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Kinetics and prey capture by a paddling jellyfish:
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Three-dimensional simulations are performed to investigate swimming and prey capture
by a paddling jellyfish. First, the three-dimensional vortex–vortex and vortex–body
interactions are revealed, as the jellyfish swims forwards through several cycles of
active muscle contraction followed by passive energy recapture via shape recovery.
For varied transient paddling force and paddling frequency, we analyse the resultant
changes of a jellyfish’s swimming speed, interactive power, cost of transport and prey
clearance rate. The pressure field around the periodically deformed elastic bell and the
circulation generated by starting and stopping vortex rings are presented in greater detail
to better understand the biophysical interactions that support swimming. Second, to
reveal prey-specific interception and feeding behaviour, using a dynamical-system-based
approach and modified Maxey–Riley equation, we compute the trajectories of the
surrounding infinitesimal, inertial, opposite and normally escaping prey or plankton that
hover around the medusa and are swept differently via the paddling-created velocity field.
Accordingly, the diverse prey trajectories are obtained with varied paddling force, resonant
driving of the elastic bell and for two different bell fineness ratios. These trajectories
are then used to compute the finite-time Lyapunov exponent fields and identify particle
Lagrangian coherent structures for various motile/strategically evasive prey, for five
swimming cycles. The detected geometric separatrices unambiguously map and demarcate
differently driven upstream fluid regions of a medusa and illustrate precisely from where an
intercepted prey can be brought into the jellyfish bell, or safely stored in a capture region
for ingestion, and from where a prey will surely escape. Hereby, for the first time, the
prey-specific target regions, the physically well-defined three-dimensional capture surfaces
and the generated cycle-to-cycle prey clearance rate are presented/analysed like never
before, which provide a significantly advanced understanding on diverse predator–prey
interactions and resultant success rate in prey capture. Several supplementary movies that
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show detailed fluid–structure interactions, transient entrainment of the floating prey and
eventual prey confinement inside a secured capture surface are provided for two different
jellyfish morphologies (fineness ratios 0.3 and 0.5) that help to better comprehend the
natural prey encounter and hunting processes.

Key words: swimming/flying, propulsion

1. Introduction

Jellyfish constitute a dominant group of mesozooplankton that are blooming in oceanic
waters due to their advanced hunting and escape skills (Peng & Dabiri 2009; Kiørboe
2011; Kiørboe et al. 2014) based on generated feeding current, prey filtering and fluid
signal. Swimming depends on rhythmic forced contraction of the flexible bell over a
relatively short time (known as the power stroke) and subsequent unforced bell expansion
that follows during a lengthy relaxation phase/pause (the recovery stroke). Over the past
years, the fluid–structure interaction (FSI) and mostly the resultant vortical flow patterns
around a swimming or cruising medusa ( jellyfish) have been examined extensively (Colin
& Costello 2002; Dabiri et al. 2005; Peng & Alben 2012; Alben, Miller & Peng 2013; Park
et al. 2014). These studies show that the fluid adjacent to the bell margin is effectively
entrained into the expanding cavity as a jellyfish swims forwards in the relaxation phase,
while the stopping vortex ring created in the process partly intrudes/advects into the bell or
subumbrellar bell region (Hoover, Griffith & Miller 2017). In the relaxed phase, a jellyfish
generates favourable thrust by virtue of the inward rotating dynamics of the created
three-dimensional (3-D) stopping vortex ring at the bell edge and via the manipulated
surrounding pressure. As the bell contracts during a propulsive power stroke, in addition to
the jet-like ejection of the inner fluid through the gradually reduced velar aperture, the fluid
surrounding a medusa is consistently entrained along the bell margin via the combined
interaction of the newly created starting vortex ring and the dropped off stopping vortex
that evolves closely in the vicinity (Dabiri et al. 2005; Gemmell et al. 2015; Hoover, Porras
& Miller 2019). Accordingly, in a paddling cycle, the near-field fluid is largely efficiently
pushed down/entrained towards a prey capture surface (tentacle) of a medusa via the
generated swimming/feeding current (Costello & Colin 1995; Colin, Costello & Kordula
2006; Peng & Dabiri 2009; Kiørboe 2011). Recently, researchers have increasingly focused
on exploring medusan propulsion, as it can be a dependable basis for the design of new
propulsion technologies suitable for tiny underwater vehicles.

Note, however, that, from the viewpoint of practical survival or hunting by natural
aquatic animals, to date, only a few experimental studies have attempted to analyse the
created feeding current (Shadden, Dabiri & Marsden 2006; Peng & Dabiri 2009; Katija
et al. 2011); and a detailed numerical exploration of prey selection and capture by a
cruising medusa is virtually non-existent. This requires an advanced insight plus execution
of a rather complex dynamical-system-based method to reveal how a floating/moving
copepod/nutrient is entrained or captured. In addition, the varying near-field fluid transport
by natural swimmers (predators) affects prey capture and feeding. Success depends
inherently on the motile behaviour of the various prey that are intercepted. The encounter
rate (defined as the number of prey entering a capture zone over a specific time) is largely
controlled by the amount of fluid that is transported past a capture surface; although the
capture of the prey depends on its size, mass, evasiveness and escape speed (Viitasalo et al.
1998; Hansson & Kiørboe 2006; Kiørboe et al. 2010; Nielsen et al. 2017) in relation to
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local fluid entrainment behaviour (of a predator), flow velocities, deformation rates (Ford,
Costello & Klos 1997; Kiørboe, Saiz & Visser 1999) and driving frequency.

The capture of food by a jellyfish is often characterized as follows: first, to detect and
encounter a potential prey; and second, to capture the prey via the created suction pressure
and fluid momentum. A jellyfish detects prey either visually or by the hydrodynamic signal
that preys generate (Kiørboe et al. 1999; Peng & Dabiri 2009; Kiørboe 2011). For capturing
motile/stationary prey, a common method adopted among medusae is to efficiently use
the self-generated feeding current. A strained prey particle/copepod that enters into an
appropriate feeding current is then entrained and captured as it moves inside a target
zone/loop. Prey without and with an escape force are thereby differently dragged to the
bell edge depending on the prey’s inertia/size and brought to the beating basket-shaped
jellyfish mouth, or suitably placed nearby for ingestion. However, elucidating the precise
physical process that governs prey capture and estimating the success rate for diverse
predator species are rather difficult to model/compute. Based on morphological and
behavioural characteristics, the medusae are classified into two functional groups: (i)
cruising predators, which actively create a feeding current to bring an evasive/stationary
prey into contact with the tentacles or nematocyst-bearing capture organ, and (ii) ambush
predators, which stretch their tentacle and wait for a prey to come into contact for capture
(Hansson & Kiørboe 2006).

Notably, in an experimental and numerical initiative, Peng & Dabiri (2009) analysed
the prey capture performance of the moon jellyfish Aurelia aurita, for encountered inertial
and strategically evasive prey, by employing an erroneously approximated Maxey–Riley
equation (Maxey & Riley 1983) and a dynamical system method. Accordingly the
forward-time finite-time Lyapunov exponent (FTLE) fields and particle Lagrangian
coherent structures (pLCS) were obtained by Peng & Dabiri (2009) for early swimming
cycles, which the authors used to define a projected prey capture area and analyse its
relative change for inertial and evasive prey types with respect to ideal infinitesimal
prey. However, the current study displays the practical limitations of such a small-time
analysis that often predicts an opposite capture performance for alert/escaping prey. In
addition, the important backward-time FTLE fields or pLCS are left unexplored. These, in
fact, have been demonstrated here to effectively identify the actual prey capture region,
and provide a dependable insight for the physical prey capture activity. Accordingly,
a thorough understanding of prey-specific selectivity, effective prey encounter loops, a
physically realistic capture area and the quantification of the success rate of a cruising
medusa clearly demands further focused research that the existing literature is lacking.
Therefore, while aiming for an improved insight, the present simulation of medusa motion
coupled with correct dynamical-system-based modelling of transport processes for various
motile/evasive prey over sufficiently long swimming cycles, plus a clear quantitative
analysis of the success rate of prey capture, are expected to significantly enrich the existing
knowledge on hunting/survival of such zooplankton.

The following should be noted at this point. (i) The starting equation (2.1) of Peng
& Dabiri (2009) that forms the basis for the adopted dynamical-system-based analysis
has a missing term involving prey inertia (R) and local prey escape acceleration (aE).
To aid comparison, herein the same notation is utilized (in our equation (3.5) below).
(ii) The approximate forward-time pLCS are considered as hypothetical prey capture
regions in Peng & Dabiri (2009) for inspected inertial, opposite, normally and
fluid signal-based escaping prey; whereas the computed backward-time pLCS could
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essentially/meaningfully determine those. (iii) All prey capture (interception) loops in their
figures 1–3, for opposite/strategically evasive prey, are obtained for about two swimming
cycles, i.e. for a much shorter time well before the feeding current adequately spreads,
the real escape effect or response is activated and the additional larger loops develop,
which practically show the opposite capture behaviour, as displayed herein. These make
the quantitative analysis of proposed prey capture areas in tables 1 and 2 in Peng & Dabiri
(2009) unsustainable (for varied inertia/escape force). Note further that, to date, apparently
no work exists that quantifies the success rate (clearance rate, CR) of prey capture, and
the cost of preying (COP). In addition, what impact the resonant driving makes on prey
capture remains unknown. The above elucidated facts motivated the current research,
with incorporated essential improvements. The objective here is to thoroughly examine
these stated issues for A. aurita, by taking into account various motile and evasive prey
behaviours, and to offer an improved insight and significant contribution.

Fluid mass conservation requires that forward advection of fluid in the vicinity of a
migrating jellyfish must be compensated by a rearward mass flux (Darwin 1953). While
the Eulerian velocity and vorticity fields (Colin & Costello 2002; Park et al. 2014; Hoover
et al. 2017) reveal instantaneous flow features, the dynamical-system-based approach that
is adopted herein pertinently demarcates the surroundings from a Lagrangian perspective
(Haller 2001, 2015; Shadden et al. 2006; Franco et al. 2007; Katija & Dabiri 2009;
Peng & Dabiri 2009) and is shown to be able to isolate physically distinct transport
behaviours in a finite time. Accordingly, the implemented procedure displays its direct
implication for the capture of motile prey and explains the animal’s feeding mechanisms.
To the authors’ knowledge, the current work presents a unique numerical model and
deeper analysis/insight that effectively reveals the detailed coupling of prey selection and
momentum exchange for a paddling medusa, by taking into account both the finite size and
evasiveness of various prey, plus the diverse driving patterns (of the predator). The aim
is to fill the existing gaps and substantially improve current understanding on the feeding
behaviour of these long survived natural predators.

The paper has been organized as follows. In § 2 the physical problem, boundary
conditions and adopted multi-relaxation-time lattice Boltzmann immersed boundary
method are described. Section 3 first presents the validation of two test cases and
elaborates 3-D FSI for the paddling A. aurita (fineness ratio 0.3). This is followed by
presentation of the prey interception loops, capture surface and CR for inertial and evasive
prey, and the effect of resonant swimming. The morphological sensitivity of prey capture
is then revealed using varied bell fineness ratio. Finally, § 4 offers some concluding
remarks.

2. Modelling the medusa motion

To analyse swimming motion plus prey capture, a 3-D multi-relaxation-time (MRT) lattice
Boltzmann (LB) model that is flexible for morphological exploration is developed herein
using the immersed boundary (IB) method. A hemiellipsoidal (Colin & Costello 2002;
McHenry & Jed 2003; Dabiri et al. 2005; Sahin, Mohseni & Colin 2009; Hoover et al.
2017) jellyfish body (see (2.1) and figure 1) of bell diameter d0 and bell height h0
that is created by an elastic membrane without thickness is considered for the present
mathematical and numerical implementation, and the model is symmetrically placed in a
computational domain of size 6d0 × 12d0 × 6d0. The paddled locomotion of the jellyfish
is produced by applying an inward-directed periodic body force F b near the bell edge, over

912 A41-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
69

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1069


Kinetics and prey capture by a paddling jellyfish

12d0

Fb

Fb
12.0

9.0

6.0

3.0

0

xz

y

xz

y tc = 0.5T

tc

T

h′

t6d0

6d0

0 0.5 1.0 1.5 2.0 2.5 3.0

5

10

15

20

d0

(b)(a)

(c)

h0

Figure 1. (a) Schematic diagram of a jellyfish in quiescent fluid in a rectangular computational domain.
(b) Distribution of applied body force F b to the bell. Point 1 denotes the bell edge. Point 2 is the forcing
point that satisfies the condition of the body force range (i.e. (A2)). (c) The time history of the body force F b.

Parameter Symbol Value (oblate) Value (prolate)

Fineness ratio h0/d0 0.3 0.5
Contraction period tc/T 0.5 0.5
Stiffness coefficient cst 18.5 18.5
Bending coefficient cbe 0.03 0.03
Body force Fb 12 5.4
Reynolds number Re 100 100

Table 1. The adopted non-dimensional reference parameters for the elastic bell model.

a small width h′, and using the reference parameters in table 1 unless otherwise specified.
The initial jellyfish shape is accordingly expressed using (2.1), where h′ = h0/3, and (xc,
yc, zc) denotes the bell centre:

1 = (x − xc)
2 + (z − zc)

2(
d0

2

)2 + ( y − yc)
2

h0
2 for y ≥ yc − h′. (2.1)

The essential details of the current MRT-LB-IB method and the elastic membrane model
are elaborated in appendices A and B, respectively.
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Figure 2. Comparison of simulated bell shape and centroid velocity with measured experimental data for
A. aurita (h0/d0 = 0.4). (a) The transient bell shape during a power stroke. (b) The transient bell shape
in a recovery stroke. (c) The time history of the centroid velocity (v). Here tc = 0.4, T = 1.1, cst = 18.5,
cbe = 0.03 and F b = 200. (d) Comparison of the apex velocity (Vtop) of a jellyfish (h0/d0 = 0.3), for adopted
tc/T = 0.075, cst = 21, cbe = 0.035, Re = 480 and F b = 32. (e) The time history of forward swimming velocity
of the bell centroid of a jellyfish (h0/d0 = 0.3) for different domain sizes. Here cst = 18.5, cbe = 0.03, F b = 12
and Re = 100.

