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A quasi-one-dimensional model is used to examine the steady flow of granular
materials through a wedge-shaped hopper with smooth, steep walls. Hybrid frictional–
kinetic equations are used in an attempt to overcome some of the difficulties faced
by earlier works, which were based on frictional equations. Owing to computational
difficulties, two different solution procedures are used: (i) in the upper region, where
frictional effects dominate, and (ii) the lower region which includes the exit slot and
a part of the particle jet below the hopper, where kinetic and frictional effects are
expected to be comparable. The equations are integrated numerically in (i). In (ii),
they are linearized, and a semi-analytical solution is constructed. In contrast to the
works of Kaza & Jackson (1982a) and Prakash & Rao (1991), the density varies
smoothly across the exit slot. The density profile is qualitatively similar to the data
of Fickie, Mehrabi & Jackson (1989). However, the range of density variation is
much smaller than that observed. Owing to the approximations used, and perhaps
also to the form of the kinetic constitutive equations, kinetic effects are dominated by
frictional effects, except close to the downstream boundary.

1. Introduction
Theoretical studies of granular flow have often been based on frictional constitutive

equations. These equations were first developed to model the slow flow of granular
materials at high bulk densities, where the stresses developed are mainly due to contact
between the constituent grains which rub against each other as they flow (Jenike 1961;
Brown & Richards 1970; Spencer 1982; Nedderman et al. 1982; Jackson 1983). They
are based on the principles of metal plasticity and soil mechanics. In practical flow
situations, bulk densities in certain regions may decrease to levels where the particles
are no longer in sustained contact with each other. At such densities, as frictional
stresses are not expected to play a major role, it is incorrect to use frictional theories
alone to model the flow.

In the past few years, considerable effort has been directed towards the development
of constitutive theories for granular flow at high shear rates and low bulk densities
(McTigue 1978; Savage & Jeffrey 1981; Ackermann & Shen 1982; Jenkins & Savage
1983; Ahmadi & Shahinpoor 1984; Lun et al. 1984; Jenkins & Richman 1985; Lun
& Savage 1987; Ma & Ahmadi 1988; Boyle & Massoudi 1990; Lun 1991; Potanin
1992; Goldshtein & Shapiro 1995). They are based on the idea that stresses in this
regime are due to the momentum transfer associated with interparticle collisions, and
with the transport of particles between collisions. Since they have been developed by
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Figure 1. Cartesian coordinate system for hopper flow. Here X = x/w and Y = y/w are the
dimensionless x- and y-coordinates, w is the half-width of the exit slot, and σ1 and σ2 are the major
and minor principal frictional stresses, respectively, in the (x, y)-plane.

analogy with the kinetic theory of dense gases, we refer to them as kinetic theories
for granular materials.

These theories have been used to study simple shear flow between parallel plates
(Haff 1983; Lun et al. 1984; Ma & Ahmadi 1988), inclined chute flow (Szidarovszky,
Hutter & Yakowitz 1987; Anderson & Jackson 1992; Cao, Ahmadi & Massoudi
1996), flow in gas fluidized beds (Ding & Gidaspow 1990) and flow in vibrated
beds (Potanin 1992; Goldshtein et al. 1995). They have also been combined with the
frictional theories to examine flow through inclined chutes ( Savage 1983; Johnson,
Nott & Jackson 1990; Anderson & Jackson 1992), plane shear between parallel
plates (Johnson & Jackson 1987), and particle motions in vibrated beds (Savage
1988). Some phenomenological theories have also been used to model flows through
inclined chutes and vertical channels (Goodman & Cowin 1971; Passman, Jenkins &
Thomas 1978; Savage 1979; Sayed & Savage 1983; Yalamanchili, Gudhe & Rajagopal
1994).

However, except for the preliminary analysis of Kaza (1982), and our analysis of a
simple one-dimensional approximation (Jyotsna & Rao 1991), the attempts have not
been extended to hopper flow.

A hopper is a vessel which is commonly used in the storage and handling of
granular materials. Here we consider a wedge-shaped hopper, which is of rectangular
cross-section, and whose elevation is shown in figure 1. For steady flow of material
through the hopper, it is desired to predict the stress, density, and velocity fields.
Though this problem has been examined for three decades (Savage 1965; Davidson
& Nedderman 1973; Brennen & Pearce 1978; Kaza & Jackson 1982a, b; Meric &
Tabarrok 1982; Prakash & Rao 1991), there is no solution whose predictions agree
closely with the observed mass flow rates and density profiles.

The analyses cited above are based on frictional constitutive equations. In the
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Flow of granular materials through a wedge-shaped hopper 241

vicinity of the exit slot, henceforth referred to as the exit region, the solutions lead
to various mathematical and physical difficulties (Kaza & Jackson 1982a, b; 1984;
Prakash & Rao 1991). Some of these are indicated in § 6.1.

Hence it appears that the constitutive equations should be modified. As noted by
Jyotsna & Rao (1991), density measurements (Bosley, Schofield & Shook 1969; Van
Zuilichem, Van Egmond & De Swart 1974; Fickie, Mehrabi & Jackson 1989) show
that the material dilates as it flows down the hopper. In the exit region, the density
may be low enough for kinetic effects to be important relative to frictional effects.
Indeed, Darton (1976) suggested that collisional or kinetic effects may be important
in the particle jet below the hopper. On the other hand, frictional effects are likely
to dominate in the upper region of the hopper, where the density is high. Therefore,
a frictional-kinetic model may overcome some of the defects associated with the
frictional model.

Here we use a hybrid frictional–kinetic model to examine steady compressible flow
through a wedge-shaped hopper. To simplify the analysis, it is assumed that the walls
are smooth and the flow is two-dimensional. The latter assumption implies that the
dependent variables do not vary in the z-direction, which is perpendicular to the
plane of the paper in figure 1.

The present work is an extension of our earlier study (Jyotsna & Rao 1991),
where the solution of a one-dimensional approximation called the smooth-wall, radial
gravity (SWRG) problem was obtained. An approximate solution was constructed
for the special case of incompressible flow, with gravity taken to be directed radially
towards the apparent vertex of the hopper. Here we retain the assumption of smooth
walls, but attempt to solve the more realistic two-dimensional problem, with vertical
gravity and density variation. It is hoped that the use of a frictional–kinetic model
may eliminate at least some of the problems encountered by frictional models in the
exit region.

The structure of the governing partial differential equations requires the specifica-
tion of boundary conditions at the downstream boundary. As satisfactory conditions
at the hopper exit have not yet been proposed, the particle jet is included in the
analysis, and plausible downstream conditions are specified some distance below the
exit. Barring the work of Hankey & Thomas (1991) (discussed later), there do not
appear to have been any attempts to solve simultaneously for the flow field in the
hopper and in the particle jet below.

