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This paper investigates blocking probabilities obtained from multidimensional trun-
cated Poisson distributions+ For blocking probabilities typically arising in layered
cellular mobile communications networks, the large deviations results of Gazdzicki
et al+ @9# are extended to state spaces determined by multiple constraints+The results
yield asymptotically exact expressions that provide an accurate approximation of
probabilities up to 1%, which considerably extends the applicability of large devi-
ations results and enables efficient approximation of blocking probabilities for re-
alistic mobile communications networks+

1. INTRODUCTION

1.1. Motivation

Truncated multidimensional Poisson distributions frequently arise in the study of
~mobile! telecommunications networks and are typically of the form
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Often, the state space, S, is determined by a matrix constraint

S5 $m :Am # C% , N 0
d11, (1.2)

in which A is a p 3 ~d 1 1! matrix andC is a p-vector, wherep is the number of
constraints+ For example, a loss network@10# with p links, where linka comprises
Ca circuits and a call on routej usesAaj circuits from link a, has a state-space
representation~1+2!+ Then,mj is the number of calls in progress on routej, andnj is
the load offered to routej+ Alternatively, a state space of the form~1+2! emerges in a
mobile communications network@3,4,12# consisting ofd 1 1 cells, where a set of
cells a sharesCa channels+ A call in cell j simultaneously blocks~due to interfer-
ence! channels in neighboring cells in the seta determined byAaj . 0+Here, nj is the
load offered to cellj, andmj is the number of calls in progress in cellj+

Relevant performance measures can be obtained in closed form from the dis-
tribution ~1+1!+ For example, the probability that an additional call in cellj of a
mobile communications network~or on routej of a loss network! cannot be accepted
due to capacity restrictions~fresh-call blocking probability! can be expressed as the
summation ofp over a part of the boundary of the state space:

P$Bj % 5

(
m[Tj

)
k50

d

~nk
mk0mk!!
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d

~nk
mk0mk!!

, (1.3)

with

Tj :5 $m :Am # C, A~m 1 ej ! Ü C%, (1.4)

whereej denotes thejth unit vector+ Despite the explicit expression~1+3!, numerical
evaluation of the fresh-call blocking probability~e+g+, via recursive methods@6# or
generating function methods@5# ! is often extremely time-consuming, as the size of
the state space~and of the setTj ! grows exponentially fast with the size of the net-
work+ As an alternative, Monte Carlo summation@7,9# can be applied to obtain an
estimate of the blocking probability~1+3!+ Especially for smaller blocking probabil-
ities, methods based on importance sampling can be used to improve on the effi-
ciency of such methods~see, e+g+, @3,14#! + However, the resulting methods are still
very demanding with respect to their required computation time+

As an alternative, asymptotic evaluation of blocking probabilities might lead to
a fast and accurate approximation+ For heavily or moderately loaded networks~de-
termined byAn Ü C, n 5 ~n0, + + + ,nd!! , approximations based on the central limit
theorem~normal approximation, reduced load methods@10# ! might be used+ For
lightly loaded networks~An , C!, such methods might not lead to satisfactory
approximations+ In that domain, methods based on Cramér’s theorem@15# and the
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Bahadur–Rao estimate for deviations of the sample mean@1# are more applicable+
Roughly, after scalingn r nn andC r nC ~nr`!, the blocking probabilityP$Bj %
can be approximated as

P$Bj % ; h~n!e2nI ~x0! ~n r `!,

whereh~n! is a subexponential function, with limnr`~10n! log h~n! 5 0, andI ~x0!
is the large deviations rate function~evaluated in the statex0 determined byTj ! that
can be explicitly obtained for blocking probabilities resulting from multidimensional
Poisson distributions@see~2+7!# +For small loss probabilities~P$Bj %;1029!, the large
deviations rate function usually provides an accurate approximation: In that range the
exponentiale2nI ~x0! dominates the expression+For larger loss probabilities, this is no
longer the case, and additional information onh~n! is required+ In a one-dimensional
setting,Bahadur and Rao@1# provided an explicit expression of the functionh~n!,and
for a loss network with a single restriction on the state space~S5 $m :(i mi # C%!,
Gazdzicki et al+ @8# obtained a similar result+ In general, for state spaces determined
by multiple restrictions, an explicit evaluation ofh~n! leading to a satisfactory ap-
proximation ofP$Bj % is not yet available in the literature+Such results require special
structure on the state spaceS+ The state space of a layered mobile communications
network has a special structure that enables asymptotic evaluation ofh~n! to approx-
imate blocking probabilities as large asP$Bj % ;1022+ The contribution of this paper
is an explicit analysis of blocking probabilities for such networks, thus extending the
applicability of large-deviations-based methods to also evaluate moderate blocking
probabilities+

1.2. Background for Modeling Assumptions

Capacity for wireless communications is severely limited+ Therefore, the area cov-
ered by providers of wireless services is divided into cells, transmissions in each cell
use a part of the spectral capacity, and this capacity is reused in cells that are suffi-
ciently far away to avoid interference+ Reuse of capacity substantially increases the
network capacity+ This capacity can be further increased using hierarchical network
structures,where microcells are placed in areas with a higher than average density of
communications+ Microcells cover a small area and do not give rise to interference
problems+ Thus, a layered or hierarchical cellular mobile network consists of mac-
rocells and microcells; a number of microcells is contained in the coverage area of
a macrocell+ Both macrocells and microcells allocate a number of channels+ Chan-
nels in the microcells can only be used by that particular microcell, yet a prespeci-
fied part of the channels in the macrocell can be used by any microcell underneath
that macrocell+ Under the assumptions yielding a truncated Poisson distribution for
the number of calls in the cells, blocking in different macrocells with underlying
microcells can be treated separately; see@3# +Therefore, in the following,we provide
a detailed description of a single macrocell+ Let cell 0 denote the macrocell, and cell
j, j 51, + + + ,d, the underlying microcells+Cell i hasci channels available+ In addition,
the macrocell hasc~h! channels that can be shared by the underlying microcells+ Let
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mj denote the number of calls in cellj, j 5 0, + + + ,d+ The restrictions on the state space
can then be summarized as

