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This paper investigates blocking probabilities obtained from multidimensional trun-
cated Poisson distributionBor blocking probabilities typically arising in layered
cellular mobile communications networkke large deviations results of Gazdzicki
etal[9] are extended to state spaces determined by multiple constiietsesults

yield asymptotically exact expressions that provide an accurate approximation of
probabilities up to 1%which considerably extends the applicability of large devi-
ations results and enables efficient approximation of blocking probabilities for re-

alistic mobile communications networks

1. INTRODUCTION

1.1. Motivation

Truncated multidimensional Poisson distributions frequently arise in the study of

(mobile) telecommunications networks and are typically of the form

*This work was done while this author was at KPN Resea2@60 AK LeidschendanThe Netherlands
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Often the state spac¢é& is determined by a matrix constraint

S={m:Am = C} C N§'%, (1.2)

in which Ais ap X (d + 1) matrix andC is ap-vector wherep is the number of
constraintsFor examplea loss networKk10] with p links, where linka comprises
C, circuits and a call on routpusesA,; circuits from link «, has a state-space
representatiofl.2). Then m; is the number of calls in progress on rojtandy; is
the load offered to route Alternatively a state space of the for(t.2) emerges in a
mobile communications netwoifl8,4,12] consisting ofd + 1 cells where a set of
cellsa sharesC, channelsA call in cell j simultaneously block&due to interfer-
enceg channels in neighboring cells in the seletermined by,,; > 0. Herg v is the
load offered to cel], andm; is the number of calls in progress in cgll

Relevant performance measures can be obtained in closed form from the dis-
tribution (1.1). For examplethe probability that an additional call in cgllof a
mobile communications netwofkr on routg of a loss networkcannot be accepted
due to capacity restrictiorifresh-call blocking probabilitycan be expressed as the
summation ofr over a part of the boundary of the state space

d
> I (v/md)

mETj k=0
P{B} = 5 , (1.3)
2 H (vx/myl)
meSk=0
with
T :={m:Am=C,A(m+¢ ) % C}, (1.4)

whereg; denotes thgth unit vector Despite the explicit expressi@f.3), numerical
evaluation of the fresh-call blocking probabilitg.g., via recursive methods$] or
generating function methods]) is often extremely time-consumings the size of
the state spac@nd of the seT;) grows exponentially fast with the size of the net-
work. As an alternativeMonte Carlo summatiofi7,9] can be applied to obtain an
estimate of the blocking probabilitit.3). Especially for smaller blocking probabil-
ities, methods based on importance sampling can be used to improve on the effi-
ciency of such methodseeg e.g., [3,14]). However the resulting methods are still
very demanding with respect to their required computation.time

As an alternativeasymptotic evaluation of blocking probabilities might lead to
a fast and accurate approximatiéior heavily or moderately loaded networ(kke-
termined byAr # C, v = (v,,...,74)), approximations based on the central limit
theorem(normal approximationreduced load method4.0]) might be usedFor
lightly loaded networkg Av < C), such methods might not lead to satisfactory
approximationsin that domainmethods based on Cramér’s theorgl] and the
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Bahadur—Rao estimate for deviations of the sample mizhare more applicable
Roughly after scalingr — n¥ andC — nC (n — o), the blocking probability?{B; }
can be approximated as

P{B;} ~ n(n)e ">  (n— o),

wheren(n) is a subexponential functiowith lim,,_, . (1/n) log n(n) = 0, andl (x,)

is the large deviations rate functi¢evaluated in the state, determined byf;) that

can be explicitly obtained for blocking probabilities resulting from multidimensional
Poisson distributiorisee(2.7)]. For small loss probabilitied{B;} ~10~°), the large
deviations rate function usually provides an accurate approximaititimt range the
exponentiat™"'*o dominates the expressidfor larger loss probabilitieghis is no
longer the casand additional information on(n) is requiredIn a one-dimensional
setting Bahadur and Rgd ] provided an explicit expression of the functipm), and

for a loss network with a single restriction on the state sg&ee{m: >; m; = C}),
Gazdzicki et al[8] obtained a similar resulln generalfor state spaces determined
by multiple restrictionsan explicit evaluation ofy(n) leading to a satisfactory ap-
proximation ofP{B; } is notyet available in the literaturBuch results require special
structure on the state spa8eThe state space of a layered mobile communications
network has a special structure that enables asymptotic evaluatjgn)ib approx-
imate blocking probabilities as large B$B; } ~ 102 The contribution of this paper

is an explicit analysis of blocking probabilities for such netwotkas extending the
applicability of large-deviations-based methods to also evaluate moderate blocking
probabilities