One source of difficulty must be noted. Some distance below the exit, air drag
becomes important. It is possible to include air drag, or more generally, fluid–particle
interactions in the present analysis. However, as the flows of fluid and particles are
coupled, the number of equations to be solved simultaneously increases considerably.
The effects of air drag have been neglected here in order to simplify the analysis.
Thus the present work may be regarded as a precursor to the eventual introduction
of fluid–particle interactions into the frictional–kinetic model.

Our preliminary attempts to solve the equations for steady two-dimensional
flow were unsuccessful. Therefore it was decided to examine a simpler quasi-one-
dimensional model, obtained by suitably averaging the two-dimensional equations.
In order to understand the simplification, we first present the two-dimensional equa-
tions.
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2. Problem formulation for steady two-dimensional flow

2.1. Governing equations in Cartesian coordinates

It is convenient to express the equations in terms of the dimensionless variables

X =
x

w
; Y =

y

w
; ν =

ρ

ρp
; U =

vx

(gw)1/2
; V =

vy

(gw)1/2
;

σ′ =
σ

ρpgw
; τ′ =

τ

ρpgw
; T ′ =

T

gd2
p/w

,

 (1)

where w is the half-width of the exit slot (figure 1), ρp is the density of the solid, g is
the acceleration due to gravity, ν is the volume fraction of solids, vx and vy are the
x- and y-components of velocity, and σ and τ are the mean and deviatoric frictional
stresses, respectively, defined by

σ ≡ σ1 + σ2

2
; τ ≡ σ1 − σ2

2
; σ1 > σ2. (2)

Here σ1 and σ2 are the major and minor principal frictional stresses, respectively in
the plane of flow, and T is the ‘grain temperature’ defined by

3
2
T ≡ 1

2
〈C2〉, (3)

where C ≡ c − v is the peculiar velocity of a particle with velocity c, and v is the
mean velocity of the collection of particles. The angular brackets in (3) denote an
ensemble average based on the single-particle velocity distribution function. Thus T
is proportional to the ‘pseudo-thermal’ energy, or mean kinetic energy per unit mass
of velocity fluctuations.

Details of the frictional and kinetic constitutive theories used are given in Prakash
& Rao (1988) and Jyotsna & Rao (1991), respectively, and are therefore not discussed
in detail here.

It suffices to note that the components of the frictional consitutive equations are
the yield condition, the coaxiality condition, and the flow rule (see also Jackson 1983
and Pitman & Schaeffer 1987). The yield condition provides a relation between the
solids fraction ν and the components of the stress tensor. The coaxiality condition
implies that the principal axes of the stress and the rate of deformation tensors are
aligned, and the flow rule relates the rate of dilation to the stresses.

The kinetic constitutive equations provide expressions for the stresses arising from
particle collisions and transport, the flux of the kinetic energy associated with velocity
fluctuations, and the rate of dissipation of this energy into heat due to inelastic
interparticle collisions. The constitutive equations are taken from Lun et al. (1984).

Finally, we assume that the stress tensor σ is given by σ = σf + σk , where the
superscripts f and k refer to the frictional and kinetic contributions, respectively. The
assumption that the stress tensor can be represented as the sum of a rate-independent
or ‘frictional’ part and a rate-dependent or ‘viscous’ part is due to Goodman & Cowin
(1971). Subsequently, Savage (1983) suggested the use of equations based on kinetic
theory for the rate-dependent part.

The dimensionless balance laws are given by:

mass balance

∂

∂X
(νU) +

∂

∂Y
(νV ) = 0, (4)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

97
00

64
60

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112097006460


Flow of granular materials through a wedge-shaped hopper 243

momentum balance (X-component)

∂(νUU)

∂X
+
∂(νVU)

∂Y
+
∂σXX

∂X
+
∂σXY

∂Y
= 0, (5)

momentum balance (Y -component)

∂(νUV )

∂X
+
∂(νVV )

∂Y
+
∂σXY

∂X
+
∂σY Y

∂Y
+ ν = 0, (6)

pseudo-thermal energy balance

3

2

(
∂ (νUT ′)

∂X
+
∂ (νVT ′)

∂Y

)
+

(
∂qX

∂X
+
∂qY

∂Y

)
+

(
∂U

∂X
+
∂V

∂Y

)[
T ′h1 − T ′1/2 h2

(
∂U

∂X
+
∂V

∂Y

)]
− 2T ′1/2h3

×
[(

∂U

∂X

)2

+

(
∂V

∂Y

)2

+
1

2

(
∂U

∂Y
+
∂V

∂X

)2
]

+ D = 0, (7)

where the stresses in (5) and (6) are given by

σXX = σ′ + τ′ cos 2γ′ + εT ′1/2
[
T ′1/2h1 − h2

(
∂U

∂X
+
∂V

∂Y

)
− 2h3

∂U

∂X

]
,

σXY = −τ′ sin 2γ′ − εT ′1/2h3

(
∂U

∂Y
+
∂V

∂X

)
,

σY Y = σ′ − τ′ cos 2γ′ + εT ′1/2
[
T ′1/2h1 − h2

(
∂U

∂X
+
∂V

∂Y

)
− 2h3

∂V

∂Y

]
.


(8)

The frictional contributions in (8) are identified by the appearance of σ′ and τ′, while
the kinetic contributions involve T ′ and the functions hi(ν, η). These functions are
defined in table 1, and γ′ is the angle between the σ1-axis and the X-direction (figure
1). The functions hi(ν, η) depend on g0(ν), the radial distribution function at contact.
Here g0 is chosen as (Ma & Ahmadi 1986)

g0 =
1 + 2.5ν + 4.5904ν2 + 4.515439ν3[

1−
(
ν/νm

)3
]0.67802

, (9)

where νm = 0.64356 is the solids fraction corresponding to random close packing.
Equation (9) fits the simulation data of Alder & Wainwright (1960) very well at both
low and high densities. As in the kinetic theory of gases, εT ′h1 is the pressure, and
εT ′1/2h3 and εT ′1/2h2 are the shear and bulk viscosities, respectively.

In (7), qX is the x-component of the flux of pseudo-thermal energy, and D is the rate
of dissipation of pseudo-thermal energy per unit volume due to inelastic collistions.
The expressions for qX, qY , and D are

qX = −εT ′1/2h4

∂T ′

∂X
; qY = −εT ′1/2h4

∂T ′

∂Y
; D = T ′

3/2
h6. (10)

In the work of Lun et al. (1984), qX and qY also depend on terms which are
proportional to ∇ν. These terms are omitted here as they are believed to be of a lower
order than the terms which have been retained.

