞
c (M \ {x0}), there holds

∫
M

|∇Mu|2 dvg � (γN (λ) + 1)2

4

∫
M

u2

r2
dvg +

∫
M

V λψ u
2 dvg, (4.4)

where γN (λ) :=
√

(N − 1)2 − 4λ, and

V λψ :=
[
N − 1 + γN

2
ψ′′

ψ
+
γN (γN + 1)

2

(
r(ψ′/ψ) − 1

r2

)

+
(N − 1 + γN )(N − 3 − γN )

4

(
ψ′

ψ

)2
]
.

Furthermore, the inequality (4.4) is sharp in the sense that the operator

−ΔM − (γN (λ) + 1)2

4
1
r2

− V λψ

is critical in M \ {x0} when M coincides with the Riemannian model Mψ.

A special case of the above construction is the situation in which the curvature
bound is simply KR(x) � −c for some c > 0. In this case, it is readily checked that
the solution of (4.2) is given by ψ(r) =

√
c sinh(

√
cr). Writing (4.4) with ψ(r) =√

c sinh(
√
cr), from theorem 4.1 we derive the following analogue of the improved

inequality (2.1) on Cartan-Hadamard manifolds having sectional curvature bounded
above by a negative constant:

Corollary 4.2. Let N � 3 and let M be a Cartan-Hadamard manifold with pole
x0 such that KR(x) � −c for some c > 0. Let λ � ((N − 1)/2)2. Then the following
improved Hardy inequality holds∫

M

|∇Mu|2 dvg − λ c

∫
M

u2 dvg

� (γN (λ) + 1)2

4

∫
M

u2

r2
dvg +

γN (λ)(γN (λ) + 1)
2

∫
M

gc(r)u2 dvg (4.5)

+ c
(N − 1 + γN (λ))(N − 3 − γN (λ)

4

∫
M

u2

sinh2(
√
cr)

dvg

for all u ∈ C∞
c (M \ {x0}), where gc(r) := (r

√
c coth(

√
cr) − 1)/(r2).

Although the following is a particular case of corollary 4.2 (for λ = (N − 2)), we
state explicitly this case for its special significance in improving the sharp Hardy
inequality.

Corollary 4.3. Let N � 3 and let M be a Cartan-Hadamard manifold with pole x0

such that KR(x) � −c for some c > 0. Then the following improved Hardy inequality
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holds∫
M

|∇Mu|2 dvg �
(
N − 2

2

)2 ∫
M

u2

r2
dvg

+ c(N − 2)
∫
M

u2 dvg +
(N − 2)(N − 3)

2

∫
M

gc(r)u2 dvg

for all u ∈ C∞
c (M), where gc(r) := (r

√
c coth(

√
cr) − 1)/(r2).

Clearly, g1(r) = g(r) with g(r) as defined in theorem 2.1.

Remark 4.4. One can consider in an almost explicit way other classes of curvature
bounds in (4.1). For example, if the manifold satisfies the curvature bound (4.1)
with G(r) ∼ Cr2a as r → +∞ for some a > −1, one can take ψ(r) ∼ Aebr

a+1
, see

for example, [28, § 2.3]. In this case, the potential V λψ in theorem 4.1 satisfies, if
a > 0,

V λψ (r) ∼ λ(a+ 1)2b2r2a as r → +∞.

The case a = 0 has been dealt with in the previous corollaries. If a ∈ (−1, 0) the
leading term is a pure Hardy one. The case a < −1 which is qualitatively Euclidean
and in fact yields a pure Hardy potential, and the case a = −1 which gives rise to
functions ψ of a different kind (see again [28]), are left to the reader.

Moreover, if the curvature bound is written in terms of the quantity −C(1 + r2)a

instead, for all r and for an appropriate value of C, ψ can be written explicitly, see
the calculations in [11, appendix A].

Our final result in this section is an analogue of theorem 2.10 on general Cartan-
Hadamard manifolds.

Theorem 4.5. Let N � 2 and let M be an N -dimensional Cartan-Hadamard man-
ifold such that the curvature condition (4.1) holds. Let ψ be defined in (4.2) and
assume that 1/ψ is integrable at infinity. Denote

1
Θ(r)

:=
∫ +∞

r

1
ψ(s)

ds, (4.6)

and consider the nonnegative potential Uψ

Uψ(r) :=
(N − 2)2

4
[ψ′(r)]2 − 1
ψ2(r)

+
N − 2

2
ψ′′(r)
ψ(r)

. (4.7)

Then for all u ∈ C∞
c (M \ {x0}) there holds

∫
M

|∇Mu|2 dvg �
(
N − 2

2

)2 ∫
M

u2

ψ2(r)
dvg +

∫
M

Uψ(r)u2 dvg

+
1
4

∫
M

Θ2(r)
ψ2(r)

u2 dvg.

(4.8)
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Moreover, (4.8) is sharp in the sense that the operator

−ΔM −
(
N − 2

2

)2 1
ψ2(r)

− Uψ(r) − Θ2(r)
4ψ2(r)

(4.9)

is critical in M \ {x0} when M coincides with the Riemannian model Mψ.

Remark 4.6.

• The quantities appearing in the potential Uψ defined in (4.7) have a clear
geometrical meaning: in fact,

Krad
π,r = −ψ

′′

ψ
and Htan

π,r = − (ψ′)2 − 1
ψ2

,

where Krad
π,r (resp. Htan

π,r ) denotes sectional curvature relative to planes con-
taining (resp. orthogonal to) the radial direction in the Riemannian model
associated with ψ. Clearly, Uψ is nonnegative given the assumed sign condition
on the curvature.

• Theorem 4.5 shows that the results of theorem 2.10 also hold when the radial
sectional curvature satisfiesKR � −1 anywhere. Of course, a variant of theorem
2.10 can be stated by applying theorem 4.5 when KR � −c < 0 proceeding as
in the proof of corollary 4.2.

• The results of theorem 4.5 do not hold on general Cartan-Hadamard manifolds,
because of the request that 1/ψ is integrable at infinity. In fact, this request
amounts qualitatively to requiring that curvature is negative enough at infinity.
In particular, the required condition does not hold on RN . In fact, it can be
shown by constructing explicitly an appropriate ψ (see [28]), that for example,
it is enough that KR satisfies an upper curvature bound outside a ball in terms
of the quantity −c/r2, where c > 0.

