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1Université Grenoble Alpes, CNRS, G-SCOP, Grenoble, France

(e-mail: nicolas.bousquet@grenoble-inp.fr, louis.esperet@grenoble-inp.fr)
2LAMSADE, University of Paris-Dauphine, Paris, France

(e-mail: ararat.harutyunyan@dauphine.fr)
3Radboud University Nijmegen, Netherlands

(e-mail: r.deverclos@math.ru.nl)

Received 5 April 2017; revised 11 June 2018; first published online 24 July 2018

For an integer q � 2 and an even integer d, consider the graph obtained from a large

complete q-ary tree by connecting with an edge any two vertices at distance exactly d in

the tree. This graph has clique number q + 1, and the purpose of this short note is to

prove that its chromatic number is Θ
(
(d log q)/log d

)
. It was not known that the chromatic

number of this graph grows with d. As a simple corollary of our result, we give a negative

answer to a problem of van den Heuvel and Naserasr, asking whether there is a constant C

such that for any odd integer d, any planar graph can be coloured with at most C colours

such that any pair of vertices at distance exactly d have distinct colours. Finally, we study

interval colouring of trees (where vertices at distance at least d and at most cd, for some

real c > 1, must be assigned distinct colours), giving a sharp upper bound in the case of

bounded degree trees.

2010 Mathematics subject classification: Primary 05C15

Secondary 05C10

1. Introduction

Given a metric space X and some real d > 0, let χ(X, d) be the minimum number of

colours in a colouring of the elements of X such that any two elements at distance exactly

d in X are assigned distinct colours. The classical Hadwiger–Nelson problem asks for the

value of χ(R2, 1), where R
2 is the Euclidean plane. It is known that 5 � χ(R2, 1) � 7 [1],

† The authors were partially supported by ANR Projects STINT (anr-13-bs02-0007) and GATO (anr-16-

ce40-0009-01), and LabEx PERSYVAL-Lab (anr-11-labx-0025-01) and LabEx CIMI
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and since the Euclidean plane R
2 is invariant under homothety, χ(R2, 1) = χ(R2, d) for any

real d > 0. Let H
2 denote the hyperbolic plane. Kloeckner [3] proved that χ(H2, d) is at

most linear in d (the multiplicative constant was recently improved by Parlier and Petit

[6]), and observed that χ(H2, d) � 4 for any d > 0. He raised the question of determining

whether χ(H2, d) grows with d or can be bounded independently of d. As noticed by Kahle

(see [3]), it is not known whether χ(H2, d) � 5 for some real d > 0. Parlier and Petit [6]

recently suggested studying infinite regular trees as a discrete analogue of the hyperbolic

plane. Note that any graph G can be considered as a metric space (whose elements are

the vertices of G and whose metric is the graph distance in G), and in this context χ(G, d)

is precisely the minimum number of colours in a vertex colouring of G such that vertices

at distance d apart are assigned different colours. Note that χ(G, d) can be equivalently

defined as the chromatic number of the exact dth power of G, that is, the graph with the

same vertex-set as G in which two vertices are adjacent if and only if they are at distance

exactly d in G.

Let Tq denote the infinite q-regular tree. Parlier and Petit [6] observed that when d is

odd, χ(Tq, d) = 2, and proved that when d is even, q � χ(Tq, d) � (d + 1)(q − 1). A similar

upper bound can also be deduced from the results of van den Heuvel, Kierstead and

Quiroz [2], while the lower bound is a direct consequence of the fact that when d is even,

the clique number of the exact dth power of Tq is q (note that it does not depend on d).

In this short note, we prove that when q � 3 is fixed,

d log(q − 1)

4 log(d/2) + 4 log(q − 1)
� χ(Tq, d) � (2 + o(1))

d log(q − 1)

log d
,

where the asymptotic o(1) is in terms of d. A simple consequence of our main result is

that for any even integer d, the exact dth power of a complete binary tree of depth d is

of order Θ(d/ log d) (while its clique number is equal to 3).

The following problem (attributed to van den Heuvel and Naserasr) was raised in [4]

(see also [2] and [5]).

Problem 1.1 (Problem 11.1 in [4]). Is there a constant C such that for every odd integer

d and every planar graph G we have χ(G, d) � C?