For typical values of the particle diameter dp and the width 2w of the exit slot, the

parameter ε ≡ (dp/w)
2

is � 1.
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h1 (ν, η) = ν(1 + 4ηνg0)

h2 (ν, η) =
8ην2g0

3π1/2

h2 (ν, η) = h2 − (2/3)h3

h′2 (ν, η) = h2 + (4/3)h3

h3 (ν, η) =
5π1/2

96η(2− η)

(
1

g0

+
8ην

5

) (
1 +

8η(3η − 2)νg0

5

)
+

8ην2g0

5π1/2

h4 (ν, η) =
25π1/2

16η(41− 33η)

[(
1

g0

+
12ην

5

)(
1 +

12η2(4η − 3)νg0

5

)
+

64(41− 33η)η2ν2g0

25π

]

h6 (ν, η) =
48η(1− η)ν2g0

π1/2

Table 1. The functions hi (ν, η) in (7), (8), and (10): ν = volume fraction of solids, η ≡ 1
2
(1+ep), ep =

coefficient of restitution for interparticle collisions, assumed constant, and g0(ν) = equilibrium radial
distribution function at contact.

The frictional stresses are given by

σ′ = ασ′c(ν); τ′ = σ′c(ν)f(α); α ≡ σ

σc
=
σ′

σ′c
, (11)

where σ′c is the dimensionless mean frictional stress at a critical state, given by

σ′c = β exp

(
Γ1 − (1/ν)

λ1

)
; β ≡ pa

ρpgw
, (12a,b)

and f(α) is obtained from the yield condition used by Prakash & Rao (1988)

f(α) = sinφ
(
nα− (n− 1)αn/(n−1)

)
. (13)

Here pa = 101.33 kN m−2 is the atmospheric pressure, used as a non-dimensionalizing
parameter, and Γ1, λ1, n, and the angle of internal friction φ are material constants.

From (12a), σ′c, the frictional mean stress at a critical state, is zero only at ν = 0.
However, Richardson (1971, pp. 51–52) reports that the solids fraction at minimum
fluidization, where the particles lose contact with each other, is usually in the range
0.58–0.62. Further, Onoda & Liniger (1990) attempted to determine the volume
fraction of solids corresponding to the loosest random packing that is stable. Their
estimate, based on sedimentation and shearing experiments with closely graded glass
spheres, is ν ' 0.56. The recent computer simulations of Nolan & Kavanagh (1992)
suggest a lower value of ν ' 0.509. Below the density corresponding to loosest random
packing, the use of a frictional contribution to the stress is incorrect. To correct the
constitutive theory for this defect, the expression for σ′c(ν) is modified. A cubic fit is
used for σ′c(ν) near ν = νmin, where νmin is the solids fraction below which sustained
contact between the grains is expected to be absent. In the present work, νmin is chosen
as 0.5. This value has also been used by Johnson et al. (1990) in their work on chute
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flow, and turns out to be close to the estimate of Nolan & Kavanagh (1992). Here
the coefficients of the cubic are determined so that both σ′c and (dσ′c/dν) vanish at
ν = νmin, and the values of σ′c and (dσ′c/dν) at ν = ν1 > νmin match those obtained
from (12). The value of ν1 is chosen by inspection, so that the function σ′c(ν) shows a
smooth transition to the cubic-fit region. Thus, the equation for σ′c is modified to

σ′c =


β exp

(
Γ1 − (1/ν)

λ1

)
, ν > ν1

(ν − νmin)2 (σc1(ν − νmin) + σc2), ν1 > ν > νmin
0, ν < νmin.

(14)

The form (12) is commonly used in soil mechanics (see for example Atkinson
& Bransby 1978, pp. 239–240). As an alternative to (14), Rathbone, Nedderman &
Davidson (1987) have used the first of (14) for σ′ > σ′∗ and a linear relation between
σ′ and 1/ν for σ′ < σ ′∗, where σ′ is the frictional mean stress, and σ′∗ is a constant.
Jenike (1961, p. 12) assumed that ν = a(b+ σ ′)d, where a, b, and d are constants.

Finally, (4)–(14) must be supplemented by the coaxiality condition and the flow
rule. In Cartesian coordinates, these are given by:

coaxiality condition

cos 2γ′
(
∂U

∂Y
+
∂V

∂X

)
− sin 2γ′

(
∂V

∂Y
− ∂U

∂X

)
= 0, (15)

flow rule

cos 2γ′
(
∂U

∂X
+
∂V

∂Y

)
− sin νd

(
∂V

∂Y
− ∂U

∂X

)
= 0. (16)

Here νd is the angle of dilation, defined by

sin νd ≡ − (d1 + d2) / (d1 − d2) , (17)

where d1 and d2 are the major and minor principal compressive rates of deformation,
respectively. Since the divergence of the velocity field is given by −(d1 + d2), it follows
that the material dilates if νd > 0, and vice versa. Further, for an ‘associated’ flow rule
based on (11) and (13) (Prakash & Rao 1988), we have

sin νd =
∂τ

∂σ
= n sinφ

(
1− α1/(n−1)

)
. (18)

The variable νd can be interpreted as an angle only if | sin νd| 6 1.
Let us now determine the structure of the governing equations.

2.2. Structure of the steady two-dimensional equations

Using (11) and (13)–(18), the frictional variables σ′, τ′ and γ′ may be expressed in
terms of ν and the velocity gradients. Equations (4)–(7) may then be written as a
system of first-order equations of the form

E
∂Z

∂X
+ F

∂Z

∂Y
= G, (19)

where

ZT =

[
ν ,

∂U

∂X
,
∂U

∂Y
,
∂V

∂X
,
∂V

∂Y
,
∂T ′

∂X
,
∂T ′

∂Y

]
, (20)
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and the coefficient matrices E and F and the vector G depend on U, V , T ′, and
Z . The classification of (19) is based on the nature of the roots (pi, i = 1, 7) of the
characteristic equation

det (E − p F ) = (U − pV )∆1(p
2 + 1) = 0, (21)

where ∆1 depends on U,V , T ′, and Z .
If pk is a real root of (21), there exists a characteristic curve in the (X,Y )-plane,

defined by dY /dX = 1/pk . Equation (21) has one real root p1 = U/V , and two
imaginary roots p6,7 = +i, in addition to the roots p2–p5 of the equation ∆1 = 0.

The root p1 arises from the mass balance (4), and the corresponding characteristic
curve is a streamline. The roots p6 and p7 arise from the energy balance, and the roots
p2− p5 arise from the momentum balances. The nature of the latter roots depends on
the value of ε.

Let us consider three cases.
(a) In the purely frictional case ((4)–(6) with ε = 0 in (8)), (21) must be replaced by

(U − pV )∆1 = 0. Here p2–p5 correspond to two real double roots, provided provided
| sin νd| = |∂τ′/∂σ′| 6 1 (Jackson 1983; Pitman & Schaeffer 1987).