1.2. Background for Modeling Assumptions

Capacity for wireless communications is severely limifBlderefore the area cov-

ered by providers of wireless services is divided into ¢calgsismissions in each cell

use a part of the spectral capacewnd this capacity is reused in cells that are suffi-
ciently far away to avoid interferencReuse of capacity substantially increases the
network capacityThis capacity can be further increased using hierarchical network
structureswhere microcells are placed in areas with a higher than average density of
communicationsMicrocells cover a small area and do not give rise to interference
problemsThus a layered or hierarchical cellular mobile network consists of mac-
rocells and microceltsa number of microcells is contained in the coverage area of
a macrocellBoth macrocells and microcells allocate a number of chan@lan-

nels in the microcells can only be used by that particular micrpgetla prespeci-

fied part of the channels in the macrocell can be used by any microcell underneath
that macrocellUnder the assumptions yielding a truncated Poisson distribution for
the number of calls in the cellblocking in different macrocells with underlying
microcells can be treated separatslgg 3]. Thereforein the following, we provide

a detailed description of a single macrock#t cell 0 denote the macrocgdind cell

i, =1,...,d, the underlying microcell<ell i hasc; channels availablén addition

the macrocell hasy,, channels that can be shared by the underlying micradedis
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m; denote the number of callsin cgli =0,...,d. The restrictions on the state space
can then be summarized as

>m=>¢+cn, a€D, (1.5)

JEa JEa
whereD = {all possible combinations of celjs= {0,1,...,d}}. This gives a total of
p =291 — 1 restrictionsRestrictiong1.5) ensure that the channejg, can be used
only once because each possible combination of microcells and the overlapping
macrocell is includedThe set of restriction€l.5) can be written aém = C, where
Ais a 0-1 matrixandC, = e, C + Cn). For layered mobile communications
networks besides the fresh-call blocking probabilRy{B;} as given in(1.3), deter-
mining the probability that a new call generated in ¢&lannot be accepted due to
lack of capacityone of the most important performance measures is the handover
blocking probability A handover occurs when a user moves from cédl a neigh-
boring cellj and leaves the area where a channel fromiazh be used at sufficient
quality. Then the call is “handed over” from a channel in cetb a channel in the
neighboring celj. If cell j has no available channetke call is blocked and therefore
interrupted Obviously handover blocking should be avoided in practical networks
as the service degradation due to interruption of existing calls is severer than that due
to fresh-call blockingThe handover blocking probability for a call moving from cell
i to cellj is given by[3]:

d
> I (w/my)

mEeT; k=0
d b

> I (m/md)

mey; k=0

P{Bj} = (1.6)

with
T;:={m:A(m+¢e)=C,A(m + ¢g) £ C}, U :={m:A(m+¢g)=C}L
a.7)

Application of the results of this paper is not restricted to cellular mobile networks
Itis the structure of the state spadeb) that determines applicability of the results
For exampleoverflow modeld 16] and retrial queuel2] can give rise to a similar
structure of the state space and blocking probabilities

1.3. Contribution of the Paper

The analysis presented in this paper requires the special structure of the state space
as determined b§1.5). Besides the 0—1 structure Af an important property of the

state spac8={m € N3*1: Am = C} is that the faces of the polytope determined by

Am = C cannot be orthogonarhis enables us to conclude that call I¢sssh-call

and handover blockings determined by at most two constraint$is is a crucial
observation that allows us to generalize the results of Gazdzicki F]db state
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spaces determined by multiple constraints as describétByAt both constraints
again due to the 0-1 structure A&f evaluation of blocking probabilities reduces to
a one-dimensional problem for which Petrid3] has provided integral and local
limit theorems that determing(n) up to O(n~*?2). Additional terms can be ob-
tained fory (n); for exampleinvoking results of Bahadur and RpD], but results of
0O(n~¥2) provide a sufficiently accurate approximation for blocking probabilities
up to 102 as is illustrated by numerical tests

The organization of this paper is as followSection 2 provides preliminary
results related to the asymptotic regin@r large deviations approximation is de-
veloped in Section,3and its accuracy is illustrated in Section 4

2. PRELIMINARIES

Consider a truncated multivariate Poisson distributibft) at state spac€l.2) de-
termined by restriction§l.5). For this distributionwe are interested in blocking
probabilities as expressed(ih3) and(1.6) under the assumption that the network is
lightly loaded(i.e., thatAv < C). In fact, to avoid technical problem$or handover
blocking probabilities we will assume that

v<c, i=0,...,d. (2.1)

This assumption restricts the resuk®wever for v; = ¢;, the blocking probabilities
will be too large for the asymptotics to provide accurate restlisreforeassump-
tion (2.1) is not a restriction on the range of applicability of our results