We will show that our result on large complete binary trees easily implies a negative

answer to Problem 1.1. More precisely, we will prove that the graph Ud
3 obtained from a

complete binary tree of depth d by adding an edge between any two vertices with the same

parent gives a negative answer to Problem 1.1 (in particular, for odd d, the chromatic

number of the exact dth power of Ud
3 grows as Θ(d/ log d)). We will also prove that the

exact dth power of a specific subgraph Qd
3 of Ud

3 grows as Ω(log d). Note that Ud
3 and Qd

3

are outerplanar (and thus planar) and chordal (see Figure 2).

Kloeckner [3] proposed the following variant of the original problem. For a metric

space X, an integer d and a real c > 1, we let χ(X, [d, cd]) denote the smallest number

of colours in a colouring of the elements of X such that any two elements of X at
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distance at least d and at most cd apart have distinct colours. Considering as above the

natural metric space defined by the infinite q-regular tree Tq , Parlier and Petit [6] proved

that

q(q − 1)�cd/2�−�d/2� � χ(Tq, [d, cd]) � (q − 1)�cd/2+1�(�cd� + 1).

We will show that

χ(Tq, [d, cd]) � q

q − 2
(q − 1)�cd/2�−d/2+1 + cd + 1,

which implies that the lower bound of Parlier and Petit [6] (which directly follows from

a clique size argument) is asymptotically sharp.

2. Exact distance colouring

Throughout the paper, we assume that the infinite q-regular tree Tq is rooted in some

vertex r. This naturally defines the children and descendants of a vertex and the parent

and ancestors of a vertex distinct from r. In particular, given a vertex u, we define the

ancestors u0, u1, . . . of u inductively as follows: u0 = u, and for any i such that ui is not

the root, ui+1 is the parent of ui. With this notation, ud can be equivalently defined as the

ancestor of u at distance d from u (if such a vertex exists). For a given vertex u in Tq , the

depth of u, denoted by depth(u), is the distance between u and r in Tq . For a vertex v and

an integer �, we define L(v, �) as the set of descendants of v at distance exactly � from v

in Tq .

We first prove an upper bound on χ(Tq, d).

Theorem 2.1. For any integer q � 3, any even integer d, and any integer k � 1 such that

k(q − 1)k−1 � d, we have

χ(Tq, d) � (q − 1)k + (q − 1)�k/2� +
d

k
+ 1.

In particular, χ(Tq, d) � d + q + 1, and when q is fixed and d tends to infinity,

χ(Tq, d) � (2 + o(1))
d log(q − 1)

log d
.

Proof. A vertex of Tq distinct from r and whose depth is a multiple of k is said to be

a special vertex. Let v be a special vertex. Every special vertex u distinct from v such

that uk = vk is called a cousin of v. Note that v has at most q(q − 1)k−1 − 1 cousins

(at most (q − 1)k − 1 if vk �= r). A special vertex u is said to be a relative of v if u is

either a cousin of v, or u has the property that u and vk have the same depth and are at

distance at most k apart in Tq . Two vertices a, b at distance at most k apart and at the

same depth must satisfy a�k/2� = b�k/2�, and so the number of vertices u such that u and

vk have the same depth and are at distance at most k apart in Tq is (q − 1)�k/2�. It follows

that if vk = r, then v has at most q(q − 1)k−1 − 1 relatives and otherwise v has at most

(q − 1)k + (q − 1)�k/2� − 1 relatives.
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The first step is to define a colouring C of the special vertices of Tq . This will be used

later to define the desired colouring of Tq , that is, a colouring such that vertices of Tq at

distance d apart are assigned distinct colours (in this second colouring, the special vertices

will not retain their colour from C).

We greedily assign a colour C(v) to each special vertex v of Tq as follows. We consider

the vertices of Tq in a breadth-first search starting at r, and for each special vertex

v we encounter, we assign to v a colour distinct from the colours already assigned to

its relatives, and from the set of ancestors vik of v, where 2 � i � d/k + 1 (there are

at most d/k such vertices). Note that if vk = r, the number of colours forbidden for v

is at most q(q − 1)k−1 − 1, and if vk �= r the number of colours forbidden for v is at

most (q − 1)k + (q − 1)�k/2� + d/k − 1. Since k(q − 1)k−1 � d, in both cases v has at most

(q − 1)k + (q − 1)�k/2� + d/k − 1 forbidden colours, therefore we can obtain the colouring

C by using at most (q − 1)k + (q − 1)�k/2� + d/k colours.