(
j[a

mj # (
j[a

cj 1 c~h! , a [ D, (1.5)

whereD 5 $all possible combinations of cellsj [ $0,1, + + + ,d%%+ This gives a total of
p5 2d11 21 restrictions+Restrictions~1+5! ensure that the channelsc~h! can be used
only once, because each possible combination of microcells and the overlapping
macrocell is included+ The set of restrictions~1+5! can be written asAm # C, where
A is a 0–1 matrix, andCa 5 (j[a cj 1 c~h!+ For layered mobile communications
networks, besides the fresh-call blocking probabilityP$Bj % as given in~1+3!, deter-
mining the probability that a new call generated in cellj cannot be accepted due to
lack of capacity, one of the most important performance measures is the handover
blocking probability+ A handover occurs when a user moves from celli to a neigh-
boring cellj and leaves the area where a channel from celli can be used at sufficient
quality+ Then, the call is “handed over” from a channel in celli to a channel in the
neighboring cellj+ If cell j has no available channels, the call is blocked and therefore
interrupted+ Obviously, handover blocking should be avoided in practical networks
as the service degradation due to interruption of existing calls is severer than that due
to fresh-call blocking+The handover blocking probability for a call moving from cell
i to cell j is given by@3#:

P$Bij % 5

(
m[Tij

)
k50

d

~nk
mk0mk!!

(
m[Ui

)
k50

d

~nk
mk0mk!!

, (1.6)

with

Tij :5 $m :A~m 1 ei ! # C, A~m 1 ej ! Ü C%, Ui :5 $m :A~m 1 ei ! # C%+

(1.7)

Application of the results of this paper is not restricted to cellular mobile networks+
It is the structure of the state space~1+5! that determines applicability of the results+
For example, overflow models@16# and retrial queues@2# can give rise to a similar
structure of the state space and blocking probabilities+

1.3. Contribution of the Paper

The analysis presented in this paper requires the special structure of the state space
as determined by~1+5!+ Besides the 0–1 structure ofA, an important property of the
state spaceS5 $m [ N 0

d11 :Am # C% is that the faces of the polytope determined by
Am # C cannot be orthogonal+ This enables us to conclude that call loss~fresh-call
and handover blocking! is determined by at most two constraints+ This is a crucial
observation that allows us to generalize the results of Gazdzicki et al+ @8# to state
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spaces determined by multiple constraints as described by~1+5!+At both constraints,
again due to the 0–1 structure ofA, evaluation of blocking probabilities reduces to
a one-dimensional problem for which Petrov@13# has provided integral and local
limit theorems that determineh~n! up to O~n2302!+ Additional terms can be ob-
tained forh~n!; for example, invoking results of Bahadur and Rao@1# , but results of
O~n2302! provide a sufficiently accurate approximation for blocking probabilities
up to 1022, as is illustrated by numerical tests+

The organization of this paper is as follows: Section 2 provides preliminary
results related to the asymptotic regime+ Our large deviations approximation is de-
veloped in Section 3, and its accuracy is illustrated in Section 4+

2. PRELIMINARIES

Consider a truncated multivariate Poisson distribution~1+1! at state space~1+2! de-
termined by restrictions~1+5!+ For this distribution, we are interested in blocking
probabilities as expressed in~1+3! and~1+6! under the assumption that the network is
lightly loaded~i+e+, thatAn , C!+ In fact, to avoid technical problems, for handover
blocking probabilities we will assume that

ni , ci , i 5 0, + + + ,d+ (2.1)

This assumption restricts the results+However, for ni $ ci , the blocking probabilities
will be too large for the asymptotics to provide accurate results+ Therefore, assump-
tion ~2+1! is not a restriction on the range of applicability of our results+

The first step enabling the approximation of the blocking probabilities~1+3! and
~1+6! is multiplying both numerator and denominator by)k e2nk+ Expression~1+3!
obtained for the fresh-call blocking probabilities in cellj can then be written as the
ratio of two multidimensional Poisson probabilities:

P$Bj % 5

(
m[Tj

)
k50

d

~nk
mk0mk!!e2nk

(
m[S

)
k50

d

~nk
mk0mk!!e2nk

+ (2.2)

As a consequence, both numerator and denominator can be separately evaluated
using multivariate Poisson distributions+ Here, Monte Carlo simulation has been
proposed in the literature+ For example, direct methods estimating numerator and
denominator can be applied; the Harvey–Hills method@9# is a more efficient Monte
Carlo technique using the fact thatTj , S to estimate the conditional probability
P$Tj 6S%+ For smaller blocking probabilities, importance sampling techniques have
been developed+ Ross and Wang@14# provide a heuristic method that shifts the pa-
rametern of the multidimensional Poisson distribution toward the boundary by a
factor of roughly 10%+ Boucherie and Mandjes@3# present an importance sampling
method based on large deviations theory+ As the denominator corresponds to an
event that occurs with large probability, the denominator is estimated via direct
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Monte Carlo summation+ The numerator is estimated via an exponentially twisted
density, which can be shown to be an asymptotically optimal change of measure
~also see@11#!+ In the following, we will improve on this method, showing that the
numerator can be approximated efficiently using large deviations theory+ The de-
nominator can be efficiently estimated via other methods+ Therefore, we will focus
our attention on the multidimensional Poisson probability for the setsTj andTij ;
recall~1+4! and~1+7!+ These probabilities can be estimated efficiently by scaling of
input and capacity, a procedure frequently used in analysis of blocking probabilities
in large circuit-switched networks~see, e+g+, @10# !+

Scaling of load and capacity, ni r nni andCi r nCi , for nr`, obviously also
influences the setsTj , Tjk, Uj , and S; recall ~1+2!, ~1+4!, and ~1+7!+ Applying the
scaling to these sets refines the raster but leaves the area unaffected+ Let Tj,n, Tjk,n,
Uj,n, andSn denote the sets obtained fromTj , Tjk,Uj , andS, respectively, by replacing
Ci r nCi and refining the grid by substitutingmn5 m0n instead ofm+ Let PTj , PTij , PUi ,
and PSbe the limiting sets forn r `+ Then, from the expressions forPTj , PTij , PUi , and
PS, as obtained in@3# ,