The first step enabling the approximation of the blocking probabil{tie and
(1.6) is multiplying both numerator and denominator Bye "« Expression1.3)
obtained for the fresh-call blocking probabilities in getian then be written as the
ratio of two multidimensional Poisson probabilities

d
> I w/md)e

meT, k=0

> 1T (v /ml)e

meS k=0

As a consequencéoth numerator and denominator can be separately evaluated
using multivariate Poisson distributiandere Monte Carlo simulation has been
proposed in the literaturéor exampledirect methods estimating numerator and
denominator can be appligithe Harvey—Hills methof®] is a more efficient Monte
Carlo technique using the fact thtC Sto estimate the conditional probability
P{T;|S}. For smaller blocking probabilitieémportance sampling techniques have
been developedross and Wanfl4] provide a heuristic method that shifts the pa-
rametery of the multidimensional Poisson distribution toward the boundary by a
factor of roughly 10%Boucherie and Mandjd8] present an importance sampling
method based on large deviations thedy the denominator corresponds to an
event that occurs with large probabilitthe denominator is estimated via direct
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Monte Carlo summatiariThe numerator is estimated via an exponentially twisted
density which can be shown to be an asymptotically optimal change of measure
(also seg¢11]). In the following we will improve on this methadshowing that the
numerator can be approximated efficiently using large deviations th&beyde-
nominator can be efficiently estimated via other methdderefore we will focus

our attention on the multidimensional Poisson probability for the $esd T;;
recall(1.4) and(1.7). These probabilities can be estimated efficiently by scaling of
input and capacitya procedure frequently used in analysis of blocking probabilities
in large circuit-switched networksee e.g., [10]).

Scaling of load and capacijty;, — nv; andC; — nC,, for n — oo, obviously also
influences the set$;, Ty, U;, and §; recall (1.2), (1.4), and (1.7). Applying the
scaling to these sets refines the raster but leaves the area unaffestt€d,, Tj.

U;,n, andS, denote the sets obtained fram Ty, U;, andS respectivelyby replacing
Ci — nG and refining the grid by substituting, = m/ninstead ofn. Let T, T;, U;,

andSbe the limiting sets fon — co. Then from the expressions fok, T;, U;, and
S as obtained i3],

S, ={m,:m,=m/n, Am, < C}
—-S={x:Ax=C},
Ti.n={m,:m,=m/n, Am, = C,A(m, + g /n) # C}

- T, =5SN U{x: (Ax); = C;, a; = 1}, (2.3)
Tixn = {My:my = m/n,A(m, + g /n) = C,A(m, + g,/n) £ C}

- T = SN Ui{x: (Ax); = C;, a; = 0, ay = 1}, (2.4)
Uj.n={m,:m,=m/n, A(m,+ g /n) = C}

-0 =S

For multidimensional Poisson random varigt&saling is motivated by the ob-
servation that the sum ofiid. Poisson random variates is again a Poisson random
variate Applying scalingy; — nv; andC; — nG;, the numeratofand denominator
of (2.2) can now be interpreted as the distribution of the sunm @idependent
Poissorir) random variated_et X(») denote a multidimensional Poisson random
variate with meamw. Then P{B;} = P{X(») € T;}/P{X(») € S}. The asymptotics of
the denominatoP{X(») € S} are trivial In the following we will focus on the
asymptotics of the numeratB{X(») € T;}. As » is finite, the central limit theorem
yields thatX(n»)/n — » for n — oo almost surelyFor deviations from the sample
mean Cramér’s theorentapplied to the sequenc€’ (»), i =1,...,n, of indepen-
dent Poissofw) random variatesstates thatunder some mild conditionsed 15]),
forv €T,

P{X(nv)/n € T, .} = n(n)e "o (n - ), (2.5)

with | (Xp) the large deviations rate function ¥fevaluated in the optimum, over
T; (see(2.7)), andn(n) a subexponential functiomwith lim,,_,..(1/n) logn(n) = 0.
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The(multidimensionallarge deviations rate function of a Poisson random vari-
able with meany, ...,v4 can be calculated easilge€[15, p. 13]). Let M;(-) be the
moment generating function of a Poisson random variable with mean

M;(6;) = explv;(e” — 1)]. (2.6)
Then

d d X
[(x) = Sl01p<20(0i x; — log Mi(ei))> = 20<xi Iog—_I — X + vi>. (2.7)
i= i= i
In Cramér’s theoregfor obtainingxg, the large deviations rate function must be
minimized overT;:
Xo = argminl (x). (2.8)
XET]
Asymptotics based on Cramér’s theor€2b) usually exploit the observation that
the exponential factor eXp-nl(xq)] dominates the expression antherefore
exp[—nl(Xg)] is used as the approximation ¢2.5); that is one approximates
n(n) ~ 1. This usually yields sufficient accuracy for probabilities of the order
1075-107° (as in ATM networks. In cellular mobile networkshowevey typical
blocking probabilities are in the order of 18-102 In this regime the subexpo-
nential functiom(n) contributes significantly t¢2.5), which requires more accu-
rate asymptotics for;(n). In the following we develop the functiom(n) up to
O(n73/2).