For any special vertex v, the set of descendants of v at distance at least d/2 − k and

at most d/2 − 1 from v is denoted by K(v, k). We now define the desired colouring

of Tq as follows: for each special vertex v, all the vertices of K(v, k) are assigned the

colour C(v). Finally, all the vertices at distance at most d/2 − 1 from r are coloured

with a single new colour (note that any two vertices in this set lie at distance less than

d apart). The resulting vertex-colouring of Tq is called c. Note that c uses at most

(q − 1)k + (q − 1)�k/2� + d/k + 1 colours, and indeed every vertex of Tq gets exactly one

colour.

We now prove that vertices at distance d apart in Tq are assigned distinct colours in

c. Assume for the sake of contradiction that two vertices x and y at distance d apart

were assigned the same colour. Then the depth of both x and y is at least d/2. We can

assume by symmetry that the difference t between the depth of x and the depth of y

is such that 0 � t � d, since otherwise they would be at distance more than d. Let u be

the unique (special) vertex of Tq such that x ∈ K(u, k) and let v be the unique (special)

vertex such that y ∈ K(v, k). By the definition of our colouring c, we have C(u) = C(v).

Note that u and v are distinct; indeed, otherwise x and y would not be at distance

d in Tq . Assume first that u and v have the same depth. Then since u and x (resp.

v and y) are distance at least d/2 − k apart, u and v are cousins (and thus relatives),

which contradicts the definition of the vertex-colouring C . We may therefore assume

that the depths of u and v are distinct. Moreover, since u and v are special vertices,

we may assume that their depths differ by at least k. In particular, u lies deeper than v

in Tq .

First assume that the depths of u and v differ by at least 2k. Then v is not an ancestor

of u in Tq . Indeed, for otherwise we would have v = uik for some integer 2 � i � d/k + 1,

which would contradict the definition of C . This implies that the distance between x and

y is at least d/2 − k + d/2 − k + 2k + 2 = d + 2, which is a contradiction. Therefore, we

can assume that the depths of u and v differ by precisely k. Since v is not a relative of u,

we have that v �= uk and the distance between uk and v is more than k. Moreover, since u

and x (resp. v and y) are at distance at least d/2 − k apart, this implies that the distance

between x and y is more than d/2 − k + k + k + d/2 − k = d, a contradiction. Thus c is a

proper colouring.
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By taking k = 1 we obtain a colouring c using at most (q − 1)1 + (q − 1)�1/2� + d/1 +

1 = q + d + 1 colours, and by taking

k =

⌊
log d − log log d + log log(q − 1)

log(q − 1)

⌋
,

we obtain a colouring c using at most

d log(q − 1)

log d
+

√
d log(q − 1)

log d
+

d log(q − 1)

log d − log log d + log log(q − 1) − log(q − 1)
+ 1

= (2 + o(1))
d log(q − 1)

log d

colours.

For k = 1, the proof above can be optimized to show that χ(Tq, d) � q + d/2 (by

simply noting that vertices at even depth and vertices at odd depth can be coloured

independently). Since we are mostly interested in the asymptotic behaviour of χ(Tq, d)

(which is of order O(d/log d)), we omit the details.

We now prove a simple lower bound on χ(Tq, d). Let Td
q be the rooted complete (q − 1)-

ary tree of depth d, with root r. Note that each node has q − 1 children, so this graph is

a subtree of Tq .

Theorem 2.2. For any integer q � 3 and any even d,

χ(Td
q , d) � log2

(
d

4
+ q − 1

)
.

Proof. Consider any colouring of Td
q with colours 1, 2, . . . , C , such that vertices at distance

precisely d apart have distinct colours. For any vertex v at depth at most d/2 + 1 in Td
q ,

the set of colours appearing in L(v, d/2 − 1) is denoted by Sv . Observe that if v and w

have the same parent, then Sv and Sw are disjoint, since for any x ∈ L(v, d/2 − 1) and

y ∈ L(w, d/2 − 1), x and y are at distance d.

Fix some vertex u at depth at most d/2 in Td
q and some child v of u.

Claim 2.3. For any integer 1 � k � depth(u)/2, there is a colour of Su2k−1 that does not

appear in Sv .

To see that Claim 2.3 holds, observe that in the subtree of Td
q rooted in uk , there is a

vertex of L(u2k−1, d/2 − 1) at distance d from all the elements of L(v, d/2 − 1). The colour

of such a vertex does not appear in Sv , therefore Claim 2.3 holds.

