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Far-field formulation of a Cassegrain
reflector using a novel illumination function
and aperture field integration

mohammad asif zaman and md. abdul matin

In this paper, the far-field pattern of a Cassegrain reflector is formulated. A novel illumination function is used to approxi-
mate the field distribution at the aperture of the reflector. The defined illumination function takes into account the central
aperture blockage created by the subreflector. Using the illumination function, a closed-form expression describing the far-
field radiation pattern of the Cassegrain reflector is formulated. The radiation pattern obtained from the derived equation
is compared with the results obtained from physical optics and physical theory of diffraction. The results are found to be con-
sistent with each other. It is found that the derived results show an impressive accuracy of 99.8% over the main-lobe region.
The accuracy is found to be over 91 and 84% for the first and second significant side-lobe region, respectively, which can be
considered satisfactory for many applications.
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I . I N T R O D U C T I O N

Cassegrain reflector antennas are widely used in satellite com-
munication, radar applications, remote sensing, radio astron-
omy, etc. These antennas are characterized by their highly
directive nature, and relatively large aperture efficiency.
Demand for Cassegrain reflectors has resulted in the develop-
ment of numeric and analytic techniques for design and analy-
sis of such antennas [1, 2].

A Cassegrain antenna consists of a feed antenna, a hyper-
boloidal subreflector, and a paraboloidal main reflector. When
the antenna is used as a transmitter, the electromagnetic radi-
ation from the feed antenna, which is usually a horn antenna,
is directed toward the subreflector. The subreflector is said to
be illuminated by the feed antenna. The subreflector scatters
the incident field and in doing so, illuminates the main reflec-
tor. The main reflector creates the far-field radiation pattern of
the antenna. The far-field pattern from the main reflector is
called the secondary pattern and the radiation pattern of the
feed antenna is known as the primary pattern [3]. The second-
ary pattern depends on the geometry of the Cassegrain system,
and the primary pattern [3, 4].

Several methods exist for formulating the far-field of a
Cassegrain reflector. Geometrical optics (GO), uniform geo-
metrical theory of diffraction (UTD), physical optics (PO),

and physical theory of diffraction (PTD) are widely used
numerical methods for large Cassegrain antennas [5]. These
methods are sufficiently accurate, but they require lengthy cal-
culations and tedious computer coding. In many cases, only
the main lobe region near the bore-sight of the Cassegrain
antenna needs to be calculated, as the far-off sidelobes have
very small values [4]. Sufficiently accurate results for the
near main lobe region can be obtained by using justified
approximations. These approximation methods can provide
a simpler alternative for estimating the far-field region near
the bore-sight of the antenna.

The aperture field (AF) integration method provides an
opportunity to use approximation techniques to derive closed-
form expressions for the far-field region [5, 6]. In the AF inte-
gration method, the fields reflected by the main reflector are
approximated by GO rays. The reflected rays from the main
reflector are projected upon an infinite plane. This plane is
called the aperture plane of the antenna [1, 4]. The aperture
plane is usually assumed to go through the focus of the para-
boloid. The observation point P is taken to be far away from
the aperture plane. A Cassegrain antenna along with its aper-
ture plane is shown in Fig 1. The projected field on the aper-
ture plane is known as the AF of the antenna. The aperture of
the antenna is defined as the projected surface of the main
reflector on the aperture plane. The AF outside the aperture
is approximated as zero [1]. The radiation integral over the
curved surface of the main reflector can equivalently be per-
formed over the aperture plane of the antenna. This method
is known as the AF integration method.

By knowing the field distribution on the aperture of the
antenna, the far-field pattern can be calculated using AF inte-
gration [6, 7]. The AF depends on the primary pattern and the
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subreflector surface geometry. In an unshaped Cassegrain
system, the subreflector is a hyperboloid. In such cases, only
the primary pattern determines the AF. In most cases, the
feed antenna is a horn antenna, such as a conical corrugated
horn or a potter horn [1]. The AF resulting from these types
of feeds can be modeled by mathematical functions containing
a few parameters. These functions are known as illumination
functions [8, 9]. The accuracy of the AF integration depends
on how well the illumination function represents the actual
AF distribution.