Bahadur and Rald ] explicitly evaluate the function(n) in a one-dimensional
setting via an integral limit theorerAlthough this yields sufficient accuracy for our
approximationthis result is difficult to apply in our contexturthermorein deriv-
ing our approximationwe require both an integral limit theorem and a local limit
theorem Petrov[ 13] gives these resulign a one-dimensional settingf sufficient
accuracy and in an easily applicable form

TueoreM 2.1 (Petrov[13]): Let XV, X@ .. be a sequence ofiid. discrete ran
domwvariables with finite expectatioh.et M(-) denote the moment generating func
tion of X, and J(x) = sup,(#x — log M(#)) the large deiations rate function of
X®, Then for all e > 0,

PIX® 4+ oo 4 X =y = ﬁ eXp[_nJ(X)][H O(Eﬂ (29)

and
P{X® + ... + XM =nx} = =
h o(r)y2mn(l—e™ ")
X exp[—nJ(x)][lJr O(%)], (2.10)
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as n— oo uniformly in x in the range of ¥ such that EXY + € < x, wherer is the
unique real root of M(7)/M(7) = x anda?(1) = [M"(7)/M(7)] — X2

In our derivation belowapplication of Petrov’s result requires the moment gen-
erating functionM,, and large deviations rate functia, of a Poissofw) random
variable andM, andJ,, of a binomialn, p) random variable

My(1,6) = explv(e’ — 1],  Jy(»,%) = xlog ; X+, (2.11)

My(n,p,60) = (pe’ +1—p)",

X n—x
Jp(n, p, X) =x|ogB + (n—Xx) IOg(Tp) —nlogn. (2.12)
This provides us with the necessary tools to derive results concerning the block-
ing probabilities in a hierarchical cellular network

3. ASYMPTOTICS OF BLOCKING PROBABILITIES

This section develops an approximation algorithm for the probabilitie'_s and on
Tix, the numerator of the blocking probabilitiés3) and(1.6). Due to the special
structure of the matriyA as expressed hiL.5), Theorem 3L shows that in the most
likely point where blocking occurs at most two restrictions are tigsta conse-
guenceit is sufficient to consider only these restrictions rather than the wholg set
which is an essential step in this papEris greatly simplifies the approximation of
the large deviations probabilitifurthermoreagain due to the special structurefof
if two restrictions are tightit is sufficient to perform only a single optimization of
the large deviations rate function at both constraatesult shown in Theorem=3
Before continuing with the resulta/e introduce some notatiomhe matrixA =
(a;) of (1.5) determines the state spac®sind § and the parts of the boundary
determining blocking via a number of restrictions that can be expressed as hyper-
surfacesTo this endlet

= {x:(Ax); = Gi},

ri = x:(Ax); = Cj, a; =1},

ik = X: (AX); = C;, a; = 0, ay, = 1},
fi = {x: (A); = G},

fj = X:(Ax); =C;, a; = 1},

fij = X:(AX); = Cj, a; = 0, ay = 1}.
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For eaclj (resp jk), the boundary hyperplaneg (resp rj) are disjoint In contrast
for fixed i, these hyperplanes may coincide for differgfresp jk). The sets where
blocking occurs can now be written agcall (2.3) and(2.4))

T=snUr,
i

Tjk =3SnN U Fijk -
i

With a slight abuse of notatiomve will state that; € T, andr € Ty

The hypersurfacg corresponds to thieh row of the matrixA. ForC,, > 0, due
to the special structure of the mati in the boundary oB hypersurface¢deter-
mined by the rows oA) cannot be orthogon@bbviously the boundary hypersur-
faces corresponding to rows,0,0,...,0) and(0,1,0,...,0) are orthogonabut these
surfaces do notintersectin aly. Thus if the intersection of; andr; forms a bound-
ary hypersurface d§ then the normal vectors of andr; cannot be orthogonalve
will refer to this as thenonorthogonality propertgf the boundary hypersurfaces

We will useT (resp T) as generic notation fof, andTj (resp T; andTj) andr
for the restrictions determining Results will be provided and proven forif this
does not lead to confusio®therwisgthe results will be proven fo‘ﬁ. In all cases
for the other set?,—k, the proofs are similar

Theorem 3L shows that in a point, where blocking occursexactly one re-
striction of T and at most one restriction not ®fhave zero slackare tigh.

THEOREM 3.1: Letxo € argminer| (X). Thenthere exists a unique're T such that
Xo € r*. Moreaver, there is at most one'sr’ & T, such thatx, € r’. Furthermore

for freshcall blocking in cell j if r * = Ncp= Iy, where D' = {t:a; =1inr*}, then

r'=MNep i, where D = D*\{j}. Similarly, for handaer blocking from cell k to
cellj,if r*=Ngp*rig, where D' ={t:a;, =linr*},then D = D*"\{j}.

Proor: ConsidefT = T, and defineH; = N; r; andH; = U ;.

Observe that(x) of (2.7) is continuous and strictly convex in all coordinates
Thereforethe level set&.(g) = {x: 1 (x) = g} are convexandL(g) C L(g’) forg <
g'. Furthermorgasv = argminesl (x) € int(S), there is a uniqug* such that
L(g*) C Hj, L(g*) N H; # &, and for alle > 0, L(g* + €) & H;.