Sn 5 $mn :mn 5 m0n, Amn # C%

r PS5 $x :Ax # C%,

Tj,n 5 $mn :mn 5 m0n, Amn # C,A~mn 1 ej 0n! Ü C%

r PTj 5 PSù øi $x : ~Ax!i 5 Ci , aij 5 1%, (2.3)

Tjk,n 5 $mn :mn 5 m0n,A~mn 1 ej 0n! # C,A~mn 1 ek0n! Ü C%

r PTjk 5 PSù øi $x : ~Ax!i 5 Ci , aij 5 0, aik 5 1%, (2.4)

Uj,n 5 $mn :mn 5 m0n, A~mn 1 ej 0n! # C%

r PUj 5 PS+

For multidimensional Poisson random variates, scaling is motivated by the ob-
servation that the sum of i+i+d+ Poisson random variates is again a Poisson random
variate+Applying scalingni r nni andCi r nCi , the numerator~and denominator!
of ~2+2! can now be interpreted as the distribution of the sum ofn independent
Poisson~n! random variates+ Let X~n! denote a multidimensional Poisson random
variate with meann+ Then,P$Bj %5P$X~n! [ Tj %0P$X~n! [ S%+ The asymptotics of
the denominatorP$X~n! [ S% are trivial+ In the following, we will focus on the
asymptotics of the numeratorP$X~n! [ Tj %+ As n is finite, the central limit theorem
yields thatX~nn!0n r n for n r ` almost surely+ For deviations from the sample
mean, Cramér’s theorem~applied to the sequenceX ~i !~n!, i 5 1, + + + ,n, of indepen-
dent Poisson~n! random variates! states that~under some mild conditions; see@15# !,
for n Ó Tj ,

P$X~nn!0n [ Tj,n% 5 h~n!e2nI ~x0! ~n r `!, (2.5)

with I ~x0! the large deviations rate function ofX evaluated in the optimumx0 over
PTj ~see~2+7!! , andh~n! a subexponential function, with limnr`~10n! log h~n! 5 0+
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The~multidimensional! large deviations rate function of a Poisson random vari-
able with meann0, + + + ,nd can be calculated easily~see@15, p+ 13# !+ Let Mi ~{! be the
moment generating function of a Poisson random variable with meanni :

Mi ~ui ! 5 exp@ni ~e
ui 2 1!# + (2.6)

Then,

I ~x! 5 sup
u
S(

i50

d

~ui xi 2 log Mi ~ui !!D5 (
i50

d Sxi log
xi

ni

2 xi 1 niD+ (2.7)

In Cramér’s theorem, for obtainingx0, the large deviations rate function must be
minimized over PTj :

x0 5 argmin
x[ PTj

I ~x!+ (2.8)

Asymptotics based on Cramér’s theorem~2+5! usually exploit the observation that
the exponential factor exp@2nI ~x0!# dominates the expression and, therefore,
exp@2nI ~x0!# is used as the approximation of~2+5!; that is, one approximates
h~n! ; 1+ This usually yields sufficient accuracy for probabilities of the order
1026–10210 ~as in ATM networks!+ In cellular mobile networks, however, typical
blocking probabilities are in the order of 1022–1023+ In this regime, the subexpo-
nential functionh~n! contributes significantly to~2+5!, which requires more accu-
rate asymptotics forh~n!+ In the following, we develop the functionh~n! up to
O~n2302!+

Bahadur and Rao@1# explicitly evaluate the functionh~n! in a one-dimensional
setting via an integral limit theorem+Although this yields sufficient accuracy for our
approximation, this result is difficult to apply in our context+ Furthermore, in deriv-
ing our approximation, we require both an integral limit theorem and a local limit
theorem+ Petrov@13# gives these results~in a one-dimensional setting! of sufficient
accuracy and in an easily applicable form+

Theorem 2.1 ~Petrov@13# !: Let X~1!, X ~2!, + + + be a sequence of i+i+d+ discrete ran-
domvariables with finite expectation+ Let M~{! denote the moment generating func-
tion of X~1!, and J~x! 5 supu~ux 2 log M~u!! the large deviations rate function of
X ~1!+ Then, for all e . 0,

P$X ~1! 1 {{{ 1 X ~n! 5 nx% 5
1

s~t!#2pn
exp@2nJ~x!#F11 OS1

n
DG (2.9)

and

P$X ~1! 1 {{{ 1 X ~n! $ nx% 5
1

s~t!#2pn~12 e2t !

3 exp@2nJ~x!#F11 OS1

n
DG , (2.10)
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as nr` uniformly in x in the range of X~1! such that EX~1! 1 e # x, wheret is the
unique real root of M'~t!0M~t! 5 x ands2~t! 5 @M ''~t!0M~t!# 2 x2+

In our derivation below, application of Petrov’s result requires the moment gen-
erating function,Mp, and large deviations rate function, Jp, of a Poisson~n! random
variable, andMb andJb, of a binomial~n, p! random variable:

Mp~n,u! 5 exp@n~eu 2 1!# , Jp~n, x! 5 x log
x

n
2 x 1 n, (2.11)

Mb~n, p,u! 5 ~ peu 1 1 2 p!n,

Jb~n, p, x! 5 x log
x

p
1 ~n 2 x! logSn 2 x

12 p
D2 n log n+ (2.12)

This provides us with the necessary tools to derive results concerning the block-
ing probabilities in a hierarchical cellular network+