5. Weighted Hardy and Rellich inequality on the hyperbolic space

This section is devoted to state some further applications of our Hardy inequality,
namely the derivation of suitable improved weighted Hardy and Rellich inequalities.
The statements should be compared with those contained in [30], here the novelty
of the improvement lies in adding a remainder term involving the function g(r) as
defined in theorem 2.1. Starting with the weighted Hardy inequality we have:

Theorem 5.1. Assume that N − 2 − 2α > 0. For all u ∈ C∞
c (HN \ {x0}) there

holds∫
HN

|∇HNu|2
r2α

dvHN � (N − 2 − 2α)2

4

∫
HN

u2

r2α+2
dvHN + (N − 2)

∫
HN

u2

r2α
dvHN

+
(

(N − 2)(N − 3)
2

− (N − 1)α
)∫

HN

g(r)
r2α

u2 dvHN , (5.1)

where g(r) is as defined in (2.2). Moreover, the constant ((N − 2 − 2α)2)/4 is sharp
in the obvious sense.
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Remark 5.2. We note that the coefficient in front of the last term in (5.1) is
positive provided that α � ((N − 2)(N − 3))/(2(N − 1)). Nevertheless, for α >
((N − 2)(N − 3))/(2(N − 1)), by recalling that g(r) � 1/3 for every r > 0, we infer
that

(N − 2)
∫

HN

u2

r2α
dvHN +

(
(N − 2)(N − 3)

2
− (N − 1)α

)∫
HN

g(r)
r2α

u2 dvHN

�
(

(N − 2)(N + 3)
6

− (N − 1)α
3

)∫
HN

u2

r2α
dvHN >

2(N − 2)
3

∫
HN

u2

r2α
dvHN ,

for N − 2 − 2α > 0. Hence, inequality (5.1) still gives an improvement of the
weighted Hardy inequality. Also see ([40, theorem 4.2]).

Next, we state a weighted Rellich inequality

Theorem 5.3. Let 0 < α < (N − 2)/2. For all u ∈ C∞
c (HN \ {x0}) there holds:

∫
HN

|ΔHNu|2
r2α−2

dvHN � (N − 2 − 2α)2(N − 2 + 2α)2

16

∫
HN

u2

r2α+2
dvHN

+
(N − 2 − 2α)(N − 2 + 2α)(N − 2)

2

∫
HN

u2

r2α
dvHN

+
(N − 2 − 2α)(N − 2 + 2α)

2

(
(N − 2)(N − 3)

2
− (N − 1)α

)

×
∫

HN

g(r)
r2α

u2dvHN , (5.2)

where g(r) is defined in (2.2). Moreover, the constant ((N − 2 − 2α)2(N − 2 +
2α)2)/16 is sharp in the obvious sense.

Taking α = 1 in (5.2), one has the following improved Rellich inequality:

Corollary 5.4. Let N > 4. For all u ∈ C∞
c (HN \ {x0}) there holds:

∫
HN

(ΔHNu)
2 dvHN � N2(N − 4)2

16

∫
HN

u2

r4
dvHN +

N(N − 2)(N − 4)
2

∫
HN

u2

r2
dvHN

+
N(N − 4)(N2 − 7N + 8)

4

∫
HN

g(r)
u2

r2
dvHN , (5.3)

where g(r) is defined in (2.2). Moreover, the constant (N2(N − 4)2)/16 is sharp in
the obvious sense.

6. Proof of theorems 2.1 and 2.10

We begin the proof by establishing the following lemma.
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Lemma 6.1. Let N � 2 and let Ψ(r) := rα(sinh r)β , where α and β are real
parameters. Then Ψ satisfies the following equation

−ΔHNΨ = −α(α− 1)
Ψ
r2

− (2αβ + (N − 1)α)
coth r
r

Ψ − β(β +N − 2)
Ψ

sinh2 r

− (β2 + (N − 1)β)Ψ in HN \ {x0}. (6.1)

Moreover, if we assume that α = −(β + ((N − 2)/2)), then (6.1) yields

−ΔHNΨ = A(β)
Ψ
r2

+B(β)
coth r
r

Ψ + C(β)
Ψ

sinh2 r
+D(β)Ψ in HN \ {x0},

(6.2)

where A(β) = −(β + [(N − 2)/2])(β + (N/2)), B(β) = (β + [(N − 2)/2])(2β +
N − 1), C(β) = −β(β +N − 2) and D(β) = −β(β +N − 1). In particular, since

A(β) +B(β) + C(β) =
(
N − 2

2

)2

,

(6.2) yields

−ΔHNΨ ∼
(
N − 2

2

)2 Ψ
r2

+D(β)Ψ as r → 0+.

Proof. The expression of hyperbolic Laplacian in radial coordinates, enables us to
write

−ΔHNΨ = −Ψ′′(r) − (N − 1) coth rΨ′(r) in HN \ {x0}.
Since, for r > 0,

Ψ′(r) = α
Ψ(r)
r

+ β coth rΨ(r),

and

Ψ′′(r) = α(α− 1)
Ψ(r)
r2

+ 2αβ
coth r
r

Ψ(r) + β(β − 1)
Ψ(r)

sinh2 r
+ β2Ψ(r),

we obtain

−ΔHNΨ = −
[
α(α− 1)

Ψ(r)
r2

+ 2αβ
coth r
r

Ψ(r) + β(β − 1)
Ψ(r)

sinh2 r

+ (N − 1)α
coth r
r

Ψ(r) + (N − 1)βΨ(r) + (N − 1)β
Ψ(r)

sinh2 r
+ β2Ψ(r)

]

in HN \ {x0}. Now, rearranging the above terms, the proof of (6.1) and (6.2) follows
directly by substituting the value of α in (6.1). �
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An application of lemma 6.1 yields

Lemma 6.2. Let N � 2. For all λ � λ1(HN ) = ((N − 1)/2)2 and r > 0, set

Ψλ(r) := r−((N−2)/2)

(
sinh r
r

)−[(N−1+γN (λ))/2]

,

where γN (λ) :=
√

(N − 1)2 − 4λ. Then Ψλ satisfies the following equation

−ΔHNΨλ − λΨλ = Vλ(r)Ψλ in HN \ {0}, (6.3)

with Vλ(r) as given in (2.3).

Proof. Let g(r) be as defined in theorem 2.1. Then (6.2) can be rewritten as follows

−ΔHNΨ =
(
β +

N − 2
2

)2 Ψ
r2

+ 2
(
β +

N − 2
2

)(
β +

N − 1
2

)
g(r)Ψ

− β(N − 2 + β)
Ψ

sinh2 r
− β(N − 1 + β)Ψ. (6.4)

Now the proof follows by substituting β = −[(N − 1 + γN (λ))/2] in (6.4) and
denoting by Ψλ the corresponding function. �

We now turn to the criticality issue. We exploit [38, theorem 1.7] regarding a
Liouville comparison principle for two nonnegative Schrödinger operators. For the
reader’s convenience, we quote below the theorem in the particular case where the
principal part of the two operators is the Laplacian.

Theorem 6.3. [38, theorem 1.7] Let N � 1 and Ω be a domain in RN or any
noncompact Riemannian manifold. Consider two Schrödinger operators defined on
Ω of the form

Qj := −Δ +Wj , j = 0, 1,

such that Wj ∈ Lploc(Ω; R) for some p > N/2.
Assume that the following assumptions hold true:

1. The operator Q1 is critical in Ω. Denote by Φ be its ground state.

2. Q0 is nonnegative in Ω, and there exists a real function Ψ ∈ H1
loc(Ω) such

that Ψ+ �= 0, and Q0Ψ � 0 in Ω, where u+(x) := max{0, u(x)}.
3. The following inequality holds:

(Ψ+)2(x) � CΦ2(x) a.e. in Ω,

where C > 0 is a positive constant.
Then the operator Q0 is critical in Ω and Ψ is its ground state.