(b) In the purely kinetic case, p2–p5 correspond to two imaginary double roots.
(c) The frictional–kinetic case with ε� 1 is discussed below.
In case (c), the equation ∆1 = 0 is a quadratic in p2. The leading term of the

discriminant has the form −ε (H1

(
1− (∂τ′/∂σ′)2

)
+ H2), where H1 and H2 are non-

negative quantities. Hence a sufficient condition for the occurence of complex roots is
|∂τ′/∂σ′| 6 1. This condition is satisfied along the dilation branch (0 6 α = σ′/σ′c 6 1)
of the yield condition (11), since (2) and (18) imply that ∂τ′/∂σ′ 6 n sin φ 6 1. It
is also satisfied at points on the compaction branch (α > 1) which are sufficiently
close to the critical state (α = 1). At other points where this condition is violated, the
specific values of H1 and H2 affect the nature of the roots of (21). Since H1 and H2

are functions of the dependent variables, no a priori conclusion can be drawn.
Since the material is expected to dilate as it flows down the hopper, the above

discussion suggests that the frictional–kinetic equations for hopper flow (with ε� 1)
are likely to be elliptic-hyperbolic in character.

With this knowledge of the structure of the governing equations, boundary condi-
tions can now be specified.

2.3. Boundary conditions

Let us examine the governing equations (4)–(18) to determine the number of boundary
conditions that are to be specified. The highest spatial derivatives in these equations
are of first order with respect to ν, and of second order with respect to U, V , and
T ′. This follows on using the coaxiality condition (15) and the flow rule (16) to
express γ′ and sin νd in terms of the first derivatives of U and V . Then in view of (15),
(16) and (18), the frictional stress gradients in (5) and (6) involve second derivatives
of U and V . Similarly, the kinetic stress gradients involve second derivatives of U
and V . Hence (4)–(18) must be supplemented in each of the X- and Y -directions
by two conditions for U, V and T ′, and one condition for ν. If ν is regarded as a
known function of position, the equations excluding the mass balance are likely to
be elliptic (§ 2.2). Therefore, it is desirable to specify conditions along all boundaries
of the flow domain. Earlier models for hopper flow have considered only the region
within the hopper for analysis, with one boundary as the exit slot. However, since
the nature of flow in the exit region is still poorly understood, it is very difficult to
prescribe conditions for U, V , and T ′ along the exit slot. Hence the jet is included in
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the analysis, and plausible downstream conditions are specified some distance below
the exit.

2.3.1. Upstream conditions

It is convenient to choose the upstream boundary as the horizontal line Y = Ya
(figure 1). The value of Ya is chosen as follows. It is assumed that the height of
material in the hopper is maintained approximately constant at Y = H by feeding
material at the top. Consider a ‘deep’ hopper with H � Ya � 1. For such a hopper,
numerical integration of the compressible frictional equations suggests that the stress
and velocity fields converge to certain asymptotic fields as Y decreases (Prakash &
Rao 1988, 1991). Even though this result has not been rigorously established, we shall
use the asymptotic fields as a convenient means of specifying upstream conditions.
Thus

ν = νa(X); U = Ua(X); V = Va(X); T ′ = T ′a(X) at Y = Ya, (22)

where the functions νa, Ua, Va, and T ′a denote the asymptotic fields. Near the exit,
inertial terms cause the actual fields to deviate from the asymptotic fields. Therefore
Ya is chosen so that at Y = Ya the inertial terms are small compared to the frictional
stress gradients. At this value of Y , the kinetic stress gradients are also expected to
be small. This conjecture is based on the incompressible results of Jyotsna & Rao
(1991), which suggest that significant kinetic stress gradients occur only near the exit
slot. The specific values of Ya used will be indicated later.

The asymptotic fields νa, Ua, and Va in (22) are approximated using a perturbation
solution due to Prakash & Rao (1991). This solution involves the numerical integration
of certain ordinary differential equations. To simplify the analysis, we invoke the radial
gravity assumption, thereby obtaining explicit expressions for the asymptotic fields
(see Appendix A). The asymptotic temperature field T ′a is constructed as indicated
below.

Considering the smooth-wall radial-gravity problem and using the asymptotic fields
for U, V , and ν, the conduction-free energy balance is integrated downwards. It is
then found that, if integration is started high above the hopper exit, irrespective of
the initial temperature specified, an asymptotic solution is attained as Y decreases
(figure 15). Therefore, it is convenient to choose the asymptotic field value T ′a(Ya) as
the upstream value of T ′.

The downstream boundary conditions will now be specified.

2.3.2. Downstream conditions

These will be specified along a horizontal line Y = Yl < 0 (figure 1). It is assumed
that the velocity field at Yl corresponds to vertical free-fall, i.e.

U = 0; V
∂V

∂Y
+ 1 = 0 at Y = Yl. (23)

In the particle jet below the hopper, density profiles based on (23) (Fickie et al. 1989;
Prakash & Rao 1991) show reasonable agreement with the measurements of Fickie
et al. (1989). The downstream condition for T ′ is obtained by substituting (23) into
the energy balance (7) and omitting the terms involving the heat flux. To simplify the
subsequent analysis, it is assumed that 1

2
(∂U/∂Y + ∂V/∂X)2 is small compared to

(∂V/∂Y )2. This assumption holds along the centreline X = 0 in view of the boundary
conditions U = 0, ∂V/∂X = 0 at X = 0. At other locations, it is difficult to justify the
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assumption a priori. Thus the downstream condition for T ′ is

3

2
νV

∂T ′

∂Y
− 1

V

[
T ′h1 + T ′1/2

h′2
V

]
+ T ′3/2h6 = 0 at Y = Yl, (24)

where the function h′2 is defined in table 1.
This completes the specification of the boundary conditions in the direction of flow.

Additional boundary conditions must now be specified along the centreline, hopper
wall, and free surface of the jet.

2.3.3. Boundary conditions along the centreline

For a symmetric solution, these are given by

U = 0;
∂V

∂X
= 0;

∂ν

∂X
= 0;

∂T ′

∂X
= 0 at X = 0. (25)

2.3.4. Boundary conditions along the hopper wall and the free surface of the jet

Along the smooth hopper wall, the normal component of velocity and the shear
stress must vanish. Thus

U cos θw − V sin θw = 0, (26)

1
2
(σY Y − σXX) sin 2θw − σXY cos 2θw = 0 at X = X∗ , Y > 0, (27)

where X∗ = 1 + Y tan θw is the value of X along the hopper wall, and σXX , σY Y , and
σXY are given by (8).

Assuming that collisions between particles and the smooth wall are (i) specular and
(ii) elastic, the boundary condition proposed by Johnson & Jackson (1987) implies
that the flux of pseudo-thermal energy into the wall also vanishes, i.e.(

sin θw
∂T ′

∂Y
− cos θw

∂T ′

∂X

)
= 0 at X = X∗, Y > 0. (28)

If assumption (ii) above is relaxed, the energy flux at the hopper wall will in general be
non-zero, whereas the flux across the free surface of the jet must vanish. Anticipating
that this may cause computational difficulties, we have considered the simpler case of
elastic particle–wall collisions.