It can be seen from Fig 1 that a part of the aperture of the
antenna is shadowed by the subreflector. This is known as
the central aperture blockage. Owing to the aperture blockage,
the AF in the shadowed region has smaller value. This
reduction in AF value causes the overall gain of the antenna
to decrease [4, 10]. Aperture blockage may also be created by
subreflector supports [11]. However, compared with the subre-
flector blockage, these blockages are negligible. To correctly
approximate the AF, the illumination function must take
into account this aperture blockage. The illumination func-
tions covered in the literature have not taken aperture blockage
into consideration [8, 9]. The effect of gain reduction due to
aperture blockage using illumination function correction is
discussed in [12]. However, an illumination function taking
into account the aperture blockage is not defined in [12].
Also, the far-field radiation pattern was not formulated in
[12]. In this paper, a novel illumination function is defined
that takes into account the aperture blockage created by the
subreflector. Using this new illumination function, the AF
integration is performed and a closed-form expression of the
far-field radiation pattern is obtained. The derived expressions
relate the aperture blockage to the radiation pattern directly.
The obtained results are compared with the results obtained
from the PO method and the PO + PTD methods, and are
found to be consistent. The PO + PTD method uses a better
approximation for the surface current density compared

with the PO methods [1, 5]. This results in better accuracy.
However, it is computationally more demanding compared
to the PO method. As the PO and PO + PTD methods are
generally accepted methods for far-field analysis of reflector
antennas, the consistency of the derived results with the
results obtained from these methods verifies the analysis.

The paper is organized as follows: Section II covers the geo-
metry of the Cassegrain reflector, the illumination function is
derived in Section III, Section IV contains the AF integration
and far-field formulation, the numerical results are provided
in Section V, and Section VI contains the concluding remarks.

I I . G E O M E T R Y

The two-dimensional geometry of a Cassegrain antenna is
shown in Fig 2. The following parameters are shown in Fig 2:

dp ¼ diameter of the main reflector,
ds ¼ diameter of the subreflector,

Fig. 2. Geometry of the Cassegrain reflector.

Fig. 1. Apeture plane of a Cassegrain antenna.
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fp ¼ focal length of the paraboloid,
2c ¼ distance between foci of the hyperboloid,
co ¼ opening half angle of the paraboloid, and
fo ¼ opening half angle of the hyperboloid.

The hyperboloidal subreflector has two focal points. One of
the focal points coincides with the phase center of the feed
horn and the other coincides with the focal point of the para-
boloid [4]. The relation between the geometrical parameters
can be found in [13].

To employ AF integration, it is necessary to project the
main reflector surface on the aperture plane. For convenience,
the aperture plane is assumed to go through the focal point of
the main reflector [2, 4]. The angle co is created between the
axis of the reflector and the line joining the focal point and
edge of the main reflector. In general, angle c can be
defined for any arbitrary point on the reflector surface. This
angle varies from –co to +co. The normalized radius of a
main reflector surface point projected on the aperture plane,
a, can be related to the geometrical parameters as [4]:

a = 4fp

dp
tan

c

2
. (1)

The variable a is depicted in Fig 1. It can be shown that [4]:

tan
co

2
= dp

4fp
. (2)

From (1) and (2), it is clear that as the angle c varies from 0
to co, a varies from 0 to 1. Using (1), each point on the main
reflector surface defined by an angle c can be mapped into the
aperture plane defined by a normalized radius a.

I I I . D E F I N I N G T H E I L L U M I N A T I O N
F U N C T I O N

The field distribution on the aperture plane is approximated
by an illumination function. The phase distribution of the pro-
jected field on the aperture plane is often assumed to be con-
stant [4, 8]. Well-designed feed horns can produce
illumination with constant phase over the entire aperture,
thus justifying the assumption. In such cases, the illumination
function represents the variation in field amplitude over the
aperture. The feed and therefore the resulting aperture distri-
bution are usually circularly symmetric for an axially sym-
metric geometry. Thus, the illumination function can be
expressed by the single independent variable a, and is
denoted as A(a).

The illumination function can be modeled as a Gaussian
function, a raised-quadratic function, or other higher order
polynomial functions [8, 9]. These functions represent a
field distribution with maximum value near the bore-sight
(axis of the reflector) and gradually taper at the edge. The
ratio of the field value at the edge of the aperture to the
maximum field value at the center of the aperture is known
as the edge taper, T. Most illumination functions use the par-
ameter T [8]. However, none of the illumination functions
found in the literature take into account the decrease in the
AF caused by the subreflector blockage.

In this paper, a new illumination function is defined as

A(a) = g(a), − ae , a , ae

f (a), otherwise

{
(3)

Here, ae is defined as the normalized radius of the aperture
that is shadowed by the subreflector, f(a) is the illumination
function in the region where no aperture blockage has
occurred, and g(a) is the illumination function in the sha-
dowed region describing the decreased AF caused by the
subreflector blockage. The shadowed region is highlighted in
Fig. 1.