If L(g*) N T+, thenL(g*) N T=argminesl(x). Obviously x, € r; for at
least ond, and the normal vectoy1(X,), of 1(x) in X, and ofr; coincide Now,
assume thato € rj N 1y, fori #i’. Again, the normal vectors df(x,) andr; and
of I (xo) andr;;; must coincideObviously for i # i, this cannot be the casas the
normal vectors of;; andr;; are distinct

If L(g*) N T =, then there exists a unigug > g* such thatfor all e > 0,
L(g—e)NT=Zandd #L(g’) N T=argminer! (x). Ifin xg € argminet!(x),
the normal vector of(x,) and ofr; for somei coincide thenry must be the unique
boundary hyperplane ifisuch thak, € r;;. Otherwisex, lies on the boundary of
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[i.e, xo € TN {x:x = ¢}]. Letx, € r;j. There exists a unique hyperplane through
Xowith normalVl (xo). This hyperplane separateég’) andr; N T and contains the
line ry N {x:x = ¢}. Now, assume thax, € rj N ry;, fori #i’. Asry andr
intersect inT, it must be that there existskasuch thaty; = 1 in both rows andi’ of
the matrixA [recall(1.5)]. The normal of the hyperplane separatir(@’) andr; N
ri; N Tmust then have a nonpositith coordinateand thug VI (xo))x = 0. As» €
int(S), the form ofl (x) [recall(2.7)] clearly leads to a contradictiofid/dxy) | (x) <
0if and only ifx, < vy, placingw outsideS.] Thus X, must be contained in a unique
reT.

The same argument also shows that there exists at most' gad such that
Xo € . To this endnote that ifx, € int(T), then there cannotbe anr’ & T, such
thatxo € 1. If xo € TN {X: X = ¢;}, thenx, € int(r* N TN {x: X = ¢;}); thatiis Xq
cannot be located on the endpoint of this line segnfenthis would imply thatx,
is also contained in two distinctE T. This line segment is contained in exactly one
r'&T.

It remains to determine’. Two restrictions that intersect in a line mhave
exactly one elemers; that is differentAsr* € Tandr’ & T, it must be that the
elementj} of D* is not contained iD’, which completes the proof u

Theorem 3L allows for argminc+ | (x) to contain multiple pointAs| (x) is con-
tinuous and strictly convex in all coordinatéise elementg € argminct| (X) must
be contained idistinctboundary hyperplane®bviouslyin generalargminer 1 (X)
will contain exactly one element

Theorem 31 is most interesting fax,, > 0. If ¢, = 0 (the case of fixed channel
allocation, thenSis a box(boundary hyperplanes are orthogorahdx, is con-
tained in the interior of a single boundary hyperplafe a consequencéor each
cell, blocking can be separate{gnd independent)yanalyzed

Assumption(2.1) plays an important role in the above resibr handover
blocking from cellkto cellj, the boundary oy is T N ({X: X = ¢} U {x: X, = ¢;}).
Assumption2.1) excludes the possibility that blocking occurs BN {X : X, = C}.

In most caseghis set does not lead to additional complicatioResults similar to
those presented in the sequel can be deritaddng into account thdd’ = D* U {k}.
However it is also possible foxy to have(xg); = ¢j, and(Xo)x = Cy; Xo is then
contained in multiple’,r’ & 'I_'kj, which makes the formulation of our results and the
proofs thereof much more cumbersame

The immediate consequence of Theorefi8 that in order to approximate the
blocking probability it suffices to consider only the restrictions that apply with
equality inx,. This is a consequence of the factor gxpl(x)] in Craméts theorem
(2.5). This is formalized in the following lemméHerg r;; , (resp rj. ) denotes
boundary hyperplanes af ,, (resp Ty »); recall(2.3) and(2.4). For exampler;; , =
{mp:m,=m/n,Am,=C, (Am,+¢;/n) £ C, a; =1} - r;; (n — ). As before we
will denoter, (resp T,) to indicater;; , andriy » (resp T , andTj ,) andr, andr;,
denote the hyperplanessuch thar; — r* andr), — r’ (e.g., the boundary hyper-
planes containingg; recall their definition in Theorem.3).
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Lemma 3.2: If one restriction has zero slack iy, then
P{X(nw) € T,}/P{X(nv) €} = 1
If two restrictions hae zero slackthen

P{X(nv) € T,}/P{X(nw) €riNr)} — 1L

Proor: In the first casex, simply lies in the interior of one of the boundary planes
of the simplexAx = C, as was found in the proof of Theorenil3We abbreviate
P{A,} := P{X(nv) € A,}. First, notice that

P{S Nyt =P{ryt—P{S§Nrah

As X, lies on the interior of§, N r /7, the probabilityP{SS N r,;} vanishes exponen-
tially (in n), with decay ratd (x) > 1(xo), whereasP{r;} vanishes at raté(xy).
(This is due to Petrov's Theorem12 where we apply that the exponential decay
dominates the polynomial decayhen notice that

P = P80 Uryo) =P(S 01+ PLS 0 (U )]

The first probability on the right hand side decays at f&g), whereas the second
vanishes at a larger raté/e arrive at the stated
In the second caséhe above proof can be copiedlith one exception