3. Results and discussion

3.1. Validation
To start with, using the MRT-LB-IB method, the paddled kinetics of a flexible jellyfish is
now computed in a quiescent fluid domain (figure 1a) of size 6 × 12 × 6 in spanwise (x),
streamwise (y) and transverse (z) directions, respectively, with applied periodic boundary
conditions along x and z, and gradient-free end conditions along y. The domain is scaled
by the bell diameter. The paddling motion is initiated by applying a periodic force F b (see
(B9)) near the bell margin. Standard uniform Eulerian lattices of size 246 × 492 × 246
and step lengths δx = δy = δz = d0/41 are placed along x, y and z axes, and 12 452
Lagrangian nodes are used to compute the swimming plus prey capture behaviours.
Accordingly, the Lagrangian node spacing remained less than half a lattice spacing
(Wu et al. 2015). To validate the simulation method, first, figures 2(a)–2(c) present a
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comparison of time-evolved body shape and centroid velocity (v) of A. aurita (of fineness
ratio h0/d0 = 0.4) with the results experimentally reported by McHenry & Jed (2003).
Using feasible body elasticity (cst = 18.5, cbe = 0.03) and time-varying forcing (see (B9);
appendix B), which allow a realistic bell contraction rate as in the above experiment, the
motion of the jellyfish starting from rest is created via self-propulsion.

Figures 2(a) and 2(b) show that, for adopted bell fineness-ratio (0.4), contraction
(tc = 0.4) and expansion stroke (texp = 0.7) durations (period T = 1.1) and Reynolds
number Re = 700 (= d2

0/νtc) that are chosen identical to a reference configuration of
McHenry & Jed (2003), our simulated jellyfish shape, i.e. its bell diameter and height
at different times during contraction (figure 2a) and recovery (figure 2b) phases, exhibits
quite similar changes to the reported findings. Here results take a dimensional form
for comparison. In the contraction phase (figure 2a) A. aurita’s bell diameter and bell
margin rapidly reduced, but height increased; while the body motion (v) became faster.
Figure 2(c) shows a comparison for its centroid velocity variation v. It reveals that, during
the recovery phase, the forward body motion is slowed, whereas the bell diameter and
bell margin increased (figure 2b); but the bell height reduced. Figure 2(a–c) thus reveals
that, for chosen material properties and propulsion period consistent with the experimental
conditions in McHenry & Jed (2003), the present model predicts quite similar trends (e.g.
Park et al. 2014) for A. aurita’s body kinematics. It is to be noted that the considered elastic
stiffness parameter cst = 18.5 of the bell membrane falls within the dimensional range of
feasible material properties experimentally measured by Demont & Gosline (1988) and
Megill, Gosline & Blake (2005). The bending modulus (cbe = 0.03) and nodal forcing
magnitude (F b = 200) are suitably selected so as to match the measured contraction
and expansion timings or kinematics of jellyfish species of fineness ratio h0/d0 = 0.4, as
reported in McHenry & Jed (2003).

Finally, figure 2(d) shows a comparison for the apex velocity Vtop of a jellyfish
(h0/d0 ≈ 0.3) model studied by Hoover et al. (2019), who used a finite body membrane
thickness. As figure 2(d) reveals, for the implemented thin bell membrane model,
the present simulation predicts quite a similar apex velocity variation. Furthermore,
figure 2(e) shows that, for two different adopted computational domain sizes 6 × 12 × 6
and 9 × 12 × 9, the forward velocities of the bell centroid of the presently considered
jellyfish model (of fineness ratio h0/d0 = 0.3) in four pulsing cycles virtually coincide.
This assures that the implemented domain size 6 × 12 × 6 is sufficiently large to capture
the dynamics of a freely swimming jellyfish.

3.2. Mechanistic motion and FSI for A. aurita (h0/d0 = 0.3)

3.2.1. The paddling dynamics
Here we examine the detailed swimming behaviour of A. aurita (h0/d0 = 0.3). For this, the
active contraction of the subumbrellar jellyfish bell is initiated by applying a transient
nodal force F b (see (B9) and figure 1b) at the bell margin for non-dimensional time
0 < t ≤ tc; while the subsequent passive expansion phase continues (see supplementary
movie 2 available at https://doi.org/10.1017/jfm.2020.1069) following withdrawal of F b
during T − tc and in which the stored elastic strain energy drives the bell expansion. A
propulsion cycle herein is fixed at T = 2.0, and the chosen material elastic parameters
are cst = 18.5 and cbe = 0.03. The bell is thus driven forward for five cycles (t = 5T)
using 50 ≤ Re ≤ 150 and 3 ≤ F b ≤ 27. Moreover, the prey capture by a free swimming
jellyfish is known to be better predictable for lower Re. While presenting the computed
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Figure 3. Plotted for applied different body-force magnitudes (F b) are: (a) the displacement (y/d0) of the bell
during five cycles, (b) the periodic change of the bell volume (V/V0) during the third to fifth propulsive cycles,
(c) dimensionless power (Pm) associated with the body force (F b) at the bell edge, and (d) forward swimming
velocity (v/U) during the third and fifth swimming cycles. Here Re = 100 and h0/d0 = 0.3.

results, for non-dimensionalization, the fluid density ρ0 is used as the characteristic
density, bell diameter d0 as the characteristic length, and tc as the characteristic time.
The other parameters are determined using following characteristic scales: U = d0/tc for
velocity, ρ0U/d0 for Eulerian momentum, ρ0U2 for Lagrangian momentum, ρ0U2d0 for
elastic stiffness coefficient and ρ0U2d3

0 for bending coefficient (Park et al. 2014). The
non-dimensional power Pm that is derived from the force F b applied to the bell margin is
therefore expressed as

Pm = Fb(d − dmin)/tc
ρd5/T3 . (3.1)

Figure 3(a) shows the time history of distance (y/d0) that is travelled by the jellyfish
in five swimming cycles (0 ≤ t ≤ 10 = 5T) for the indicated three different magnitudes
of the paddling body force F b. Moreover, figure 3(b–d) displays the periodic change
of the subumbrellar bell volume (V/V0), the non-dimensional power (Pm) and forward
velocity (v/U) of the bell centroid during the third to fifth cycles. The noted initial rapid
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decrease of the bell volume (V/V0) in figure 3(b) in a cycle corresponds to fast forward
swimming speed (figure 3d) that is generated during the contraction phase; while for
higher F b the bell volume is reduced at a faster rate that strengthens the forward body
motion (figure 3a). Figure 3(c) reveals that power Pm increases quickly as active force
F b (see (B9)) is applied (for t ≤ tc) to the bell. The subsequent rapid decrease of Pm is
noteworthy, while F b withdraws during relaxation. The power becomes briefly negative at
the beginning of a recovery phase (figure 3c), as a jellyfish bell starts to expand freely by
spending stored elastic energy in a contracted state (Tytell et al. 2010). Additionally, power
displays rapid/increased variation for higher F b.

Figure 4(a) shows that the periodic contraction and expansion of the jellyfish bell
in power (F b > 0) and recovery (F b = 0) strokes generate distinct 3-D vortex rings of
opposite rotational sense at the bell margin. These vortex rings act to entrain upstream
fluid from above the bell into the subumbrellar cavity. The results are shown here for the
fifth propulsive cycle (8 < t ≤ 10). A near-edge 3-D vortex ring 5*St.V. that is created
by the forced power stroke (8 < t ≤ 9; figure 4a1–a8) is conventionally termed as the
starting vortex (where 5* denotes the cycle number and St.V. is the abbreviation for
starting vortex). Figure 4(a5–a8) shows that, as the bell expands freely in recovery stroke
(9 < t ≤ 10), the stopping vortex ring 5*Sp.V. (figure 4a5–a8) is produced, which spins
in the reverse direction. During growth, the stopping vortex partly intrudes into the bell
cavity along with the sucked fluid at the bell margin. Note that the diameter of the starting
vortex ring (5*St.V.) steadily decreases in a power stroke and that of a stopping vortex
(5*Sp.V.) increases through a relaxation phase, while physical processes are controlled
by F b and material elasticity. Importantly, these vortex-rings-induced fluid motion keep
supporting the forward motion (figure 3a) in a propulsive cycle. The appended velocity
field (figure 4a1–a8) on the symmetry (xy) plane clearly exhibits dominance of the upward
flow at the bell edge, in both power and recovery strokes. The dropped off starting (4*St.V.)
and stopping (4*Sp.V.) vortex rings that temporarily dominate in the wake are created
during the fourth propulsive cycle.

Figure 4(b) shows that, for a lower magnitude F b = 7 of the applied paddling force,
the resultant weaker starting/stopping vortex rings evolve considerably closer to the bell
edge, while the swimming speed (figure 3d) is greatly reduced. Notably, figures 4(b1)
and 4(b5) display how exactly side-by-side evolving opposite-natured vortex ring pairs
4*Sp.V. and 4*St.V. or 5*Sp.V. and 5*St.V. actively entrain the outer fluid towards the
bell edge. Figure 4(c) shows the out-of-plane vorticity (ωz) at various times during the
first, second, third and fifth cycles, exhibiting the near-field dominance of the respective
starting and stopping vortices. The pressure contours presented in figure 5 show that lateral
body motion helps the growth of significant low-pressure areas in the fluid surrounding
the paddling bell. The animal uses this dominant low pressure to pull itself up through
the surrounding water via suction-based propulsion, and it technically helps to drag
floating nearby prey or copepods (see supplementary movie 1) to the bell margin via the
stroke-by-stroke generated feeding current (see supplementary movie 2). The regions of
high pressure, however, do form (Hoover et al. 2017), especially in opposition to motion
at the apex area (figure 5a1,a2) and during transient periods of lateral body motion, but
these are clearly compensated (figure 3a) by virtue of suction-based upward momentum
(figure 4a) that is produced by neighbouring fluid (Gemmell et al. 2015).

Variations of the non-dimensional pressure and vertical and transverse velocity along
several horizontal slices that spread through the bell region as well as the near wake are
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Figure 4. For caption see next page.

revealed in figure 5(b1–c4) at the end of the fifth power and recovery strokes. Figure 5(b2)
shows the formation of negative pressure in the bell, at the end of the contraction stroke.
In contrast, at the end of the expansion stroke (figure 5c2), an elevated positive pressure
develops at the cavity centre and relatively low-pressure areas are formed at the sides,
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Figure 4. (cntd). (a) Three-dimensional evolution of starting (5*St.V) and stopping (5*Sp.V) vortex rings
at different times during the fifth propulsive cycle, for applied body force F b = 12. Also shown here are the
resulting velocity field on the streamwise symmetry plane, and temporarily dominating stopping (4*Sp.V)
and starting (4*St.V) vortex rings in the near wake that are generated in the previous cycle. (b) The transient
evolution of starting (5*St.V) and stopping (5*Sp.V) vortex rings in the fifth cycle, for the reduced body force
F b = 7. (c) Plots of out-of-plane vorticity (ωz) contours at various times during the first, second, third and fifth
swimming cycles (F b = 7). In these vorticity (ωz) plots, in the wake region of forward swimming jellyfish one
can see progression of shedding of starting and stopping vortices. Here Re = 100 and h0/d0 = 0.3.

suggesting the development of a pressure minimum at the core of vortex rings that
dominate near the bell edge (figure 4). Moreover, the distribution of the vertical velocity
(v/U) in figure 5(b3) reveals the existence of strong downward flow at different vertical
locations, at the end of the power stroke; while positive velocity mostly persists near
the bell boundary. These are in fact facilitated due to the ejection of the core fluid
(like a jet) through the central part, and the entrainment of the surrounding fluid (see
figure 4a3,a4) from the apex to the bell edge. At the end of the expansion phase, as evident
from figure 5(c3), a strong positive vertical flow develops in the centre region owing to
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Figure 5. For caption see next page.

continued fluid entrainment (figure 4a5–a8) by the stopping vortex ring. Such velocity
(v/U) gradually reduces at the edges and its direction is reversed at downstream locations.
Figures 5(b4) and 5(c4) show that the transverse velocity (u/U) at each y station is reduced
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Figure 5. (cntd). (a1–a8) Isocontours of non-dimensional pressure at different instants during the fifth
propulsive cycle. Near-surface transient pressure variations: during power stroke at (a1) t = 8.16, (a2) t = 8.4,
(a3) t = 8.64 and (a4) t = 9; and during the recovery stroke at (a5) t = 9.28, (a6) t = 9.6, (a7) t = 8.88 and
(a8) t = 10 ( = 5T). (b1) The marked horizontal lines are below the contracted bell, at the end of the fifth power
stroke (t = 9). At these locations the variations of non-dimensional (b2) pressure, (b3) vertical velocity (v/U)
and (b4) transverse velocity (u/U) are presented with respect to the (x) distance from the vertical axis. (c1)
The marked horizontal lines below the expanded bell at the end of the fifth recovery stroke (t = 10), where
variations of non-dimensional (b2) pressure, (b3) vertical velocity (v/U) and (b4) transverse velocity (u/U) are
revealed with respect to the distance from the vertical axis. Here Re = 100 and h0/d0 = 0.3.

following pulsating motion as the vertical axis of symmetry is approached, while clear
changes of sign occur at the two sides.