In particular, Claim 2.3 implies that all the sets

{Su2k−1 | 1 � k � d/4} and {Sw | w is a child of u}

are pairwise distinct. Since there are d/4 + q − 1 such sets, we have d/4 + q − 1 � 2C and

therefore C � log2(d/4 + q − 1), as desired.
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Figure 1. The graph P 4
3 .

It was observed by Stéphan Thomassé that the proof of Theorem 2.2 only uses a small

fraction of the graph Td
q . Consider for simplicity the case q = 3, and define Pd

3 as the

graph obtained from a path P = v0, v1, . . . , vd on d edges, by adding, for each 1 � i � d, a

path on i edges ending at vi (see Figure 1). This graph is an induced subgraph of Td
q and

the proof of Theorem 2.2 directly shows the following.1

Corollary 2.4. For any even integer d, χ(Pd
3 , d) � log2(d + 8) − 2.

The proof of Theorem 2.2 can be refined to prove the following better estimate for Td
q ,

showing that the upper bound of Theorem 2.1 is (asymptotically) tight within a constant

multiplicative factor of 8.

Theorem 2.5. For any integer q � 3 and every even integer d � 2,

χ(Td
q , d) � d log(q − 1)

4 log(d/2) + 4 log(q − 1)
.

Proof. Consider any colouring of Td
q with colours 1, 2, . . . , C , such that vertices at distance

precisely d apart have distinct colours. We perform a random walk v0, v1, . . . , vd in Td
q as

follows: we start with v0 = r, and for each i � 1, we choose a child of vi uniformly at

random and set it as vi+1. Note that the depth of each vertex vi is precisely i.

From now on we fix a colour c ∈ {1, . . . , C}. For any vertex v of Td
q , the set of vertices

contained in the subtree of Td
q rooted in v is denoted by Vv , and we set

Av = {depth(u) | u ∈ Vv and u has colour c}.

When v = vi, for some integer 0 � i � d, we write Ai instead of Avi .

Claim 2.6. Assume that for some even integers i and j with 2 � i < j � d, and for some

vertex v at depth (i + j − d)/2, the set Av contains both i and j. Then v has precisely one

child u such that Au contains i and j, and moreover all the children w of v distinct from u

are such that Aw contains neither i nor j.

1 Stéphan Thomassé noticed that this can also be deduced from the fact that the vertices at depth at least d/2

and at most d in the exact dth power of Pd
3 induce a shift graph.

https://doi.org/10.1017/S0963548318000378 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548318000378


Exact Distance Colouring in Trees 183

To see that Claim 2.6 holds, simply note that (i + j − d)/2 < i < j and if two vertices

u1, u2 coloured c are respectively at depths i and j, and their common ancestor is v, then

they are at distance d in Td
q (which contradicts the fact that they were assigned the same

colour). Indeed, the distance of u1 to v is i − (i + j − d)/2 and the distance of u2 to v is

j − (i + j − d)/2. This proves the claim.

We now define a family of graphs (Gk)0�k�d/2 as follows. For any 0 � k � d/2, the

vertex-set V (Gk) of Gk is the set Ak ∩ 2N ∩ (d/2, d], and two (distinct) even integers

i, j ∈ Ak are adjacent in Gk if and only if (i + j − d)/2 < k. For each 0 � k � d/2 we

define the energy Ek of Gk as follows:

Ek =
∑

i∈V (Gk)

(q − 1)deg(i),

where deg(i) denotes the degree of the vertex i in Gk .

Note that each graph Gk depends on the (random) choice of v1, v2, . . . , vk .

Claim 2.7. For any 0 � k � d/2 − 1, E(Ek+1) � E(Ek).