3. ASYMPTOTICS OF BLOCKING PROBABILITIES

This section develops an approximation algorithm for the probabilities onPTj and on
PTjk, the numerator of the blocking probabilities~1+3! and~1+6!+ Due to the special

structure of the matrixA as expressed by~1+5!, Theorem 3+1 shows that in the most
likely point where blocking occurs at most two restrictions are tight+ As a conse-
quence, it is sufficient to consider only these restrictions rather than the whole setPT,
which is an essential step in this paper+ This greatly simplifies the approximation of
the large deviations probability+ Furthermore, again due to the special structure ofA,
if two restrictions are tight, it is sufficient to perform only a single optimization of
the large deviations rate function at both constraints, a result shown in Theorem 3+5+

Before continuing with the results,we introduce some notation+ The matrixA5
~aij ! of ~1+5! determines the state spacesS and PS, and the parts of the boundary
determining blocking via a number of restrictions that can be expressed as hyper-
surfaces+ To this end, let

ri 5 $x : ~Ax!i 5 Ci %,

rij 5 $x : ~Ax!i 5 Ci , aij 5 1%,

rijk 5 $x : ~Ax!i 5 Ci , aij 5 0, aik 5 1%,

Sri 5 $x : ~Ax!i # Ci %,

Srij 5 $x : ~Ax!i # Ci , aij 5 1%,

Srijk 5 $x : ~Ax!i # Ci , aij 5 0, aik 5 1%+
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For eachj ~resp+ jk!, the boundary hyperplanesrij ~resp+ rijk ! are disjoint+ In contrast,
for fixed i, these hyperplanes may coincide for differentj ~resp+ jk!+ The sets where
blocking occurs can now be written as~recall~2+3! and~2+4!!

PTj 5 PSù ø
i

r ij ,

PTjk 5 PSù ø
i

r ijk +

With a slight abuse of notation, we will state thatrij [ PTj andrijk [ PTjk+
The hypersurfaceri corresponds to theith row of the matrixA+ ForC~h! . 0, due

to the special structure of the matrixA, in the boundary of PShypersurfaces~deter-
mined by the rows ofA! cannot be orthogonal@obviously the boundary hypersur-
faces corresponding to rows~1,0,0, + + + ,0! and~0,1,0, + + + ,0! are orthogonal, but these
surfaces do not intersect in anyPT # +Thus, if the intersection ofri andrj forms a bound-
ary hypersurface ofPS, then the normal vectors ofri andrj cannot be orthogonal+We
will refer to this as thenonorthogonality propertyof the boundary hypersurfaces+

We will use PT ~resp+ T ! as generic notation forPTj and PTjk ~resp+ Tj andTjk! andr
for the restrictions determiningPT+ Results will be provided and proven forPT if this
does not lead to confusion+ Otherwise, the results will be proven forPTj + In all cases,
for the other setsPTjk, the proofs are similar+

Theorem 3+1 shows that in a pointx0 where blocking occurs, exactly one re-
striction of PT and at most one restriction not ofPT have zero slack~are tight!+

Theorem 3.1: Letx0 [ argminx[ PT I ~x!+Then, there exists a unique r*[ PT such that
x0 [ r *+ Moreover, there is at most one r', r ' Ó PT, such thatx0 [ r '+ Furthermore,
for fresh-call blocking in cell j, if r *5 ùl[D* ril , where D*5 $t : ait 51 in r * %, then
r '5 ùl[D ' ril , where D'5 D *\$ j %+ Similarly, for handover blocking from cell k to
cell j, if r *5 ùl[D* rikl , where D*5 $t : ait 5 1 in r * %, then D'5 D *\$ j %+

Proof: Consider PT 5 PTj and define PHj 5 ùi Srij andHj 5 øi r ij +
Observe thatI ~x! of ~2+7! is continuous and strictly convex in all coordinates+

Therefore, the level setsL~g! 5 $x : I ~x! # g% are convex, andL~g! , L~g' ! for g ,
g'+ Furthermore, as n 5 argminx[ PSI ~x! [ int~ PS!, there is a uniqueg* such that
L~g* ! , PHj , L~g* ! ù Hj Þ B, and, for all e . 0, L~g*1 e! ÷ PHj +

If L~g* ! ù PTÞ B, thenL~g* ! ù PT5 argminx[ PT I ~x!+ Obviously, x0 [ rij for at
least onei, and the normal vectors, ¹I ~x0!, of I ~x! in x0 and ofrij coincide+ Now,
assume thatx0 [ rij ù ri 'j , for i Þ i '+ Again, the normal vectors ofI ~x0! andrij and
of I ~x0! andri 'j must coincide+ Obviously, for i Þ i ', this cannot be the case, as the
normal vectors ofrij andri 'j are distinct+

If L~g* ! ù PT 5 B, then there exists a uniqueg' . g* such that, for all e . 0,
L~g'2 e! ù PT5 B andB Þ L~g' ! ù PT5 argminx[ PTI ~x!+ If in x0 [ argminx[ PT I ~x!,
the normal vector ofI ~x0! and ofrij for somei coincide, thenrij must be the unique
boundary hyperplane inPT such thatx0 [ rij +Otherwise, x0 lies on the boundary ofPT
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@i+e+, x0 [ PT ù $x : xj 5 cj %#+ Let x0 [ rij + There exists a unique hyperplane through
x0 with normal¹I ~x0!+ This hyperplane separatesL~g' ! andrij ù PT and contains the
line rij ù $x : xj 5 cj %+ Now, assume thatx0 [ rij ù ri 'j , for i Þ i '+ As rij and ri 'j

intersect in PT, it must be that there exists ak such thatakj 51 in both rowsi andi ' of
the matrixA @recall~1+5!# + The normal of the hyperplane separatingL~g' ! andrij ù
ri 'j ù PT must then have a nonpositivekth coordinate, and thus~¹I ~x0!!k # 0+ As n [
int~ PS!, the form ofI ~x! @recall~2+7!# clearly leads to a contradiction+ @~d0dxk! I ~x! ,
0 if and only ifxk , nk, placingn outside PS+# Thus, x0 must be contained in a unique
r * [ PT+