Figure 6(a1–a4) shows isocontours of non-dimensional vertical velocity (v/U) around
the jellyfish during the fifth propulsive cycle, at t = 8.16, 9.0, 9.6 and 10.0; and
figure 6(b1–b4) exhibits the corresponding radial velocity (u/U) contours. In the
contraction phase, as a jellyfish moves forwards with larger speed, the stronger positive
vertical and radial velocities (figures 6a1,a2 and 6b1,b2) develop at the top and around the
bell (see figure 4a1–a4). The formation of negative and positive radial velocity regions
(figure 6b1) at the bell edge or near wake are the results of mutual interaction of starting
(5*St.V.) and stopping (4*Sp.V.) vortices in the propulsive power stroke, as evident from
figure 4(a1). In the expansion phase, the presence of similar vertical and radial velocities
(figure 6a3,a4,6b3,b4) in the vicinity of the bell are due to continued upward bell motion
plus fluid entrainment into the bell cavity via the dynamics of the stopping vortex ring
5*Sp.V., as noted in figure 4(a6–a8). The observed negative vertical velocity areas in
figure 6(a1–a4) around the bell margin are formed because of transfer plus rotation
(figure 4a3,a4,a6–a8) of the surrounding outer fluid towards the bell edge; whereas the

912 A41-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
69

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1069


M. Dawoodian and A. Sau

t = 8.16 t = 9.0 t = 9.6 t = 10.0(a1) (a2) (a3) (a4)

(b1) (b2) (b3) (b4)

–0.50 –0.25 0 0.25 0.50

Figure 6. Isocontour plots of non-dimensional (a1–a4) vertical velocity (v/U) and (b1–b4) radial velocity
(u/U) around the paddling bell, at different instants during the fifth propulsive cycle. Here Re = 100 and
h0/d0 = 0.3.

ejection of the inner fluid in the form of a jet and the interaction of the starting and
stopping vortices continue to yield continuous columns of vertical flows away from the
bell. The presence of positive/negative radial velocity regions at the bell edge or near
wake, in figure 6(b3,b4), during the recovery phase are contributed by the interaction of
5*Sp.V. with the bell boundary (figure 4a6–a8).

3.2.2. Variation of cost of transport (COT) and Strouhal frequency (St)
The COT is a convenient measure for determining energetic swimming performance. For
a jellyfish the COT is defined as

COT = Ei/dapex, (3.2)

where Ei = ∫ to+T
t0

(Fb(dr/dt)) dt is the required energy, dapex is the non-dimensional
displacement of the bell apex in one propulsive cycle, dr/dt is the rate of change in bell
diameter and F b is the applied paddling body force. The non-dimensional Strouhal number
St is expressed as

St = drad
max/(Tvapex

avg ), (3.3)
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Figure 7. Plotted here are: (a) normalized cost of transport (COT/COTref ) for non-resonant plus resonant
swimming, and (b) the inverse Strouhal number (St−1), as functions of the magnitude of the applied paddling
force (F b). To reveal the morphological dependence of COT, the data for another fineness ratio (h0/d0 = 0.5)
but with fixed body elasticity (i.e. cst = 18.5 and cbe = 0.03) are added in panel (a), and the same reference
COTref (i.e. for F b = 12 and h0/d0 = 0.3) is used for normalization. Here Re = 100.

where drad
max is the maximum radial displacement, T is the pulsating period and v

apex
avg is the

average apex velocity in a cycle.
Figures 7(a) and 7(b) show variations of COT and St−1 for two different bell fineness

ratios 0.3 and 0.5, as functions of maximum paddling force F b, which helps to better
comprehend morphological dependence. Moreover, the impact of resonant swimming on
the variation of COT is revealed therein (its effect on prey capture is elaborated later).
Figure 7(a) shows that COT increases rapidly for small F b (< 4) that resemble cases of
very low (see figure 3a,b) swimming speed (Gemmell et al. 2013). Notably, for h0/d0 = 0.5
the optimum (minimum) COT occurs at a threshold F b = 4, and for h0/d0 = 0.3 such an
optimum is reached at F b = 7; then COT slowly increases as F b is increased. However,
for applied higher F b the increased drag (as drag is ∼ v2) due to the enhanced steady
swimming speed plays a key role in increasing COT. The COT is found to be higher for
the higher fineness ratio 0.5 (for F b ≥ 6), signifying that an oblate-type body can be more
economical. The larger stopping vortex that an oblate jellyfish creates (in a relaxation
phase) and efficiently places under the enlarged bell plays an important role in reducing
its COT, by virtue of passive energy recapture (Gemmell et al. 2013). Additionally,
figure 7(a) shows that COT is lowered via resonant swimming. Figure 7(b) shows that,
despite fineness-ratio-dependent variation, St−1 increases rapidly at lower F b (≤ 12) and
then slowly approaches the respective asymptotic limit for F b ≥ 25, as peak propulsive
efficiency is attained (Taylor, Nudds & Thomas 2003; Floryan, Buren & Smits 2018).
Since the flapping frequency (1/T) of the bell is kept fixed here, St (equation (3.3)) varies
as the ratio of flapping amplitude (drad

max) to forward distance that is travelled in a pulsing
period. For higher F b (≥ 25), St−1 approaches asymptotic limits, as noted in figure 7(b),
which seems to imply that at this stage the distance that is travelled by a jellyfish varies
nearly at the same rate as the flapping amplitude.
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Figure 8. The non-dimensional circulation (Γ ) of: (a) starting vortex ring, and (b) stopping vortex ring, in
five swimming cycles, for the adopted different magnitude of the paddling force (F b). Here Re = 100 and
h0/d0 = 0.3.

3.2.3. Circulation analysis
The circulation is an important issue (Colin et al. 2012) that plays a key role in medusan
locomotion. Here we analyse the non-dimensional circulation Γ , which is defined as the
integral of vorticity over the area of a vortex ring on the symmetry plane, as follows:

Γ = T

d2
0

∫
ωz(x, y, 0, t) dx dy. (3.4)

Figure 8 presents the computed variation of Γ over five swimming cycles of A. aurita
(h0/d0 = 0.3), for different magnitudes of the applied paddling force 7 ≤ Fb ≤ 12. It is
noted that the circulations of starting (figure 8a) and stopping (figure 8b) vortex rings
increase with the passing of time, as vortices gradually grow under time-varying F b
(figure 1c). Remarkably, despite a jellyfish producing (figure 3) greater acceleration during
the power stroke, the resultant peak circulation by stopping vortex is about twofold higher
than the peak circulation of the starting vortex, illustrating the important role of the
stopping vortex in pulsating locomotion. Physically, during the relaxation phase, the outer
fluid is continuously sucked into the expanding cavity (figure 4), whereas fluid from the
top is being pushed down to the bell margin. This leads to increased circulation by the
developed stopping vortex via passive energy recapture (Gemmell et al. 2013). Moreover,
as figure 8(a,b) shows, for increased paddling force F b, larger circulations are generated.

3.3. The Lagrangian analysis
To computationally explore prey capture, an initially flat material layer representing
multiple Lagrangian prey or copepods is supposed to float or move around and
the paddling jellyfish approaches it normally. As the medusa intrudes forwards, the
material layer gets deformed and neighbouring prey particles are dragged closer
(see supplementary movies 1 and 2) to the body via cycles of propulsive swimming.
In the process, while some prey are captured by a jellyfish, some escape, depending on
their inertia/evasive skill. Here the motile prey are assumed to be spherical-shaped bodies
that are uniformly spread upstream of a jellyfish. Upon neglecting the Basset–Boussinesq
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memory force and diffusion terms that can be active in Stokes flow but are unimportant
in advection-dominated swimming, the simplified Maxey–Riley equation (Maxey & Riley
1983; Michaelides 1997; Peng & Dabiri 2009; Kiørboe et al. 2010) that governs the prey
motion in incompressible flows is expressed as

dv

dt
− 3R

2
Du
Dt

= −A(v − u) +
(

1 − 3R
2

)
g +

(
1 − R

2

)
aE, (3.5)

where

R = 2ρf

ρf + 2ρp
, A = R

St
, St = 2

9

(
a
d0

)2

Re. (3.6a–c)

For non-dimensionalizing (3.5), the jellyfish bell diameter d0 is used as the characteristic
length, the power stroke duration tc as the characteristic time, and the average speed of bell
contraction U = d0/tc as the characteristic velocity. The variable v denotes the velocity of
a Lagrangian (spherical) prey particle, u that of the Eulerian fluid, ρp the density of a prey
particle, ρf the density of the fluid, a the prey-particle radius, g the gravity, aE = F e/m
the acceleration of a prey due to the self-generated escape force F e, and m the mass of
a prey. The derivative Du/Dt is taken along the path of the Eulerian fluid, while dv/dt
is taken along the trajectory of a swept prey particle. For simplicity, the prey escape
acceleration aE is considered to have two different Eulerian flow or u-dependent forms,
i.e. aE = −aEu/|u| and aE = −aEn × u/|u|, with n being the unit normal vector to the
plane of motion. Notably, the prey motion depends on mass-ratio parameter R, particle
Stokes number St and Reynolds number Re (= d2

0/νtc). Unless otherwise mentioned, the
said parameter values in (3.5) are taken as A = 11.5 and St = 0.06, and Re is varied over
50 ≤ Re ≤ 150, considering the fact that medusa and tiny prey are slow-moving bodies.
As elaborated here, the trajectories and CR of inertial and motile prey animals differ
significantly from that of an ideal tracer particle (Babiano et al. 2000).

The essential FTLE fields are widely computed herein to identify the geometric
separatrices from trajectories of the distributed Lagrangian particles. The pLCS computed
via (3.5) are found to clearly separate surrounding fluid regions that exhibit detectably
distinct dynamics over several propulsive cycles and provide a considerable new insight
into the capture of live or evasive natural prey (copepods) in a marine predator–prey
system.

As follows, the detected pLCS for surrounding inertial prey denote the high ridges
of respective particle FTLE fields, while 3-D Eulerian flows are simulated using the
MRT-LB-IB method. For flow field u(t, x) that is created by a paddling jellyfish,
the induced velocities v(t; t0, x0) of the inertial prey are computed via the modified
Maxey–Riley equation (3.5) together with (3.7) and (3.8) below, where subscript zero
refers to the starting state. The starting velocity of a prey is assumed to coincide with the
local fluid velocity. The trajectory x(t; t0, x0) of an inertial particle is therefore solved via

ẋ(t; t0, x0) = v(t; t0, x0), (3.7)

subject to initial conditions

x(t0; t0, x0) = x0, ẋ(t0; t0, x0) = v0. (3.8)

Let φ
t0+T ′
t0 : x(t0) → X (t0 + T ′) denote the flow map of inertial prey particles from

their location at t0 to their location at time T ′. The Lyapunov exponent that is defined
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below in (3.10) reveals the rate of extension of a particle’s trajectory that is advected by
a jellyfish’s swimming motion. The Jacobian of φ is computed with respect to the prey
particle locations at t0 (Franco et al. 2007; Wilson et al. 2009). The resulting finite-time
Cauchy–Green deformation tensor C(x) is defined as

C(x) =
(

dφ
t0+T ′
t0
dx

(x)

)∗ (
dφ

t0+T ′
t0
dx

(x)

)
, (3.9)

where ( )∗ denotes the transpose operator. The maximum eigenvalue λmax of C(x)
represents the maximum stretching that occurs at x(t; t0, x0) over a time interval T ′,
while a material line remains aligned with the corresponding eigenvector. The FTLE that
represents the maximum stretching rate is defined as

σ T ′
t0 = 1

|T ′| ln
√
λmax(C). (3.10)

To compute the FTLE (via (3.5)–(3.10)), the densely distributed Lagrangian prey
particles over a wide region on the streamwise symmetry plane of a swimmer are
assumed to have initial particle–particle distance of one-tenth of a lattice unit. The FTLE
computation is thus continued for five swimming cycles to ensure time invariance of the
pLCS. The resulting pLCS defines a ridge line of the function σ , normal to which the
topography has a local maximum. Here the prey capture phenomena are first revealed
on the streamwise symmetry plane, as exploring 3-D analysis often becomes costly and
requires large CPU time and RAM.

3.3.1. The influence of prey inertia on predator–prey interaction
We now thoroughly examine prey interception and capture mechanisms based on the
computed paddled swimming current, as a large taxonomy of zooplankton survives in
this mode of hunting, and feeding-current-based nourishing is most effective (Humphries
2009) for various prey species. To start with, first the ideal case of infinitesimal prey is
considered. The motion of plankton (of tiny mass) in this case coincides with that of
ideal Lagrangian tracer particles. To demonstrate the prey interception mechanism, the
essential forward-time and backward-time FTLE fields (Shadden et al. 2006; Franco et al.
2007; Green, Rowley & Haller 2007) for a suspended layer of 4.9 × 106 infinitesimal
Lagrangian prey particles are computed using (3.7)–(3.10) and the flow field that is created
(see figure 4a and supplementary movie 2) by paddling A. aurita (h0/d0 = 0.3, F b = 12).

Figures 9(a) and 9(b) show contours of the forward-time and backward-time FTLE fields
(at Re = 100) that are generated over a duration of five cycles (t = 5T). The related Eulerian
velocity, vorticity and pressure fields are revealed in figures 4–6. Note in figure 9(a)
the presence of four pairs of symmetrical FTLE lobes that are clearly detectable, as
each pulsing cycle creates one such pair, while lobes formed in the fifth cycle appear
weaker in this case. The corresponding high ridges (figure 9a), i.e. repelling pLCS are
denoted by green contour lines. In figure 9(b), the ridges of the backward-time FTLE
field (black contours) represent a sequence of attracting pLCS, and their outer boundary,
which surrounds the developed five cavity-shaped multi-deck belly region (formed in five
pulsing cycles) plus the area inside the bell, is defined here as the ‘capture boundary’.
At a glance, figure 9 displays significantly distinct and physically/mathematically sound
structures of prey interception loops and capture boundary (pLCS) compared with those

912 A41-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
69

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1069


Kinetics and prey capture by a paddling jellyfish

Capture

boundary

(a) (b)

0.3 1.5 2.8 4.0 6.55.3

Figure 9. Plotted here are the contours of FTLE fields and infinitesimal Lagrangian particles displaced by
the paddling jellyfish (h0/d0 = 0.3). (a) The forward-time FTLE field, wherein the green-coloured high ridges
reveal the Lagrangian coherent structures (LCS). Red and blue particles are placed inside and outside the
upstream LCS lobes so as to track the fluid transport phenomenon and particle positions swept by the jellyfish
motion. A greyscale colour map is also added for the reader’s convenience. (b) The backward-time FTLE
field and appended position of the displaced infinitesimal particles at t = 5T; the high ridges (LCS boundary),
defined as the capture boundary, are denoted in dark black colour (as well as dashed green line, for clarity).
Here Re = 100 and h0/d0 = 0.3.

reported earlier (Peng & Dabiri 2009). These pLCS complement each other to transport
floating prey from the frontal region into a jellyfish bell or suitable place in the near
wake, or, alternatively, to preserve the recirculating prey that are already inside the capture
surface (see supplementary movie 3).