Recently the above result is extended to more general settings. We refer to [3] for
further details.
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We have now all the tools necessary for the proof of our main theorem.

Proof of theorem 2.1. The proof of the inequality rests on supersolution technique.
The construction of a supersolution (in fact a solution in the case at hand) for
the desired equation directly follows from lemma 6.2 which states that, for all λ �
λ1(HN ), the function Ψλ, as defined there is a positive solution of (6.3). Moreover,
Ψλ ∈ H1

loc(H
N \ {x0}), and hence the required inequality (2.1) follows using the

Allegretto-Piepenbrink theorem [17, theorem 2.12].
Next, by invoking theorem 6.3, we show that Ψλ is the ground state of

−ΔHN − λ− Vλ(r) with Vλ(r) as given in (2.3). For this, following the notation
of theorem 6.3, we consider the operators defined in HN \ {x0}:

Qj := −ΔHN +Wj , j = 0, 1,

where

W0 = −λ− Vλ and W1 = −λ1(HN ) − Vλ1(HN ).

Clearly, Wj ∈ Lploc(H
N \ {x0}; R) for any p > 1. By [9, theorem 2.1] we know

that when N � 3 the operator Q1 is critical in HN \ {x0} and the cor-
responding ground state is Ψλ1(r) = Φ(r) := r−((N−2)/2)((sinh r)/r)−((N−1)/2).
The same statement holds for N = 2 but we postpone the proof to the
end of the section. As concerns the operator Q0, by lemma 6.2, we know
that Ψλ(r) = r−((N−2)/2)((sinh r)/r)−((N−1+γN (λ))/2) ∈ H1

loc(H
N \ {x0}) satisfies

Q0Ψλ = 0. Moreover, for all N � 3, we have(
Ψλ(r)
Φ(r)

)2

=
( r

sinh r

)γN (λ)

� 1 for all r > 0, (6.5)

since γN (λ) � 0 for 0 � λ � λ1(HN ). Therefore, all the assumptions of theorem 6.3
are satisfied and we conclude that Q0, namely the operator −ΔHN − λ− Vλ is
critical in HN \ {x0} for all 0 � λ � λ1(HN ) and Ψλ is its ground state.

To complete the proof we still have to show that the operator Q1 is also critical
in dimension two. To this aim, we show that the equation Q1u = 0 admits a ground
state in H2 \ {x0}, namely a positive solution of minimal growth in a neighbourhood
of infinity in H2 \ {x0}, see [39, § 1]. When N = 2 the function Φ defined above
reads Φ(r) = (r/(sinh r))1/2. Let f be a smooth radial function in H2 \ {x0}, also
exploiting lemma 6.1, one can verify that

−ΔHN (Φ(r)f(r)) =
1
4

(
1 +

1
r2

− 1
sinh r2

)
Φ(r)f(r)

−
(
f ′′(r) +

N − 1
r

f ′(r)
)

Φ(r).

From the above computations, it follows that two linearly independent solutions of
the equation Q1u = 0 are given explicitly by:

Φ(r) =
( r

sinh r

)1/2

and Φ(r) =
( r

sinh r

)1/2

log r,
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hence Φ is a positive global solution while Φ changes sign. Since Φ is a positive
solution of Q1u = 0 near infinity of H2 \ {x0} and

lim
r→0

Φ(r)
|Φ(r)| = lim

r→+∞
Φ(r)
Φ(r)

= 0,

by [19, proposition 6.1] we conclude that Φ is a positive solution of minimal growth
in a neighbourhood of infinity in H2 \ {x0} and hence a ground state of the equation
Q1u = 0. Namely, Q1 is critical in H2 \ {x0}. By (6.5) and theorem 4.3, it follows
that Ψλ is a ground state of Q0. This completes the proof. �

Proof of theorem 2.10. The proof is divided into two steps. It rests on the explicit
construction of solutions and then using the result of [19] we derive an optimal
Hardy weight for the related operator.

Step 1: It is an immediate consequence of lemma 6.1 that u0(r) :=
(sinh r)(2−N)/2 satisfies the following equation:

Hu0 := −ΔHNu0 − (N − 2)2

4
1

sinh2 r
u0 − N(N − 2)

4
u0 = 0. (6.6)

Now we shall construct a second solution. Let us define v(r) = (sinh r)(N−2)/2w(r),
where w solves (6.6). Then, v satisfies the following equation

v′′(r) + coth rv′(r) = 0.

This immediately implies either v(r) = log |tanh(r/2)| or constant. Therefore two
independent positive solutions of the equation Hu = 0 are u0(r) = (sinh r)(2−N)/2

and u1(r) = −(sinh r)(2−N)/2 log |tanh(r/2)| .

Step 2: Now we evoke [19] for the construction of an optimal Hardy weight
involving two independent positive solutions. Using the above two positive solutions
of the equation Hu = 0, we obtain the following optimal Hardy weight (in the sense
of [19])

W :=
1
4

∣∣∣∣∇ log
(
u1

u0

)∣∣∣∣
2

=
1
4

1

sinh2 r
(
log
(
tanh r

2

))2 ,
for the operator H. In particular, H −W is critical.

Sharpness: To prove the sharpness of the constant (N(N − 2))/4, let us fix
some notations. Denote the cone of all positive solutions of the equation P u = 0
in HN by CP (HN ), where P denotes any second order elliptic operator. Define for
a nonnegative potential V ,

λ0(P, V,HN ) := sup{λ ∈ R : CP−λV (HN ) �= ∅},
and

λ∞(P, V,HN ) := sup{λ ∈ R : ∃K � HN s.t. CP−λV (HN \K) �= ∅}.
Clearly λ0(P, V, HN ) � λ∞(P, V, HN ).
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From [19], we also know that the above optimal Hardy weight W satisfies

λ0(H −W,W,HN \ {x0}) = λ∞(H −W,W,HN \ {x0}) = 0.

Furthermore, λ = 1 is the best constant in a neighbourhood of infinity of HN for
the inequality H − λW � 0.

Since, W (r) → 0 as r → ∞, we conclude that for any ε > 0 there exists a compact
set Kε containing x0 such that

0 � λ0(H, 1,HN \ {x0}) � λ0(H, 1,HN \Kε) � λ0(H −W,W,HN \Kε) + ε = ε.

Therefore, λ0(H, 1, HN \ {x0}) = 0. Hence, (N(N − 2))/4 is the best constant
in the above sense, and the proposition is proved.