The same argument also shows that there exists at most oner ' Ó PT such that
x0 [ r '+ To this end, note that ifx0 [ int~ PT !, then there cannot be anr ', r ' Ó PT, such
thatx0 [ r '+ If x0 [ PT ù $x : xj 5 cj %, thenx0 [ int~r * ù PT ù $x : xj 5 cj %!; that is, x0

cannot be located on the endpoint of this line segment, for this would imply thatx0

is also contained in two distinctr [ PT+ This line segment is contained in exactly one
r ' Ó PT+

It remains to determiner '+ Two restrictions that intersect in a line inPT have
exactly one elementaij that is different+ As r * [ PT andr ' Ó PT, it must be that the
element$ j % of D * is not contained inD ', which completes the proof+ n

Theorem 3+1 allows for argminx[ PT I ~x! to contain multiple points+As I ~x! is con-
tinuous and strictly convex in all coordinates, the elementsx [ argminx[ PT I ~x! must
be contained indistinctboundary hyperplanes+Obviously, in general,argminx[ PT I ~x!
will contain exactly one element+

Theorem 3+1 is most interesting forc~h! . 0+ If c~h! 50 ~the case of fixed channel
allocation!, then PS is a box~boundary hyperplanes are orthogonal! andx0 is con-
tained in the interior of a single boundary hyperplane+ As a consequence, for each
cell, blocking can be separately~and independently! analyzed+

Assumption~2+1! plays an important role in the above result+ For handover
blocking from cellk to cell j, the boundary of PTkj is PTkj ù ~$x : xk5ck% ø $x : xj 5cj %!+
Assumption~2+1! excludes the possibility that blocking occurs onPTkj ù $x : xk5 ck%+
In most cases, this set does not lead to additional complications: Results similar to
those presented in the sequel can be derived, taking into account thatD '5 D *ø $k%+
However, it is also possible forx0 to have~x0!j 5 cj , and ~x0!k 5 ck; x0 is then
contained in multipler ', r 'Ó PTkj ,which makes the formulation of our results and the
proofs thereof much more cumbersome+

The immediate consequence of Theorem 3+1 is that in order to approximate the
blocking probability, it suffices to consider only the restrictions that apply with
equality inx0+ This is a consequence of the factor exp@2nI ~x!# in Cramer´’s theorem
~2+5!+ This is formalized in the following lemma+ Here, rij ,n ~resp+ rijk,n! denotes
boundary hyperplanes ofTj,n ~resp+ Tjk,n!; recall~2+3! and~2+4!+ For example, rij ,n 5
$mn :mn5 m0n, Amn # C, ~Amn1 ej 0n! Ü C, aij 51% r rij ~nr`!+ As before,we
will denotern ~resp+ Tn! to indicaterij ,n andrijk,n ~resp+ Tj,n andTjk,n! andrn

* andrn
'

denote the hyperplanesrn such thatrn
*r r * andrn

'r r ' ~e+g+, the boundary hyper-
planes containingx0; recall their definition in Theorem 3+1!+
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Lemma 3.2: If one restriction has zero slack inx0, then

P$X~nn! [ Tn%0P$X~nn! [ rn
*% r 1+

If two restrictions have zero slack, then

P$X~nn! [ Tn%0P$X~nn! [ rn
* ù rn

'% r 1+

Proof: In the first case, x0 simply lies in the interior of one of the boundary planes
of the simplexAx # C, as was found in the proof of Theorem 3+1+ We abbreviate
P$An% :5 P$X~nn! [ An%+ First, notice that

P$Sn ù rn
*% 5 P$rn

*% 2 P$Sn
c ù rn

*%+

As x0 lies on the interior ofSn ù rn
*, the probabilityP$Sn

c ù rn
*% vanishes exponen-

tially ~in n!, with decay rateI ~x! . I ~x0!, whereasP$rn
*% vanishes at rateI ~x0!+

~This is due to Petrov’s Theorem 2+1, where we apply that the exponential decay
dominates the polynomial decay+! Then, notice that

P$Tj,n% 5 PHSn ù ø
i

r ij ,nJ 5 P$Sn ù rn
*% 1 PHSn ù Sø

i

r ij ,n\ rn
*DJ +

The first probability on the right hand side decays at rateI ~x0!, whereas the second
vanishes at a larger rate+We arrive at the stated+

In the second case, the above proof can be copied, with one exception:

P$Sn ù rn
*% 5 P$rn

' ù rn
*% 2 P$Sn

c ù rn
' ù rn

*%+

The first probability on the right-hand side tends exponentially to zero at rateI ~x0!;
the second goes at a higher rate+ This is due to the fact that bothr * andr ' apply with
equality inx0+ n

To simplify the proof of Theorem 3+5, the main result of this section that deter-
mines the asymptotics of the blocking probabilities, we now introduce some nota-
tion and provide two lemmas+ Lemma 3+3 proves that the entries~x0!i andni are
proportional as long asi [ D '+ Lemma 3+4 determines the asymptotics of a binomial
random variable+

Define

X ' :5 (
i[D '

Xi ~nn!, X* :5 (
i[D*

Xi ~nn!,

n ' :5 (
i[D '

ni , n * :5 (
i[D*

ni ,

C ' :5 (
i[D '

ci 1 c~h! , C* :5 (
i[D*

ci 1 c~h! +

Let f ~n! ; g~n! denotef ~n!0g~n! r 1 asn r `+
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Lemma 3.3: If in x0 a single restriction is tight, then

~x0!i 5
C*

n *
ni , i [D *+

Otherwise, when two restrictions are tight, then

~x0!i 5
C '

n '
ni , i [ D ', ~xo!i 5

C* 2 C '

n * 2 n '
ni , i [ D *\D'+

Proof: Based on Theorem 3+1, x0 is the argmin of

(
i[D*

xi log
xi

ni

2 xi 1 ni

under

(
i[D*

xi 5 C* and (
i[D '

xi 5 C '

or, equivalently,

(
i[D*\D'

xi 5 C* 2 C ' and (
i[D '

xi 5 C '+

Lagrangian optimization shows that~x0!i 0ni must be constant atD * \D' and at
D '+ Summing over the appropriatei ~e+g+, i [ D ' ! yields, introducingk 5 ~x0!i 0ni ,
i [ D ',