To characterize which portions of the ambient fluid and locally present prey are
targeted by a medusa/predator and which portion pass by without interacting, the red
coloured Lagrangian tracer particles are placed inside pLCS lobes in figure 9(a) and
blue-coloured particles outside. With such spatially distributed tracer particles, the
simulation is re-run, as the paddling jellyfish swims across for five cycles (t = 5T), and

912 A41-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
69

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1069


M. Dawoodian and A. Sau

the transient dynamics and positions of differently dragged particles are tracked. For clear
distinction, in figure 9(b) we have appended the simulated final positions (at t = 5T)
of coloured prey particles along with backward-time pLCS curves, confirming that the
backward-time pLCS indeed form a capture boundary or capture surface. Figure 9(b)
clearly shows that, through the paddled motion, all red particles are entrained within
the pLCS boundary whereas clustered blue particles pass by without interacting. This
shows that an infinitesimal plankton/copepod that is spotted inside mapped pLCS loops
(figure 9a) can be captured for feeding, and those that remain outside have a good chance to
escape. The supplementary movie 3 reveals the detailed stroke-by-stroke prey entrainment
behaviour. However, although pLCS form a 3-D surface, the results are presented here
on the streamwise symmetry plane, as conducting 3-D analysis often becomes costly and
requires quite large CPU time plus RAM to track an enormous number of prey. However,
the presented pLCS for ideal infinitesimal prey serves as a baseline to further examine
the effects of prey inertia or escape force on a jellyfish’s feeding performance, which are
elaborated below.

We now study the effect of prey inertia, while momentarily ignoring the effect of
escape force (aE = 0) in the modified Maxey–Riley equation (3.5). Notably, the term
−(R/2)aE that appears in our (3.5) is missing in (2.1) of Peng & Dabiri (2009), where
R (equation (3.6)) represents the combined influence of the mass of a prey and that of
the displaced fluid, and the term can be obtained via a correct non-dimensionalization
of the Maxey–Riley equation. To reveal a jellyfish’s feeding on inertial copepods, first,
using the flow field that is generated by paddled body motion and the dynamical system
of equations (3.5)–(3.10), we compute the precise displacement pattern for the considered
inertial prey particles with R = 2/3.

Figure 10 shows the resultant forward-time and backward-time FTLE fields, pLCS
(dark coloured ridges) and positions of entrained (inner and outer) inertial prey particles
of R = 2/3 (i.e. ρp = ρf ; density of buoyant prey particles taken equal to the fluid
density) due to the created feeding current by A. aurita (h0/d0 = 0.3) over five cycles.
Note that the forward-time FTLE in figure 10(a) identifies four consistently formed
(as in figure 9a) symmetrical pairs of fluid lobes or regions upstream; while lobes for
the fifth cycle appear relatively weaker. To show that the extracted pLCS represent a
realistic separation boundary for R = 2/3, the suspended red inertial particles are placed
inside and blue particles outside the fluid lobes, as shown in figure 10(a), and then the
simulation is re-run for five cycles, as the predator jellyfish swims across. Accordingly,
the motion of differently dragged inertial prey particles is tracked, and for clarity their
final positions (at t = 5T) are superimposed in figure 10(b) along with the backward-time
pLCS. It reveals that the prey particles that stayed inside the FTLE lobes (in figure 10a)
are mostly entrained within the multi-deck pLCS (figure 10b) boundary that surrounds
five belly-shaped cavities formed in five pulsing cycles plus a part of the bell area;
whereas those prey particles originated outside clearly escape. This demonstrates that
the backward pLCS in figure 10(b) constitute the capture (or separation) boundary for
inertial prey. Note that, for considered inertial preys (R = 2/3), the high ridges of backward
FTLE (i.e. pLCS in figure 10b) appear relatively compressed at the top. Moreover,
the positions of the dragged red particles in figure 10(b) suggest that some prey may
have a small chance to escape by virtue of their inertia, particularly those stationed
near the boundary of a forward-time FTLE/interception loop or the pLCS (figure 10a).
Nevertheless, as figure 10(b) shows, the majority clearly fall inside the capture
boundary.
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(a) (b)

0.3 1.5 2.8 4.0 6.55.3

Figure 10. Plotted for suspended inertial (R = 2/3) Lagrangian particles, the contours of FTLE fields and
Lagrangian prey particles displaced by the paddling jellyfish at the end of the fifth pulsing cycle (t = 5T).
(a) The forward-time FTLE field, wherein the green-coloured high ridges reveal the corresponding pLCS.
Red and blue inertial particles are placed inside and outside the upstream pLCS lobes so as to track their swept
positions by jellyfish motion. (b) The backward-time FTLE field plus appended position of the displaced inertial
particles at t = 5T; the high ridges (pLCS) are denoted in dark black colour. Here Re = 100 and h0/d0 = 0.3.

To verify that the escape behaviour of some of the near-boundary inertial (figure 10b)
prey is real or physical, we performed several simulations with varied prey density in a
lattice (and escape force), and they exhibit the same repeat phenomenon. Note also that,
for the infinitesimal case, each and every targeted red prey is dragged (figure 9a,b) inside
the capture surface. This implies that capturing an infinitesimal prey can be easier for a
medusa than capturing a finite-size prey (figure 10), i.e. that its inertia can help a prey to
escape (Kiørboe 2011). The relative variations of the encounter loop, the capture surface
and the success in prey capture for different cases are subsequently analysed. Prey capture
for ρp > ρf is not considered here, as that involves complex situations wherein prey swim
along a deeper fluid layer than the predator.
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(a1) (a2)

0.2 1.2 2.2 3.2 5.24.2

Figure 11. For caption see next page.

3.3.2. Influence of prey escape force
The success in prey capture also depends on the evasive nature of a prey/copepod, as prey
species often instantly accelerate to escape predation. The available experimental results
(Kiørboe 2011) reveal that prey usually swim along a well-defined rather than a convoluted
path, and the impulse of flow generated by a predator can be a warning signal for prey. We
assume that the prey escape force aE (3.5) has one of the following two different natures:
(i) aE = −aEu/|u| or (ii) aE = −aEn × u/|u|, where n is the unit normal vector to the
plane of motion (Peng & Dabiri 2009). In case (i), the escape force acts in the direction
opposite to the local flow; while for case (ii), the escape force has direction normal to the
local velocity and is directed away from a predator. Herein two different non-dimensional
aE = 0.5 and 0.25 are explored for the above two escape models, which fall within the
reported (Strickler 1975) momentary escape acceleration limit up to 12 m s−2 of a tiny
prey.
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(b1)

0.2 1.2 2.2 3.2 5.24.2

(b2)

Figure 11. (cntd). Plotted for oppositely escaping prey with two different escape accelerations, aE = 0.5 and
aE = 0.25, the contours of FTLE fields (pLCS) and displaced prey particles via the paddling jellyfish motion.
(a1) The forward-time FTLE field, where green-coloured high ridges reveal pLCS computed at t = 5T, for
aE = 0.5. The red and blue coloured opposite escaping prey particles are initially located inside and outside
the upstream pLCS lobes, and their swept positions are tracked as the jellyfish paddles forwards. (a2) The
backward-time FTLE field plus appended position of displaced opposite escaping (aE = 0.5) prey at t = 5T;
the pLCS boundaries are denoted in dark black colour. (b1, b2) Displayed results that are computed for a
reduced prey escape acceleration, aE = 0.25. Here Re = 100 and h0/d0 = 0.3.

For evasive prey (R = 2/3, aE = 0.5) that attempt to escape opposite to local flow
(i.e. case (i) above), figure 11 shows the forward-time (figure 11a1) and backward-time
(figure 11a2) FTLE fields and their high ridges (pLCS), computed over five cycles. Among
the five detected pairs of upstream prey interception zones (i.e. dark green FTLE lobes) in
figure 11(a1), note in this case that, for opposite escaping prey, the lobes that are formed
in the third and fourth cycles are decisively larger/longer than those for non-escaping
inertial prey (figure 10a). The noted development of larger loops in figure 11(a1) at later
cycles particularly reverses several reported conclusions in Peng & Dabiri (2009) based
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on the results in their figures 1 and 2 and table 1, which are obtained for nearly two
swimming cycles, when the effects of swimming current and the considered opposite
escape acceleration/response of prey are yet to become effective. Accordingly, the initial
lobe sizes became smaller. Note also the natural open shape of forward-time pLCS in
figure 11(a1), at the front side of a predator. Figure 11(a2) shows that the topmost boundary
of the backward-time pLCS or capture boundary in this case has moved considerably
inside the jellyfish bell with respect to infinitesimal (figure 9b) and non-escaping inertial
(figure 10b) prey, signifying its local shrinkage for opposite escaping prey. The precise
variation of the prey capture region for the investigated cases is summarized later.

To demonstrate the capture of such evasive prey in a consistent manner, the red prey
particles are placed inside pLCS lobes in figure 11(a1) and blue prey particles outside; all
prey try to escape oppositely. With such spatial prey positions, the simulation is re-run,
as the paddling jellyfish moves forwards for five cycles (t = 5T), and the swept/transient
prey (via feeding current) locations are tracked. For clarity, the final position of swept
prey particles (due to created feeding current) are superimposed in figure 11(a2) along
with backward-time pLCS. This displays that the majority of the targeted red prey that
originated within forward-time FTLE loops (in figure 11a1) are in fact contained within
the capture area (high ridges of backward-time pLCS), while some apparently escape using
the executed instantaneous acceleration. Figure 11(a2) also shows that all blue-coloured
prey (which originated outside the loops) effectively move out of the capture boundary.
Additionally, at a reduced prey escape acceleration aE = 0.25, the presented Lagrangian
analysis in figure 11(b1,b2) shows a consistent capture behaviour for the oppositely
escaping preys (i.e. for case (i)).

For prey that attempts to escape normal to the local flow (aE = −aEn × u/|u|, i.e.
case (ii) above), figures 12(a1) and 12(a2) show forward-time and backward-time FTLE
fields plus pLCS at aE = 0.5, along with the appended swept prey position (at t = 5T).
Figures 12(b1) and 12(b2) exhibit the corresponding results at a lower aE = 0.25.
Note that, at a fixed aE = 0.5, for normally escaping prey, the interception zones shift
significantly closer to the predator body and loop sizes became relatively larger in
the first two cycles but decisively smaller in the third and fourth cycles, compared to
oppositely escaping preys. The clear distinction of such results with Peng & Dabiri
(2009) is noteworthy, as those are obtained using data from small-time swimming
(when the surrounding flow has not adequately developed). Moreover, a close look at
figures 12(a1,b1) and 13(a3) reveals, for the reduced normal escape acceleration aE =
0.25, that the resultant loop sizes become larger. The shrinking of the loop sizes at a
higher normal escape force is in fact expected in a natural predator–prey environment.

Figures 13(a1)–13(a4) present a detailed comparison of prey interception loops on
the streamwise swimming plane for the above examined different cases of varied
prey inertia and escape acceleration, whereas their 3-D structures are revealed in
figures 13(b1)–13(b4). Supplementary movie 4 displays transient transformation of the
forward-time pLCS into backward-time pLCS as the direction of time integration is
reversed, while supplementary movie 3 clearly exhibits that prey that originates within
forward-time pLCS lobes is basically captured by a jellyfish (either brought to the bell
cavity or preserved within the multi-deck capture boundary that is demarcated by the
backward-time pLCS). Importantly, the capture boundary that is defined in this study
using the backward-time pLCS remains consistent all along, and the supplied movies
provide a realistic view for stroke-by-stroke prey capture. On the other hand, the previously
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(a1) (a2)

0.2 1.1 2.0 2.9 4.73.8

Figure 12. For caption see next page.

postulated capture area (Peng & Dabiri 2009) was defined without computing the required
backward-time pLCS. Moreover, it is clear from figure 13(a1–a3) that the FTLE loops
that formed in later cycles predict decisively opposite (enhanced/weakened) capture
performance (as the feeding current of a predator amply spreads) with respect to loops that
formed in the first or second cycles. This suggests that any analysis based on short-time
data can lead to factually erroneous estimation of inertia/escape-force-dependent prey
capture performance. Notably, from the physical point of view, the forward-time FTLE
loops (prey interception loops) for the initial two swimming cycles are formed mostly
along the (left/right) sides of a predator, where local flow remains downward-directed.
Accordingly, the loop sizes (in two cycles) exhibit a decreasing trend for inertial
(non-escaping) and escaping prey with respect to an ideal infinitesimal prey. As
figure 13(a1–a3) displays, this is in contrast to the FTLE loops (pLCS) for subsequent
cycles formed at an adjacent frontal/downstream region of a forward-swimming jellyfish
where local velocity is reversed/upward-directed. Therefore, opposite escaping prey (aE =
−aEu/|u|) that swim at the frontal region of the bell apex mistakenly move close to the
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(b1)

0.2 1.1 2.0 2.9 4.73.8

(b2)

Figure 12. (cntd). For normally escaping prey with two different escape accelerations, aE = 0.5 and aE = 0.25,
shown here are contours of FTLE fields (pLCS) and (escaping) prey particles displaced by the paddled jellyfish
motion. (a1) The forward-time FTLE field, where green-coloured high ridges reveal corresponding pLCS
computed at t = 5T; aE = 0.5. The red and blue coloured normally escaping preys are initially located inside
and outside the upstream pLCS lobes, and their swept positions are tracked as the jellyfish swims forwards.
(a2) Backward-time FTLE field plus appended position of normally escaping (aE = 0.5) prey at t = 5T; the
pLCS boundaries are denoted in dark black colour. (b1, b2) Displayed results that are computed for a reduced
normal escape acceleration, aE = 0.25. Here Re = 100 and h0/d0 = 0.3.

predator/jellyfish instead of actually evading. This, in fact, helps predation plus capture.
Consequently, for opposite escaping prey, the interception/target loops/fingers that are
formed in the third and fourth cycles (and stretch along the front side) become longer/larger
(see figure 13a1–a3) compared to those for stationary (non-escaping) prey; whereas the
loops created by the first and second cycles often reveal the opposite trend. The decisively
important longer loops for the third and fourth cycles are absent in Peng & Dabiri (2009),
which, when taken into account, actually reverses the analysis in their tables 1 and 2, as
evidenced below herein (figures 20 and 21, and table 3). In addition, figure 13(a4) shows
that increased Re results in growth of larger-sized FTLE loops or prey encounter loops.
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(a3) (a4)

Fb = 12, Re = 100 Fb = 12, Re = 100

h0 /d0 = 0.3

Fb = 12, Re = 100

Fb = 12, Re = 100 Fb = 17, Re = 100

Fb = 12, Re = 150Fb = 12, Re = 50

h0 /d0 = 0.3 h0 /d0 = 0.3

h0 /d0 = 0.3

Figure 13. For caption see next page.