7. Optimality issues: proof of theorems 2.7 and 2.8

7.0.1. Proof of theorem 2.7 Let N = 3. It is a well-known fact that the equality
in the Hardy inequality (1.2) is never achieved in H1(HN ) for any N � 3, hence
the infimum for I(0) is never achieved. Therefore, it is enough to consider the case
0 < λ � λ1(H3). Furthermore, we have already seen that λ̂3 = λ1(H3) = 1, hence
I(λ) = 1/4 for every 0 � λ � 1, where I(λ) is defined by (1.9). For 0 < λ < 1 it is
easy to see that minimizers do not exist. Indeed, suppose for some 0 < λ0 < 1 there
exists a minimizer uλ0 ∈ H1(H3) for I(λ0), then any λ̄ with λ0 < λ̄ < 1 yields

1
4

=

∫
HN

|∇HNuλ0 |2 dvHN − λ0

∫
HN

u2
λ0

dvHN∫
HN

(u2
λ0
/r2) dvHN

>

∫
HN

|∇HNuλ0 |2 dvHN − λ̄
∫

HN
u2
λ0

dvHN∫
HN

(u2
λ0
/r2) dvHN

� 1
4
,

a contradiction. Alternatively, we note that the subcriticality of the operator
−ΔHN − λ− I(λ) (1/(r2)) for λ0 < λ̄ < 1 readily implies nonexistence of minimiz-
ers. To complete the proof it remains to show that minimizers do not exist also
for λ = 1. From the proof of theorem 2.1 we see that Ψλ1(H3)(r) = (

√
r)/(sinh r)

satisfies

−ΔH3Ψλ1(H3) − Ψλ1(H3) =
1
4

Ψλ1(H3)

r2
in H3 \ {x0},

and Ψλ1(H3) is the unique ground state to the corresponding equation. Since
Ψλ1(H3) /∈ H1(H3), I(λ) does not admit a minimizer. This completes the proof. �

7.1. Proof of theorem 2.8

Let N > 3. We start by noting that from corollary 2.3 we have λ̂N � N − 2.
Furthermore, I(N − 2) is not achieved. Indeed, the operator

−ΔHN − (N − 2)2

4
1
r2

+ (N − 2)

is subcritical in HN \ {x0}, since the proof of theorem 2.1 implies that the function
ΨN−2(r) = r(N−2)/2(sinh r)2−N is a positive supersolution of the Euler-Lagrange
equation associated with I(N − 2) and it is not the ground state.
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As concerns the upper bound for λ̂N , it also follows as a corollary of theorem 2.1.
Indeed, since λ̂N � N − 2, from the definition of λ̂N we have

∫
HN

|∇HNu|2 dvHN �
(
N − 2

2

)2 ∫
HN

u2

r2
dvHN + λ̂N

∫
HN

u2 dvHN

=
(
N − 2

2

)2 ∫
HN

u2

r2
dvHN + (N − 2)

∫
HN

u2 dvHN

+ (λ̂N − (N − 2))
∫

HN

u2 dvHN .

Therefore, combining the fact that g(r) � 1/3 with the criticality issue of
theorem 2.1, we readily infer that

λ̂N − (N − 2) <
(N − 2)(N − 3)

6
.

Proof of (i).

For 0 < λ < λ̂N , the operator −ΔHN − (((N − 2)2)/4)(1/(r2)) − λ is subcritical in
HN \ {x0}, and hence, there is no minimizer associated with the related functional
inequality.

Assume now λ = λ̂N . This is the most delicate case. We adapt to our setting
the Euclidean approach of constructing suitable ‘subsolution’ to show nonachieve-
ment of the Hardy constant, see for instance, [1]. Suppose, by contradiction, that
there exists a minimizer û ∈ H1(HN ) of I(λ̂N ) = ((N − 2)2)/4, then it satisfies the
equation

−ΔHN û− λ̂N û− (N − 2)2

4
û

r2
= 0 a.e. in HN \ {0}.

Without loss of generality, by standard symmetrization on the hyperbolic space, see
[4], we may assume û is radial and nonnegative. Furthermore, being superharmonic,
û turns out to be positive by the Strong Maximum Principle [25].

Let δ < −1/2 and ϕδ(x) = |x|−((N−2)/2) log(1/(|x|))δ ∈ H1(BR) for 0 < R <
1/e. By computing in hyperbolic radial coordinates, for r ∈ (0, R) one has

−ΔHNϕδ − λ̂N ϕδ − (N − 2)2

4
ϕδ
r2

=
ϕδ

r2(log r)2
[
δ(1 − δ) − λ̂Nr2(log r)2 − δ(N − 1)r2 log r

+ (N − 1)
(

coth r − 1
r

)(
N − 2

2
r(log r)2 + δr log r

)]
.

Set now 0 < R1 < 1/e (not depending on δ!) such that for all r < R1 we have

(N − 1)
(

coth
1
e
− e
)
N − 2

2
r (log(r))2 <

1
4
.
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Since | log r| � ((N − 2)/2)(log r)2 for r < 1/e and N � 4, for r < R1 we infer

δ(1 − δ) − λ̂Nr2(log r)2 − δ(N − 1)r2 log r

+ (N − 1)
(

coth r − 1
r

)(
N − 2

2
r(log r)2 + δr log r

)

� δ(1 − δ) + (N − 1)
(

coth
1
e
− e
)
N − 2

2
r(log r)2(1 − δ)

� δ

(
3
4
− δ

)
+

1
4

� −3
8
.

Hence,

−ΔHNϕδ − λ̂N ϕδ − (N − 2)2

4
ϕδ
r2

< 0 in BR1 \ {0}.
Set M(δ) = (û(R1))/(ϕδ(R1)) and ψδ(r) := û(r) −M(δ)ϕδ(r). Then, ψδ ∈
H1

0 (BR1) and satisfies

−ΔHNψδ − λ̂N ψδ − (N − 2)2

4
ψδ
r2

> 0 in BR1 \ {0}.

Set now ψ−
δ = min{ψδ, 0} and ψ+

δ = max{ψδ, 0}, we have that ψ−
δ , ψ

+
δ ∈ H1

0 (BR1).
By multiplying the above inequality by ψ−

δ , using the fact ψδ = ψ+
δ + ψ−

δ and
recalling the definition of λ̂N in (2.9), we get

0 �
∫
BR1

(
−ΔHNψδ − λ̂N ψδ − (N − 2)2

4
ψδ
r2

)
ψ−
δ dvHN

=
∫
BR1

|∇ψ−
δ |2 dvHN − λ̂N

∫
BR1

(ψ−
δ )2 dvHN − (N − 2)2

4

∫
BR1

(ψ−
δ )2

r2
dvHN � 0.

Hence, ψ−
δ = 0. In particular, ψδ > 0 and in turn û(r) > M(δ)ϕδ(r) for 0 < r < R1.

Finally, letting δ → δ̄ := −1/2 we readily get a contradiction since M(δ̄) > 0 (due
to the fact that û is positive and R1 does not depend on δ) and

+∞ >

∫
BR1

û2

r2
dvHN � M2

(
δ̄
) ∫

BR1

ϕ2
δ̄

r2
dvHN = +∞.

Proof of (ii).

Let λ < λ1(HN ). Exploiting the Poincaré inequality (1.5), in the sequel we will
endow the space H1(HN ) with the equivalent norm:

||u||λ :=
[∫

HN

(|∇HNu|2 − λu2
)
dvHN

]1/2
, u ∈ C∞

c (HN ). (7.1)

Since by inequality (2.8) we know that the embedding

H1(HN ) ↪→ L2(HN ,
1
r2

dvHN )

is continuous but not compact, the existence of a minimizer to I(λ) does not follow
straightforwardly. When λ̂N < λ < λ1(HN ), we overcome this difficulty by adapting
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to our setting the approach of [34]. To this aim, the crucial tool will be the following
concentration compactness lemma in the hyperbolic setting.

Lemma 7.1. For λ < λ1(HN ), let H1(HN ) be endowed with the norm (7.1).
Furthermore, let {un} be a bounded sequence in H1(HN ) such that: un ⇀ u ∈
H1(HN ),

(|∇HNun|2 − λu2
n

)
dvHN ⇀∗ μ and

u2
n

r2
dvHN ⇀∗ ν in the sense of measures.

(7.2)
Then, there holds

μ �
(|∇HNu|2 − λu2

)
dvHN + μ0δx0 , ν =

u2

r2
dvHN + ν0δx0 ,

where δx0 is the Dirac measure centred at x0, and 0 � ν0 � μ0 4/((N − 2)2).

Proof. The proof is divided into two steps.
Step 1: Since {un} is bounded in H1(HN ), (2.8) implies that {(un)/r} is bounded
in L2(HN ). Then,

un ⇀ u in H1(HN ), un → u in L2
loc(H

N ) and
un
r
⇀

u

r
in L2(HN ),

up to a subsequence. Denoting vn := un − u, it is then readily seen that

vn ⇀ 0 in H1(HN ), vn → 0 in L2
loc(H

N ) and
vn
r
⇀ 0 in L2(HN ).

On the other hand, for Φ ∈ C∞
c (HN ) we have∫

HN

Φ
(|∇HNun|2 − λu2

n

)
dvHN =

∫
HN

Φ
(|∇HNu|2 − λu2

)
dvHN

+
∫

HN

Φ
(|∇HN vn|2 − λv2

n

)
dvHN

+ 2
∫

HN

Φ (∇vn · ∇u+ vnu) dvHN ,

and ∫
HN

Φ
u2
n

r2
dvHN =

∫
HN

Φ
u2

r2
dvHN +

∫
HN

Φ
v2
n

r2
dvHN + 2

∫
HN

Φ
vn u

r2
dvHN .

Hence, taking the limit and recalling (7.2), for all Φ ∈ C∞
c (HN ) we conclude that∫

HN

Φdμ =
∫

HN

Φ
(|∇HNu|2 − λu2

)
dvHN +

∫
HN

Φdμ1,

and ∫
HN

Φdν =
∫

HN

Φ
u2

r2
dvHN +

∫
HN

Φdν1,

where
(|∇HN vn|2 − λv2

n

)
dvHN ⇀∗ μ1 and (v2

n/r
2) dvHN ⇀∗ ν1 in the sense of

measures.
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Step 2: For what showed in Step 1, we may take u = 0 in the following. Namely,
we assume that {un} is such that

un ⇀ 0 in H1(HN ), un → 0 in L2
loc(H

N ) and
un
r
⇀ 0 in L2(HN ),

and

(|∇HNun|2 − λu2
n

)
dvHN ⇀∗ μ, and

u2
n

r2
dvHN ⇀∗ ν in the sense of measures.

For Φ ∈ C∞
c (HN ), we apply the Hardy inequality (1.2) to the functions {Φun} and

we get

(N − 2)2

4

∫
HN

(Φun)2

r2
dvHN

�
∫

HN

|∇HN (Φun)|2 dvHN

=
∫

HN

Φ2(|∇HNun|2 − λu2
n) dvHN +

∫
HN

(∇HNΦ)2u2
n dvHN

+ 2
∫

HN

(Φ∇HNΦ)(un∇HNun) dvHN + λ

∫
HN

Φ2 u2
n dvHN .

Passing to the limit in the above inequality we conclude that∫
HN

Φ2dν � 4
(N − 2)2

∫
HN

Φ2dμ for all Φ ∈ C∞
c (HN ). (7.3)

Then, a proper modification of the standard concentration compactness lemma
[32,33] yields that there exist a sequence of points xi ∈ HN and two sequences of
positive constants ci and c̄i such that ν =

∑+∞
i=1 ciδxi and μ �

∑+∞
i=1 c̄iδxi , where

δxi is the Dirac measure centred at xi. On the other hand, choosing Φ ∈ C∞
c (HN )

with supp(Φ) = K, a compact set, such that x0 �∈ K, we have that∫
HN

Φ2u2
n

r2
dvHN � C

∫
K

u2
n dvHN → 0,

since un → 0 in L2
loc(H

N ). Therefore the measure ν is only concentrated at x0 and
we conclude that ν = ν0δx0 and μ � μ0δx0 , for some positive constants ν0 and μ0.
Furthermore, inequality (7.3), together with standard measure theory arguments,
gives

ν(B(x0, ε)) � 4
(N − 2)2

μ(B(x0, ε)),

where ε > 0 and B(x0, ε) denotes the ball with centre x0 and radius ε. Finally, the
arbitrariness of ε implies

ν0 � 4
(N − 2)2

μ0.
�
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The next lemma is devoted to study the tightness of the measure defined
above.

Lemma 7.2. In the same assumptions of lemma 7.1, as n→ ∞ there holds

∫
HN

u2
n

r2
dvHN =

∫
HN

u2

r2
dvHN + ν0 + o(1).

Proof. By the definition of convergence of measure we have

∫
HN

u2
n

r2
f dvHN =

∫
HN

u2

r2
f dvHN + f(x0)ν0 + o(1) ∀f ∈ C∞

c (HN ). (7.4)

Let ε > 0, since 1/(r2) → 0 as r → ∞, there exists Rε >> 1 such that 1/(r2) < ε
∀ r > Rε. Thus

∫
HN

(
u2
n

r2
− u2

r2

)
dvHN − ν0 =

∫
B(x0,Rε)

(
u2
n

r2
− u2

r2

)
dvHN − ν0

+
∫

HN\B(x0,Rε)

(
u2
n

r2
− u2

r2

)
dvHN .

Using the fact that {un} is a bounded sequence in H1(HN ) together with Poincaré
inequality, the last integral can be estimated as follows:

∫
HN\B(x0,Rε)

(
u2
n

r2
− u2

r2

)
dvHN � ε

(∫
HN

u2
n dvHN +

∫
HN

u2 dvHN

)
� Cε.

Let us choose Ψ ∈ C∞
c (HN ) such that Ψ = 1 in B(x0, Rε) and supp Ψ :=

B(x0, 2Rε), then we have

∣∣∣∣∣
∫
B(x0,Rε)

(
u2
n

r2
− u2

r2

)
dvHN − ν0

∣∣∣∣∣ �
∣∣∣∣∣
∫
B(x0,2Rε)

Ψ
(
u2
n

r2
− u2

r2

)
dvHN − ν0

∣∣∣∣∣
+

∣∣∣∣∣
∫
B(x0,2Rε)\B(x0,Rε)

Ψ
(
u2
n

r2
− u2

r2

)
dvHN

∣∣∣∣∣ .
Therefore, using (7.4) for the first term and the fact that un → u in L2

loc(H
N ) for

the last term, we conclude that

∫
B(x0,Rε)

(
u2
n

r2
− u2

r2

)
dvHN − ν0 −→ 0, n→ ∞

and the proof follows. �
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We are now ready to prove the existence issue of theorem 2.8-(ii). For λ̂N < λ <
λ1(HN ), let {un} be a minimizing sequence for I(λ) such that∫

HN

u2
n

r2
dvHN = 1 and

∫
HN

(|∇HNun|2 − λu2
n) dvHN = I(λ) + o(1) as n→ +∞.

Then, up to a subsequence, the assumptions of lemma 7.1 are satisfied and using
lemma 7.2 one can write

I(λ)
(∫

HN

u2

r2
dvHN + ν0

)
�
∫

HN

(|∇HNu|2 − λu2) dvHN + μ0 + o(1) as n→ +∞,

and recalling the definition of I(λ) we get I(λ)ν0 � μ0 � (((N − 2)2)/4)ν0. Since
λ > λ̂N , we know that I(λ) < ((N − 2)2)/4. Therefore, we get a contradiction unless
μ0 = ν0 = 0. Hence, we get∫

HN

u2

r2
dvHN = 1 and

∫
HN

(|∇HNu|2 − λu2) dvHN = I(λ).

Namely, u �= 0 is a minimizer for I(λ). As already remarked in the proof of (i),
up to replacing u with |u| and by maximum principle arguments, we may always
assume that any minimizer has constant sign in HN \ {x0}. Once this noted, the
uniqueness follows immediately. Otherwise, by taking a suitable linear combination
of two minimizers, one may define a minimizer which changes sign, a contradiction.

To conclude the proof of statement (ii), we still have to show the lower bound
for I(λ). Using theorem 2.1, it follows that for any λ̂N < λ < λ1(HN ) we have

I(λ) �
(

1 + 2
√
λ1(HN ) − λ

2

)2

.

Since I(λ) is achieved, the inequality is strict otherwise we contradict the criticality
issue of theorem 2.1.

Proof of (iii).
The proof relies on the fact that operator

L := −ΔHN − (N − 1)2

4
− 1

4r2

is subcritical. Indeed, we have already remarked in the proof of theorem 2.1 that
Φ(r) = (r/(sinh r))(N−1)/2r(2−N)/2 is a positive supersolution to the equation Lu =
0 in HN \ {x0} which is not a solution. Hence, a minimizer for I(λ) = 1/4 cannot
exist.

8. General Cartan-Hadamard manifolds: proof of theorems 4.1, 4.5

We first recall some known facts. Let (M, g) be a Riemannian manifold. Take a
point (pole) x0 ∈M and denote Cut{x0} the cut locus of x0. We can define the
polar coordinates in M \ Cut∗{x0}, where Cut∗{x0} = Cut{x0} ∪ {x0}. Indeed, to
any point x ∈M \ Cut∗{x0} we can associate the polar radius r(x) := dist(x, x0)
and the polar angle θ ∈ SN−1, such that the minimal geodesics from x0 to x starts
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at x0 to the direction θ. The Riemannian metric g in M \ Cut∗{x0} in the polar
coordinates takes the form

ds2 = dr2 + ai,j(r, θ)dθiθj ,

where (θ1, . . . , θN−1) are coordinates on SN−1 and ((ai,j))i,j=1,...,N is a positive
definite matrix. Let a := det(ai,j), B(x0, ρ) = {x := (r, θ) : r < ρ}. Then in M \
Cut∗{x0} we have

ΔM =
1√
a

∂

∂r

(√
a
∂

∂r

)
+ Δ∂B(x0,r) =

∂2

∂r2
+m(r, θ)

∂

∂r
+ Δ∂B(x0,r), (8.1)

where Δ∂B(x0,r) is the Laplace-Beltrami operator on the geodesic sphere ∂B(x0, r)
and m(r, θ) is a smooth function on (0, ∞) × SN−1 which represents the mean
curvature of ∂B(x0, r) in the radial direction. For radial functions, namely functions
depending only on r, if M is the Riemannian model Mψ defined in § 4, the above
expression reads

ΔMψ
=

1
(ψ(r))N−1

∂

∂r

[
(ψ(r))N−1 ∂

∂r
(r)
]

=
∂2

∂r2
+ (N − 1)

ψ′(r)
ψ(r)

∂

∂r
, (8.2)

where ψ is as defined by (4.2).
The following Hessian comparison principle relates (8.1) and (8.2):

Lemma 8.1 [26,27]. Let M be as in theorem 4.1. The mean curvature of ∂B(x0, r)
in the radial direction satisfies

m(r, θ) � (N − 1)
ψ′(r)
ψ(r)

for all r > 0 and θ ∈ SN−1.

Proof of theorem 4.1. We follow the same idea of the proof of theorem 2.1, we
define the function Ψλ(r) := r−((N−2)/2)((ψ(r))/r)−((N−1+γN (λ))/2) and on the
Riemannian model Mψ we compute

−ΔMψ
Ψλ(r) =

(γN (λ) + 1)2

4
Ψλ

r2
+ V λψ (r)Ψλ in Mψ \ {x0},

where V λψ is defined as in the statement of theorem 4.1. On the other hand, we
claim that

Ψ′
λ(r) =

Ψλ

2rψ
((1 + γN (λ))ψ(r) − (N − 1 + γN (λ))rψ′(r)) � 0 for r > 0.

In fact, this is clearly true for r close to zero, whereas we notice that

((1 + γN (λ))ψ(r) − (N − 1 + γN (λ))rψ′(r))′

= −[(N − 1 + γN (λ))r ψ′′(r) + (N − 2)ψ′(r)] � 0

since ψ is increasing and convex. Combining this fact with lemma 8.1, by (8.1) we
infer

−ΔMΨλ � −ΔMψ
Ψλ.

Hence, since Ψλ ∈ H1
loc(M \ {x0}), the Allegretto-Piepenbrink theorem [17,

theorem 2.12] implies (4.4).
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The proof of the criticality of the operator −ΔMψ
− [((γN (λ) + 1)2)/(4r2)] −

V λψ (r) in Mψ \ {x0} follows by arguments similar to the one applied in the
proof of theorem 2.1, hence we omit the details. We only mention that one
has to exploit the fact that, by [9, theorem 2.5], it is known that the operator
−ΔMψ

− 1/(4r2) − V λ1
ψ (r) is critical in Mψ \ {x0} and the corresponding ground

state is Φ(r) = Ψλ1(r), where λ1 = (N − 1)2/4. Finally, we note that since ψ(r) > r
for r > 0 by construction, we can show that the quotient ((Ψλ(r))/(Φ(r)))2 is
bounded, exactly as done in (6.5) in the hyperbolic setting. �

Proof of theorem 4.5. We proceed with steps similar to the ones given in the proof
of theorem 2.10. First, we notice that by a direct computation the function u0 :=
ψ(2−N)/2 is a solution to the equation

−ΔMψ
u− (N − 2)2

4ψ2
u− Uψ u = 0. (8.3)

We look for a second independent, positive solution to the same equation. If we set
v = ψ(N−2)/2w with w satisfying (8.3), by another direct computation it turns out
that v must satisfy

v′′ +
ψ′

ψ
v′ = 0.

This yields that another positive, independent solution of equation (8.3) is found
by taking, under the running assumptions,

v(r) =
1

Θ(r)

with Θ as defined in (4.6). Notice that both solutions are decreasing. Hence they give
rise to supersolutions of the corresponding equation on M by Hessian comparison.
We then perform the construction of the optimal weight given in [19] starting from
the two positive solutions u0 and u0v, see [19], thus yielding the stated inequality
on M and criticality on Mψ. �

Remark 8.2. It turns out from [27, proposition 3.1] that the subcriticality of
−ΔMψ

in Mψ is equivalent to the following

∫ +∞

r

1
(ψ(s))N−1

ds < +∞. (8.4)

Moreover, under (4.1), it can be shown easily that (8.4) is a weaker assumption
than (4.6). Therefore, assuming (8.4) we can associate a natural Hardy weight for
the operator −ΔMψ

. It is easy to see u0 = 1 and u1 =
∫ +∞
r

1/((ψ(s))N−1) ds are
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two independent positive solutions of

−ΔMψ
= 0 in Mψ.

Therefore using [19], an optimal Hardy weight W̃ψ for the operator −ΔMψ
is given

by

W̃ψ =
1
4

⎛
⎜⎜⎝ (ψ(r))1−N∫ +∞

r

(ψ(s))1−Nds

⎞
⎟⎟⎠

2

.

In the hyperbolic space HN , W̃sinh has the following asymptotic which should be
compared with the statement of theorem 2.1 for λ = λ1(HN ):

W̃sinh(r) ∼
r→0

(N − 2)2

4r2
and

W̃sinh(r) ∼
r→∞

(N − 1)2

4
+

(N − 1)(N + 3)
N + 1

e−2r + ◦(e−2r).

9. Weighted Hardy and Rellich inequalities: proof of theorems 5.1
and 5.3

9.1. Proof of theorem 5.1

We consider u ∈ C∞
c (HN \ {x0}) and define u(x)/rα = Ψ(x)v(x). Then we

compute

|∇HNu|2
r2α

= |∇HNΨ|2v2 + |∇HN v|2 Ψ2 + 2 vΨ 〈∇HNΨ,∇HN v〉

+ 2α
uru

r2α+1
− α2 u2

r2α+2
.

Now integrating above and by integration by parts we obtain∫
HN

|∇HNu|2
r2α

dvHN =
∫

HN

(−ΔHNΨ)
Ψ

u2

r2α
dvHN +

∫
HN

|∇HN v|2 Ψ2 dvHN

− α2

∫
HN

u2

r2α+2
dvHN

+ α(2α+ 1)
∫

SN−1

(∫ ∞

0

u2

r2α+2
(sinh r)N−1 dr

)
dσ

− (N − 1)α
∫

SN−1

(∫ ∞

0

u2

r2α+1
coth r (sinh r)N−1 dr

)
dσ

�
∫

HN

(−ΔHNΨ)
Ψ

u2

r2α
dvHN + (α2 − (N − 2)α)

∫
HN

u2

r2α+2
dvHN

− (N − 1)α
∫

HN

g(r)
r2α

u2 dvHN .
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Here, in particular, we insert Ψ := ΨN−2, as defined in the proof of theorem 2.1, in
the above to obtain the desired result (5.1). The sharpness of the constant follows
immediately by exploiting the test function of type Φ(r) := r(2−N)/2 combining
with a proper cut off as in the case of classical Hardy inequality on the hyperbolic
space (see [40, theorem 3.1]).

9.2. Proof of theorem 5.3

The proof is based on a suitable combination of theorem 5.1 with some ideas taken
from the proof of [30, theorem 3.1]. More precisely, starting from the inequality

−ΔHN

1
r2α

� 2α(N − 2 − 2α)
r2α+2

for α > 0,

multiplying both sides by u2 ∈ C∞
c (HN \ {x0}) and integrating over HN , one gets

−
∫

HN

uΔHNu

r2α
dvHN �

∫
HN

|∇HNu|2
r2α

dvHN + α(N − 2 − 2α)
∫

HN

u2

r2α+2
dvHN .

Then, for any ε > 0, by Young’s inequality there holds∫
HN

|ΔHNu|2
r2α−2

dvHN

� 4ε
∫

HN

|∇HNu|2
r2α

dvHN + (4εα(N − 2 − 2α) − 4ε2)
∫

HN

u2

r2α+2
dvHN .

A combination of the above inequality with (5.1) yields∫
HN

|ΔHNu|2
r2α−2

dvHN � 4ε
(

(N − 2 − 2α)2

4
+ α(N − 2 − 2α) − ε

)∫
HN

u2

r2α+2
dvHN

+ 4ε(N − 2)
∫

HN

u2

r2α
dvHN

+ 4ε
(

(N − 2)(N − 3)
2

− (N − 1)α
)∫

HN

g(r)
r2α

u2 dvHN .

Finally, by maximizing the coefficient in front of the first term on the right-hand
side, one gets ε = ((N − 2 − 2α)(N − 2 + 2α))/8. By inserting this value in the
above inequality, the proof follows.

Appendix A. Improved Hardy inequality in two dimensional Euclidean
Space

This section is devoted to state certain improved Hardy inequalities in two-
dimensional Euclidean space. The results can be obtained from a direct application
of theorem 2.6 after suitable transformations.

Let B be the Euclidean unit ball. From theorem 2.1 and conformal invariance
of the Dirichlet norm in dimension two, that is,

∫
H2 |∇H2u|2 dvH2 =

∫
B
|∇u|2 dx,

where dx denotes the Euclidean volume element, we derive the following result.
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Corollary A.1. For all λ � λ1(H2) = 1/4 and all u ∈ C∞
0 (B) the following

inequality holds∫
B

|∇u|2 dx− λ

∫
B

(
2

1 − |x|2
)2

u2 dx (A.1)

� (
√

1 − 4λ+ 1)2

4

∫
B

(
1

(log ((1 − |x|)/(1 + |x|)))2

−
(

1 − |x|2
2|x|

)2
) (

2
1 − |x|2

)2

u2 dx,

+
(
√

1 − 4λ)(
√

1 − 4λ+ 1)
2

∫
B

g̃(|x|)
(

2
1 − |x|2

)2

u2 dx,

where dx denotes the Euclidean volume and g̃(|x|) := g(log((1 − |x|)/(1 + |x|)))
with g > 0 as defined in theorem 2.1. In particular, for λ = λ1(H2) = 1/4, inequality
(A.1) reads as∫

B

|∇u|2 dx− 1
4

∫
B

(
2

1 − |x|2
)2

u2 dx

� 1
4

∫
B

(
1

(log ((1 − |x|)/(1 + |x|)))2 −
(

1 − |x|2
2|x|

)2
) (

2
1 − |x|2

)2

u2 dx,

and the constant 1/4 in the right-hand side in the above inequality is sharp.

Remark A.2. The inequality (A.1) can be compared with optimal Leray inequality,
(cf. [19, example 13.2]). Note that the weight in the left-hand side of (A.1) has
a singularity only at the boundary of the ball but on the other hand, we have a
subcriticality of the resulting operator unlike in the case of classical Leray inequality.

By considering the upper half space model for H2, namely R2
+ = {(x, y) ∈

R × R+} endowed with the Riemannian metric (δij)/(y2). theorem 2.1 yields the
following improved Hardy-Maz’ya-type inequality in the half space in dimension
two:

Corollary A.3. For all λ � λ1(H2) = 1/4 and all u ∈ C∞
c (H2 \ {x0}) there holds∫

R+

∫
R

|∇u|2 dxdy − λ

∫
R+

∫
R

u2

y2
dxdy

� (
√

1 − 4λ+ 1)2

4

∫
R+

∫
R

(
1
d2

− 1
sinh2 d

)
u2

y2
dxdy

+
(
√

1 − 4λ)(
√

1 − 4λ+ 1)
2

∫
R+

∫
R

g(d)
u2

y2
dxdy,

where (x, y) ∈ R × R+, d = d(x, y) := cosh−1(1 + ((y − 1)2 + |x|2)/(2y)) and g > 0
is as defined in theorem 2.1.
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In particular, for λ = λ1(H2) = 1/4, the above inequality reads as

∫
R+

∫
R

|∇u|2 dxdy − 1
4

∫
R+

∫
R

u2

y2
dxdy � 1

4

∫
R+

∫
R

(
1
d2

− 1
sinh2 d

)
u2

y2
dxdy,

(A.2)
and the constant 1/4 in the right-hand side of (A.2) is sharp.

Hence, (A.2) provides an optimal nonstandard remainder term for the Hardy-
Maz’ya inequality in dimension two, see [9] for the case N � 3.
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on the hyperbolic space. Nonlinear Anal. 157 (2017b), 146–166.

11 B. Bianchini, L. Mari and M. Rigoli. Yamabe type equations with sign-changing nonlinear-
ities on non-compact Riemannian manifolds. J. Funct. Anal. 268 (2015), 1–72.

https://doi.org/10.1017/prm.2018.139 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2018.139


An optimal improvement for the Hardy inequality on the hyperbolic space 1735

12 B. Bianchini, L. Mari and M. Rigoli. Yamabe type equations with a sign-changing non-
linearity. and the prescribed curvature problem. J. Differential Equations 260 (2016),
7416–7497.

13 H. Brezis and M. Marcus. Hardy’s inequalities revisited. Ann. Scuola Norm. Sup. Cl. Sci.
(4) 25 (1997a), 217–237.

14 H. Brezis and J. L. Vazquez. Blow-up solutions of some nonlinear elliptic problems. Rev.
Mat. Univ. Complut. Madrid 10 (1997b), 443–469.

15 G. Carron. Inegalites de Hardy sur les varietes Riemanniennes non-compactes. J. Math.
Pures Appl. (9) 76 (1997), 883–891.

16 D. Castorina and M. Sanchon. Regularity of stable solutions to semilinear elliptic equations
on Riemannian models. Adv. Nonlinear Anal. 4 (2015), 295–309.

17 H.L. Cycon, R.G. Froese, W. Kirsch, B. and Simon. Schrödinger operators with application
to quantum mechanics and global geometry, Springer Study edn. Texts and Monographs in
Physics (Berlin: Springer-Verlag, 1987).

18 L. D’Ambrosio and S. Dipierro. Hardy inequalities on Riemannian manifolds and applica-
tions. Ann. Inst. H. Poinc. Anal. Non Lin. 31 (2014), 449–475.

19 B. Devyver, M. Fraas, Y. Pinchover. Optimal Hardy weight for second-order ellip-
tic operator: an answer to a problem of Agmon. J. Funct. Anal. 266 (2014), 4422–
4489.

20 S. Filippas and A. Tertikas. Optimizing improved Hardy inequalities. J. Funct. Anal. 192
(2002), 186–233.

21 S. Filippas, A. Tertikas and J. Tidblom. On the structure of Hardy-Sobolev-Maz’ya
inequalities. J. Eur. Math. Soc. 11 (2009), 1165–1185.

22 S. Filippas, L. Moschini and A. Tertikas. Sharp trace Hardy-Sobolev-Maz’ya inequalities
and the fractional Laplacian. Arch. Ration. Mech. Anal. 208 (2013), 109–161.

23 F. Gazzola, H. Grunau and E. Mitidieri. Hardy inequalities with optimal constants and
remainder terms. Trans. Amer. Math. Soc. 356 (2004), 2149–2168.

24 N. Ghoussoub and A. Moradifam. Bessel pairs and optimal Hardy and Hardy–Rellich
inequalities. Math. Ann. 349 (2011), 1–57.

25 D. Gilbarg and N. Trudinger. Elliptic partial differential equations of second order.
Grundlehren der Mathematischen Wissenschaften, vol. 224 (Berlin-New York: Springer-
Verlag, 1977).

26 R. Greene and W. Wu. Function theory of manifolds which possess a pole. Lecture Notes
in Math., vol.699 (Berlin: Springer, 1979).

27 A. Grigoryan. Analytic and geometric background of recurrence and non-explosion of the
Brownian motion on Riemannian manifolds. Bull. Amer. Math. Soc. 36 (1999), 135–249.

28 G. Grillo, M. Muratori and J. L. Vázquez. The porous medium equation on Riemannian
manifolds with negative curvature. The large-time behaviour. Adv. Math. 314 (2017), 328–
377.

29 I. Kombe and M. Ozaydin. Improved Hardy and Rellich inequalities on Riemannian
manifolds. Trans. Amer. Math. Soc. 361 (2009), 6191–6203.
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