Along the free surface of the jet (X = X∗, Y < 0), the normal component of
velocity and the shear and normal stresses must vanish. Thus

U cos θ∗ − V sin θ∗ = 0, (29)

1
2
(σY Y − σXX) sin 2θ∗ − σXY cos 2θ∗ = 0, (30)

1
2
(σXX + σY Y ) + 1

2
(σXX − σY Y ) cos 2θ∗ − σXY sin 2θ∗ = 0 (31)

at X = X∗, Y < 0, where σXX , σY Y and σXY are given by (8), and θ∗ is the inclination
of the free surface to the vertical (figure 1). Equations (29)–(31) provide boundary
conditions for U and V , and also serve to determine θ∗. The half-width of the jet X∗
is given by

dX∗
dY

= tan θ∗, Y < 0. (32)

There are practical difficulties in using (31) immediately below the hopper exit.
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This is because, just above the exit, the normal stress on the hopper wall is in general
non-zero. Therefore (31) implies a jump in normal stress at the edge of the exit slot.
To overcome computational difficulties in this region, (31) is modified to

1
2
(σXX + σY Y ) + 1

2
(σXX − σY Y ) cos 2θ∗ − σXY sin 2θ∗ = σn0e

k′Y

at X = X∗, Y < 0, (33)

as suggested by V. H. Arakeri (1991, private communication). Here σn0 is the normal
stress on the wall, evaluated at the exit edge (X = 1, Y = 0+) and k′ is a positive
constant. The value of k ′ is chosen so that the normal stress along the free surface
is effectively zero at a distance of a few particle diameters below the exit.

Finally, the flux of pseudo-thermal energy across the free surface must vanish:

sin θ∗
∂T ′

∂Y
− cos θ∗

∂T ′

∂X
= 0 at X = X∗, Y < 0. (34)

This completes the specification of boundary conditions for the two-dimensional
problem. We now turn to the formulation of the quasi-one-dimensional model using
the two-dimensional equations. This approximation is attempted because preliminary
attempts to solve the latter equations numerically were unsuccessful.

3. Problem formulation for the quasi-one-dimensional model
3.1. Governing equations

Following the approach used in gas dynamics (Schreier 1982, pp. 33–37), the equations
for the quasi-one-dimensional model are obtained by integrating the balance equations
in the X-direction. Here it is convenient to use a coordinate transformation that maps
the flow domain onto a rectangle. One choice is X = X/X∗(Y ), Y = Y (see figure
1). Integrating (4) with respect to X from X = 0 to X = X∗(Y ), and changing the
independent variables to (X,Y ), we get

d

dY
[X∗〈νV 〉] + ν∗(U∗ − V∗ tan θ∗) = 0, (35)

where the star denotes quantities evaluated at X = 1, and

〈F〉 ≡
∫

0

1

F(X,Y )dX

is the cross-sectional average of any quantity F .
Similarly, the momentum balances (5) and (6) may be written as

d

dY

[
X∗〈νUV + σXY 〉

]
−σXX |X=0+ν∗U∗(U∗−V∗ tan θ∗)+σXX∗−σXY∗ tan θ∗ = 0, (36)

d

dY

[
X∗〈νVV + σY Y 〉

]
+X∗〈ν〉+ ν∗V∗(U∗ −V∗ tan θ∗) +σXY∗ −σY Y∗ tan θ∗ = 0, (37)

where σXX , σY Y , and σXY are given by (8). Finally, the pseudo-thermal energy balance
(7) takes the form

d

dY

[
X∗〈 3

2
νVT ′ + qY 〉

]
+X∗〈H〉+ 3

2
ν∗T

′
∗(U∗ −V∗ tan θ∗) + qX∗ − qY∗ tan θ∗ = 0, (38)
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where qX and qY are given by (10) and

H =

(
1

X∗

∂U

∂X
+
∂V

∂Y
− X

X∗
tan θ∗

∂V

∂X

)
×
[
T ′h1 − T ′1/2 h2

(
1

X∗

∂U

∂X
+
∂V

∂Y
− X

X∗
tan θ∗

∂V

∂X

)]
−2T ′1/2h3

[(
1

X∗

∂U

∂X

)2

+

(
∂V

∂Y
− X

X∗
tan θ∗

∂V

∂X

)2

+
1

2

(
∂U

∂Y
− X

X∗
tan θ∗

∂U

∂X
+

1

X∗

∂V

∂X

)2
]

+ T ′
3/2
h6. (39)

Equations (35)–(38) are simplified by using the boundary conditions (25)–(34).
Thus, two sets of equations are obtained, one valid in the hopper (Y > 0), and the
other in the jet (Y < 0). Considering the hopper, and using the boundary conditions,
the balance equations reduce to

d

dY
[X∗〈νV 〉] = 0, (40)

d

dY

[
X∗〈νUV + σXY 〉

]
− σXX |X=0 +

σXX∗ − σY Y∗ tan2 θw

1− tan2 θw
= 0, (41)

d

dY

[
X∗〈νVV + σY Y 〉

]
+X∗ < ν > + tan θw

σY Y∗ tan2 θw − σXX∗
1− tan2 θw

= 0, (42)

d

dY

[
X∗〈 3

2
νVT ′ + qY 〉

]
+X∗〈H〉 = 0, (43)

where θ∗ = θw and X∗ = 1 + Y tan θw . These must be supplemented by (8)–(18).
The corresponding equations for the jet are (40)–(43) (with θw replaced by θ∗), and

(σXX∗ + σY Y∗) + (σXX∗ − σY Y∗) sec 2θ∗ − 2σn0e
k′Y = 0, (44)

dX∗

dY
− tan θ∗ = 0 or

dX∗

dY
− U∗

V∗
= 0, (45)

together with (8)–(18). In (45), U∗ = U(X = 1, Y ) and V∗ = V (X = 1, Y ).
To proceed further, suitable transverse profiles must be chosen for the variables.

Here it is assumed that the hopper walls are steep, i.e. the wall angle θw (figure 1) is
� 1. In this limit, we assume that tan θ∗ ' θ∗, sin 2θ∗ ' 2θ∗, cos 2θ∗ ' 1, and omit
the terms involving tan2 θw in (41) and (42). The following expressions are assumed
for the dependent variables :

ν = ν (Y ),

U = (4〈U〉 − Vθ∗) (X −X3
) + Vθ∗X

3
,

V =V (Y ),

T ′ =T ′ (Y ).

 (46)

Here 〈U〉 denotes the cross-sectional averaged value of the X-component of velocity.
The profile for U satisfies the condition of zero normal velocity at X = 0 and
X = 1. Owing to the simple expressions assumed, the boundary conditions (27), (28),
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(30), and (34) are not satisfied exactly. For example, using (46), the left-hand side
of (28) reduces to sin θw(dT ′/dY ), which is non-zero in general. However, the error
incurred may not be large, as our analysis is restricted to small values of θw . The
boundary conditions can be satisfied more accurately by including X-dependence for
the variables ν, V , and T ′, but this results in a larger system of coupled equations.
We shall see that even the present system of equations poses considerable numerical
difficulties.