Note that for intercepted normally escaping prey at a higher aE = 0.5, as figure 13(a3)
presents, in the fourth and third swimming cycles the smaller-sized FTLE loops are
generated compared to those at aE = 0.25, while loops that formed in the first cycle reveal
the visibly reverse trend. Figure 13(a4) shows that the interception loop areas significantly
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(b1)

(b3) (b4)

Fb = 12, Re = 100
h0 /d0 = 0.3

y

z x

y

z x

y

z x

y

z x

Infinitesimal

(b2)

R = 2/3, NESCF,
aE = 0, Fb = 12,

h0 /d0  = 0.3

h0/d0 = 0.3

Re = 100,

R = 2/3, OESCF, aE = 0.5, Fb = 12, Re = 100, R = 2/3, NRESCF, aE = 0.5, Fb = 12,
Re = 100, h0 /d0 = 0.3 

Figure 13. (cntd). The variation of forward-time pLCS (encounter loops) for different types of prey. (a1)
Curves are: solid red lines with circles, ideal infinitesimal (Inf.) prey; solid black lines, inertial prey with
no escape force (R = 2/3, NESCF, aE = 0); dashed blue lines, inertial prey with opposite escape force (OESCF,
aE = 0.25); dotted green lines, inertial preys with normal escape force (NRESCF, aE = 0.25). Panel (a2) shows
the influence of increased opposite escape force. Curves are: solid black lines, inertial prey with no escape
force (R = 2/3, NESCF, aE = 0); dashed blue lines, inertial prey with opposite escape force aE = 0.25 (OESCF,
aE = 0.25); dotted green lines, inertial prey with a higher opposite escape force aE = 0.5 (OESCF, aE = 0.5).
Panel (a3) shows the influence of increased normal escape force (NRESCF). The notation is the same as above.
Here Re = 100 and F b = 12. Panel (a4) shows the influences of increased paddling force (F b) and Reynolds
number (Re). Panels (b1–b4) show the 3-D structure of prey encounter loops (forward-time pLCS) for: (b1)
ideal infinitesimal prey; (b2) inertial prey with no escape force (R = 2/3, NESCF,aE = 0); (b3) inertial prey with
opposite escape force (R = 2/3, OESCF, aE = 0.5); and (b4) inertial prey with normal escape force (R = 2/3,
NRESCF, aE = 0.5). Here h0/d0 = 0.3.
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(a) (b)

h0/d0 = 0.3

Fb = 12, Re = 100, aE = 0.5
OESCF OESCF-Th

h0/d0 = 0.3
Fb = 12, Re = 100, aE = 0.5

NRESCF NRESCF-Th

Figure 14. Threshold shear-dependent variation of pLCS for oppositely and normally escaping prey in five
swimming cycles. Forward-time pLCS/FTLE loop areas and their locations reveal the relative variation of the
prey interception regions with respect to the jellyfish. The dotted lines are τth = 0 (constant escape response);
and the dashed lines are τth = 1 (escape response applied at a threshold shear). (a) Opposite escaping prey; and
(b) normally escaping prey. Abbreviations used here are: OESCF, opposite escape force; OESCF-Th, opposite
escape force applied at threshold τth = 1; NRESCF, normal escape force; NRESCF-Th, normal escape force
applied at threshold τth = 1. Here Re = 100 and h0/d0 = 0.3.

increase at a higher F b. This signifies that, for self-propelled zooplankton, the magnitude
of the propulsive force can have a profound effect on the feeding performance (Kiørboe
et al. 2014).

3.3.3. Fluid-signal-based escape strategy and performance
For above considered cases, the prey escape response is initiated as soon as the disturbance
that is created by a predator reaches a prey. However, in reality, the startle response for a
copepod/prey attempting to escape predation is often initiated once an appreciable fluid
signal/deformation that is generated by the predator becomes a threat. Motile prey often
distinguish such fluid disturbances (Kiørboe et al. 1999) and intend to escape a feeding
current. In general, the escape signal can be a disturbance in velocity or acceleration, but
the most recognized signal is the local shear rate. Accordingly, we assume here that a prey
starts escaping as the local shear rate reaches a threshold value, which is then continued
even if the shear rate drops later.

Figure 14(a) shows the threshold (τth = 1) shear-dependent variations of prey
interception loops (pLCS) for opposite escaping (aE = −aEu/|u|) prey, relative to those
that escape naturally (τth = 0). The pLCS are computed over five swimming cycles of the
predator. Note that, for the initial two cycles, the loop sizes decrease as the threshold value
for perception decreases, a trend that is consistent with the measurements reported by Peng
& Dabiri (2009) in their figure 3. In contrast, as figure 14(a) displays, the loops that are
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Figure 15. For caption see next page.

created in the third and fourth cycles appear significantly larger than the loops formed in
the first and second cycles, and these later loops in fact play a decisively important role
in interception/capture of the oppositely escaping prey. Furthermore, the characteristic
variation of loops that formed in the third and fourth cycles is very much reversed for prey
that escape naturally (τth = 0), with respect to those escape at threshold shear (τth = 1).
This is because an oppositely escaping prey that stayed in the adjacent frontal region
mistakenly moves towards the predator jellyfish (due to prevailing locally upward flow)
instead of actually evading. The previously reported results (table 2 in Peng & Dabiri 2009)
lack contributions from such decisively larger loops (formed in the third and fourth cycles),
plus the influence of the missing term −(R/2)aE. However, the interception loops in the
fifth cycle appear relatively unclear (due to weaker local flow) as they formed far from
the swimming body, and those loops are thus omitted. Figure 14(b) shows the threshold
shear-dependent variations of FTLE loops for normally escaping (aE = −aEn × u/|u|)
prey. In this case, except for the first cycle, the loop sizes increase as the threshold value
for perception is increased. Furthermore, as figure 14(b) shows, despite a consistent open
shape at the front side, for normally escaping prey, the FTLE loops or pLCS converge
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(b2)(b1)

0.3 1.4 2.5 3.6 5.84.7

Figure 15. (cntd). The impact of varied paddling force (F b) on prey capture. Plotted for infinitesimal prey
and applied to two different paddling forces, F b = 7 and F b = 17, the contours of FTLE fields (pLCS) and
displacement of prey particles due to the paddling jellyfish motion. (a1) The forward-time FTLE field, where
green-coloured high ridges reveal Lagrangian coherent structures (pLCS) computed at t = 5T, for Fb = 7. The
red- and blue-coloured prey are initially located inside and outside the upstream pLCS lobes, and their swept
positions are tracked, as the jellyfish moves forwards. (a2) The corresponding backward-time FTLE field plus
appended position of prey at t = 5T; the pLCS boundaries are denoted in dark black colour. (b1, b2) Displayed
results that are computed for increased paddling force F b = 17. Here Re = 100 and h0/d0 = 0.3.

noticeably close to the vertical symmetry line, and their sizes decrease with respect to
opposite escaping preys (figure 14a).

3.3.4. Influence of paddling force
We now examine the paddled force-dependent, F b, variations (Nielsen et al. 2017) of
prey interception and capture, and infinitesimal prey are considered for the analysis.
Figures 15(a1) and 15(a2) show forward-time and backward-time FTLE fields, pLCS and
appended final prey positions, for F b = 7; and figure 15(b1,b2) reveals such results for
F b = 17. First, the appended final positions (at t = 5T) of the displaced prey particles
in figures 15(a2) and 15(b2) that originated both within the forward-time FTLE lobes
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(denoted in red in figure 15a1,b1) and outside (marked in blue) following five cycles of the
created feeding current (by A. aurita, h0/d0 = 0.3) exhibit that the red prey are contained
in a capture zone (pLCS boundary) whereas blue particles stay out/escape. Second, a
comparison of figure 9(a,b) with figures 15(a1,a2) and 15(b1,b2) clearly reveals that the
target loops and prey capture zones become bigger/more elongated as the magnitude of
the paddling force (F b, (B9)) is increased, signifying the prospect of an improved feeding
efficiency (figure 20). Notably, despite F b-sensitive variations, all infinitesimal red prey
that originated within forward-time FLTE loops (e.g. figures 15a1,b1 and 9a) are entrained
into the respective capture boundary (backward-time pLCS; figures 15a2,b2 and 9b) while
those that stayed outside clearly escape. Therefore, the observations from figure 10(b)
strongly suggest that their inertia can help some prey to escape.

3.3.5. Effect of Reynolds number
Figure 16 presents the Lagrangian analyses for varied Re. For Re = 50, figure 16(a1)
shows the forward-time FTLE plus pLCS (dark green high ridges), and figure 16(a2)
reveals the backward-time FTLE/pLCS (black high ridges) that are computed for five
swimming cycles. Figures 16(b1) and 16(b2) display such simulated results at Re = 150.
Figures 16(a1) and 16(b1) show that the sizes of FTLE lobes (target zones) increase
for increased Re, signifying the possibility of improved prey encounter and capture (e.g.
figures 13a4, 17 and 20). For essential details, the pink-coloured individual infinitesimal
prey particles are placed within the forward-time FTLE lobes (figure 16a1,b1) and blue
prey particles are placed nearby/outside. Computations are thus performed for five cycles,
as the predator/jellyfish swims forwards. In figures 16(a2) and 16(b2) the appended
swept positions of the prey particles (at t = 5T) confirm that prey that originated inside
the forward-time FTLE lobe (figure 16a1,b1) are entrained within the respective pLCS
boundary (figure 16a2,b2), while those stayed outside visibly escape. It is noteworthy that
the prey that stayed inside FTLE loops (figure 16a1,b1) created in the third and fourth
cycles are also effectively entrained within the bell region (see figure 16a2,b2), and the
capture area is clearly increased at a higher Re.

To exhibit the relative variation of capture area/volume for infinitesimal, inertial,
opposite and normally escaping prey, and for varied paddled force (F b) and Re, these
results are first summarized in figure 17(a1–a7) for the streamwise swimming plane.
Figures 17(a1), 17(a5) and 17(a6) show that the capture area is reduced for inertial and
oppositely escaping prey, with respect to infinitesimal prey, whereas the capture area (see
figure 17a1–a4) increases as paddled body force (F b) or Reynolds number (Re) increases.
Moreover, for improved clarity, in figure 17(b1–b7), the multi-decked 3-D structures of the
prey capture surfaces for the various cases examined are presented for five paddled cycles.

3.3.6. Prey capture at resonant frequency
Past findings (Alexander & Bennet-Clark 1977; Tytell et al. 2010) suggest that, for faster
motion, an aquatic swimmer often tunes muscle contraction appropriately with respect to
surrounding fluid forces, which results in optimized body dynamics and maximization of
peak acceleration. Accordingly, the resonant driving of the elastic bell is detected (Hoover
et al. 2019) to maximize the forward swimming speed of a jellyfish relative to lower
frequencies. To the authors’ knowledge, there exists virtually no study that examines or
quantifies the impact of resonant swimming by a jellyfish on its prey capturing capability.
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Figure 16. For caption see next page.

To address this point, the present 3-D MRT-LB-IB model is utilized to explore the effect
of resonant driving on prey encounter and capture.

To detect the natural frequency, for a selected paddling force (F b), the bell diameter
(d/d0) is initially allowed to contract to 90 % of its original length and then F b is released
indefinitely. This allows the body to oscillate freely in the fluid. As figure 18(a) shows,
the periods of free vibration for the two different bells (of diameter d/d0) examined
are T∗

o = 3.07tc at h0/d0 = 0.3 and T∗
p = 3.79tc at h0/d0 = 0.5, which correspond to the

period of time beginning from the point after a bell has freely expanded from the starting
contracted state to its next subsequent expansion state. The computed displacement of the
apex of a jellyfish (h0/d0 = 0.3) bell as a function of t/T∗

o is presented in figure 18(b) for
three different normalized periods T ′ = T/T∗

o , and it reveals that a bell with a shorter T ′
accelerates more quickly than one with a longer T ′. Note that, among all (smaller/larger)
swimming periods T ′, the bell moves farthest (even after 15 cycles have elapsed) when it
is driven at resonance (T ′ = 1). On the other hand, figure 7(a) shows that, when a jellyfish
(h0/d0 = 0.3) swims at resonant frequency, its COT is clearly reduced over a range of
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Figure 16. (cntd). The impact of increased Reynolds number (Re). Plotted for infinitesimal prey and for two
different Reynolds numbers, Re = 50 and Re = 150, the contours of FTLE fields (pLCS) and displaced prey
particles due to the jellyfish motion. (a1) The forward-time FTLE field, where green-coloured high ridges
reveal Lagrangian coherent structures (pLCS) computed for t = 5T, using Re = 50. The pink- and blue-coloured
prey particles are initially located inside and outside the upstream pLCS lobes, and their swept positions are
tracked as the jellyfish paddles forwards. (a2) The corresponding backward-time FTLE field plus appended
position of prey at t = 5T; the pLCS boundaries are denoted in dark black colour. (b1, b2) Displayed results
that are computed for the increased Re = 150. Here h0/d0 = 0.3.

applied paddling force (F b). Now we focus on the issue of prey capture or hunting, as a
jellyfish drives at resonant frequency.