Assume that v1, v2, . . . , vk (and therefore also Gk) are fixed. Observe that Gk+1 is obtained

from Gk by possibly removing some vertices and adding some edges. Thus, Ek+1 can be

larger than Ek only if Gk+1 contains edges that are not in Gk . Therefore, it suffices to

consider the contributions of those pairs of non-adjacent vertices in Gk which could

become adjacent in Gk+1 (since these correspond to pairs i, j with k = (i + j − d)/2, these

pairs are pairwise disjoint), and prove that these contributions are, in expectation, equal

to 0. Fix a pair of even integers i < j in V (Gk) with k = (i + j − d)/2 (and note that i

and j are not adjacent in Gk). By Claim 2.6, either vk+1 is such that Ak+1 contains i and

j (this event occurs with probability 1/(q − 1)), or Ak+1 contains neither i nor j (with

probability 1 − 1/(q − 1)). As a consequence, for any i < j in V (Gk) with k = (i + j − d)/2,

with probability 1/(q − 1) we add the edge ij in Gk+1 and with probability 1 − 1/(q − 1)

we remove vertices i and j from Gk+1. This implies that for any i, j ∈ V (Gk), i < j, with

k = (i + j − d)/2, with probability 1/(q − 1) we have contribution at most

(q − 1)deg(i)+1 + (q − 1)deg(j)+1 − (q − 1)deg(i) − (q − 1)deg(j) = (q − 2)((q − 1)deg(i) + (q − 1)deg(j))

to Ek+1 (where deg refers to the degree in Gk) and with probability 1 − 1/(q − 1) we

have a contribution of at most −(q − 1)deg(i) − (q − 1)deg(j) to Ek+1. Thus, the expected

contribution of such a pair i, j is at most

1

q − 1
(q − 2)((q − 1)deg(i) + (q − 1)deg(j)) − q − 2

q − 1
((q − 1)deg(i) + (q − 1)deg(j)) = 0.

Summing over all such pairs i, j, we obtain E(Ek+1) � E(Ek). This proves Claim 2.7.

Since 2 � i < j � d, we have

i + j − d

2
� d

2
− 1,

and in particular it follows that Gd/2 is a (possibly empty) complete graph, whose number

of vertices is denoted by ω � 0. Note that the energy E of a complete graph on ω vertices
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(a) (b)

Figure 2. The graphs U3
3 (a) and Q5

3 (b). The bold edges represent the original copies of T 3
3 and P 5

3 ,

respectively.

is equal to ω(q − 1)ω−1, while the energy E0 of G0 is equal to |A0 ∩ 2N ∩ (d/2, d]| � d/4.

For a vertex u ∈ L(r, d/2), let ωu = |Au ∩ 2N ∩ (d/2, d]| (this is the number of distinct even

depths at which a vertex coloured c appears in the subtree of height d/2 rooted in u). It

follows from Claim 2.7 that the average of ωu(q − 1)ωu−1, over all vertices u ∈ L(r, d/2),

is at most d/4. Let a be the average of ωu, over all vertices u ∈ L(r, d/2). By Jensen’s

inequality and the convexity of the function x �→ x(q − 1)x−1 for x � 0, we have that

a(q − 1)a−1 � d/4, and thus

a � log(d/2)

log(q − 1)
+ 1.

Note that a depends on the colour c under consideration (to make this more explicit,

let us now write ac instead of a). Since there are d/4 even depths between depth d/2 and

depth d, there is a colour c ∈ {1, . . . , C} such that ac · C � d/4 and thus

C � d

4ac
� d log(q − 1)

4 log(d/2) + 4 log(q − 1)
,

as desired.

We now explain how the results proved above give a negative answer to Problem 1.1.

Let Ud
3 (resp. Qd

3) be obtained from Td
3 (resp. Pd

3 ) by adding an edge uv for any pair of

vertices u, v having the same parent. Note that for any d, Ud
3 and Qd

3 are outerplanar (and

thus planar) and chordal, and Qd
3 has pathwidth 2 (U3

3 and Q5
3 are depicted in Figure 2)

and the original copies of Td
3 and Pd

3 are spanning trees of Ud
3 and Qd

3, respectively. In the

remainder of this section, whenever we write Td
3 , we mean the original copy of Td

3 in Ud
3 .

Observe that for any two vertices u and v distinct from the root of Td
3 , u and v are at

distance d in Td
3 if and only if they are at distance d − 1 in Ud

3 (since the depth of Td
3 is

d, the fact that u and v differ from the root and are at distance d apart implies that none

of the two vertices is an ancestor of the other). The same property holds for Qd
3 and Pd

3 .

As a consequence, for any odd integer d, χ(Ud+1
3 , d) and χ(Td+1

3 , d + 1) differ by at most

one, and χ(Qd+1
3 , d) and χ(Pd+1

3 , d + 1) also differ by at most one. Using this observation,

we immediately obtain the following corollary of Theorem 2.5 and Corollary 2.4, which

gives a negative answer to Problem 1.1.
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Corollary 2.8. For any odd integer d,

χ(Ud+1
3 , d) � (d + 1) log(2)

4 log((d + 1)/2) + 4 log(2)
− 1 and χ(Qd+1

3 , d) � log2(d + 8) − 3.