Clearly, the parameter ae is dependent on the subreflector
diameter and the main reflector diameter. As a ¼ 1 represents
the radius of the main reflector (dp/2) and ae is related to the
subreflector radius, it can be written intuitively that,

ae =
ds/2
dp/2

= ds

dp
. (4)

The definition of f(a) is taken from [8]:

f (a) = 1 − qga2 + (q − 1)ga4. (5)

where q is a parameter that is used to model a feed horn more
accurately, and

g = 1 − T. (6)

Here, T is the edge taper. As (5) contains even powers of a
only, it is symmetric around the origin. The general shape
of (5) is a function that has maximum value around the
center region, and gradually decreases to T on both sides.
This represents typical feed patterns. However, the overall illu-
mination of the main reflector will have a different shape than
this because of the subreflector blockage. It is expected that the
subreflector will create a shadow around the axial region of the
main reflector, causing a decrease in main reflector aperture
illumination. This is modeled using the function g(a) in the
shadowed region (2ae , a , ae).

To keep a consistency with (5), the illumination function in
the shadowed regions, g(a), is also defined as a fourth-order
polynomial:

g(a) = c + ma2 + na4. (7)

Here, c, m, and n are parameters. The parameter c denotes the
value of the illumination function at the center of the aperture
where the blockage has maximum effect. Thus, c represents
the maximum attenuation due to the subreflector blockage.
The signs of these constants will be such that the function
g(a) will have a U-shaped nature. This implied that the g(a)
will have lowest value in the center of the main reflector
where the blockage resulting shadowing is maximum. The
value will gradually increase toward the edge of the shadowed
region.

The parameters m and n can be related to other known par-
ameters by enforcing continuity conditions. As the illumina-
tion function describes the AF distribution, it should be
continuous and smooth. Hence, the two parts of A(a)
defined in (3) must be continuous and smooth at the edge
transition point ae. The following two equations are used to
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enforce these conditions:

f (ae) = g(ae). (8)

df (a)
da

∣∣∣∣
a=ae

= dg(a)
da

∣∣∣∣
a=ae

. (9)

The continuity of the derivatives ensures that the transition is
smooth.

Using (5) and (7) in (8):

ma2
e + na4

e = 1 − qga2
e + (q − 1)ga4

e − c. (10)

Calculating the derivatives from (5) and (7), and substituting
them in (9):

m + 2na2
e = −qg + 2(q − 1)ga2

e . (11)

The parameters m and n can be easily solved from (10) and
(11) to yield the following results:

m = 2(1 − c)
a2

e
− qg

n = (q − 1)g − 1 − c
a4

e

⎫⎪⎪⎬
⎪⎪⎭
. (12)

The parameter ae can be calculated from the geometry
using (4), the parameters q and g can be calculated from the
feed horn characteristics, and the value of c can be approxi-
mated from the expected field reduction caused by the block-
age. Thus, using (12), m and n can be calculated.

As all the parameters are defined and related to known
quantities, the definition of the illumination function is com-
plete. Figure 3 shows the plot of the defined illumination func-
tion for some arbitrary parameters. The q parameter does not
significantly affect the shape of the illumination function. The
value of q ¼ 0.4 is used for numerical analysis in this paper.

I V . A F I N T E G R A T I O N A N D
F A R - F I E L D F O R M U L A T I O N

The far-field radiation pattern can be calculated by perform-
ing the AF integration [14]. An observation point P(r, u, w)

in the far-field region is defined by its spherical coordinates
(r, u, w). The point is shown in Fig. 1. For a circularly sym-
metric aperture distribution with constant phase, the far-field
radiation pattern can be approximated by the following inte-
gral [4]:

f (u, f) =
pd2

p

2

∫1

a=0

A(a)Jo
kd
2

a sin u

( )
a da. (13)

Here, k ¼2p/l¼wave number, l ¼ wavelength and, Jp(.) ¼
Bessel function of the first kind and order p. The angular coor-
dinate variable, u is defined as:

u = kd
2

sin u. (14)

Using (14) and substituting the value of the illumination func-
tion from (3) in (13), the integral becomes:

f (u, f) =
pd2

p

2

∫ae

a=0

g a( )Jo(ua)a da

⎡
⎣ +

∫1

a=ae

f a( )Jo(ua)a da

⎤
⎥⎦.