At this stage, two other modifications in the model must be explained.

(a) Equations (46) and the coaxiality condition (15) imply that γ′ = θ∗/2 along the
hopper wall and free surface of the jet. This is exactly half the value required for the
shear stress to vanish at the boundary. To overcome this difficulty while retaining the
simple forms for the variables, the approximation γ′ = θ∗X is used instead of (15).
This choice is consistent with the requirement that γ ′ be an odd function of X (for
a symmetric solution), and it also ensures that the shear stress vanishes along X = 0
and X = 1.

(b) For the materials considered in the present work, n − 1 � 1. Therefore (18)
implies that dα/d sin νd → ∞ as sin νd → n sinφ, i.e. as α → 0. This may cause
computational difficulties when α→ 0. To avoid problems in this region, the steep part
of the relation between α and sin νd is replaced by a cubic fit, so that dα/d sin νd = 0
at the maximum value of sin νd. As a result of this modification, α is determined from
the equations

α =


(1− δ)(n−1); δ ≡ sin νd

n sinφ
6 δ1

(δ − δ2)
2 (a1(δ − δ2) + a2); δ1 < δ < δ2

0; δ > δ2,

(47)

with δ1 = 0.98 and δ2 = 1.1, and a1 and a2 are constants. The upper limit of δ
is chosen as 1.1 to reduce the steepness of the cubic fit. It is not clear if such an
extension is justified, but it is used here to avoid undue numerical difficulties.

With profiles (46) and the above modifications, the equations in the hopper (Y > 0)
reduce to:

mass balance

X∗νV = constant ≡ c1. (48)

Here c1 is related to the mass flow rate Ṁ by

c1 =
−Ṁ

2ρpwB′(gw)1/2
,

where B′ is the width of the hopper in the direction perpendicular to the plane of
figure 1;

momentum balance (X-component)

d

dY

{
c1〈U〉 −X∗〈2τ′θwX〉 − εT ′1/2h3

[
X∗

d〈U〉
dY

+ θw(〈U〉 −U∗)
]}

+(σ′ + τ′)|X=1 − (σ′ + τ′)|X=0 + εT ′1/2
[

6h′2
X∗

(2〈U〉 −U∗)
]

= 0, (49)
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momentum balance (Y -component)

d

dY

{
c1V +X∗(〈σ′ − τ′〉+ εT ′h1)− εT ′1/2

(
h2U∗ +X∗h

′
2

dV

dY

)}
+
c1

V

−θw
[
(σ′ + τ′)|X=1 + εT ′h1 + εT ′1/2

(
h′2
X∗

(8〈U〉 − 5U∗)− h2

dV

dY

)]
= 0, (50)

pseudo-thermal energy balance

d

dY

{
3
2
c1T

′ − εT ′1/2h4X∗
dT ′

dY

}
+X∗

{
T ′h1

(
dV

dY
+
U∗

X∗

)
− 2T ′1/2h2

U∗

X∗

dV

dY

−T ′1/2h′2

[(
dV

dY

)2

+
64〈U〉(〈U〉 −U∗) + 21U2

∗
5X2
∗

]

−T ′1/2h3

[
1

3

(
4

d〈U〉
dY

− dU∗

dY
− θw

X∗
(4〈U〉 −U∗)

)2

+
8

35

(
dU∗

dY
− 2

d〈U〉
dY

+
3θw
X∗

(2〈U〉 −U∗)
)(

9
d〈U〉
dY

− dU∗

dY

+
θw

X∗
(〈U〉 − 4U∗)

)]
+ T ′3/2h6

}
= 0, (51)

where U∗ = Vθw . Using (46) and (16) (with cos 2γ′ = cos(2θwX) ' 1), we get

sin νd =
X∗dV/dY + 4〈U〉 −U∗ − 6X

2
(2〈U〉 −U∗)

X∗dV/dY − 4〈U〉+U∗ + 6X
2
(2〈U〉 −U∗)

. (52)

The frictional stresses in the momentum balances (49) and (50) are evaluated using
(11), (13), (14), (47), and (52).

The equations in the jet (Y < 0) take the forms:
momentum balance (X-component)

d

dY

{
c1〈U〉 −X∗〈2τ′θ∗X〉 − εT ′1/2h3

[
X∗

d〈U〉
dY

+ θ∗(〈U〉 −U∗)
]}

+σn0e
k′Y − (σ′ + τ′)|X=0 − εT ′h1 + εT ′1/2

[
h2

dV

dY
+
h′2
X∗

(4〈U〉 −U∗)
]

= 0, (53)

momentum balance (Y -component)

d

dY

{
c1V +X∗(〈σ′ − τ′〉+ εT ′h1)− εT ′1/2

(
h2U∗ +X∗h

′
2

dV

dY

)}
+
c1

V
− θ∗σn0ek

′Y = 0, (54)

where U∗ = Vθ∗ and σ′ and τ′ are given by (11), (13), (14), (47), and (52) (with θw
replaced by θ∗). The normal stress condition (44) reduces to σXX∗ ' σn0ek

′Y , or

(σ′ + τ′)|X=1 + εT ′h1 − εT ′1/2
[
h2

dV

dY
+
h′2
X∗

(5U∗ − 8〈U〉)
]
− σn0ek

′Y = 0, (55)

while the mass and energy balances, and the equation for X∗ are given by (48), (51)
(with θw replaced by θ∗), and (45), respectively.
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For a specified value of c1, the variables to be solved for are 〈U〉, V , and T ′ in the
hopper, and 〈U〉, V , T ′, U∗, and X∗ in the jet. The solids fraction ν is determined
using (48), and the final value of c1 is chosen as explained in § 6.1. To solve the above
equations, we must specify boundary conditions in the Y -direction.

3.2. Boundary conditions

The boundary conditions in the Y -direction are given by the averaged counterparts
of the conditions discussed in § 2.3. Therefore, at the upstream end Y = Y a, the
values of 〈U〉, V and T ′ are prescribed using the averaged asymptotic fields for the
compressible SWRG problem. Using the small angle approximation, the upstream
velocity conditions may be written as

〈U〉 = v′θw/2; V = v′ at Y = Y a, (56)

where v′ is the dimensionless radial velocity given by (A1). In (A1), ξ′ ' Y + (1/θw)
is the dimensionless radial coordinate.