Accordingly, figure 19 presents simulated prey interception loops (forward-time pLCS
in five cycles) for three different selected driving periods of a jellyfish bell (h0/d0 = 0.3),
which are: below the resonant driving (T ′ = 0.65), coincident with the resonant driving
(T ′ = 1), and exceeding the resonant driving (T ′ = 1.5). As figure 19 shows, for all T ′,
the distance of developed pLCS lobes from a bell increases in successive cycles, while
the impact of the resonant driving (dotted loops) is clearly effective beyond the first
swimming cycle. Notably, figure 19 also shows that, for increased period (T ′) of propulsive

912 A41-34

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
69

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1069


Kinetics and prey capture by a paddling jellyfish

xz
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(a3) (a4) (a5) (a6) (a7)(a2)(a1)

(b3) (b4) (b5) (b6) (b7)(b2)(b1)

Figure 17. Plotted here are the prey capture areas (defined by outer high ridges of backward-time pLCS)
on the streamwise (z = 0) swimming plane, for floating: (a1) infinitesimal prey, Re = 100 and F b = 12;
(a2) infinitesimal prey, at Re = 50, F b = 12; (a3) infinitesimal prey, at F b = 17, Re = 100; (a4) infinitesimal
prey, at F b = 7, Re = 100; (a5) inertial prey with no escape force (R = 2/3, NESCF, aE = 0), Re = 100 and
F b = 12; (a6) inertial prey with opposite escape force (R = 2/3, OESCF, aE = 0.5), Re = 100 and F b = 12; and
(a7) inertial prey with normal escape force (R = 2/3, NRESCF, aE = 0.5), Re = 100 and F b = 12. (b1–b7) The
exhibited 3-D structures of corresponding prey capture surfaces. Here h0/d0 = 0.3.

driving, the sizes of the interception loops increase with each passing cycle. Similarly, the
size of the backward-time pLCS also become longer and larger with increased driving
period (T ′ > 1) beyond the resonant driving; however, those results are omitted here for
the sake of brevity. The issue of resonant-driving-affected prey clearance is analysed next.
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Figure 18. (a) The oscillations of two bell diameters (d/d0) with h0/d0 = 0.3 and h0/d0 = 0.5 during free
vibration study as functions of time (t/tc). The paddling force F b is applied until the bell diameter is reduced to
90 % and then released, allowing the bell to oscillate at its natural frequency of free vibration. Here Re = 100.
(b) The plot reveals the displacement of a bell apex (h0/d0 = 0.3) as a function of time t′ ( = t/T∗

o , where T∗
o is

the period of free vibration of the oblate-shaped bell) for three different normalized periods T ′ ( = T/T∗
o ) = 0.65,

1.0 and 1.5.

3.3.7. Encounter rate
As elaborated above, medusae inhabiting the oceanic environment create a sequence
of vortex rings via their repeatedly pulsed bell (Kiørboe et al. 1999; Dabiri et al.
2005; Gemmell et al. 2015), which in turn generates the necessary feeding current that
transports/entrains (supplementary movies 1 and 5) nearby tiny copepods/prey into the
belly or suitably pushes prey through the tentacles for filtering/ingestion. Many metazoans
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T′ = 0.65

T′ = 1.0

T′ = 1.5

Figure 19. This shows the effect of the resonant swimming on the formation of prey encounter loops
(forward-time pLCS), for an oblate jellyfish (h0/d0 = 0.3) that intercepts floating infinitesimal prey. The
three different selected driving periods are subresonant driving (T ′ = 0.65), resonant driving (T ′ = 1) and
above-resonant driving (T ′ = 1.5). Here Re = 100 and F b = 12.

use filter feeding to catch bacteria-sized prey (Acuna, Lopez-Urrutia & Colin 2011; Nielsen
et al. 2017). However, the body shapes of prey and predator, the feeding current velocity
and the ability of prey to escape can significantly impact prey filtering and capture
(Kiørboe et al. 1999). While computation of the prey encounter rate (E = Av, with A the
area of filter and v the plankton velocity) is quite difficult due to the dynamic nature
of the trailing tentacles plus the complexity of fluid/plankton velocity in the near wake,
nevertheless, here we estimate the clearance rate CR (Nielsen et al. 2017) as the net volume
flow of plankton/prey per swimming cycle per unit downstream distance d0 that extends
below the bell margin, i.e.

CR = 1
3

∫
3d0

v · n dl. (3.11)

Figure 20(a) shows the variation of the normalized clearance rate, CR/CRref , as a
function of F b, for ideal infinitesimal prey in the fifth cycle, which is examined for
two jellyfish bell shapes of fineness ratio 0.3 and 0.5 and for resonant swimming.
These relate to thrust production by jellyfish that drives the feeding current. It should
be noted that, for an infinitesimal plankton, its velocity v is the same as the local
fluid velocity (e.g. Nielsen et al. 2017), whereas v varies for inertial/escaping plankton.
Figure 20(a) shows that, at a fixed Re = 100, the clearance rates CR/CRref for the said two
jellyfish species increase significantly faster over 1 < F b ≤ 11 and then gradually approach
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Figure 20. Plotted here are normalized: (a) clearance rate (CR/CRref ), and (b) cost of preying (COP/COPref ;
(3.12)) in the fifth cycle, as a function of the magnitude of the applied paddling force (F b). To reveal
morphological dependence, data for another fineness ratio (h0/d0 = 0.5) are added to these two plots, and
the same reference conditions (F b = 12 and h0/d0 = 0.3) are used for normalization. The results for resonant
(Res.) driving are also supplied that reveal the effects of the resonant swimming. For A. aurita (h0/d0 = 0.3)
computed variations of: (c) clearance rate (CR/CRref ) and (d) cost of preying (COP/COPref ) in the fifth cycle
while encountering the ideal infinitesimal (Inf.), inertial (R = 2/3, NESCF, aE = 0), opposite escaping (R = 2/3,
OESCF, aE = 0.5), opposite escaping at threshold shear (R = 2/3, OESCF-Th, aE = 0.5), normally escaping
(R = 2/3, NRESCF, aE = 0.5), and normally escaping prey at threshold shear (R = 2/3, NRESCF-Th, aE = 0.5).
Here Re = 100.

respective saturating states. However, for F b ≥ 6, the CR/CRref value for the oblate
species (h0/d0 = 0.3) far exceeds that of a prolate-type (h0/d0 = 0.5) predator, revealing
a higher prey clearance capability for the former. This justifies why an oblate medusa is
called a filter feeder, whereas a prolate one is a typical ambush predator (Kiørboe 2011).
Significantly, for the created symmetric flow (figures 4 and 5) that surrounds a jellyfish,
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Inf. Inf., Res. Inf. Inf., Res. Inf.
Re = 100

(h0/d0 = 0.3)
Re = 100

(h0/d0 = 0.3)
Re = 100

(h0/d0 = 0.5)
Re = 100

(h0/d0 = 0.5)
Re = 150

(h0/d0 = 0.3)

0.862 0.508 (59 % of Inf.,
h0/d0 = 0.3)

0.425 (49 % of Inf.,
h0/d0 = 0.3)

0.366 (86 % of Inf.,
h0/d0 = 0.5)

1.06 (123 % of Inf.,
h0/d0 = 0.3)

Table 2. In the fifth swimming cycle, the average clearance rate CR/CRref of ideal infinitesimal (Inf.) prey,
over a range of applied paddling forces, 2 ≤ Fb ≤ 24. Here Res. denotes respective cases of resonant driving.

the presented normalized CR/CRref helps quantification of the required optimal propulsive
force.

Moreover, the results presented in figure 20(a) imply that the resonant swimming by
a jellyfish/predator is inappropriate for the purpose of feeding, as CR/CRref is clearly
reduced for both fineness ratios 0.3 and 0.5. However, the increased Re effectively
increases CR/CRref for A. aurita (h0/d0 = 0.3). For an explicit quantitative measure, table 2
shows that for A. aurita (h0/d0 = 0.3) the average clearance rate CR/CRref over a range of
applied paddling force 2 ≤ F b ≤ 24 is reduced to 59 % when the jellyfish drives at natural
frequency, whereas increased Re from 100 to 150 improved CR/CRref to 123 % of the
corresponding non-resonant driving. On the other hand, as the fineness ratio is increased
to 0.5 (i.e. for a prolate-type species, and at fixed Re = 100), the CR/CRref value reduced to
49 % of that at h0/d0 = 0.3. Additionally, when the prolate-type body drives at resonance,
its clearance rate is further reduced to 86 % of the corresponding non-resonant case.

To determine an optimal feeding strategy, depending on the required input energy Ei
(equation (3.2)), the cost of preying for a feeding-current-generating predator is defined
herein as

COP = Ei

CR
. (3.12)

Figure 20(b) shows the variation of the normalized COP/COPref for two different jellyfish
shapes, over a range of applied paddling force (F b). It reveals that the CR-scaled input
energy requirement for A. aurita (h0/d0 = 0.3) attains an optimum value at F b = 7, whereas
such an optimum for a prolate-type jellyfish (h0/d0 = 0.5) occurs at F b = 4, and for
that the bell volumes shrink merely by 15 %. Moreover, as evident from figure 20(b),
resonant swimming increases COP/COPref for both examined bell shapes. Conversely,
the increased Re for A. aurita is observed to lower its cost of preying (COP/COPref ).

To understand prey-specific capture behaviour, first, figure 20(c) shows the
F b-dependent variation of the clearance rate (by A. aurita; h0/d0 = 0.3) in the fifth
cycle, for intercepted infinitesimal (Inf.), inertial (NESCF), constantly opposite escaping
(OESCF), opposite escaping at the threshold shear (OESCF-Th), constantly normally
escaping (NRESCF) and normally escaping at the threshold shear (NRESCF-Th) prey.
It shows that CR/CRref is largest for opposite escaping prey, and it increases as F b is
increased, signifying the inappropriateness of the constantly opposite escape behaviour.
Note that, as figures 13(a1) and 13(a2) show, for constantly opposite escaping prey, the
interception loops that formed in the third and fourth cycles (and stretch along the front
side) are the largest among the various inertial and evasive prey, which in turn helps
to increase the clearance rate (figure 20c). This happens despite loops that are created
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Figure 21. Plotted here are variations of normalized clearance rate (CR/CRref ) in the first, second, fourth
and fifth swimming cycles of A. aurita (h0/d0 = 0.3), as a function of the magnitude of the applied paddling
force (F b). Here Re = 100. The encountered cases: (a) ideal infinitesimal (Inf.) prey, (b) inertial prey (R = 2/3,
NESCF, aE = 0), (c) constantly opposite escaping prey (R = 2/3, OESCF, aE = 0.5), (d) constantly normally
escaping prey (R = 2/3, NRESCF, aE = 0.5), (e) opposite escaping prey at threshold shear τth = 1 (R = 2/3,
OESCF-Th, aE = 0.5), and ( f ) normally escaping prey at threshold shear τth = 1 (R = 2/3, NRESCF-Th,
aE = 0.5).
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in the first and second cycles often revealing a slightly reverse/shrinking trend (Peng &
Dabiri 2009). However, the attempt to opposite escape when made at threshold shear
is clearly useful, as it reduces CR/CRref relative to that for constantly opposite escaping
prey. This is supported by our observation made from figure 14(a) that exhibits relative
decrease of prey interception loops particularly at later cycles, as prey escapes at threshold
shear (τth = 1).

The results presented above for OESCF and OESCF-Th prey, which display
contradictory feeding performances with an existing measurement (e.g. tables 1 and 2;
Peng & Dabiri 2009), suggest the clear shortcoming of any prey capture analysis that is
derived from short-time swimming data. Interestingly as figure 20(c) reveals, for evasive
prey the normal escape attempt is the most practical way to escape predation, which
drastically lowers the clearance rate of a predator. Note also that, for normally escaping
prey (figure 20c) a waiting strategy until the growth of threshold shear (NRESCF-Th) is
clearly counterproductive; it simply enhances predation (CR/CRref ). Figure 20(d) shows
that COP/COPref is lowest for opposite escaping prey (as the prey themselves approach or
fall into a trap/loop) and largest for normal escaping prey (NRESCF); nevertheless, they
reveal an increasing trend at a higher F b.

For an in-depth exploration/understanding, the cycle-to-cycle variation of the prey
clearance rate is shown in figure 21 over a range of applied paddling force (F b). Such
results include various examined cases of infinitesimal (figure 21a), inertial (figure 21b),
constantly opposite escaping (figure 21c), oppositely escaping prey at threshold shear
(figure 21e), constantly normal escaping (figure 21d) and normally escaping prey at
threshold shear (figure 21f ). It should be noted that, for all classes of evasive prey
considered, the CR/CRref in the first and second cycles remain significantly low compared
to that in fifth cycle. However, as figure 21 exhibits, the computed CR/CRref differences
are drastically reduced between the fourth and fifth cycles, and these differences appeared
negligible beyond the fifth cycle.

For additional clarity, table 3 displays the prey-specific cycle-to-cycle variation of
average clearance rate CR/CRref over a range of applied propulsive force 2 ≤ Fb ≤ 24,
and such results are presented for two different jellyfish morphologies. Note that the
CR/CRref in the fifth cycle is reduced by about 49 %, for both infinitesimal (Inf.) as
well as inertial (NESCF) prey, as the fineness ratio is increased from 0.3 to 0.5. Table 3
also shows that for the opposite escaping prey (OESCF) the quantitative clearance rate
(CR/CRref ) in the fifth cycle (for A. aurita; h0/d0 = 0.3) is increased to 132 % compared
to that of inertial (NESCF) prey, whereas it is reduced to 50 % and 60 %, respectively, in
the first and second cycles, highlighting the need for such computations over sufficiently
long swimming cycles (and using the correct dynamical system). Note that, in the fifth
cycle the CR/CRref for the normally escaping prey at threshold shear (NRESCF-Th) is
also increased with respect to inertial (NESCF) prey (i.e. 103 % of NESCF).