P{SSNray=P{riNnr=P{SSNriNri}

The first probability on the right-hand side tends exponentially to zero at (&g
the second goes at a higher rékhis is due to the fact that botti andr’ apply with
equality inxgq. u

To simplify the proof of Theorem.3, the main result of this section that deter-
mines the asymptotics of the blocking probabilifie® now introduce some nota-
tion and provide two lemmasemma 33 proves that the entridx,); andy; are
proportional as long as= D'. Lemma 34 determines the asymptotics of a binomial
random variable

Define
X' = > X(nw), X*i= > Xi(nw),
iep’ ieD*
v = > v, v i= > v,
ien’ ien”

C:= Z Ci + C(h), Cr:= 2 Ci + C(h)'

ieD’ ieD*

Letf(n) ~ g(n) denotef (n)/g(n) — 1 asn — co.
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LemMa 3.3: If in Xg @ single restriction is tightthen

®

(XO)i = Ty Vi, i eD"
14

Otherwise when two restrictions are tighthen

C’ ) CcCr—-C’ )
(Xo)i = — v, 1€D/ (Xo)i = -y, 1€DMN\D.
v

v —vp
Proor: Based on Theorem.B X is the argmin of
Xi
> xlog— —x + v,
ieD* i
under
> x=C* and > x=C’
ieD* ieD’
or, equivalently
> x=C*—C’ and > x=C.
ieD*\D’ ieb’

Lagrangian optimization shows thét,); /»; must be constant &*\D’ and at
D’. Summing over the appropriatée.g., i € D’) yields introducingx = (Xo); /vi,

ieD,
C'= D x= > kv,=«kv'
ieb’ ieD’
(i.e.,, k = C'/v"), which completes the proof u
LemMA 3.4: Let Z, be binomially(nk, p) distributed for some k= N. Then for any
y <kp,
P{ 20 } - p—nd,(k p,y)]
— ~ xpg—n
n y o;3(7)V2mn[1 — exp(7)] € bk p,y
for
1-p y y(k—y)
T = Iog(T m) and O'bZ(T) = T

Proor: The proof is a matter of invoking Petrov’s Theoreri,2vhere it should be
noticed thatZ, is distributed as the convolution ofi.i.d. binomial(k, p) random
variables and that we consid&f/n < y instead ofZ,/n = vy, as in(2.10). The
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moment generating function of one of those random variabMsg(k, p, ) = (pe’ +
1 — p)¥ leading to the following expression fet

(5005
p /J\k—y/
Inserting this in(2.10) yields after tedious calculationghe desired result |

We are now ready to formulate our main resAk a consequence of Theorem
3.1, for asymptotics oP{X(n») € T,,} we need to consider two cases ardither in
Xo, a single restrictiom* € T is tight or; in X, two restrictionsr* € Tandr’ & T,
are tight The first case is basically covered by the results of Gazdzicki 8alThe
second caseovering all remaining casgsannot be concluded from these results
The result for this case exploits the structure of the state spdtgeh implies that
P{X(nv) € T,} can be seen to be determined by a Poisson distributioih and a
binomial distribution at’ conditional onX(n¥) € r* The asymptotics for both
events can be combined to require only a single optimization step for the original
large deviations rate functid2.7) to producd (xg). This optimization step cafn
fact, be avoidedas is demonstrated in Corollary63

THEOREM 3.5: If one restriction has zero slack iy, then

expl—nl(Xg)]
P{X(nv) € T} ~ e (3.1)
If two restrictions hae zero slackthen
P{X(w) € T,} ~ expl_nl (o) (3.2)

270, (7)yC*[1 — exp(7)]’

with

T_( C )(V*—V> 4 o _ C(C*-0)
e” = o —cC , an Ub(T)_—C* .

Proor: We consider both cases separately

Thefirst case(3.1) is a direct application of Petrov’s resut9), after applying
Lemma 32 and observing th&{X(n») € r} = P{X* = nC*}. Here we have used
thatX(nw) is multivariate Poissanmplying thatX; (n¥) € Ny. ForX(nv) € r;[i.e.,
Siep* Xi () = nC* andX,cp X (nv) + 1 £ nC*], it must be thad,cp+ X (nv) =
nC* asnC* € N,.

It is left to calculates (7). As M(7) = exp[v*(e” — 1)], the rootr of M'(7)/
M(7) =C*is7 =log(C*v*) and

5 B M”(T)_ M’ (7) 2_ .
VT (M(T)> -c
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Thesecondtase(3.2) is proven as followsWith Lemma 32, we may consider
P{X(nv) € {ri N r,}} = P{X(nw) € i}|X(nw) € rZ}P{X(nw) €r;}. (3.3)

We derive the asymptotics of both probabilities on the right-hand si¢& ®fsep-
arately The first one can be rewritten B$§X’ = nC’| X* =nC*}. Notice thai X' | X* =
nC*) is distributed binomially with parameten€* andv’/v *. By applying Lemma
3.4, we get that the asymptotics read

exp—nJ,(C*v'/v*,C")]
V2mnoy(7)[1 — exp(7)] .