C ' 5 (
i[D '

xi 5 (
i[D '

kni 5 kn '

~i+e+, k 5 C '0n ' !, which completes the proof+ n

Lemma 3.4: Let Zn be binomially~nk, p! distributed, for some k[ N+ Then, for any
y , kp,

PH Zn

n
, yJ ;

1

sJ~t!#2pn@12 exp~t!#
exp@2nJb~k, p, y!#

for

t 5 logS12 p

p

y

k 2 y
D and sb

2~t! 5
y~k 2 y!

k
+

Proof: The proof is a matter of invoking Petrov’s Theorem 2+1, where it should be
noticed thatZn is distributed as the convolution ofn i+i+d+ binomial~k, p! random
variables and that we considerZn0n , y instead ofZn0n $ y, as in ~2+10!+ The
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moment generating function of one of those random variables isMb~k, p,u!5 ~ peu 1
1 2 p!k, leading to the following expression fort:

et 5 S12 p

p
DS y

k 2 y
D+

Inserting this in~2+10! yields, after tedious calculations, the desired result+ n

We are now ready to formulate our main result+ As a consequence of Theorem
3+1, for asymptotics ofP$X~nn! [ Tn% we need to consider two cases only: either, in
x0, a single restrictionr * [ PT is tight or, in x0, two restrictions, r * [ PT andr ' Ó PT,
are tight+The first case is basically covered by the results of Gazdzicki et al+ @8# +The
second case, covering all remaining cases, cannot be concluded from these results+
The result for this case exploits the structure of the state space, which implies that
P$X~nn! [ Tn% can be seen to be determined by a Poisson distribution atr * and a
binomial distribution atr ' conditional onX~nn! [ r *+ The asymptotics for both
events can be combined to require only a single optimization step for the original
large deviations rate function~2+7! to produceI ~x0!+ This optimization step can, in
fact, be avoided, as is demonstrated in Corollary 3+6+

Theorem 3.5: If one restriction has zero slack inx0, then

P$X~nn! [ Tn% ;
exp@2nI ~x0!#

#2pnC*
+ (3.1)

If two restrictions have zero slack, then

P$X~nn! [ Tn% ;
exp@2nI ~x0!#

2pnsJ~t!#C* @12 exp~t!#
, (3.2)

with

et 5 S C

C* 2 C
DS n * 2 n

n
D and sb

2~t! 5
C~C* 2 C!

C*
+

Proof: We consider both cases separately+
Thefirst case~3+1! is a direct application of Petrov’s result~2+9!, after applying

Lemma 3+2 and observing thatP$X~nn! [ rn
*% 5 P$X*5 nC* %+ Here, we have used

thatX~nn! is multivariate Poisson, implying thatXi ~nn! [ N0+ ForX~nn! [ rn
* @i+e+,

(i[D* Xi ~nn! # nC* and(i[D* Xi ~nn! 1 1 Ü nC* # , it must be that(i[D* Xi ~nn! 5
nC* asnC* [ N0+

It is left to calculates~t!+ As M~t! 5 exp@n *~et 2 1!# , the roott of M '~t!0
M~t! 5 C* is t 5 log~C*0n * ! and

sb
2~t! 5

M ''~t!

M~t!
2 SM '~t!

M~t!
D2

5 C*+
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Thesecondcase~3+2! is proven as follows+With Lemma 3+2, we may consider

P$X~nn! [ $rn
* ù Srn

'%% 5 P$X~nn! [ Srn
' 6X~nn! [ rn

*%P$X~nn! [ rn
*%+ (3.3)

We derive the asymptotics of both probabilities on the right-hand side of~3+3! sep-
arately+The first one can be rewritten asP$X '#nC' 6X*5nC* %+Notice that~X ' 6X*5
nC* ! is distributed binomially with parametersnC* andn '0n *+ By applying Lemma
3+4, we get that the asymptotics read

exp@2nJb~C*,n '0n *,C ' !#

#2pnsb~t!@12 exp~t!#
+ (3.4)

The asymptotics of the second probability in~3+3! is—analogously to the first case—
equal to

exp@2nJp~n *,C* !#

#2pnC*
+ (3.5)

Calculations yield that

Jb~C*,n '0n *,C ' ! 1 Jp~n *,C* ! 5 C ' logSC '

n '
D1 ~C* 2 C ' ! logSC* 2 C '

n * 2 n '
D

1 n * 2 C*+

Invoking Lemma 3+3, we see that this equals

(
i[D*

S~x0!i log
~x0!i

ni

2 ~x0!i 1 niD+
Multiplying ~3+4! and~3+5! yields~3+2!+ n

The observation that, in the optimum, ~x0!i andni for all i [ D * \D' andD ' are
proportional gives useful additional information,which can be used to quickly solve
the optimization problem+As shown in Corollary 3+6, it is possible to explicitly find
the values of the components ofx0+ This implies that the minimum of the nonlinear
function I ~x! over PT can be found through some simple calculations, avoiding nu-
merical methods to solve the optimization problem~2+8!+ This has a considerable
effect on the speed of the method, and large problems can be easily handled+

Corollary 3.6: Consider fresh-call blocking in cell j or handover blocking from
cell k to cell j+ In theargminx0 of I ~x! over PTj or PTkj ,

• either~x0!j . Cj and~x0!i 5 ~C*0n *! ni , for i [ D *, and~x0!i 5 ni for i Ó D *

• or ~x0!j 5 Cj , and~x0!i 5 ~C '0n '! ni , for i [ D ', and~x0!i 5 ni for i Ó D *+

Proof: Given the constraintsr * and r ' that containx0, the components~x0!i for
whichaji 5 0 can be independently minimized+ This obviously yields~x0!i 5 ni for
i Ó D *+ Lemma 3+3 completes the proof+ n
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The results of this section can be summarized in an easily applicable algorithm
that takes very limited computational effort to approximate the probability onT, as
it only requires substitution of the appropriate terms in Corollary 3+6 and Theorem
3+5+ Observe that this result depends heavily on Theorem 3+1+