3.4. Prey capture at fineness ratio 0.5
To explore the morphological variation of prey capture behaviour, here we extend
the examination to a higher fineness ratio 0.5. Accordingly, first, the flow field
(see supplementary movie 5) for the paddling medusa (of fixed material properties
cst = 18.5 and cbe = 0.03) is simulated, and then the detailed entrainment pattern/dynamics
(see supplementary movie 6) of floating infinitesimal prey particles is obtained.
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Cycle Inf.,
h0/d0 = 0.3

NESCF,
h0/d0 = 0.3

OESCF,
h0/d0 = 0.3

OESCF-Th,
h0/d0 = 0.3

NRESCF,
h0/d0 = 0.3

NRESCF-Th,
h0/d0 = 0.3

Inf.,
h0/d0 = 0.5

NESCF,
h0/d0 = 0.5

1st 0.553
(64 % of 5th)

0.527
(63 % of 5th)

0.480
(50 % of 5th)

0.593
(72 % of 5th)

0.520
(81 % of 5th)

0.477
(56 % of 5th)

0.260
(61 % of 5th)

0.226
(55 % of 5th)

2nd 0.618
(72 % of 5th)

0.591
(71 % of 5th)

0.656
(60 % of 5th)

0.746
(91 % of 5th)

0.558
(87 % of 5th)

0.663
(77 % of 5th)

0.312
(73 % of 5th)

0.285
(69 % of 5th)

4th 0.822
(95 % of 5th)

0.791
(95 % of 5th)

0.969
(88 % of 5th)

0.767
(94 % of 5th)

0.623
(97 % of 5th)

0.817
(95 % of 5th)

0.392
(92 % of 5th)

0.377
(92 % of 5th)

5th 0.862 0.829
(96 % of Inf.)

1.094
(132 % of
NESCF)

0.820
(99 % of
NESCF)

0.639
(77 % of
NESCF)

0.857
(103 % of
NESCF)

0.425
(49 % of Inf.,
h0/d0 = 0.3)

0.411
(97 % of Inf.,
h0/d0 = 0.5)

Table 3. Prey-specific cycle-to-cycle variation of the average clearance rate CR/CRref over a range of applied paddling force, 2 ≤ Fb ≤ 24; ideal infinitesimal (Inf.), inertial
(NESCF; with no escape force), opposite escape force (OESCF), opposite escape force at threshold shear (OESCF-Th), normal escape force (NRESCF), and normal escape
force at threshold shear (NRESCF-Th). Here Re = 100 and aE = 0.5.
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Figure 22. For caption see next page.

Figure 22 shows contours of forward-time (figure 22a1) and backward-time (figure 22a1)
FTLE fields and pLCS that are computed (using (3.7)–(3.10)) for five propulsive cycles
(t = 5T), so as to deliver a clear picture for predator–prey encounter. Note that, for a higher
fineness ratio 0.5 of the bell, the sizes of the forward-time FTLE loops (figure 22a1), i.e.
target zones, shrink significantly (compared to figure 9a; h0/d0 = 0.3). This implies that
an oblate-type medusa (of low fineness ratio) is a better feeding-current-generating hunter
compared to a prolate one. Second, instead of focusing on a cluster of prey particles, in this
case the entrainment (see supplementary movie 7) of individual prey that originate inside
or outside (figure 22a1) FTLE loops is revealed, which provides clearer information on
their placement within the capture boundary (i.e. pLCS in figure 22a2) or near wake. The
appended positions (at t = 5T) of pink- and blue-coloured prey particles in figure 22(a2),
which were initially stationed as in figure 22(a1), clearly shows that the pink prey that
originated inside the forward-time FTLE loops are entrained within the pLCS/capture
boundary demarcated by the dark colour high ridges of the backward-time FTLE field
(figure 22a2), whereas the blue-coloured particles escape to the adjacent outer area (see
also supplementary movie 7).

Now we examine the impact of prey inertia (using aE in (3.5)) at h0/d0 = 0.5. For
the considered inertial prey with R = 2/3 ρp = ρf , figures 22(b1) and 22(b2) show the
forward-time and backward-time FTLE fields, pLCS and swept prey position at t = 5T due
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Figure 22. (cntd). The effect of inertia on prey encounter and capture by a prolate-type jellyfish (h0/d0 = 0.5).
(a1,a2) For infinitesimal prey, plotted are contours of FTLE fields (pLCS) and displaced prey position due
to the paddling jellyfish motion. Here Re = 100 and F b = 5.4. (a1) The forward-time FTLE field, where
green-coloured high ridges reveal Lagrangian coherent structures (pLCS) computed at t = 5T. The pink-
and blue-coloured prey are initially located inside and outside the upstream pLCS lobes, and their swept
positions are tracked as the jellyfish paddles forwards. (a2) The corresponding backward-time FTLE field
plus appended position of swept prey at t = 5T; pLCS boundaries are denoted in dark black colour. (b1,b2) For
suspended inertial prey with no escape force (R = 2/3, aE = 0), plotted are contours of FTLE fields (pLCS) and
displacement of prey positions due to the paddling jellyfish motion. Here Re = 100 and F b = 5.4.

to the created paddled feeding current in five cycles. The noted five pairs of forward-time
FTLE loops in figure 22(b1) identify the precise places in the upstream fluid region
from which a prey can be captured. To confirm that the backward-time pLCS presented
in figure 22(b2) indeed forms the physical capture surface, first, the inertial (R = 2/3)
pink particles are placed inside the forward-time FTLE loops (figure 22b1) and adjacent
blue particles outside, and the simulation is re-run for t = 5T. Figure 22(b2) shows
the dispersed final position of the inertial prey with respect to the pLCS boundary
(dark-coloured outer ridges). It reveals that prey stationed inside FTLE lobes (figure 22b1)
are practically contained within the multi-deck capture area (figure 22b2) that surrounds
the five paddling-created belly-shaped regions in the five cycles, plus a part of the
bell area. Note that such a capture region is quite significantly different plus physically
appropriate compared to what was postulated earlier (Peng & Dabiri 2009). Nevertheless,
the observed capture area for this prolate-like swimmer is clearly smaller than that of
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Inf.
Fb = 5.4, Re = 100, h0/d0 = 0.5

 R = 2/3

Figure 23. The effect of prey inertia on the variation of forward-time FTLE loops/fingers for a prolate-like
(h0/d0 = 0.5) jellyfish/predator. Here Re = 100 and F b = 5.4.

an oblate (figure 10b) one. A detailed quantitative analysis for the prey clearance rate is
presented in table 3.

Figure 23 reveals the inertia-dependent structural variation of forward-time FTLE loops
for this prolate-type medusa, displaying that the target loops shrink for encountered inertial
prey (R = 2/3) with respect to ideal infinitesimal prey, and such results are along the line
that is expected in a natural predator–prey system.

It may be noted that, regardless of evolutionary and morphological constraints, the
tentacles of a jellyfish armed with stinging cells (cnidocytes/nematocysts) play important
roles both in feeding (Miles & Battista 2019) and in defence (Fields & Yen 1997; Hamlet,
Strychalski & Miller 2020). For varying length (of multiple bell diameter), number and
placement, the fringing tentacles mostly reduce a jellyfish’s forward swimming speed
(Miles & Battista 2019) and thereby increase the cost of transport COT. Moreover, the
shape or density of tentacles can affect prey entrainment and filtering, and therefore
impact the prey clearance rate CR. The above studies suggest that tentacles inhibit the
forward swimming speed by suppressing the growth of near-wake vortices that otherwise
generate favourable thrust via passive energy recapture (Gemmell et al. 2013). In addition,
the foraging performance of a jellyfish varies depending on active swimming potential
(that enhances CR) and opportunistic passive use of the tentacles. For instance, a box
jellyfish actively hunts for food, whereas an opportunist lion’s mane jellyfish extends
its nematocyst-bearing lengthy tentacles and waits for prey to come into contact for
predation/feeding (Miles & Battista 2019). Alternatively, Sarsia tubulosa displays a
combination of active and passive hunting behaviour. Furthermore, the ability to capture
an inertial/evasive prey (e.g. small fish, or crustacean zooplankton such as copepods and
barnacle larvae), or to defend against a potential threat, depends on the ease with which
the nematocyst is released (Hamlet et al. 2020) by a jellyfish, how efficiently prey is
retained by nematocysts, and to what degree a prey is affected by nematocyst toxins.
In a recent two-dimensional analysis, Miles & Battista (2019) elaborated the swimming
performance of a jellyfish based on the number and length of its tentacles.
The A. aurita species (see figure 24) that is considered in the current study has relatively
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Figure 24. An image of a real A. aurita (moon jellyfish) that has relatively small tentacles that are used for
prey capture/filtering. Source: https://commons.wikimedia.org/wiki/File:Jellyfish_(22155766231).jpg.

small tentacles (of length less than a quarter of the bell diameter) that spread around
the subumbrellar bell, and accordingly the species mostly consume tiny phytoplankton,
released fish eggs (infinitesimal), young larvae and small fish (inertial). However, the
role of the tentacles in swimming and/or LCS formation is not investigated here owing
to excessive modelling complexity in three dimensions. Furthermore, in reality, motile
prey exhibit complex escape reactions and different escape timings that make one species
of prey more vulnerable to predation than another, and such issues are yet to be covered.

4. Conclusions

In this numerical study, first, the mechanistic swimming by a paddled jellyfish is revealed
in three dimensions via the created starting and stopping vortex rings, the circulation
contribution, near-surface pressure variation, fluid entrainment, thrust production and
required cost of transport COT. Second, the prey capture practices for the two different
jellyfish morphologies considered are displayed and analysed both quantitatively and via
several movies. During the active contraction phase, the power derived from the applied
transient body force (F b) at the bell margin and the elastic strain energy acts to produce
high acceleration. The stored elastic energy in the contracted phase is then used by a
swimmer for later bell expansion in the relaxed phase and to produce a stopping vortex ring
that in turn generates significant favourable thrust by virtue of the entrained surrounding
fluid. In the process, the manipulated near-surface low-pressure areas empower a jellyfish,
for the larger part of a swimming cycle, to move forwards in the water by using the positive
thrust-generating inward flow at the bell edge; although, a region of high pressure persists
near the apex area, especially in transient periods. Moreover, the developed high-pressure
region just below the bell (below the stopping vortex) helps to generate supportive thrust
in the form of passive energy recapture. For varied morphology (h0/d0 = 0.3 and 0.5), our
study shows that the COT increases rapidly as propulsive force F b falls below a threshold
magnitude (F b,th), when medusae swim rather slowly. However, for F b > F b,th the growth
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rate of COT is gradually slowed. The COT is found to be higher for a prolate-type jellyfish
compared to an oblate one, showing that an oblate-type body is more economical. The
resonant swimming by a medusa reduced the COT over a wide range of applied F b. In
addition, the generated circulation Γ by a stopping vortex ring in the relaxed phase is
about twofold higher than that of a starting vortex ring, indicating the intelligent swimming
pattern that metazoans follow.

In a significant step forwards, for the first time, the present numerical study efficiently
analyses the prey interception process and quantifies the success rate of capturing various
inertial and evasive prey for a paddled swimmer, via an adopted appropriate dynamical
system and modified Maxey–Riley equation. The work follows the recent paper of Peng
& Dabiri (2009) on the same topic. However, our results and analysis differ significantly
from theirs, in addition to the incorporated correction of a missing term −(R/2)aE in the
governing equation. Notably, a physically realistic ‘capture boundary’ that is appropriate
for diverse inertial and evasive prey is defined/obtained herein using the backward-time
pLCS, instead of the hypothetical previous one (Peng & Dabiri 2009) that is constituted
by the approximated forward-time pLCS. Moreover, our computed FTLE loops plus prey
capture activity over five swimming cycles of a predator help to broaden and correct much
of the previously reported quantitative analysis and conclusions for intercepted inertial
and evasive prey, as those were obtained for much shorter time, before the generated
feeding current adequately spreads. In addition, for two different jellyfish morphologies,
the relevant forward-time and backward-time FTLE and pLCS, are presented in greater
detail for intercepted infinitesimal, inertial, opposite and normally escaping prey, which
unambiguously display effective prey interception loops and well-defined capture surfaces;
and for the first time the resultant prey clearance rate CR is obtained in this study.