The asymptotics of the second probability&3) is—analogously to the first case—
equal to

(3.4)

expg—nJ,(»*C*)]

3.5
2mnC* (3.5)

Calculations yield that

!

) o C ) cr-C
J(C*v'/v",C") + Jp(v*,C*) = C'log( — | + (C* = C’') log -
v

v —vp

+v*—C*
Invoking Lemma 3, we see that this equals
(Xo)i

> <(X0)i log .

iep* v

Multiplying (3.4) and(3.5) yields (3.2). u

— (Xo)i + Vi>-

The observation thain the optimum (xq); andy; for alli € D*\D’ andD’ are
proportional gives useful additional informatiamhich can be used to quickly solve
the optimization problemAs shown in Corollary 3, it is possible to explicitly find
the values of the componentsxy. This implies that the minimum of the nonlinear
functionl (x) over T can be found through some simple calculatiansiding nu-
merical methods to solve the optimization probléh8). This has a considerable
effect on the speed of the methahd large problems can be easily handled

CoroLLARY 3.6: Consider freskcall blocking in cell j or handoer blocking from
cell k to cell j In theargminx, of I(x) over T, or Ty;,

* either(xo); > C; and(Xo); = (C*/v™*) v, fori € D*, and(Xq); = v; fori € D*
* or (Xo); = Cj, and(xo); = (C'/v") v, fori € D', and(X); = v; for i & D™

Proor: Given the constraints® andr’ that containx,, the component$xg); for
whicha; = 0 can be independently minimizethis obviously yieldgxo); = v; for
i € D*. Lemma 33 completes the proof u
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The results of this section can be summarized in an easily applicable algorithm
that takes very limited computational effort to approximate the probability, @as
it only requires substitution of the appropriate terms in Corollayghd Theorem
3.5. Observe that this result depends heavily on Theordm 3

ArGoriTHM 3.7: Asymptotical ealuation of the probability on T in a hierarchical
cellular mobile communications network

1. Minimize(2.7) over T by using Theorer.6, which yields (o).

2. ldentify the restrictions with zero slack k.

3. The restriction that is ifT is r*; if there is a second restrictigrall it r ',
4. Apply Theoren3.5 to calculate the asymptotics

4. NUMERICAL EXAMPLES

As an illustration of the methqdhis section contains two numerical examples

the first examplefixed channel allocation is consideteasb this allows us to com-
pare the results of our approximation with exact results to evaluate the accuracy of
the asymptoticsSecongan example of a typical city center where microcells are
placed to increase the network capacity is treatée results indicate that not only
blocking probabilities up to 1% are estimated accurately but also that our method
provides insight into whether blocking is due to local effgetsingle cell is over-
loaded or due to global effectémultiple cells are simultaneously overloaded

4.1. Fixed Channel Allocation

This first example illustrates the accuracy of the method in case of fixed channel
allocation(cn, = 0), a special case for which the blocking probabilities can easily be
obtained in exact form from the Erlang loss formutalso provides insight into the
regime under which the method based on large deviations techniques can be used
Table 41 presents the exact blocking probabilities and those estimated using the
method developed in this pap&/hen the exact probability exceeds 5¥e method
proposed in this paper loses accurafy smaller probabilitiesit performs very
well. In the results presented in this sectitdre term in the denominator ¢2.2) has
been approximated by. Using Theorem % onP{S®} will lead to more accurate
estimates of the larger probabilitiddowever one should keep in mind that large
deviations is not a technique to estimate such large probabilitieshamde such
results should be handled very carefully

The column “Simple LD” gives the results obtained by using Cramérs result
with n(n) = 1 (i.e, the values o~ "0, the result standardly used to approximate
small loss probabilities It shows that use of the correction terms is important for
achieving accurate estimates of the loss probabilibhe column “Exact” presents
the exact value of the loss probabilignd the columnP{B;}" gives the result from
our approximation
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TaBLE 4.1. Fixed Channel AllocatiopAccuracy of Approximation

Cell v G Exact P{B;} Simple LD
0 12 14 117x10°1 9.10x 102 8.54x 1071
1 10 14 568 X 102 5.24% 1072 491x 101
2 8 14 172x 1072 1.70x 1072 1.60x 107!
3 6 14 223x 1073 2.24x 1073 2.10X 1072
4 4 14 564X 10°° 5.67x10°° 5.32x10°4
5 2 14 254 % 1078 256X 1078 2.40x 1077
6 1 7 730%x10°° 7.39x107° 490x10°4
7 2 7 344x10°3 3.48x10°3 2.31x10°2
8 3 7 219x 102 2.19% 102 1.45%x 101
9 4 7 627 X102 6.03X 102 400x10°1

10 5 7 121x 107t 1.06x 1071 7.01x 107t

In mobile communicationsoss probabilities are typically smaller than ZPhe
method developed in this paper proves to be accurate when estimating such small
probabilities in the case of fixed channel allocation