(15)

The value of f(a) and g(a) can be substituted from (5) and (7).
The resulting formulation involves integrating product of
polynomials and Bessel function. The necessary integration
results are [15]:

�
a Jo(ua) da = a J1(ua)

u�
a3Jo(ua) da = a3J1(ua)

u
− 2a2J2(ua)

u2�
a5Jo(ua) da = a5J1(ua)

u
− 4a4J2(ua)

u2
+ 8a3J3(ua)

u3

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
. (16)

To simplify the expressions, Bessel functions are replaced by
Lambda function Lp(.) defined as [15]:

Lp(u) = p!
Jp(u)

(u/2)p . (17)

Fig. 3. Plot of the defined illumination function. Fig. 4. Far-field radiation pattern.
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After evaluating the integrals in (15) and normalizing the
results, the obtained expression of normalized far-field radi-
ation pattern, fN(u, f) is:

fN (u, f) = 1
N

L1(u)
1 − g

2

( )
+ L2(u)g

2 − q
4

( )[

+ L3(u)g
q − 1

6

( )
+ L2 uae( )

qga4
e 1 − a3

e

( )
4

{ }

+L3 uae( ) a2
e (1 − c)

6

{ }]
.

(18)

Here, the normalizing factor, N is given by:

N = 1
12

6 − 2g − 2a2
e (1 − b)

{
+ qg 3a4

e − 3a7
e − 1

( )}
. (19)

Equation (18) gives the approximate closed-form
expression of the far-field radiation pattern of the
Cassegrain antenna, which is expected to be sufficiently accu-
rate near the main-lobe region of the antenna.

V . N U M E R I C A L R E S U L T S

For numerical analysis, a standard Cassegrain antenna with
the main reflector diameter dp ¼ 2 m, primary focal length
fp ¼ 0.8 m, subreflector diameter ds ¼ 0.5029 m, and distance
between subreflector foci 2c ¼ 0.7 m is assumed. The relation
between these parameters and other geometrical parameters
are calculated using the method described in [13]. A typical
edge taper of 10 dB is assumed, implying T ¼ 10210/20 ¼

0.3162. The parameter ae is found from (4) as 0.25145. The
operating frequency is assumed to be 10 GHz. It is found
that for the defined geometry and edge taper, q ¼ 0.4 accu-
rately describes a conical corrugated horn feed. The q par-
ameter value is calculated using the method described in [8].

The far-field radiation pattern calculated using (18) and
using the standard PO method [5] is shown in Fig. 4. It can
be seen from Fig 4 that the main-lobe patterns obtained
from the two methods are exactly the same. The first few side-
lobe levels obtained from the derived expression differ from
the results of the PO method only by a few dB. The results
are summarized in Table 1. It can be observed from the data
that the gain and half-power beamwidth (HPBW) computed
from the derived method are almost identical to the results
obtained from the PO and PO + PTD methods, showing a

maximum error of only 0.2% (accuracy of 99.8%). The pro-
posed method has an error around 2–3% in identifying the
angular position of the first sidelobe. The error in computing
the first sidelobe level is around 8–9%. This implies that the
prediction of the first sidelobe is up to 91% accurate. The pro-
posed method also satisfactorily predicts the position and the
amplitude level of the second significant level with errors as
little as 0.3% and 3.35%, respectively, when compared with
the PO + PTD method. This error is higher when compared
with the PO method (without PTD correction). However,
PO + PTD methods are expected to have more accuracy in
sidelobe regions compared with the PO method. Thus, the
derived equations also have excellent agreement in the
second sidelobe region as well.

For a simplified closed-form expression, the accuracy of the
derived equations can be considered satisfactory. The closed-
form expression can be used for approximating the main-lobe
and the first few sidelobes for cases where quick calculations
are required. The PO method and PO + PTD method are
computationally demanding and require significant simu-
lation time for large reflectors [5]. As the derived expression
is closed form, the simulation time is drastically reduced.

V I . C O N C L U S I O N

An illumination function for estimating the AF distribution is
defined. The function takes into account the effect of subre-
flector blockage. Using the illumination function, the far-field
radiation pattern is estimated by performing AF integration. A
closed-form expression is obtained from the integration. The
obtained results are compared with results from the PO
method and the PO + PTD method, which are universally
accepted as valid methods for reflector analysis. It is found
that the results are in excellent agreement in the main-lobe
region. As the radiation pattern of only the main-lobe
region is often required, the derived method provides suffi-
cient accuracy. Also, simulation time for the proposed
method is much smaller compared with the PO method as
the obtained results are closed-form.
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