Furthermore, issues related to the threshold shear-dependent escape strategy for
conscious prey and the resultant effects of varied propulsive force (1 ≤ F b ≤ 27), Reynolds
number (50 ≤ Re ≤ 150) and resonant driving are broadly elaborated. Our results reveal
that, for a higher bell fineness ratio h0/d0 = 0.5, the interception loop sizes and capture
areas decrease rapidly compared to h0/d0 = 0.3, whereas the clearance rate is reduced by
about 49 % for both infinitesimal (Inf.) as well as inertial (NESCF) prey. This shows that
an oblate-type jellyfish is a more successful feeding-current-based hunter than a prolate
one. Although resonant driving helps faster swimming, it is found to be inappropriate for
feeding, as the corresponding clearance rate by a jellyfish decreased for both h0/d0 = 0.3
and 0.5. In addition, resonant swimming increased the cost of preying (COP/COPref ) for
both bell shapes. The increased Re for A. aurita (h0/d0 = 0.3) is detected to lower its
cost of preying over a range of applied F b. Since clearance rate is an important measure
for efficient feeding, the enhanced CR with increased F b (1 ≤ F b ≤ 27) detected herein
displays how propulsive force can help to improve the feeding ability of a predator/medusa.
Moreover, the offered thorough analysis involving ideal infinitesimal, inertial, opposite and
normally escaping prey, and threshold shear (signal) based prey escape strategy, shows,
for A. aurita, that the clearance rate for encountered opposite escaping preys (OESCF)
increases to 132 % of that for inertial (NESCF) prey; whereas for normal escaping prey at
threshold shear (NRESCF-Th) it is increased to 103 % of that for inertial (NESCF) prey.
Additionally, our computed cycle-to-cycle prey clearance rate CR for two jellyfish bell
shapes and diverse evasive prey illustrate that in the first and second cycles CR remains
significantly low compared to that in the fifth cycle, implying clear limitations of any such
small-time estimate. The presented results and movies provide an advanced insight into
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widely used feeding-current-based prey capture practices by a natural predator in a free
habitat/environment.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2020.1069.
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Appendix A. The MRT-LB-IB model

The adopted collision operator (D’Humieres et al. 2002; Premnath & Abraham 2007;
Wu et al. 2015) for the multi-relaxation-time lattice Boltzmann and immersed boundary
(MRT-LB-IB) model is expressed as

fα(x + eαδt, t + δt) − fα(x, t) = −Sαi( fi(x, t) − f eq
i (x, t)) +

(
I − S

2

)
Fαδt, (A1)

Fα = wα

(
eα − u

c2
s

+ eα · u
c4

s
eα

)
· f , (A2)

where fα and f eq
α are distribution functions and their equilibrium states (in α direction;

α = 0, 1, 2 . . . , N), x the Eulerian coordinate, S the collision matrix, wα (equation (A3)
below) the weighing factor, eα (equation (A4) below) the particle velocity, u the fluid
velocity, cs = c/

√
3 the speed of sound related to the D3Q15 model (Kuzmin, Guo &

Mohamad 2011; Kruger et al. 2016), c the Cartesian component of particle velocity, D3
an abbreviation of 3-D space, Q15 refers to discrete velocity vectors, and f the external
(Eulerian) force density. The wα in (A3) below depends on the underlying lattice structure,
and its choice (Zhu et al. 2011) ensures isotropy of the fluid. The lattice Boltzmann
equation (LBE) derivable from the Boltzmann equation is used to solve the incompressible
flow structure interaction. The wα are accordingly chosen (Premnath & Abraham 2007;
Kruger et al. 2016) as

wα =

⎧⎪⎨
⎪⎩

2
9 , α = 1,

1
9 , α = 2, . . . , 7,

1
72 , α = 8, . . . , 15.

(A3)

For the applied D3Q15 model the computational domain is discretized using square lattices
and eα set as

eα =

⎧⎪⎨
⎪⎩

(0, 0, 0), α = 1,

(±1, 0, 0), (0, ±1, 0), (0, 0, ±1), α = 2, . . . , 7,

(±1, ±1, ±1), α = 8, . . . , 15.

(A4)

Equation (A1) is subsequently mapped to moment space (Kuzmin et al. 2011; Wu
et al. 2015) by multiplying with a transformation matrix M (D’Humieres et al. 2002),
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and resulting MRT-LBE becomes

fα(x + eαδt, t + δt) − fα(x, t)

= −M−1Ŝ(mα(x, t) − meq
α (x, t)) + M−1

(
I − Ŝ

2

)
MFαδt, (A5)

where m = M f , i.e. f = M−1m. The collision matrix Ŝ (Ŝ = MSM−1) in moment space is
a diagonal matrix with non-negative entities, i.e. Ŝ = diag[s1, s2, s3, s4, s5, s6, s7, s8, s9,
s10, s11, s12, s13, s14, s15], and parameters si denote inverse of relaxation time of various
moments of m in reaching equilibrium. For the MRT-LB-IB model (A5) with external
forcing, we use s1 = s4 = s6 = s8 = 1, s2 = 1.19,s3 = 1.41, s5 = 1.6, s7 = 1.6, s9 =
1.6, s15 = 1.98, s10 = s11 = s12 = s13 = s14 = 1/τ and τ = 0.54, which provide better
stability (Premnath & Abraham 2007). The relaxation time τ and kinematic viscosity ν

are related by
ν = (τ − 1

2)c2
s δt. (A6)

Using Gram–Schmidt orthogonalization, the matrix M (D’Humieres et al. 2002) becomes

M = [v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v12, v13, v14, v15]T, (A7)

where ‘T’ denotes transpose operator, and components of the column vectors of M are
expressed as

v1α =‖ eα‖0, v2α =‖ eα‖2 − 2, v3α = 1
2 (15 ‖ eα‖4 − 55 ‖ eα‖2 + 32), v4α = eαx,

v5α = 1
2 (5 ‖ eα‖2 − 13)eαx, v6α = eαy, v7α = 1

2 (5 ‖ eα‖2 − 13)eαy, v8α = eαz,

v9α = 1
2 (5 ‖ eα‖2 − 13)eαz, v10α = 3e2

αx− ‖ eα‖2, v11α = e2
αy − e2

αz, v12α = eαxeαy,

v13α = eαyeαz, v14α = eαxeαz, v15α = eαxeαy eαz.
(A8)

The velocity moment vector m and its elements at equilibrium are accordingly described
as

m = [ρ, e, e2, jx, qx, jy, qy, jz, qz, 3pxx, pww, pxy, pyz, pzx, mxyz]T, (A9)

with

e = −ρ + j2x + j2y + j2z
ρ0

, e2 = ρ − 5

(
j2x + j2y + j2z

ρ0

)
, qx = −7

3
jx,

qy = −7
3

jy, qz = −7
3

jz,

(A10)

and

pxx = 1
3

[
2j2x − ( j2y + j2z )

ρ0

]
, pww =

[
( j2y − j2z )

ρ0

]
, pxy = jx jy

ρ0
,

pyz = jyjz
ρ0

, pzx = jy jz
ρ0

, mxyz = 0,

(A11)

where e and e2 denote kinetic energy independent of density and square of energy,
respectively, ( jx, jy, jz) = ρ(ux, uy, uz) ≡ ρu are components of momentum or mass flux,
(qx, qy, qz) the energy fluxes, pxx, pxy, pyz, pzx the components of symmetric viscous stress
tensor, and mxyz an antisymmetric third-order moment.
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Upon calculating fα , the macroscopic density, velocity and pressure are obtained as
follows:

ρ =
∑
α

fα, (A12)

ρu =
(∑

α

eα fα + 1
2 f δt

)
, (A13)

p = c2
s ρ. (A14)

Appendix B. Implementation of the immersed elastic jellyfish body

Here the Eulerian description is used for surrounding fluid motion whereas the
physical deformation of a pulsating jellyfish (figure 1) under applied periodic force
is expressed using a moving curvilinear coordinate (γ1, γ2) system. A combination
of Eulerian–Lagrangian variables is thus used to reveal the swimming motion (Zhao,
Freund & Moser 2008; Park et al. 2014). Accordingly the effect of the pulsating jellyfish
membrane boundary is incorporated via discrete Lagrangian points X (γ1, γ2, t) that exert
forces to attached Eulerian fluid. Based on direct momentum forcing (equation (A1)) on
Eulerian grids, the formulation (equation (B2) below) ensures satisfaction of the no-slip
condition (Kruger et al. 2016) along an immersed body. The interaction of Lagrangian
body particles and Eulerian flow variables is facilitated via a Dirac delta function (see
(B3)). Forces on the immersed boundary (IB) are thereby first computed at Lagrangian
points and then spread to Eulerian grids.

The schematic in figure 1(a) shows the elastic fibre that forms the jellyfish body
in three dimensions. To derive the Lagrangian forces arising from stored elastic fibre
energy (Huang & Sung 2009), we simulate the motion and deflection of material points
X (γ1, γ2, t) of the jellyfish body using the Lagrangian description. The paddling body
boundary effect on the surrounding fluid is taken into account by (equation (B1) below)
spreading the elastic surface force into the bulk fluid and treating as a body force. As
boundary forces spread from Lagrangian points to nearby fluid lattices, the affected
velocity field is interpolated as below. The associated physical interaction (Mittal &
Iaccarino 2005; Zhao et al. 2008; Huang & Sung 2009) is modelled as

f (x, t) =
∫

�s

F (γ1, γ2, t)δ(x − X (γ1, γ2, t)) dγ1 dγ2, (B1)

U(γ1, γ2, t) = u(X (γ1, γ2, t), t) =
∫

�f

u(x, t)δ(x − X (γ1, γ2, t)) dx, (B2)

where �s denotes structure region, �f the fluid region influenced by the immersed body,
dγ1 dγ2 an area segment, F (γ1, γ2, t) the Lagrangian force density, δ(x − X (γ1, γ2, t)) the
Dirac delta function, and U(γ1, γ2, t) the local velocity of the IB. Equation (B2) through
IBM effectively imposes the no-slip condition on the IB surface while the elastic body
(figure 1a) moves with the same velocity as the attached fluid. The Dirac delta function
δ(x) in the work is chosen (Shin, Huang & Sung 2008; Huang & Sung 2009; Yang et al.
2009; Kruger, Varnik & Raabe 2011) as δ(x) = δ(x)δ( y)δ(z), where the explicit form of
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δ(x), for example, is given by

δ(x) =

⎧⎪⎨
⎪⎩

1
8(3 − 2|x| +

√
1 + 4|x| − 4x2), 0 ≤ |x| ≤ 1,

1
8(5 − 2|x| +

√
−7 + 12|x| − 4x2), 1 ≤ |x| ≤ 2,

0, 2 ≤ |x|.
(B3)

The implemented four-point Dirac delta function in (B3) reduces the non-physical flow
oscillation (Yang et al. 2009) and facilitates improved realization of the no-slip condition
(Kruger et al. 2011, 2016). Moreover, the stability regime of this four-point delta function
is reported much wider (Shin et al. 2008), among the two-point, three-point and four-point
regularized delta functions. Herein the elastic force F is derived using the variational
derivative (Huang & Sung 2009) of the energy functional E(X ), that is,

F = −∂E(X )

∂X
. (B4)

The elastic energy E in general is a combination of torsion, shear, bending and stretching
energy. However, in the present study only stretching and bending forces are taken into
account (Park et al. 2014). The mathematical details that explain the implementation of
the fluid elastic forces are as follows.

The elastic spring model (Tsubota, Wada & Yamaguchi 2006) is applied here to describe
the membrane deformation. The flexible jellyfish body is accordingly viewed (figure 1a)
as a sequence of tissues interconnected via springs. The stored elastic energy in springs
allows changes of spring length plus the angle between two adjacent springs. The total
elastic energy E is therefore equal to the sum of concentrated energy (Huang & Sung
2009) due to stretching/compression, i.e. energy Est that depends on material stiffness cst,
plus energy Ebe that is stored via bending, based on bending coefficient cbe. Therefore,
E = Est + Ebe (say), where

E[X ] = 1
2

cst

∫
�s

2∑
i,j=1

[(∣∣∣∣∂X
∂γi

∂X
∂γj

∣∣∣∣− 1
)2

+ 1
2

cbe

∣∣∣∣ ∂2X
∂γi ∂γj

∣∣∣∣
2]

dγ1 dγ2. (B5)

The elastic stiffness (cst) and bending (cbe) coefficients are, however, kept fixed,
once chosen. Using (B5) and (B4), the stretching (Fst) and bending (F be) forces can be
expressed as

F st =
2∑

i,j=1

∂

∂γi
(σijηj) and F be = −

2∑
i,j=1

∂2

∂γi ∂γj

(
cbe

∂2X
∂γi ∂γj

)
. (B6a,b)

In (B6a), the tension force σij and unit tangent ηj to the boundary are defined as follows:

σij =
⎧⎨
⎩cst

(∣∣∣∣∂X
∂γi

∂X
∂γj

∣∣∣∣− 1
)

, for
∣∣∣∣∂X
∂γi

∂X
∂γj

∣∣∣∣ ≥ 1,

0, otherwise,
(B7)

ηj = ∂X
∂γj

/

∣∣∣∣ ∂X
∂γj

∣∣∣∣. (B8)

The flexible jellyfish body moves by alternately squeezing and freely relaxing its muscle.
The applied contracting nodal force F b below is modelled using an inward-directed
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periodic force function (in lattice measure; Kruger et al. 2016) that acts through 0 < t < tc
over a small width h′ (figure 1a) at the bell edge. Hence, F b that is active over a contraction
period tc is modelled (Zhao et al. 2008; Huang & Sung 2009) as

F b = Fb,x î + Fb,y ĵ + Fb,zk̂, (B9)

Fb,x =
⎧⎨
⎩

Λ(2 − r) min(t, tc − t)
x11

|x1| , r < 2, t < tc,

0, otherwise,
(B10)

Fb,z =
⎧⎨
⎩

Λ(2 − r) min(t, tc − t)
x13

|x1| , r < 2, t < tc,

0, otherwise,
and Fb,y = 0, (B11)

where r is the distance between force point and left tip, and x1 = (x11,0, x13) denotes a
vector pointed from the force point to its symmetric counterpart. The force coefficient Λ

is chosen here as 250 (e.g. Park et al. 2014). Equation (B10–B11) shows, at close vicinity
of the bell edge and at beginning time steps (through a power stroke for t ≤ tc) the transient
body force F b is active, and then suddenly withdrawn (F b = 0) for tc < t ≤ T.

A major effort/time in the 3-D computation of FSI is spent for tracing the time-varying
IB points X (γ1, γ2, t) and obtaining transmitted forces. Equation (B3) shows the
computation of δ(x), δ( y) and δ(z) and thereby the FSI ((B1) and (B2)) for the IB involves
Eulerian points that span over five lattice units around the body. Accordingly the size
of a time-varying moving subdomain that surrounds the jellyfish and helps to effectively
compute the FSI is optimized in each time step by examining the changed dimensions of
the jellyfish and its position, which considerably reduced the computational cost.

The boundary conditions that are used for simulating the paddled jellyfish motion (FSI)
consist of: (i) satisfaction of the no-slip condition (B2) at the moving body boundary (IB)
that is carefully computed using five neighbouring cells (Kruger et al. 2016); (ii) periodic
boundary condition at spanwise ends of the flow domain; and (iii) zero streamwise velocity
gradient conditions at inlet/outlet. Accordingly, a jellyfish deforms or moves following the
kinematic condition

∂X
∂t

= U(γ1, γ2, t). (B12)

For numerical implementation, we use an explicit Euler scheme to trace the moving IB
points, and a realistic nodal force distribution F b (B9) is applied at the bell edge to enable
the near-natural kinematics.
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