4.2. City Center

Consider a city center with a load of about 50 Erlakig?, which will frequently
occur in the near futurAssume one macrocditell 0) and seven microceligells
1,...,7) have to carry the loadsome cells contain two frequenci€ls4 channelg
others on€7 channels The macrocell has two frequencies availahled four of the
channels from the macrocell can be used by the micro@edlsc,) = 4). Tables 42
and 43 summarize the resultB Table 42, not only the fresh-call loss probability

TaBLE 4.2. Fresh Call Blocking in Celj (¢, = 4)

No. of
Cell Vi G P{B;} Constraintr * Constraints
0 7 10 714x10°3 10000000 1
1 10 14 712x10°8 01000000 1
2 9 14 291x10°3 00100000 1
3 8 14 103x 1073 00010100 1
4 7 14 508x10°* 01001000 2
5 5 7 830x 103 000001O00 1
6 4 7 291x 103 00000110 1
7 3 7 856 x 104 01000101 1
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TasLE 4.3. Handover Blocking ¢, = 4)

0 1 2 3 4 5 6 7

0 0 712x 1073 291%x10°3 1.03x 1073 5.08x 104 8.30x 1073 2.91%x10°3 8.56x 104
1 7.14%x 1073 0 291x10°3 1.03x 1073 3.79x10°4 8.30x10°3 2.91%x10°2 8.58x 1074
2 7.14%x10°3 7.12x10°3 0 103x 103 5.08x 104 8.30x 1073 291x10°3 856X 104
3 7.14x10°8 7.12%x 1073 291x10°3 0 508x 104 8.30x 1073 291x10°3 8.56x 104
4 7.14%x10°3 7.12x10°3 291%x10°3 1.03x 1073 0 830%x10°3 2.91%x10°3 8.56x 104
5 7.14%x 1073 7.12x10°3 291x10°3 8.56x 1074 5.08x 1074 0 242x10°3 6.81x 1074
6 7.14%x 103 7.12x10°3 291x10°3 1.03x 1073 5.08x 1074 8.30x 1073 0 856 1074
7 7.14x10°8 7.12%x 1073 291x10°8 1.03x10°3 5.08x 104 8.30x 1073 291x10°3 0
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but also the constrairipresented by a row o%) on which blocking occurs and the
number of constraints with zero slackxgare listed Some qualitative insight into
the network can be gained from these results

* Blocking in cells Q 1, 2, and 5 is localthat is r * corresponds to those cells
only.

 Blocking in cells 34, 6, and 7 has a more global natyfer example block-
ing in cell 7 occurs when cells b, and 7 are simultaneously using the over-
flow channelsy,.

 Blocking in cell 4 involves two constrainterhich implies that blocking oc-
curs becausethercells(in this case cell Lare using all available overflow
channels

Table 43 presents the handover blocking probabilities from kétbw) to cell
j (column). These results and a comparison with the results for fresh-call blocking
provide additional insight into the behavior of the network

» The handover blocking probability to cells D 2, and 5 is equal for all cells
and equals the fresh-call blocking probability for these cealldirect conse-
guence of the fact that fresh-call blocking in these cells is Idbalconstraint
r* for fresh-call blocking is contained ify N Ty;).

« For other cellsthe handover blocking probability is lower for the entries
jinr*(eg., P{Bss} < P{Bs}, as 5& D* for fresh-call blocking in cell 3 The
handover blocking probability is lower than the fresh-call blocking probabil-
ity for cells that do not block locallyThe difference lies in the combined
blocking of cells for fresh-call blocking which does not yield handover block-
ing. In particular when fresh-call blocking in cell 3 is also caused by calls in
cell 5 using the overflow channelghen a call moving from cell 5 to cell 3 is
less likely to be blockedas a call using an overflow channel can take its
channel along from cell 5 to cell 3

In practice the load in the microcells will be quite simildhis implies that
blocking more often will have a global charactEnereforethe constraint on which
handover blocking is most likely to occur will differ more often from that of fresh-
call blocking leading to lower blocking probabilities for handover blockiAdso,
when blocking has a global charagtassigning one extra frequency to a particular
cell willincrease the network capacity less than it would have in the case that block-
ing occurs locallyHowever if this cell is a cause for any type of blockirigppears
in each constraint in Table2), network performance can be increased considerably
by assigning an extra frequency to this c&ltom this observatigrextra capacity
would be most likely to increase network performance when added to cells.5 or 1

5. CONCLUSION

This paper has presented an asymptotic approximation of blocking probabilities
obtained from multivariate Poisson probabilities at state spaces typically arising in
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layered cellular mobile communications netwarkbe results generalize the large
deviations results of Gazdzicki et 8] to state spaces with multiple constraints and
extend applicability of large deviations approximations to probabilities of the order
of 1%. A numerically efficient method that identifies bottleneck constraints and
computes blocking probabilities has been praved
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