The downstream boundary conditions are obtained by integrating (23) and (24)
with repect to X, from X = 0 to X = 1, and using the profiles (46). The result is

〈U〉 = 0; V
dV

dY
+ 1 = 0; at Y = Y l, (57)

3

2
c1

dT ′

dY
−X∗

(
T ′h1

V
+
T ′1/2h′2

V 2
− T ′3/2h6

)
= 0 at Y = Y l. (58)

This completes the formulation of the quasi-one-dimensional approximation. Before
considering the solution procedure, let us briefly discuss the work of Hankey &
Thomas (1991). This is based on a quasi-one-dimensional model for unsteady flow. It
differs from the present work in the following respects: (i) kinetic effects are omitted,
(ii) only the mass balance and the Y-component of the momentum balance are solved,
(iii) the normal stress σY Y is assumed to be a known function of the density, and (iv)
the free surface of the jet is assumed to be vertical. The present work attempts to
relax some of these constraints. In the process, many difficulties arise, as explained
shortly.

4. Solution strategy for the quasi-one-dimensional equations
It is useful to divide the flow domain into two regions, as indicated in figure 1.

In the upper region (Y a > Y > Y u), frictional effects dominate, as is evident from
the incompressible results (Jyotsna & Rao 1991), and also the compressible results
presented later (figure 8). In the lower region (Y u > Y > Y l), both frictional and
kinetic effects are expected to be comparable. The present work is based on a different
numerical scheme for each region, as the use of a single scheme for both the regions
did not give satisfactory results.

In the upper region, an initial-value approach is used to solve the frictional limit of
(48)–(50), obtained by omitting the terms containing ε in the momentum balances. The
averaged SWRG asymptotic fields (56) are used as initial conditions. An additional
initial condition is required for V , since (11)–(13), (47) and (52) imply that (49) and
(50) involve the second derivative of V . This condition is provided by prescription
of the slope dV/dY at Y = Y a. As seen later, the solution is found to be relatively
insensitive to the value used for dV/dȲ (Y a).
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Consider downward integration of the frictional equations, using the initial condi-
tions discussed above. The integration breaks down as the mean stress at a critical
state (σ′c) tends to zero. This is because the coefficient of the highest derivative of
V in (49) and (50) is proportional to σ′c. In practice, small values of σ′c result in a
sharp increase in the gradients of all the variables. Therefore, downward integration
is terminated at a value Y = Y u. The values of Y u and the constant c1, which is
proportional to the mass flow rate, are chosen as described later. A suitable choice of
c1 ensures that the lower frictional–kinetic region Y u > Y > Y l spans the exit slot
when Y l is chosen to be < 0. It must also be mentioned that the conduction-free
energy balance is solved as part of the initial-value problem, to obtain the temper-
ature at Y u, the upstream boundary of the lower region. The initial condition used
for the energy balance is obtained from the SWRG asymptotic temperature field, as
discussed in Appendix A.

Initially the finite element method was chosen to solve the equations in both the
regions. An attempt was made to solve the resulting system of nonlinear equations
using the Newton–Raphson method. Unfortunately, in spite of a large variety of
initial fields used, the iterations for the frictional–kinetic equations failed to converge.
Therefore, in order to avoid iteration, the equations for the lower region were linearized
about a suitable state, and a semi-analytical solution was constructed. It is hoped
that this solution may provide suitable initial fields for future attempts to solve the
nonlinear problem. The finite element formulation in the first region is retained, since
integration of the frictional equations poses no difficulties for small wall angles.

Let us now consider the details of the methods used to solve the equations in the
two regions. We start with the finite element method for the initial-value frictional
problem, given by (48)–(51) with ε = 0. As noted earlier, the solution of (51) provides
an upstream condition for T ′, to be used when the equations for the lower region are
integrated.

4.1. Finite element method for the initial-value problem

In the upper region Y a > Y > Y u, a one-dimensional finite element method
(Zienkiewicz 1977, pp. 570–572, 581–584) is used to solve the initial-value prob-
lem. Quadratic basis functions are used for the vertical velocity V . Since only first
derivatives of 〈U〉 and T ′ occur in the governing equations, linear basis functions are
used for these variables. Weighted residuals are formed using the sub-domain method
(Zienkiewicz 1977, pp. 50, 587), which is a popular scheme for initial-value problems.
The resulting nonlinear equations are solved using the Newton–Raphson method with
the elements of the Jacobian matrix approximated by a centred difference scheme.

Let us now consider the solution procedure for the lower region.

4.2. Linearization of the equations

The following approximations are used to simplify the equations in the region Y < Y u:
(i) The viscosities εT ′1/2h2, εT

′1/2h3 and the thermal conductivity εT ′1/2h4 are
treated as constants.

(ii) The frictional variables α ≡ 〈α〉, α0 ≡ α(X = 0, Y ), α1 ≡ α(X = 1, Y ), f ≡
〈f(α)〉, f0 ≡ f(α0), f1 ≡ f(α1), and f2 ≡ 〈2f(α)X〉, are replaced by their values at Y

+

u .
Here α is as defined in (11), and the angular brackets denote cross-sectional averages.

(iii) The coefficients of the Y -derivatives of the velocities 〈U〉, U∗, and V , the
temperature T ′, and the solids fraction ν are treated as constants, even when they
involve dX∗/dY (= θ∗).
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(iv) Nonlinear terms such as
(
dV/dY

)2
, σ′c(ν), and U∗/X∗ are linearized about

their values at Y = Y
+

u . However terms involving dX∗/dY , but not the derivatives of
velocities and the temperature, are simplified before linearization.

(v) In the jet, dX∗/dY is replaced by θ∗ = U∗/V (see (45)) before linearization.

(vi) All constants are evaluated at Y = Y
+

u . Since Y u > 0 and the equations in the
jet are valid only for Y l < Y < 0, this is reasonable only if both Y u and Y l are close
to 0.

(vii) In the term θ∗σn0e
k′Y , which occurs in (54), θ∗ is approximated by θw .

Using (i)–(vii), the linearized versions of (49)–(51) are given by

a11

d2〈U〉
dY

2
+ a12

d〈U〉
dY

+ a13

dV

dY
+ a14〈U〉+ a15V + a16X∗ + a17 = 0, (59)

b11

d2V

dY
2

+ b12

dV

dY
+ b13

dT ′

dY
+ b14〈U〉+ b15V + b16T

′ + b17X∗ + b18 = 0, (60)

c11

d2T ′

dY
2

+c12

dT ′

dY
+c13

d〈U〉
dY

+c14

dV

dY
+c15〈U〉+c16V +c17T

′+c18X∗+c19 = 0, (61)

where the coefficients a1j–c1j are defined in Appendix B.†
In the jet, the linearized versions of (53), (54), (51) (with θw replaced by θ∗), (55),

and (45) are given by

g21

d2〈U〉
dY

2
+ g22

d2V

dY
2

+ g23

d〈U〉
dY

+ g24

dV

dY
+ g25

dT ′

dY
+ g26

dX∗

dY

+g27〈U〉+ g28V + g29T
′ + g20X∗ + h21σn0e

k′Y + h22 = 0, (62)

l21

d2V

dY
2

+ l22

d〈U〉
dY

+ l23

dV

dY
+ l24

dT ′

dY
+ l25

dX∗

dY

+ l26〈U〉+ l27V + l28T
′ + l29X∗ + l20σn0e

k′Y + h23 = 0, (63)

m21

d2V

dY
2

+ m22

d2T ′

dY
2

+ m23

d〈U〉
dY

+ m24

dV

dY
+ m25

dT ′

dY
+ m26

dX∗

dY

+m27〈U〉+ m28V + m29T
′ + m20X∗ + h24σn0e

k′Y + h25 = 0, (64)

d21

dV

dY
+ d22〈U〉+ d23V + d24U∗ + d25T

′ + d26X∗ − σn0ek
′Y + d27 = 0, (65)

n21

dV

dY
+

dX∗

dY
+ n22〈U〉+ n23V + n24T

′ + n25X∗ + n26σn0e
k′Y + n27 = 0, (66)

where the coefficients g2j − n2j are defined in table 2,† and the d2j are defined in