Algorithm 3.7: Asymptotical evaluation of the probability on T in a hierarchical
cellular mobile communications network:

1+ Minimize~2+7! over PT by using Theorem3+6, which yields I~x0!+
2+ Identify the restrictions with zero slack inx0+
3+ The restriction that is in PT is r *; if there is a second restriction, call it r '+
4+ Apply Theorem3+5 to calculate the asymptotics+

4. NUMERICAL EXAMPLES

As an illustration of the method, this section contains two numerical examples+ In
the first example, fixed channel allocation is considered, as this allows us to com-
pare the results of our approximation with exact results to evaluate the accuracy of
the asymptotics+ Second, an example of a typical city center where microcells are
placed to increase the network capacity is treated+ The results indicate that not only
blocking probabilities up to 1% are estimated accurately but also that our method
provides insight into whether blocking is due to local effects~a single cell is over-
loaded! or due to global effects~multiple cells are simultaneously overloaded!+

4.1. Fixed Channel Allocation

This first example illustrates the accuracy of the method in case of fixed channel
allocation~c~h! 50!, a special case for which the blocking probabilities can easily be
obtained in exact form from the Erlang loss formula+ It also provides insight into the
regime under which the method based on large deviations techniques can be used+
Table 4+1 presents the exact blocking probabilities and those estimated using the
method developed in this paper+When the exact probability exceeds 5%, the method
proposed in this paper loses accuracy; for smaller probabilities, it performs very
well+ In the results presented in this section, the term in the denominator of~2+2! has
been approximated by 1+ Using Theorem 3+5 onP$SC% will lead to more accurate
estimates of the larger probabilities+ However, one should keep in mind that large
deviations is not a technique to estimate such large probabilities and, hence, such
results should be handled very carefully+

The column “Simple LD” gives the results obtained by using Cramérs result
with h~n! 51 ~i+e+, the values ofe2nI ~x0!, the result standardly used to approximate
small loss probabilities!+ It shows that use of the correction terms is important for
achieving accurate estimates of the loss probability+ The column “Exact” presents
the exact value of the loss probability, and the column “P$Bj %” gives the result from
our approximation+
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In mobile communications, loss probabilities are typically smaller than 2%+The
method developed in this paper proves to be accurate when estimating such small
probabilities in the case of fixed channel allocation+

4.2. City Center

Consider a city center with a load of about 50 Erlang0km2, which will frequently
occur in the near future+ Assume one macrocell~cell 0! and seven microcells~cells
1, + + + ,7! have to carry the load+ Some cells contain two frequencies~14 channels!,
others one~7 channels!+The macrocell has two frequencies available, and four of the
channels from the macrocell can be used by the microcells~i+e+, c~h! 5 4!+ Tables 4+2
and 4+3 summarize the results+ In Table 4+2, not only the fresh-call loss probability

Table 4.1. Fixed Channel Allocation; Accuracy of Approximation

Cell ni ci Exact P$Bj % Simple LD

0 12 14 1+173 1021 9+103 1022 8+543 1021

1 10 14 5+683 1022 5+243 1022 4+913 1021

2 8 14 1+723 1022 1+703 1022 1+603 1021

3 6 14 2+233 1023 2+243 1023 2+103 1022

4 4 14 5+643 1025 5+673 1025 5+323 1024

5 2 14 2+543 1028 2+563 1028 2+403 1027

6 1 7 7+303 1025 7+393 1025 4+903 1024

7 2 7 3+443 1023 3+483 1023 2+313 1022

8 3 7 2+193 1022 2+193 1022 1+453 1021

9 4 7 6+273 1022 6+033 1022 4+003 1021

10 5 7 1+213 1021 1+063 1021 7+013 1021

Table 4.2. Fresh Call Blocking in Cellj ~c~h! 5 4!

Cell nj cj P$Bj % Constraintr *
No+ of

Constraints

0 7 10 7+143 1023 1 0 0 0 0 0 0 0 1
1 10 14 7+123 1023 0 1 0 0 0 0 0 0 1
2 9 14 2+913 1023 0 0 1 0 0 0 0 0 1
3 8 14 1+033 1023 0 0 0 1 0 1 0 0 1
4 7 14 5+083 1024 0 1 0 0 1 0 0 0 2
5 5 7 8+303 1023 0 0 0 0 0 1 0 0 1
6 4 7 2+913 1023 0 0 0 0 0 1 1 0 1
7 3 7 8+563 1024 0 1 0 0 0 1 0 1 1
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Table 4.3. Handover Blocking~c~h! 5 4!

0 1 2 3 4 5 6 7

0 0 7+123 1023 2+913 1023 1+033 1023 5+083 1024 8+303 1023 2+913 1023 8+563 1024

1 7+143 1023 0 2+913 1023 1+033 1023 3+793 1024 8+303 1023 2+913 1023 8+583 1024

2 7+143 1023 7+123 1023 0 1+033 1023 5+083 1024 8+303 1023 2+913 1023 8+563 1024

3 7+143 1023 7+123 1023 2+913 1023 0 5+083 1024 8+303 1023 2+913 1023 8+563 1024

4 7+143 1023 7+123 1023 2+913 1023 1+033 1023 0 8+303 1023 2+913 1023 8+563 1024

5 7+143 1023 7+123 1023 2+913 1023 8+563 1024 5+083 1024 0 2+423 1023 6+813 1024

6 7+143 1023 7+123 1023 2+913 1023 1+033 1023 5+083 1024 8+303 1023 0 8+563 1024

7 7+143 1023 7+123 1023 2+913 1023 1+033 1023 5+083 1024 8+303 1023 2+913 1023 0
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but also the constraint~presented by a row ofA! on which blocking occurs and the
number of constraints with zero slack inx0 are listed+ Some qualitative insight into
the network can be gained from these results:

• Blocking in cells 0, 1, 2, and 5 is local; that is, r * corresponds to those cells
only+