The graphs Ud+1
3 and its exact dth power have n = 2d+2 vertices, and thus the chromatic

number of the exact dth power of Ud+1
3 grows as

Ω

(
log n

log log n

)
.

The graphs Qd+1
3 and its exact dth power have n =

(
d+2
2

)
vertices, and thus the chromatic

number of the exact dth power of Qd+1
3 grows as Ω(log n). It is not difficult (using

Theorem 2.1 for Ud+1
3 ) to show that these bounds are asymptotically tight.

It was recently proved by Quiroz [8] that if G is a chordal graph of clique number at

most t � 2, and d is an odd number, then χ(G, d) �
(
t
2

)
(d + 1). By Corollary 2.8, the graph

Ud
3 shows that this is asymptotically best possible (as d tends to infinity), up to a log d

factor.

3. Interval colouring

For an integer d and a real c > 1, recall that χ(Tq, [d, cd]) denotes the smallest number of

colours in a colouring of the vertices of Tq such that any two vertices of Tq at distance

at least d and at most cd apart have distinct colours. Parlier and Petit [6] proved that

q(q − 1)�cd/2�−�d/2� � χ(Tq, [d, cd]) � (q − 1)�cd/2+1�(�cd� + 1).

In this final section, we prove that their lower bound (which is proved by finding a set of

vertices of this cardinality that are pairwise at distance at least d and at most cd apart in

Tq) is asymptotically tight.

Theorem 3.1. For any integers q � 3 and d and any real c > 1,

χ(Tq, [d, cd]) � q

q − 2
(q − 1)�cd/2�−d/2+1 + cd + 1.

Proof. The proof is similar to the proof of Theorem 2.1. We consider any ordering

e1, e2, . . . of the edges of Tq obtained from a breadth-first search starting at r. Then, for

any i = 1, 2, . . . in order, we assign a colour c(ei) to the edge ei as follows. Let ei = uv,

with u being the parent of v, and let � = �cd/2� − d/2. We assign to uv a colour c(uv)

distinct from the colours of all the edges xy (with x being the parent of y) such that x is

at distance at most � from uk (where k is the minimum of � and the depth of u), or x is

an ancestor of u at distance at most cd from u (and y lies on the path from u to x). There

are at most

cd +

�∑
j=0

q(q − 1)j � q

q − 2
(q − 1)�+1 + d − 1
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such edges, so we can colour all the edges following this procedure by using a total of at

most q/(q − 2)(q − 1)�+1 + cd colours.

As in the proof of Theorem 2.1, we now define our colouring of the vertices of Tq

as follows: first colour all the vertices at distance at most d/2 − 1 from r with a new

colour that does not appear on any edge of Tq , then for each vertex v with parent u, we

colour all the vertices of L(v, d/2 − 1) with colour c(uv). In this vertex-colouring, at most

q/(q − 2)(q − 1)�+1 + cd + 1 colours are used.

Assume that two vertices s and t, at distance at least d and at most cd apart, were

assigned the same colour. This implies that c(sd/2−1sd/2) = c(td/2−1td/2). Assume without

loss of generality that the depth of s is at least the depth of t, and consider first the case

where td/2−1 is an ancestor of s. Then td/2 is an ancestor of sd/2 at distance at most cd

from sd/2 (and td/2−1 lies on the path from sd/2 to td/2), which contradicts the definition

of our edge-colouring c. Thus, we can assume that td/2−1 is not an ancestor of s. This

implies that td/2−1td/2 lies on the path between s and t, and therefore td/2 is at distance at

most � = �cd/2� − d/2 from the ancestor of sd/2 at distance � from sd/2 (or simply from r,

if the depth of sd/2 is at most �). Again, this contradicts the definition of our colouring c.

We obtained a colouring of the vertices of Tq with at most q/(q − 2)(q − 1)�+1 + cd + 1

colours in which each pair of vertices at distance at least d and at most cd apart have

distinct colours, as desired.
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[4] Nešetřil, J. and Ossona de Mendez, P. (2012) Sparsity: Graphs, Structures, and Algorithms,

Springer.
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