Appendix B†. It must be noted that (65) has been used to eliminate U∗ and dU∗/dY
from (62)–(64) and (66).

Equations (59)–(66) are solved using specified values of 〈U〉, V and T ′ at the
upstream boundary Y = Y u, and the linearized versions of the downstream conditions

† Appendix B and table 2 are available on request from the authors or the Journal of Fluid
Mechanics Editorial Office.
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(57) and (58) at Y = Y l . Values of the variables at Y = Y u are obtained from the
solution of the initial-value problem, and may be written as

〈U〉 = 〈U〉u; V = Vu; T ′ = T ′u at Y = Y u. (67)

The downstream conditions are given by

〈U〉 = 0;
dV

dY
+ p11V + p12 = 0, (68)

p21

dT ′

dY
+ p22V + p23T

′ + p24X∗ + p25 = 0 at Y = Y l, (69)

where the coefficients pij are defined in Appendix B†. All the coefficients in table 2

and Appendix B are evaluated using the upstream values of the variables at Y = Y
+

u .
This completes the formulation of the linearized problem.

4.3. Solution procedure used for the linearized boundary-value problem

Introducing new variables defined by

d〈U〉
dȲ

= Ud;
dV

dȲ
= Vd;

dT ′

dȲ
= Td, (70)

the equations in the hopper and the jet may be written in matrix form as

dZh

dȲ
= Ah Zh + Bh Ȳ + Ch, (71)

dZ j

dȲ
= Aj Z j + Bj σn0e

k′Ȳ + C j , (72)

where

Zh
T =

[
〈U〉, V , T ′, Ud, Vd, Td

]
, (73)

Z j
T =

[
〈U〉 , V , T ′ , X∗ , Ud , Vd , Td

]
, (74)

Ah and Aj are constant matrices, and Bh, C h, Bj and C j are constant vectors.
The forms of the non-homogeneous terms in (71) and (72) suggest simple particular

solutions. These are then combined with the homogeneous solutions, the latter being
expressed in terms of the eigenvalues and eigenvectors of Ah and Aj . Finally, the
boundary conditions (67)–(69) and the requirement of continuity of the variables at
Ȳ = 0 suffice to determine the normal stress σn0, and the other constants occurring
in the solution.

Real and distinct eigenvalues are obtained for the parameter values for Leighton
Buzzard sand. In the case of glass beads, there is a pair of complex eigenvalues in
both the hopper and the jet sections.

For a given set of parameter values, the solution is generated for different values of
c1. A starting guess for c1 is obtained from an estimate of the discharge rate, described
in Section C.3 of Prakash & Rao (1991). This estimate is modified as described later.
Let us now consider the choice of parameter values.

5. Parameter values
Most of the results are presented for a material whose frictional properties corre-

spond to Leighton Buzzard sand. Using the data of Airey, Budhu & Wood (1985),

† Appendix B and table 2 are available on request from the authors or the Journal of Fluid
Mechanics Editorial Office.
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the frictional parameters are found to be φ = 35◦, n = 1.03, Γ1 = 1.81, and λ1 = 0.025.
Unfortunately, the particle size distribution has not been reported in their paper.
Blair-Fish & Bransby (1973) used Leighton Buzzard sand with a size range of 0.6–
1.2 mm in their bunker experiments. Thus the data of Airey et al. (1985) probably
represents the response of a material with a range of particle sizes. In the present
model, the particle size occurs explicitly only in the kinetic constitutive equations. As
the kinetic theory has not yet been developed for a polydisperse material, a nominal
particle diameter of 1 mm is used here.

The solid density ρp is taken to be 2650 kg m−3 (J. R. Prakash 1992, private
communication). The parameter β (= pa/ρpgw) is chosen as 590, which corresponds to

a slot width 2w = 0.013 m. The kinetic parameters are chosen as ε = (dp/w)
2

= 0.024
and η = (1 + ep)/2 = 0.9, where ep is the coefficient of restitution for interparticle
collisions. This value of ε corresponds to a particle diameter dp = 1 mm. The values
of w and dp match those used in the experiments of Fickie et al. (1989). The results
for Leighton Buzzard sand correspond to a hopper wall angle θw = 50.

For glass beads, the predicted solids fraction profile will be compared with the data
of Fickie et al. (1989). Although their experiments were conducted with θw = 23◦,
this value causes computational difficulties, as discussed in the next section; therefore
a smaller value of 5◦ is used. The parameter values corresponding to their data are
φ = 32.4◦ (R. Jackson 1989, private communication), Γ1 = 1.47, λ1 = 0.049, β =
548, ρp = 2900 kg m−3 and ε = 0.024. Here Γ1 and λ1 are estimated using the data of
Fickie et al. (1989), as discussed in §A.1.

Owing to the lack of relevant data for glass beads, the value of the parameter n in
(13) is taken as 1.03, which is the value used for Leighton Buzzard sand. The value
of η = 0.9 is also retained.

To complete the parameter specification, the value of the model parameter k′ and
details of the cubic fits used must be given. The value of k′ in (33) is chosen as 10, so
that the normal stress along the free surface decays to ' 5% of its value at the exit,
over a distance of two particle diameters. The parameters σc1 and σc2 in (14) are for:
(a) Leighton Buzzard sand: ν1 = 0.52, νmin = 0.5, σc1 = 7.67× 105, σc2 = 663, (b) glass
beads: ν1 = 0.52, νmin = 0.5, σc1 = −3241, σc2 = 197. For n = 1.03, the parameters in
(47) are a1 = 936.6 and a2 = 174.1.

6. Results
6.1. Results for Leighton Buzzard sand

Consider the frictional solution in the region Y 6 Y a, for c1 = −2.77. The reason
for this choice of c1 will be indicated later. In the lower part of the hopper, the
velocity and temperature profiles are found to be insensitive to the values of Ȳa and
Vda ≡ dV/dȲ (Ȳ = