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1. Introduction

A classical result in number theory is the theorem of Gauss on ambiguous binary quadratic
forms. This theorem gives, in modern terms, a description of Cl(K )[2] if K is a quadratic

extension of Q. In particular, Gauss proved that the dimension of the F2-vector space

Cl(K )[2] equals ω(�K )−1, where ω(·) is the number of distinct prime divisors, Cl(K ) is
the narrow class group and �K is the discriminant of K . Since then, the class group has

taken a prominent role in number theory, but it still remains a rather mysterious object.

From a heuristic standpoint, the class group is better understood in families of number
fields due to the conjectures of Cohen and Lenstra [12] and later Cohen and Martinet [13].

The Cohen–Martinet heuristics have several known flaws, and they have been corrected

and extended by several authors [8, 28, 34]. To state the Cohen–Lenstra conjectures,

let p be an odd prime and let A be a finite, abelian p-group. Then the p-part of the
class group of an imaginary quadratic field is conjectured to be isomorphic to A with

probability proportional to 1/#Aut(A).

For p = 2 this obviously breaks down, due to the rather predictable nature of Cl(K )[2]. A
natural workaround was found by Gerth, who predicted that a finite abelian 2-group A is
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1544 É. Fouvry et al.

isomorphic to 2Cl(K )[2∞] with probability proportional to 1/#Aut(A). This was recently

proven by Smith [31]. The odd part remains a mystery, with the most significant result
due to Davenport and Heilbronn [14] on the first moment, which was later independently

improved by Bhargava, Shankar and Tsimerman [10] and Taniguchi and Thorne [32].

There are also results on class groups of cubic fields [9, 11] and Sn -fields [22].
In this paper we are precisely interested in the case where the degree of the number

field is not coprime to the part of the class group we are studying. This case is excluded

in the heuristics of Cohen and Lenstra and of Cohen and Martinet, and we hope that this

work will aid in the development of heuristics in this case. Other known results regarding
statistical properties of class groups in families where the degree is not coprime to the

part of the class group are due to Fouvry and Klüners [16, 17, 18, 19], Klys [24], Koymans

and Pagano [25] and Pagano and Sofos [30], who developed heuristics for ray class groups
based on work of Varma [33] and proved them for the 4-rank of imaginary quadratic

fields.

To state the main result, we use the following notations. For � ∈ {1,3} and n ≥ 1 an
integer, let ω�(n) be the number of distinct prime factors of n which are congruent to

� modulo 4. We define Kn := Q(i,
√

n) and we let Cl(Kn) be the class group of Kn .

These fields were first studied by Dirichlet, in the context of quadratic forms [15], and

further studied for special values of n by Azizi et al. (see, e.g., [2, 1, 3, 4, 5, 6, 7],
and also [20]). Furthermore, the 2k -rank of a finite abelian group A is by definition

rk2k A := dimF2 2k−1A/2kA.

Theorem 1.1. Uniformly for x ≥ 2, we have

#{0 < n < x : n odd and square free, rk4Cl(Kn) �= ω3(n)−1} = O
(

x
(logx )1/8

)
.

In simple terms, we have that the 4-rank of Cl(Kn) is ω3(n)−1 for 100% of the odd,
square free integers n. Note that this behavior is wildly different from the case of quadratic

extensions of Q (see [20, Proposition 12], for instance), and we believe it to be a nontrivial

task to develop appropriate heuristics in this setting. A weaker result can be found in

[20, Theorem 1], where it is proven that at least 28% of the odd, square free integers n
satisfy rk4Cl(Kn) = ω3(n)−1.
To prove Theorem 1.1, we start by giving a description of Cl(Kn)∨[2]. Such a

description can be obtained from the work of Fröhlich [21], who studied Cl(K )∨[2] for any
biquadratic extension K of Q. This was later extended to Cl(K )∨[2] with K an arbitrary

multiquadratic extension of Q in [26].

Once we have described Cl(Kn)∨[2], we are in the position to obtain a criterion for
an element of Cl(Kn)∨[2] to be in 2Cl(Kn)∨[4]. To do so, we introduce the notion of

genericity.

Definition 1.2. We say that an odd, square free integer n > 0 is generic if it has a prime

divisor 5 modulo 8.
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This notion of a generic integer already appears in [20]. More precisely, for n odd and

square free (see [20, Proposition 8]), we have

rk2(Cl(Kn)) =
{

2ω1(n)+ω3(n)−1 if n is generic,

2ω1(n)+ω3(n)−2 if n is not generic.

As we shall see, our algebraic criterion is only valid if n is generic. It is here that we make

essential use of the fact that Q(i) has class number 1, and it is plausible that Theorem
1.1 can be extended to any family of the shape Q(

√
d,

√
n) as long as d is negative and

Q(
√

d) has class number 1. It would be most interesting to extend the results further to

the case that Q(
√

d) does not have class number 1.
We shall reserve the letter π for irreducible elements in Z[i ]. For n ≥ 3 an odd, square

free integer, we introduce the following arithmetical function f (n):

f (n) := 1
4

· �
{
β ∈ Z[i ] : β ≡ ±1 mod 4Z[i ], β|n such that

for all π |β, the Gaussian integer n/β is a square modulo π,

and for all π |(n/β), the Gaussian integer β is a square modulo π
}
. (1.1)

This function resembles the quantity appearing in [16, Lemma 16]. The definition of f (n)

directly implies that it is a power of 2 satisfying the inequalities

1 ≤ f (n) ≤ 22ω1(n)+ω3(n)−1.

We can now state our key algebraic result.

Theorem 1.3. Let n be generic. Then we have

2rk4Cl(Kn ) = f (n),

and furthermore, f (n) ≥ 2ω3(n)−1.

With the aid of Magma we computed a list of generic integers 3 ≤ n ≤ 1000
for which rk4Cl(Kn) ≥ ω3(n). By Theorem 1.3 we certainly have for such n that
rk4Cl(Kn) ≥ ω3(n) − 1. This gives the following table (we have excluded those with

ω3(n) = 0, since they trivially satisfy rk4Cl(Kn) ≥ ω3(n)).

ω3(n) Generic 3 ≤ n ≤ 1000 with rk4Cl(Kn) ≥ ω3(n)

1 {39, 55, 95, 111, 155, 183, 203, 259, 295, 299, 327, 355, 371, 395,
407, 471, 543, 559, 583, 655, 663, 667, 687, 695, 755, 763, 831, 895,

915, 955, 995}
2 {777, 897}

The table shows 33 integers, whereas the total number of generic integers satisfying
3 ≤ n ≤ 1000 and ω3(n) > 0 is 96, of which 78 have ω3(n) = 1 and 18 have ω3(n) = 2.
Furthermore, the smallest generic n with ω3(n) > 0 and rk4Cl(Kn) ≥ ω3(n)+1 is n = 1443,
and the smallest n with instead rk4Cl(Kn) ≥ ω3(n)+2 is n = 4895.
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It is not hard to show from our methods that we always have the inequalities

2ω3(n)−2 ≤ f (n)

2
≤ 2rk4Cl(Kn ) ≤ f (n) (1.2)

for odd, square free n ≥ 3. Since our focus is Theorem 1.1, we shall not include the proofs

of these inequalities. Our main analytic result shows that, for a special type of averaging,
f (n) is close to 2ω3(n)−1. We have the following:

Theorem 1.4. Uniformly for x ≥ 2, we have∑
n≤x

μ2(2n)
( f (n)

2ω3(n)−1

)
=
∑
n≤x

μ2(2n)+O(x log−1/8 x ). (1.3)

Standard methods from analytic number theory show the equality∑
n≤x

μ2(2n) = 4
π2 · x +O(

√
x ), (1.4)

uniformly for x ≥ 2. This shows that (1.3) is an asymptotic formula.
With slightly more effort, particularly in the proof of Lemma 8.2, it is possible to

improve the error term in (1.3) to O(x log−θ x ) for any θ < 1/4. The equality (1.3) could

be generalised to the set of integers n ≤ x such that all the prime divisors of n belong to
an imposed congruence class.

The layout of the paper is as follows. In §2 we study the 2-torsion of Cl(Kn). Then in

§3 we derive our pivotal algebraic results, culminating in the proof of Theorem 1.3. The
next sections are devoted to the analysis of the sum appearing in (1.3). Finally, in §10 we

show how Theorems 1.3 and 1.4 imply Theorem 1.1.

2. On the 2-torsion of Cl(Kn )

For an abelian group A, we write A[m] for the part of A that is killed by m and A∨ :=
Hom(A,C) for its dual. We denote the set {1, . . . ,n} by [n]. In what follows, we let n ∈Z≥3
be an odd, square free integer. Recall that n is generic in case there exists a prime number

congruent to 5 modulo 8 that divides n. Write n := p1 ·. . . ·pr · q1 ·. . . · qs , where for each

(h,k) ∈ [r ]× [s] we have that ph and qk are respectively 1 and 3 modulo 4. For each h ∈ [r ],
decompose ph in Z[i ] as

ph := πh ·πh,

where πh := ah + ibh with 2 | bh and ah ≡ 1 mod 4. The following gives a complete
description of the quadratic extensions of Kn that are unramified at all finite places –

and thus, since Kn is totally complex, a description of the space Cl(Kn)∨[2] by class field

theory.

Proposition 2.1. Let L/Kn be a quadratic extension. Then it is unramified if and only

if there exist functions

ε1,ε2 : [r ] → {0,1},α : [s] → {0,1}

https://doi.org/10.1017/S1474748020000651 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748020000651


On the 4-rank of class groups of Dirichlet biquadratic fields 1547

such that ∑
h∈[r ]:ph≡5 mod 8

(
ε1(h)+ ε2(h)

)
≡ 0 mod 2 (2.1)

and

L = Q

⎛⎝i,
√

n,

√∏
h∈[r ]

π
ε1(h)

h πh
ε2(h) ·

∏
k∈[s]

qα(k)

k

⎞⎠ .

Proof. It is well known that Z[i ] is a principal ideal domain. It follows that the generator

of Gal(Kn/Q(i)) acts as −id on Cl(Kn). In particular, every unramified abelian extension
of Kn remains Galois over Q(i). Furthermore, we know that the extension Kn/Q(i) must

ramify at some finite place v of Q(i). Hence an inertia group at v in Gal(L/Q(i)) must be

of order 2 and project nontrivially in Gal(Kn/Q(i)). It follows that L/Q(i) is a biquadratic
extension; in other words, there must be γ ∈ Q(i)∗, with L = Kn(

√
γ ).

Next we claim that if we have a finite place v of Q(i) with v(γ ) odd, then it must

be the case that v(n) > 0. Indeed, Kn/Q(i) is unramified at all places v with v(n) = 0;
observe that this is also correct at 1+ i , since n is a rational integer. But Q(i,√γ )/Q(i)
will certainly ramify at v in case v(γ ) is odd, and hence the extension Kn(

√
γ )/Kn will

ramify at any place of Kn above v . This shows our claim.

Thanks to the last step, and since Z[i ] is a principal ideal domain, we can suppose that
γ is an element of Z[i ] that divides n in Z[i ].
Now let a + ib be an element of Z[i ], with a �≡ b mod 2 – that is, a + ib is coprime

to 1 + i . Then we claim that Q(i,
√

a + ib) is unramified at 1 + i if and only if 4 | b.
To this end, we recall that elements of Z2[i ] of the shape 1+ (1+ i)u or 1+ (1+ i)3u,
with u ∈ Z2[i ]∗, yield ramified quadratic extensions of Q2(i). We first show that 2 | b.
Suppose not. Then, by our assumption on a + ib, it must be that a is even. Then we can

rewrite a + ib = 2a ′ +2ib ′ + i = 2(a ′ + ib ′)+ i with a ′,b ′ integers. This can be rewritten as
1+ (1+ i)u with u ∈ Z2[i ]∗.
So we must have that 2 | b and a ≡ 1 mod 2. Furthermore, since −1 is a square in Q(i),

we can assume that a is 3 modulo 4. Now suppose that 4 does not divide b. Then we can
rewrite a + ib = a + 2ib ′ = −1+ 4a ′ + 2ib ′, where a ′,b ′ are integers and b ′ is odd, which

equals −1+2i +4z = 1−2(1− i)+4z with z ∈Z[i ]. This has the shape 1+ (1+ i)3u, with
u a unit in Z2[i ]. Therefore it yields a ramified extension of Q2(i) and the desired claim

is proved.
We have obtained that γ = a + ib is a divisor of n with a odd and b divisible by 4.

Observe furthermore that since −1 is a square in Q(i), we can reduce to the case that a is

1 modulo 4. Now it is straightforward to check that γ is precisely one of the elements listed
previously. Conversely, it is easy to check that all such γ give an unramified extension.

We denote by Gn(Kn) the span of the elements listed in Proposition 2.1 in Q(i)∗
Q(i)∗2 . More

precisely, these are the elements∏
h∈[r ]

π
ε1(h)

h πh
ε2(h) ·

∏
k∈[s]

qα(k)

k ,
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as ε1,ε2 : [r ] → {0,1},α : [s] → {0,1} varies and satisfies (2.1).

3. A criterion for the 4-torsion for generic n

We shall now establish a general fact that will be the key tool to exploit the condition of

genericity on n. To do so, we start by recalling the inflation–restriction exact sequence.
Let G be a profinite group, N a normal open subgroup and A a discrete G-module. Note

that G/N naturally acts on AN . Then we have an exact sequence

0 → H 1(G/N ,AN ) → H 1(G,A) → H 1(N ,A)G/N → H 2(G/N ,AN ) → H 2(G,A), (3.1)

where the second and fifth maps are inflation, the third map is restriction and the fourth

map is transgression. We remark that G naturally acts on H 1(N ,A) by sending a cocycle

f : N → A to (g · f )(n) = g · f (g−1ng), and this action descends to an action of G/N .
For a field K , we denote by GK the absolute Galois group of K . If L/K is any

finite Galois extension of fields of characteristic different from 2, we apply the inflation–

restriction sequence with G = GK , N = GL and A = F2 with trivial action. There is, by
Kummer theory, an isomorphism

H 1(N ,A)G/N ∼=
(

L∗

L∗2

)Gal(L/K )

.

The map from right to left is given by sending α to the character χα, which is by definition

the character corresponding to
√

α. Combining this with the inflation–restriction exact

sequence, we obtain a natural map

r :
(

L∗

L∗2

)Gal(L/K )

→ H 2(Gal(L/K ),F2),

whose kernel consists precisely of the image of K ∗ in L∗/L∗2 and whose image consists

precisely of those classes in H 2(Gal(L/K ),F2) that become trivial when inflated to

H 2(GK ,F2). We start with a lemma.

Lemma 3.1. Let E be a local field of characteristic 0 and let F/E be an unramified
extension. Then the inflation map

H 2(Gal(F/E ),F2) → H 2(GE,F2)

is the zero map.

Proof. This is a special case of [25, Proposition 4.4].

We can now prove the following proposition, which is based on ideas from [26,

Proposition 4.10]. We say that a class θ ∈ H 2(Gal(L/Q(i)),F2) is locally trivial at a place

v of Q(i) if θ is trivial in H 2(GQ(i)v ,F2).

Proposition 3.2. Let L/Q(i) be a Galois 2-extension of Q(i) and take p to be a rational
prime that is congruent to 5 modulo 8. Suppose that L ramifies at both places of Q(i)
lying above p. Assume that 1+ i is unramified in L/Q(i). Let θ ∈ H 2(Gal(L/Q(i)),F2) be

such that the inflation of θ to GQ(i) is locally trivial at all the places of Q(i) which ramify
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in L/Q(i). Suppose furthermore that for each odd place v of Q(i), the class θ restricted
to an inertia subgroup Iv of Gal(L/Q(i)) yields a trivial element of H 2(Iv,F2).

Then there exists α ∈
(

L∗
L∗2

)Gal(L/Q(i))
with r(α) = θ and L(

√
α)/L unramified.

Proof. We first claim that there exists α such that r(α) = θ and the extension L(
√

α)/L
is unramified above any odd place. Consider the exact sequence

1 → {±1} → Q(i)
∗ → Q(i)

∗ → 1,

where the map from Q(i)
∗
to Q(i)

∗
is squaring. Taking Galois cohomology and using

Hilbert Theorem 90, we deduce that there is an injection

0 → H 2(GQ(i),F2) → H 2(GQ(i),Q(i)
∗
).

Then by class field theory, we have another injection

0 → H 2(GQ(i),Q(i)
∗
) →

⊕
v∈
Q(i)

H 2(GQ(i)v ,Q(i)v
∗
),

where 
Q(i) are the places of Q(i). Hence, to check if θ is trivial in H 2(GQ(i),F2), we can

check this locally in H 2(GQ(i)v ,Q(i)v
∗
) for every v ∈ 
Q(i). By assumption, θ is trivial

locally at all places v that ramify in L/Q(i). Furthermore, Lemma 3.1 shows that θ is
trivial at the unramified places, and hence we have shown that θ is trivial in H 2(GQ(i),F2).

We deduce that there is α with r(α) = θ .

Our next task is to adjust α with elements in Q(i)∗ such that L(
√

α)/L is unramified
at the odd places. Suppose that L(

√
α)/L is ramified at some odd place w of L. If v is

the place of Q(i) below w , and v is unramified in L/Q(i), then we twist α by π , with

π a prime element of Z[i ] corresponding to v . Since α is invariant modulo squares, this
ensures that v is unramified in L(

√
απ)/L without changing the ramification at any other

odd place.

Now suppose instead that the place v below w is ramified in L/Q(i). We filter Lw/Q(i)v
as a tower Lw/K /Q(i)v , where K is the largest unramified extension of Q(i)v inside Lw .
The assumption that θ is trivial when restricted to Iv precisely implies, by the inflation–

restriction sequence in (3.1), that χα equals the restriction of some central character χ

from GK . Since v is an odd place, such characters are in the span of the unramified
character of K and a ramified character of Q(i)v . Therefore the extension L(

√
α)/L is

automatically unramified at v for any choice of α with r(α) = θ .

Having established the claim, it remains to adjust the ramification at 1+ i . Let w be a
place of L above 1+ i . By assumption, Lw/Q2(i) is unramified. Therefore the Galois group

Gal(Lw/Q2(i)) is cyclic and thus H 2(Gal(Lw/Q2(i)),F2) is cyclic of order 2. The nontrivial
element in H 2(Gal(Lw/Q2(i)),F2) is realised via an unramified extension. Hence there

exists c ∈ Q(i)∗ such that cα yields an unramified class of
L∗

w
L∗2

w
for all choices of w above

v . Furthermore, since α is invariant modulo squares, the same c will work simultaneously

for all places w of L above 1+ i .
Now let p = ππ be a factorisation of our prime p ≡ 5 mod 8 in Z[i ]. Observe that

multiplying α by elements in the span of {π,π,i,1 + i} changes only the ramification

at the places above 2. Indeed, this follows from the assumption that θ is trivial when
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restricted to H 2(Iv,F2). Now p ≡ 5 mod 8 implies that {π,π,i,1+ i} is a basis of Q2(i)∗
Q2(i)∗2 .

Hence c can be picked in the space 〈{π,π,i,1 + i}〉, cleaning the ramification precisely

at the places above 1 + i without affecting any other place of L, which concludes our

proof.

Let n ∈Z≥3 be odd, square free and generic. We can now describe the space 2Cl(Kn)∨[4].
For any place v of Q(i), we denote by (−,−)v the Hilbert symbol pairing defined on Q(i)∗v
and attaining values in {1, − 1}. Recall that for x,y ∈ Q(i)∗v , we have that (x,y)v = 1 if

and only if χx ∪χy yields a trivial class in H 2(GQ(i)v ,F2).

Proposition 3.3. Let n ∈Z≥3 be odd, square free and generic. Let α be in Gn(Kn). Then

the character χα is in 2Cl(Kn)∨[4] if and only if for any finite place v with v(n) �= 0,(
α,

n
α

)
v

= 1.

Remark 1. The forward implication will not use the fact that n is generic, but for the

other implication this will be crucial.

Proof. Observe that the elements α in Gn(Kn) with χα ∈ 2Cl(Kn)∨[4] are, if nontrivial,
precisely those with Kn(

√
α) contained in a cyclic degree 4 unramified extension of Kn .

Such an extension is Galois over Q(i), as we argued in Proposition 2.1. Furthermore,

picking an inertia element at a place dividing α and one at a place dividing n
α
gives a

lift by involutions of the basis of Gal(Kn(
√

α)/Q(i)) dual to {χα,χ n
α
}. This forces L to be

Kn(
√

α,
√

β), with

β ∈
(

Kn(
√

α)∗

Kn(
√

α)∗2

)Gal(Kn (
√

α)/Q(i))

and

r(β) = χα ∪χ n
α
.

Conversely, any time we realise – via the map r – this class via an unramified quadratic

extension of Kn(
√

α), we conclude that χα ∈ 2Cl(Kn)∨[4].
Hence, for the ‘only if’ part, we see that χα ∪χ n

α
must be in the image of r . It follows

that χα ∪χ n
α
is in the kernel of the inflation to H 2(GQ(i),F2) by the inflation–restriction

exact sequence (see (3.1)). But then χα ∪χ n
α
must be locally trivial at all places v , and

this implies precisely that
(
α, n

α

)
v = 1 for all finite places v with v(n) �= 0.

For the ‘if’ part, we apply Proposition 3.2 with θ := χα ∪χ n
α
. Since

(
α, n

α

)
v = 1 for all

finite places v with v(n) �= 0 by assumption, we see that θ is locally trivial at all places
of Q(i) that ramify in L := Kn(

√
α). Furthermore, the shape of θ shows that the class θ

restricted to an inertia subgroup Iv of Gal(L/Q(i)) yields a trivial element of H 2(Iv,F2)

for each odd place v of Q(i).
The fact that n is generic ensures that we have a prime p ≡ 5 mod 8 to which we can

apply Proposition 3.2. Then Proposition 3.2 gives us the required β.

Corollary 3.4. Suppose that n ≥ 3 is odd, square free and generic. Then we have

dimF2 2Cl(Kn)∨[4] ≥ ω3(n)−1.
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Proof. First of all, we have

dimF2 Cl(Kn)∨[2] = 2ω1(n)+ω3(n)−2

by Proposition 2.1 or [20, Proposition 8]. We now consider the linear map T :
Cl(Kn)∨[2] → {1, − 1}{v |n} that sends χα to

{(
α, n

α

)
v

}
v , where v runs through all finite

places dividing n. If v corresponds to a prime p ≡ 3 mod 4 in Z and α ∈ Z, then we have(
α,

n
α

)
p

= (α,n)p = 1.

Combining this with Hilbert reciprocity, we see that the image of T has dimension at most
2ω1(n)−1. But for generic n, the kernel of T is precisely 2Cl(Kn)∨[4], by Proposition 3.3.

Hence the lemma follows from the rank–nullity theorem.

We can now prove Theorem 1.3.

Proof of Theorem 1.3. Take n > 0 to be odd and square free. There is a natural

surjective map

{β ∈ Z[i ] : β ≡ ±1 mod 4Z[i ],β | n} → Gn(Kn).

The kernel is given by −1 and is hence of size 2. There is also a natural map Gn(Kn) →
Cl(Kn)∨[2], given by sending β to χβ , with kernel given by χn , again of size 2. By

Proposition 3.3 it follows that for generic n,

2rk4Cl(Kn ) = 1
2

∣∣∣∣{α ∈ Gn(Kn) :
(
α,

n
α

)
v

= 1 for all v
}∣∣∣∣ .

The condition that (α,n/α)v = 1 for all v is equivalent to the condition that for every

π | α, we have that n/α is a square modulo π , and for every π | n/α, we have that α is a
square modulo π . This shows that

2rk4Cl(Kn ) = f (n).

The theorem then follows from Corollary 3.4.

Remark 2. It is now easy to prove two of the three inequalities in (1.2). The bound
2rk4Cl(Kn ) ≤ f (n) follows from Proposition 3.3 and Remark 1. Furthermore, the proof of

Corollary 3.4 shows that

f (n) ≥ 2ω3(n)−1

without any assumptions on n. The final inequality

f (n)

2
≤ 2rk4Cl(Kn )

is substantially trickier, and we shall only sketch it. From the material here, we see that
if α ∈ Gn(Kn) is such that (α,n/α)v = 1 for all v , then we can pick a nontrivial point on

the conic

x 2 = αy2 + n
α

z 2

https://doi.org/10.1017/S1474748020000651 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748020000651


1552 É. Fouvry et al.

such that the extension Q(i,
√

n,
√

α,
√

x +√
αy)/Q(i,

√
n,

√
α) is only ramified at 2. Then

some local considerations at 2 finish the proof.

4. Convention, definitions and classical lemmas

We now pass to the proof of Theorem 1.4.

4.1. Gaussian integers

We will follow several conventions that appear in [23, Chapters 9.7 and 9.8] concerning
the ring Z[i ] of Gaussian integers. The multiplicative group of its units is denoted by

U := {±1, ± i}. A Gaussian integer α is said to be odd if its norm N(α) := NQ(i)/Q(α) is

odd. This condition holds if and only if 1+ i does not divide α. We say that a Gaussian
integer α is primary if it satisfies the condition

α ≡ 1 mod 2(1+ i).

A primary element is necessarily odd. For any odd Gaussian integer α, the set of its
associates {±α, ± iα} contains exactly one primary element. A Gaussian integer z = x + iy
with x and y in Z is said to be primitive if the integers x and y are coprime.

An element of the set Podd := {3,5,7,11, . . . } is called an odd natural prime. We denote

by PG the set of the odd primary irreducible Gaussian integers. A Gaussian integer z
belongs to PG if and only if it satisfies exactly one of the following two conditions:

• −z belongs to Podd and z is congruent to 3 mod 4.
• z is primary and z z belongs to Podd and is congruent to 1 mod 4.

Any odd Gaussian integer z is the product of a unit and elements of PG. This

decomposition is unique up to the order. When z is primary, this unit is equal to 1.
The number of distinct elements of PG appearing in this decomposition is denoted by

ω̃(z ). In particular, if n is an odd positive integer, we have

ω̃(n) = 2ω1(n)+ω3(n).

We now give an easy decomposition of a positive integer which will be useful in §6.1.

Lemma 4.1. Let n ≥ 1 be an odd, square free integer and let β0, β1, β2 and β3 be four

Gaussian integers such that

n = β0β1β2β3. (4.1)

Then there exist

• units η0, η1, η2 and η3,
• positive integers b0, b1, b2 and b3,
• primitive Gaussian integers zk,� with 0 ≤ k �= � ≤ 3,

such that for 0 ≤ k ≤ 3 and � �= k , the following properties are true:

(i) βk/bk is a primitive Gaussian integer.

(ii) βk = ηkbk
∏

� �=k zk,�.
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(iii) z�,k = zk,�.
(iv) zk,� is primary.

(v)
∏

0≤k≤3 ηk = 1.

Finally, given (n,β0,β1,β2,β3) satisfying (4.1), there is a unique set {ηk,bk,zk,�} satisfying
these conditions.

Remark 3. In this decomposition, no zk,� is divisible by some element of Podd. The

elements of the set {bk,zk,�} are coprime in pairs, since n is square free. To lighten some

notations, we will write zk� instead of zk,�. Note that condition (v) follows from the other
conditions.

4.2. Sums of multiplicative functions

We introduce the notation

L := log2x .

When bounding several error terms trivially, we will frequently use the following lemma:

Lemma 4.2. Let κ > 0 be fixed. Then uniformly for x ≥ 1, the following bounds hold

true: ∑
n≤x

μ2(n)κω(n) � x Lκ−1,

∑
n≤x

μ2(n)κω(n)n−1 � Lκ,

and for � = 1 or 3, ∑
n≤x

p|n⇒p≡� mod 4

μ2(n)κω(n) � x Lκ/2−1,

∑
n≤x

p|n⇒p≡� mod 4

μ2(n)κω(n)n−1 � Lκ/2.

Proof. Using Rankin’s trick, we readily deduce the second and fourth inequalities. The

first and third then follow from [29, Theorem 2.14].

4.3. Characters to detect squares

In definition (1.1) we need to detect whether a Gaussian integer is a square or not

modulo a given Gaussian prime π . This detection will be accomplished by a character
which generalises the Legendre symbol to the ring of Gaussian integers. If α is a nonzero

Gaussian integer, the number of residue classes of Z[i ] modulo αZ[i ] is N(α), and φ(α) is

the number of these classes which are coprime with α.
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Definition 4.3. Let π be an odd irreducible element of Z[i ] and let α be an element of

Z[i ]. Then we put

[α

π

]
:=

⎧⎪⎨⎪⎩
0 if π | α,

1 if π � α and α is a square mod π,

−1 if π � α and α is not a square mod π .

This character is sometimes denoted by
(α

π

)
Q(i),2

. It has the important property of

being the square of the quartic character χπ(α), which is for instance defined in [23,

p. 122], and it plays a central role in [17, §4]. We extend [ ·
· ] by multiplicativity to odd

composite moduli β factorised as a product of irreducible elements β = π1 · · ·πs , by the

formula [α
β

]
=
[ α

π1

]
· · ·
[ α

πs

]
,

which is the analogue of the Jacobi symbol.

We recall several formulas satisfied by the character [ ·
· ]. The letter η denotes an element

of U, the letter α denotes a Gaussian integer, the letters β, β1, β2 denote odd Gaussian

integers and π is an odd irreducible element of Z[i ]. We have[α

π

]
≡ α

N(π)−1
2 mod π,

[α
η

]
= 1,

[ α

ηβ

]
=
[α
β

]
, (4.2)

[α1α2

β

]
=
[α1

β

]
·
[α2

β

]
,
[ α

β1β2

]
=
[ α

β1

]
·
[ α

β2

]
, (4.3)

[α +β

β

]
=
[α
β

]
,

[ 1
β

]
=
[−1

β

]
= 1,

[ i
β

]
=
[−i

β

]
=
{

1 if N(β) ≡ 1 mod 8,
−1 if N(β) ≡ 5 mod 8,

(4.4)

∑
α mod β

[α
β

]
=
{

0 if β �= ηβ2
1,

φ(β) if β = ηβ2
1,

[α
β

]
=
[α
β

]
. (4.5)

If the real parts of α and β are odd and α is odd (for instance when α and β are primary),

we have the reciprocity formula due to Gauss (see [27, Proposition 5.1], for instance):[α
β

]
=
[β
α

]
. (4.6)
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If n belongs to Z and if π is such that ππ = p belongs to Podd, we have[n
π

]
=
(n
p

)
, (4.7)

where the Legendre symbol appears on the right-hand side. If a and b are positive integers,

with (2a,b) = 1, we have [a
b

]
= 1. (4.8)

5. Oscillations of characters

5.1. Siegel–Walfisz–type theorems

Lemma 5.1. For every A > 0, we have

∑
n≤x

μ2(nr)

4ω(n)

(n
q

)
= OA

(√
q x 2ω(r)L−A),

uniformly over integers r ≥ 1, x ≥ 2 and odd, square free integers q > 1.

Remark 4. Such a sum is treated in [16, p. 477] (with the constant 4 replaced by 2),
but the proof is different: after restricting to integers n with a reasonable number of prime

factors, we apply the classical Siegel–Walsfisz theorem to the largest prime factor. Such

a device also appears in [17, (80)] and in [19, p. 3631].

Proof. Consider the arithmetic function

a(n) = aq,r (n) := μ2(nr)

4ω(n)

(n
q

)
and the associated Dirichlet series

F (s) :=
∑
n≥1

a(n)

ns =
∏
p�r

(
1+

(p
q

)
4ps

)
,

considered as a function of the complex variable s = σ + it . This Dirichlet series is
absolutely convergent for σ > 1. Its expression as an Euler product leads to the formula

F (s) = Gr (s) {L(s,(·/q))}1/4 ,

where the function Gr (s) is holomorphic on the half-plane �s > 9/10 and satisfies in

this region the inequality Gr (s) = O(2ω(r)), and where the determination of L(s,( ·
q ))1/4

is chosen such that it tends to 1 as s is real and tends to +∞. It is well known that there

exists a positive c > 0 such that L(s,( ·
q )) has no zero in the region


 :=
{
s : σ > 1− c

log(q(|t |+4))

}
, (5.1)
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with at most one exception (Siegel’s zero, denoted by β1) – which, if it exists, is simple

and located on the real axis. Furthermore, it satisfies the inequality

β1 < 1− c(ε)

qε
,

where ε > 0 is arbitrary and c(ε) > 0 (see [29, Theorems 11.3 and 11.14], for instance).

We start from the equality ∑
n≤x

a(n) =
∫ 2+i∞

2−i∞
F (s)x s ds

s
.

If there is no Siegel zero β1, we shift the contour of integration to the path G defined by

σ = 1− c/2
log(q(|t |+2))

,

where c is the constant appearing in (5.1). If β1 exists, we replace the part of G satisfying

|t | ≤ c(ε)/(2qε) by two horizontal segments with ordinates ±c(ε)/(2qε) and a semicircle

with centre β1 and radius c(ε)/(2qε). In both cases, all the zeroes of L are on the left of
G, and the function F (s) is holomorphic on some open subset containing the part of the

complex plane situated on the right-hand side of G. To bound |F (s)| on G, we appeal to

the bounds [29, (11.6)] or [29, (11.10)] for L(s,( ·
q )) according to the existence of β1 and

the situation of s on G, and we complete the proof of Lemma 5.1. This procedure is similar
to the proof of the Siegel–Walfisz theorem on sums of values of Dirichlet characters on

consecutive primes.

5.2. Double oscillation bounds for Jacobi symbols

Consider the bilinear sum over the Jacobi symbol


(ξ,ζ,M ,N ) :=
∑

1≤m≤M

∑
1≤n≤N

μ2(2m)μ2(2n)ξ(m)ζ(n)
(m

n

)
,

where ξ and ζ are given sequences of complex numbers. We recall [16, Lemma 15(18)]

(see also [18, Proposition 10]).

Lemma 5.2. Let ξ(m) and ζ(n) be complex sequences with modulus less than 1. Then
for every ε > 0, uniformly for M and N ≥ 1 we have


(ξ,ζ,M ,N ) �ε MN (M −1/2+ε +N −1/2+ε). (5.2)

This quite general lemma shows cancellation as soon as min(M ,N ) tends to infinity.

Actually, we will use Lemma 5.2 under an extended form, where the number of divisors
of the integer n is denoted by d(n).

Lemma 5.3. Let ξ(m) and ζ(n) be complex sequences, such that |ξ(m)| ≤ d(m) and

|ζ(n)| ≤ 1 for all m and n ≥ 1. Then for every ε > 0, uniformly for K , M and N ≥ 1 we
have


(ξ,ζ,M ,N ) �ε KMN (M −1/2+ε +N −1/2+ε)+K−1MN (logM )3.
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Proof. Of course, we could go to the original proof of Lemma 5.2 and insert, for some
integer r , the �r–norm of the sequence ξ(m). We prefer to give a proof starting from

Lemma 5.2 itself. We denote by 
<K the subsum of 
(ξ,ζ,M ,N ) corresponding to

pairs (m,n) such that |ξ(m)| ≤ K and 
≥K is the complementary sum. So we have

(ξ,ζ,M ,N ) = 
<K +
≥K . A direct application of (5.2) gives the bound


<K � KMN (M −1/2+ε +N −1/2+ε).

The other sum, 
≥K , is handled trivially by

|
≥K | ≤ N
∑
m≤M

d(m)≥K

d(m) ≤ N
∑

m≤M

d(m)2

K
� K−1MN (logM )3.

Adding these bounds completes the proof of the lemma.

5.3. Double oscillation bounds for [ ·
· ]-symbols

We now consider the situation where, in the bilinear form, the Jacobi symbol is replaced

by the [ ·
· ]-symbol, which turns out to be very similar.

To be more precise, let us define the bilinear form

�(ξ,ζ,A,B) :=
∑

N(α)≤A

∑
N(β)≤B

ξ(α)ζ(β)
[α
β

]
,

where ξ(α) and ζ(β) are complex numbers defined on the set of odd Gaussian integers α

and β. By a weaker form of [17, Proposition 9], we have the following:

Lemma 5.4. Let ξ(α) and ζ(β) be complex sequences with support included in the set of

primary square free Gaussian integers. Furthermore, suppose that these sequences satisfy
the inequalities

|ξ(α)|, |ζ(β)| ≤ 1.

Then uniformly for A and B ≥ 1, we have

�(ξ,β,A,B) � AB(A−1/9 +B−1/9).

The trivial bound for � is O(AB). Any bound of � of the shape � � AB(A−δ +B−δ)

for some positive δ would be sufficient for the proof of Theorem 1.4. The same remark

applies to (5.2).

6. Proof of Theorem 1.4: First steps

6.1. Transformation of f (n)

Our purpose is to use the character [·/·] to transform the function f (n) when n is a

positive square free integer. Recall the definition of f (n) (see (1.1)):

f (n) := 1
4

· �
{
β ∈ Z[i ] : β ≡ ±1 mod 4Z[i ], β|n such that

for all π |β, the Gaussian integer n/β is a square modulo π,
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and for all π |(n/β), the Gaussian integer β is a square modulo π
}
.

We further recall that f (n) is equal to 2rk4Cl(Kn ) for generic n, by Theorem 1.3. First
of all, the value of f (n) does not change if, in (1.1), we restrict ourselves to primes π

belonging to PG. Note that the function

1
2ω̃(β)

∏
π |β

π∈PG

(
1+
[n/β

π

])
= 1

2ω̃(β)

∑
β1|β

β1 primary

[n/β

β1

]
(6.1)

detects precisely the condition
[
n/β

π

]
= 1 for every π |β.

Similarly, the function

1
2ω̃(n/β)

∏
π |n/β

π∈PG

(
1+
[β

π

])
= 1

2ω̃(n/β)

∑
β3|n/β

β3 primary

[ β

β3

]
(6.2)

detects the condition
[

β

π

]
= 1 for every π |n/β. Writing β = β0β1 and n/β = β2β3,

gathering (6.1) and (6.2) and expanding the sums and the characters, we finally obtain

f (n) = 1
4

∑
β0

1
2ω̃(β0)

∑
β1

1
2ω̃(β1)

∑
β2

1
2ω̃(β2)

∑
β3

1
2ω̃(β3)

[β0β1

β3

]
·
[β2β3

β1

]
, (6.3)

where the sum is over β = (β0,β1,β2,β3) ∈ Z[i ]4 such that

n = β0β1β2β3, β0β1 ≡ ±1 mod 4, β1 and β3 primary. (6.4)

These congruence conditions imply that β1 and β3 both have odd real parts. Hence, by

the reciprocity relation (4.6), (6.3) simplifies to

f (n) = 1
4

∑
β0

1
2ω̃(β0)

∑
β1

1
2ω̃(β1)

∑
β2

1
2ω̃(β2)

∑
β3

1
2ω̃(β3)

[β0

β3

]
·
[β2

β1

]
,

where the βi satisfy (6.4). Let

S (x ) :=
∑
n≤x

μ2(2n)
( f (n)

2ω3(n)−1

)
be the sum appearing in (1.3). Inserting the factorisation of the variable n given in (6.4),
we obtain

S (x ) = 1
2

∑
β0

1
2ω̃(β0)+ω3(β0)

∑
β1

1
2ω̃(β1)+ω3(β1)

∑
β2

1
2ω̃(β2)+ω3(β2)∑

β3

1
2ω̃(β3)+ω3(β3)

[β0

β3

]
·
[β2

β1

]
, (6.5)

where the Gaussian integers βi are odd and satisfy the congruence conditions

β0β1 ≡ ±1 mod 4, β1 and β3 primary, (6.6)
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the constraint

β0β1β2β3 ∈ N and 1 ≤ β0β1β2β3 ≤ x

and the coprimality condition

(βk,β�) = 1 for 0 ≤ k < � ≤ 3.

In (6.5) the function ω3 has naturally been extended to Gaussian integers z by defining
ω3(z ) to be the number of distinct irreducible divisors of z belonging to Podd.

6.2. The main term

Let SMT(x ) be the contribution to the right-hand side of (6.5) coming from β =
(β0,β1,β2,β3) such that every βi is a nonzero integer, of any sign. When βi are odd
integers, (6.6) simply becomes

β1 ≡ β3 ≡ 1 mod 4. (6.7)

When m is a nonzero integer, we have ω̃(m)+ω3(m) = 2ω(m). Then we deduce

SMT(x ) = 1
2

∑
1≤n≤x

μ2(2n)

4ω(n)
·ν(n),

where ν(n) is the number of ways that n can be written as n = β0β1β2β3 with integers βi

of any sign satisfying (6.7). When n is odd and square free, a direct computation shows
that

ν(n) = 2 ·4ω(n).

Therefore we conclude that

SMT(x ) =
∑

1≤n≤x

μ2(2n), (6.8)

which corresponds to the first term on the right-hand side of (1.3).

7. Preparation of the error term: Part I

Let SErr(x ) be the contribution to S (x ) of the terms β such that at least one βk (and
hence at least two) is not an integer. Our goal is to prove that

SErr(x ) = O(x (logx )−1/8), (7.1)

which combined with (6.8) will give (1.3) and hence Theorem 1.4.

7.1. Factorisation of the variables

We appeal to Lemma 4.1 to factorise each Gaussian integer βk in (6.5). The summation

over the four variables βk is replaced by 20 variables ηk , bk , zk�. We take time to precisely

write this expression, where we exchanged the indices 1 and 3 in comparison with (6.5).
We have

SErr(x ) = 1
2

∑
η

∑
b

1
4ω(�b)

∑
z

μ2
(
2(�b)(�z )

)
2ω̃(�z )

[η0b0z01z02z03
η1b1z10z12z13

]
·
[η2b2z20z21z23
η3b3z30z31z32

]
, (7.2)
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where �b := b0b1b2b3, �z =∏k �=� zk� =∏0≤k<�≤3 |zk�|2 and

• we have

1 ≤ (�b)(�z ) ≤ x, (7.3)

• η = (η0,η1,η2,η3) belongs to U4 and satisfies the equality

η0η1η2η3 = 1, (7.4)

• b = (b0,b1,b1,b3) is a four-tuple of odd positive integers,
• z = (zk�)0≤k �=�≤3 are primitive primary Gaussian integers such that

zk� = z�k for 0 ≤ k < � ≤ 3, (7.5)

• we have

η0η3b0b3z01z02z31z32|z03|2 ≡ ±1 mod 4, η3b3 and η1b1 are primary, and (7.6)

• for some 0 ≤ k ≤ 3, we have

ηkbk
∏
��=k

zk� �∈ Z. (7.7)

7.2. Comments and simplifications of (7.2)

Note that the factor μ2(2(�b)(�z )) in the definition of SErr(x ) ensures that all the bk
and all the zk� are odd and coprime by pairs. The integer �z is only divisible by odd

natural primes congruent to 1 mod 4, and and this remark leads to the equality

ω̃(�z ) = 2ω1(�z ) = 2ω(�z ). (7.8)

Now consider the second part of (7.6). Since b1 and b3 are positive integers, the units
η1 and η3 can only be equal to ±1. Hence the conditions η1b1 and η3b3 primary are

equivalent to

b1 ≡ η1 and b3 ≡ η3 mod 4. (7.9)

Consider now the first part of (7.6). Since |z03|2 is a positive integer ≡ 1 mod 4, since
b0 and b3 are ≡ ±1 mod 4, since η3 = ±1 and since the zk� are primary, we deduce that

η0 ≡ ±1 mod 2(1+ i), so we have η0 = ±1. Returning to (7.4), we deduce that η2 = ±1.
Thus we have

η ∈ {±1}4, and η0η1η2η3 = 1. (7.10)

With these remarks, we see that the first part of (7.6) is equivalent to

z01z02z31z32 ≡ ±1 mod 4. (7.11)

Since the value of every ηk is ±1, we see that (7.7) is equivalent to

for some 0 ≤ k < � ≤ 3 we have zk� �= 1. (7.12)

That (7.7) implies (7.12) is clear. For the other direction, suppose, for instance, that

b0z01z02z03 = b ′, where b ′ is some integer, and suppose that the primitive primary element
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z01 is not equal to 1. Then z01 is divisible by some irreducible π , with ππ an element of
Podd congruent to 1 modulo 4. Necessarily, π divides the integer b ′ and hence π divides

b0, z02 or z03. But π does not divide the integer b0 (otherwise b0 and z01 would not be

coprime). So π divides z02, for instance. But by conjugation, π divides z01 = z10. So z10
and z02 would not be coprime, and this is a contradiction.

Finally, by the values of the symbol [ ·
· ] given in (4.2) and (4.4), we can suppress the

ηk = ±1 in the numerators and denominators of both symbols [ ·
· ] in (7.2).

We benefit from all these remarks to simplify (7.2). So we introduce the set U ⊂
(Z[i ]/4Z[i ])4 defined by

U := {(u01,u02,u13,u23) : u01 u02 u13 u23 ≡ ±1 mod 4
}
.

After a decomposition of (7.11) into congruences modulo 4 and a trivial summation over

η and the b satisfying (7.9) and (7.10), we split SErr(x ) into

SErr(x ) =
∑
u∈U

S (x,u),

with

S (x,u) =
∑
b

1
4ω(�b)

∑
z

μ2(2(�b)(�z )
)

2ω̃(�z )

[b0z01z02z03
b1z10z12z13

]
·
[b2z20z21z23
b3z30z31z32

]
, (7.13)

where b and z satisfy (7.5), (7.3), (7.12) and the congruence conditions

z01 ≡ u01,z02 ≡ u02,z13 ≡ u13,z23 ≡ u23 mod 4. (7.14)

The sum S (x,u) contains 10 independent variables of summation:

b0,b1,b2,b3 ∈ N and z01,z02,z03,z12,z13,z23 ∈ Z[i ], (7.15)

since the other zk� are linked to each other by (7.5). The variables bk and zk� do not have

the same role. Each variable bk appears in exactly one of the two symbols [ ·
· ], and thanks

to (4.6) the variables bk play a similar role. The variable zk� and its conjugate z�k = zk�

appear exactly once. But z01 and z10 appear in the numerator and the denominator of the

same symbol. The same is true for z23 and z32. The other zk� and z�k appear in different

symbols. In its combinatorial aspect, this situation appears to be different from the one
encountered in [16], for instance.

7.3. Trivial bounds for some subsums of S (x,u)

We first give a trivial bound for the complete sum S (x,u). Consider (7.13). Since every
p ≡ 1 mod 4 can be written in 12 ways as

p =
∏

0≤k �=�≤3

zk�,

where the primitive primary Gaussian integers zk� satisfy the conjugacy condition (7.5),

we deduce the following trivial inequality for S (x,u), where we bound each character by
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1 and drop (7.14):

|S (x,u)| ≤
∑
b

1
4ω(�b)

∑
m

p|m⇒p≡1 mod 4

μ2(2(�b)m) · 12ω(m)

4ω(m)
. (7.16)

Here we used (7.8), and the sum is over the positive integers b = (b0,b1,b1,b3) and m such

that (�b)m ≤ x . A direct application of Lemma 4.2 implies the bound

|S (x,u)| �
∑
b≤x

μ2(2b)
4ω(b)

4ω(b)
(x/b)L1/2

� xL3/2.

As a consequence of (1.4), we see that this crude bound of the error term is larger than
SMT(x ) by a small power of L.
We want to generalise this bound to some important subsums we will meet in the sequel

of the proof. Let R be a set of positive integers less than x . Let SR(x,u) be the subsum

of S (x,u) corresponding to the further restriction on the variables

(�b)(�z ) ∈ R.

We have the following lemma:

Lemma 7.1. Uniformly for x ≥ 1 and for R a subset of integers less than x , we have

SR(x,u) � (x |R|)1/2L15/4.

Proof. Let g be the multiplicative function defined on the set of odd, square free integers
by the formula

g(p) =
{

4 if p ≡ 1 mod 4,
1 if p ≡ 3 mod 4.

By a computation similar to (7.16) and by the Cauchy–Schwarz inequality, we have∣∣SR(x,u)
∣∣≤ ∑

r∈R
g(r) ≤ ∣∣R∣∣1/2

(∑
n≤x

g2(n)
)1/2

. (7.17)

Let h1 and h3 be the two multiplicative functions defined on the set of square free integers

by the formulas

h1(p) =
{

16 if p ≡ 1 mod 4,
0 if p ≡ 3 mod 4,

and h3(p) =
{

0 if p ≡ 1 mod 4,
1 if p ≡ 3 mod 4.

We have the convolution equality g2 = h1 � h3. It remains to apply Lemma 4.2 twice to

obtain ∑
n≤x

g2(n) � xL15/2.

By (7.17) we complete the proof of Lemma 7.1.
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8. Preparation of the error term: Part II

8.1. Dissection of the domain of summation

We continue to prepare the error term S (x,u) by controlling the sizes of the 10 variables
appearing in (7.15) and removing the multiplicative constraint (7.3). When this is

achieved, we will be in a good position to apply Lemmas 5.1, 5.2 and 5.4. Let � be

the the dissection parameter

� := (1+L−10).

We denote by Bk and Zk� (0 ≤ k �= � ≤ 3) any number taken in the set of powers of �

{1,�, �2,�3, . . . },
and we impose Zk� = Z�k , for k �= � as a consequence of (7.5). We define

B := (B0, . . . ,B3),Z := (Zk�),�B := B0B1B2B3,�Z := |Z01Z02Z03Z12Z13Z23|2.
The notation bk � Bk (resp. zk� � Zk�) means that the integer variable of summation bk
(resp. the primitive primary Gaussian integer zk�) satisfies the inequalities Bk ≤ bk < �Bk

(resp. Zk� ≤ |zk�| < �Zk�). More generally, the notation b � B means that for each 0 ≤
k ≤ 3, we have bk � Bk . Then the notation z � Z has an obvious meaning. For (B,Z ) as

before, we consider the cuboid

C(B,Z ) :=
∏

0≤k≤3

[
Bk,�Bk

]
×

∏
0≤k �=�≤3

[
Zk�,�Zk�

]
. (8.1)

We return to (7.13). We cover the set of summation defined by (7.3) by

O(L110) (8.2)

disjoint cuboids of the form C(B,Z ).

If C(B,Z ) is such that

(�B)(�Z )�16 ≤ x,

then every element (b,z ) of C(B,Z ) satisfies (7.3).

By contrast, if

(�B)(�Z ) ≤ x and (�B)(�Z )�16 > x,

the elements (b,z ) of C(B,Z ) do not necessarily satisfy (7.3). However, the contribution
of these elements to S (x,u) is negligible. It suffices to apply Lemma 7.1, with

R = [x (1−O(L−10),x ],

to see that the contribution is � (x2L−10)1/2L15/4 � xL−1/8, which fits in the error term

of (7.1).
Similarly, the contribution to SErr(x ) of the union of the C(B,Z ) such that

(�B)(�Z ) ≤ xL−10

is also negligible. To prove that, we apply Lemma 7.1, with R = [1,xL−10], to see that

this contribution is � xL−1/8.
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8.2. The case of cuboids with too many small edges

Our purpose is to restrict our study to the cuboids C(B,Z ) which have at least four large

edges. So we introduce the following definition:

Definition 8.1. Let C(B,Z ) be the cuboid defined in (8.1). Let y be one of the 10
independent variables of the list in (7.15) and let [Y ,�Y ] be the edge associated to this

variable y . We say that this edge is large if

(i) Y ≥ exp(L1/100) when y is one of the bk (0 ≤ k ≤ 3) and
(ii) Y ≥ L5000 when y is one of the zk� (0 ≤ k < � ≤ 3).

If Y does not satisfy these inequalities, we say that this edge is small.
Similarly, we say that the associated variable y is large or small according to the

inequality satisfied by Y .

Let S≥7(x,u) be the total contribution to S (x,u) of all the C(B,Z ) which have at least
seven small edges associated to seven of the 10 independent variables of (7.15). We prove

the following lemma:

Lemma 8.2. For x ≥ 1, we have

S≥7(x,u) � xL−1/8.

Proof. The definition of small depends on the variable considered, and since the

variables bk and zk� do not have the same role, we are obliged to consider different cases
according to the respective number of bk and zk�, which are large. However, we present

only the case where at most two bk (say, b2 and b3) and at most one zk� (say, z23) is

large. The other cases are similar. Returning to (7.13), we see that the total contribution

(denoted by �(x )) to S (x,u) of the C(B,Z ) corresponding to this particular case satisfies
the inequality

|�(x )| ≤
∑∑

b0,b1≤exp(L1/100)

1
4ω(b0b1b2b3)

∑
|z01|,|z02|,|z03|,

|z12|,|z13|≤L5000

1
4ω(|z01···z13|2)

∑∑
b2b3≤x/(b0b1|z01|2···)

1
4ω(b2b3)

∑
|z23|2≤x/(b0b1···|z01|2···)

1
4ω(|z23|2)

,

where all the prime factors of the integers |zk�|2 are congruent to 1 modulo 4. By the

change of variables b := b0b1, m := |z01|2|z02|2|z03|2|z12|2|z13|2, b ′ = b2b3 and m ′ := |z23|2,
we obtain the bound

|�(x )| ≤
∑

b≤exp(2L1/100)

1
2ω(b)

∑
m≤L50000

p|m⇒p≡1 mod 4

(5
2

)ω(m) ∑
b′≤x/(bm)

1
2ω(b′)

∑
m ′≤x/(bb′m)

p|m ′⇒p≡1 mod 4

1
2ω(m ′) ,

which is finally

�(x ) � xL−1/4+1/200+ε,
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by a repeated application of Lemma 4.2 and where ε > 0 is arbitrary. This finally gives

�(x ) � xL−1/8,

as desired.

8.3. The crucial sums

Let (B,Z ) be as in §8.1 and let S (B,Z,u) be the subsum of S (x,u) (see (7.13)) defined
by

S (B,Z,u) =
∑
b

1
4ω(�b)

∑
z

μ2(2(�b)(�z )
)

2ω̃(�z )

[b0z01z02z03
b1z10z12z13

]
·
[b2z20z21z23
b3z30z31z32

]
, (8.3)

where b = (bk )0≤k≤3 and z = (zk�)0≤k �=�≤3 satisfy (7.5), (7.12), (7.14) and

b � B and z � Z .

Recall that bk are positive integers and zk� are primitive primary Gaussian integers.
By the discussion developed in §8.1, we can suppose that (B,Z ) satisfies the inequalities

xL−10 < (�B)(�Z ) ≤ x�−16. (8.4)

By Lemma 8.2, we can restrict our study to the cuboids C(B,Z ) with

at least four large variables among the 10 in (7.15). (8.5)

Finally, since the number of subsums S (B,Z,u) is bounded by (8.2), to prove (7.1) it

is sufficient to prove that for every (B,Z ) satisfying (8.4) and (8.5) and for every u ∈ U ,
we have

S (B,Z,u) � xL−1/8−110. (8.6)

9. Proof of Theorem 1.4

The purpose of this section is to prove (8.6) by exploiting the oscillation of the character

[ ·
· ] in different ways.

9.1. Gymnastics on the product of two characters

Recall that zk� = z�k . The 10 independent variables given in (7.15) appear in (8.3). Let

F (b,z ) :=
[b0z01z02z03
b1z10z12z13

]
·
[b2z20z21z23
b3z30z31z32

]
. (9.1)

First of all we want to factorise F in a suitable way to apply bounds coming from Lemmas

5.1, 5.2 and 5.4. We will exploit the multiplicativity of the characters (4.3) and the fact

that all the elements bk and zk� have an odd real part to apply (4.6). Finally, we will use
the conjugation formula (4.5). To shorten formulas, we introduce the following notation:

let x be one of 10 variables listed in (7.15); we denote by f (̂x ) any function of the 10

variables of (7.15) but independent of x .
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Lemma 9.1. Let (x,y) be a pair of distinct variables in (7.15) such that (x,y) or (y,x )

belongs to the set E of 26 pairs of variables defined by

E := { (b0,b1), (b0,z01), (b0,z12), (b0,z13), (b1,z01), (b1,z02),
(b1,z03), (b2,b3), (b2,z03), (b2,z13), (b2,z23), (b3,z02),
(b3,z12), (b3,z23), (z01,z02), (z01,z03), (z01,z12), (z01,z13),
(z02,z03), (z02,z12), (z02,z23), (z03,z13), (z03,z23), (z12,z13),
(z12,z23), (z13,z23) }.

Then at least one of the following two is true:

(i) There exist functions ξ and ζ with modulus less than 1 such that for all the values

of the variables (b,z ), we have

F (b,z ) = ξ(̂x )ζ (̂y)
[x
y

]
.

(ii) There exist functions ξ and ζ with modulus less than 1 such that for all the values
of the variables (b,z ), we have

F (b,z ) = ξ(̂x )ζ (̂y)
[x
y

]
.

Proof. We only give the proof when (x,y) = (z01,z12). With obvious meanings for α, β,
γ and δ, write [b0z01z02z03

b1z10z12z13

]
·
[b2z20z21z23
b3z30z31z32

]
=
[ αz01
βz01z12

]
·
[γ z12

δ

]
, (9.2)

and decompose the first character as[ αz01
βz01z12

]
=
[ α

βz01

]
·
[ α

z12

]
·
[ z01
βz01

]
·
[z01
z12

]
.

Combining with (9.2), the definitions of ξ(ẑ01) and ζ(ẑ12) are obvious.

Remark 5. Actually in the application to follow, we will never use the pairs (bk,b�) of

the set E , since there is no oscillation of the symbol [ bkb�
], because its value is always 1

(see (4.8)).

Finally, a pair (zk�,zk ′�′), with k < �, k ′ < �′ and (k,�) �= (k ′,�′), belongs to the set E
of Lemma 9.1 if and only if the intersection of the set of indices {k,�}∩ {k ′,�′} contains

exactly one element. This property implies that in any set of three distinct variables zki �i ,
with 1 ≤ i ≤ 3 and 0 ≤ ki < �i ≤ 3, there exist at least two indices i and j such that
(zki �i ,zkj �j ) belongs to E .

9.2. The final steps

Our proof of (8.6) is based on the number of large edges (at least four) of the cuboid
C(B,Z ) and the distribution of this number between the bk and the zk�. Recall that the

zk� are primary, primitive, square free and coprime by pairs. Our discussion is divided

into four cases which do not exclude each other.
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9.2.1. The variables b0, b1, b2 and b3 are large and no z k� is large. By (7.12),

there is a zk� �= 1. By symmetry, we can suppose that we have z01 �= 1. By the multiplicative

properties of the symbol
[

·
·
]
and by (4.7), we factorise F (b,z ) defined in (9.1) as

F (b,z ) = f (b̂0)
[ b0

z10z12z13

]
= f (b̂0)

( b0

|z01z12z13|2
)
,

where f (b̂0) is a function independent of b0 of modulus less than one. Since the variables
z01( �= 1), z01, z12, z12, z13 and z13 are small, primitive, primary and coprime in pairs, the

denominator |z01z12z13|2 is a nonsquare odd integer, satisfying the inequalities

1 < |z10z12z13|2 ≤ L30000. (9.3)

We deduce the following inequality:

|S (B,Z,u)| ≤
∑

b1�B1

1
4ω(b1)

∑
b2�B2

1
4ω(b2)

∑
b3�B3

1
4ω(b3)

∑
z�Z

1
4ω(�z )∣∣∣ ∑

b0�B0

μ2(b0)

4ω(b0)

( b0

|z10z12z13|2
)∣∣∣,

where, furthermore, b0 is coprime with r := 2b1b2b3|z02z03z23|2. We apply Lemma 5.1 to

the inner sum on b0, with a very large A. Then we sum trivially over the other variables:

by (8.4), (9.3) and the inequality logB0 ≥ L1/100, we obtain (8.6).

9.2.2. Three variables bk are large and some z k ′�′ is large. We can suppose that

the variables b0, b1 and b2 are large. It easy to check that for any choice 0 ≤ k ′ < �′ ≤ 3,
at least one of the pairs (b0,zk ′�′), (b1,zk ′�′) and (b2,zk ′�′) appears in the set E given in
Lemma 9.1. To facilitate the exposition, suppose that we are in the case where this pair

is (b0,z01). Thanks to this lemma, we have

|S (B,Z )| ≤
∑∑∑

b1,b2,b3

∑
· · ·
∑

z02,z03,z12
z13,z23

∣∣∣ ∑
b0�B0

∑
z01�Z01

ξ(b̂0)ζ(ẑ01)
[ b0

z01

]∣∣∣. (9.4)

Inspired by the equality [ b0

z01

]
=
( b0

|z01|2
)
,

we put m := |z01|2. The number of ways of representing m in this form is O(d(m)). Hence

the last double sum in (9.4) is of the shape 
(ξ ′,ζ,�B0,�
2Z 2

01), with |ξ ′(m)| ≤ d(m). We
apply Lemma 5.3, with the choice K =L150. By hypothesis, B0 and Z 2

01 are large, so both

are greater than L10000. This lemma gives a nontrivial bound for the last double sum in

(9.4) by a factor L−147. Summing trivially over the variables z02,z03,z12,z13,z23,b1,b2,b3
in (9.4), we complete the proof of (8.6).

9.2.3. Two bk are large and two z k ′�′ are large. By directly checking all the

possibilities for the two variables bk and the two variables zk ′�′ , we claim that there is
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a pair (bk0,zk ′
0�′

0
) of these large variables in the set E . As soon as this pair (bk0,zk ′

0�′
0
) is

found, the proof is similar to §9.2.2.

9.2.4. Three z k� are large. By Remark 5, there exists a pair of these large variables
(zk�,zk ′�′) in the set E of Lemma 9.1. For simplicity of notation, suppose that this pair is

(z01,z02). This allows us to rearrange S (B,Z,u) as follows:

|S (B,Z,u)| ≤
∑

· · ·
∑

b0,b1,b2,b3

∑
· · ·
∑

z03,z12,z13,z23

∣∣∣ ∑
z01�Z01

∑
z02�Z02

ξ(ẑ01)ζ(ẑ02)
[z01
z02

]∣∣∣,
for some coefficients ξ and ζ less than one in modulus. The double inner sum over z01
and z02 is of the form �(ξ,ζ,�2Z 2

01,�
2Z 2

02), which is studied in Lemma 5.4. Since Z01
and Z02 are larger than L5000, this lemma gives a nontrivial bound for the last double

sum by a factor L−10000/9. It remains to sum trivially over the bk and the four remaining
zk� to obtain the bound (8.6) in this last case.

The proof of (8.6) has been accomplished in all the configurations of cuboids satisfying

(8.4) and (8.5). The proof of Theorem 1.4 is now complete.

10. Proof of Theorem 1.1

We split

#{0 < n < x : n odd and square free, rk4Cl(Kn) �= ω3(n)−1}
in the set of generic n and its complement. The cardinality of the latter set is O

(
x log−1/4),

so it remains to bound

g(x ) := #{0 < n < x : n odd, square free and generic, rk4Cl(Kn) �= ω3(n)−1}.
By Theorem 1.4, there exists an absolute C0 such that for all x ≥ 2, we have∑

n≤x

μ2(2n)
( f (n)

2ω3(n)−1

)
≤
∑
n≤x

μ2(2n)+C0 x log−1/8 x .

By positivity, we deduce∑
n≤x

n generic

μ2(2n)
( f (n)

2ω3(n)−1

)
≤
∑
n≤x

μ2(2n)+C0 x log−1/8 x .

By rearranging, we obtain∑
n≤x

n generic

μ2(2n)
( f (n)

2ω3(n)−1 −1
)

≤
∑
n≤x

n not generic

μ2(2n)+C0 x log−1/8 x,

≤ 2C0 x log−1/8 x, (10.1)

for sufficiently large x . We appeal to Theorem 1.3 to conclude that

f (n)

2ω3(n)−1 −1 ≥ 0,
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and that it is equal to zero if and only if rk4Cl(Kn) = ω3(n)−1 and ≥ 1 if rk4Cl(Kn) ≥
ω3(n). These remarks imply that the left–hand side of (10.1) is larger than g(x ). This

completes the proof of Theorem 1.1.
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[20] É. Fouvry and P. Koymans, On Dirichlet biquadratic fields, Preprint, 2020,
https://arxiv.org/abs/2001.05350
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