• Blocking in cells 3, 4, 6, and 7 has a more global nature; for example, block-
ing in cell 7 occurs when cells 1, 5, and 7 are simultaneously using the over-
flow channelsc~h!+

• Blocking in cell 4 involves two constraints, which implies that blocking oc-
curs becauseothercells ~in this case cell 1! are using all available overflow
channels+

Table 4+3 presents the handover blocking probabilities from cellk ~row! to cell
j ~column!+ These results and a comparison with the results for fresh-call blocking
provide additional insight into the behavior of the network:

• The handover blocking probability to cells 0, 1, 2, and 5 is equal for all cells
and equals the fresh-call blocking probability for these cells, a direct conse-
quence of the fact that fresh-call blocking in these cells is local~the constraint
r * for fresh-call blocking is contained inPTj ù PTkj!+

• For other cells, the handover blocking probability is lower for the entriesl Þ
j in r * ~e+g+, P$B53% , P$B3%, as 5[ D * for fresh-call blocking in cell 3!+ The
handover blocking probability is lower than the fresh-call blocking probabil-
ity for cells that do not block locally+ The difference lies in the combined
blocking of cells for fresh-call blocking which does not yield handover block-
ing+ In particular, when fresh-call blocking in cell 3 is also caused by calls in
cell 5 using the overflow channels, then a call moving from cell 5 to cell 3 is
less likely to be blocked, as a call using an overflow channel can take its
channel along from cell 5 to cell 3+

In practice the load in the microcells will be quite similar+ This implies that
blocking more often will have a global character+ Therefore, the constraint on which
handover blocking is most likely to occur will differ more often from that of fresh-
call blocking, leading to lower blocking probabilities for handover blocking+ Also,
when blocking has a global character, assigning one extra frequency to a particular
cell will increase the network capacity less than it would have in the case that block-
ing occurs locally+ However, if this cell is a cause for any type of blocking~appears
in each constraint in Table 4+2!, network performance can be increased considerably
by assigning an extra frequency to this cell+ From this observation, extra capacity
would be most likely to increase network performance when added to cells 5 or 1+

5. CONCLUSION

This paper has presented an asymptotic approximation of blocking probabilities
obtained from multivariate Poisson probabilities at state spaces typically arising in
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layered cellular mobile communications networks+ The results generalize the large
deviations results of Gazdzicki et al+ @8# to state spaces with multiple constraints and
extend applicability of large deviations approximations to probabilities of the order
of 1%+ A numerically efficient method that identifies bottleneck constraints and
computes blocking probabilities has been proved+

Acknowledgments
The research of S+ Verwijmeren has been supported by a one-year KPN Research grant, contract No+
2044400+ The research of R+ J+ Boucherie is supported by the Technology Foundation STW, Applied
Science Division of NWO and the Technology Programme of the Ministry of Economic Affairs, The
Netherlands+

References

1+ Bahadur, R+R+ & Ranga Rao, R+ ~1960!+On deviations of the sample mean+ Annals of Mathematical
Statistics31: 1015–1027+

2+ Borst,S+C+,Boucherie,R+J+,& Boxma,O+J+ ~1999!+ERMR:Ageneralised equivalent random method
for overflow systems with repacking+ In P+ Key and D+ Smith ~eds+!, Teletraffic Engineering in a
Competitive World+ Proceedings of ITC-16, pp+ 313–323+

3+ Boucherie, R+J+ & Mandjes, M+ ~1998!+ Estimation of performance measures for product form cel-
lular mobile communications networks+ Telecommunication Systems10: 321–354+

4+ Boucherie, R+J+ & Van Dijk , N+M+ ~1999!+ On a queueing network model for cellular mobile tele-
communications networks+ Operations Research~in press!+

5+ Choudhury,G+L+, Leung, K+K+, & Whitt ,W+ ~1995!+An algorithm to compute blocking probabilities
in multi-rate multi-class multi-resource loss models+Advances in Applied Probability27: 1104–1143+

6+ Dziong, Z+& Roberts, J+W+ ~1987!+Congestion probabilities in a circuit-switched integrated services
network+ Performance Evaluation7: 267–284+

7+ Everitt,D+& Manfield,D+ ~1989!+Performance analysis of cellular mobile communications systems
with dynamic channel assignment+ IEEE Journal on Selected Areas in Communications7~8!:
1172–1180+

8+ Gazdzicki, P+, Lambadaris, I+, & Mazumdar, R+R+ ~1993!+ Blocking probabilities for large multirate
Erlang loss systems+ Advances in Applied Probability25: 997–1009+

9+ Harvey, C+ & Hills , C+R+ ~1979!+ Determining grades of service in a network+ 9th International
Teletraffic Conference+

10+ Kelly, F+P+ ~1991!+ Loss networks+ Annals of Applied Probability1: 319–378+
11+ Mandjes,M+ ~1997!+ Fast simulation of blocking probabilities in loss networks+European Journal of

Operational Research101: 393–404+
12+ Pallant, D+L+ & Taylor, P+G+ ~1995!+Modeling handovers in cellular mobile networks with dynamic

channel allocation+ Operations Research43~1!: 33–42+
13+ Petrov, V+V+ ~1965!+ On the probabilities of large deviations for sums of independent random vari-

ables+ Theory of Probability and its Applications10~2!: 287–298~translated by A+R+ Kraiman!+
14+ Ross, K+ & Wang, J+ ~1992!+ Monte Carlo summation applied to product form loss networks+ Prob-

ability in the Engineering and Informational Sciences6: 323–348+
15+ Shwartz, A+ & Weiss, A+ ~1995!+ Large deviations for performance analysis+ London: Chapman &

Hall+
16+ Wolff ,R+W+ ~1989!+Stochastic modeling and the theory of queues+Englewood Cliffs,NJ:Prentice-Hall+

ASYMPTOTIC EVALUATION OF BLOCKING PROBABILITIES 99

https://doi.org/10.1017/S0269964800141075 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964800141075

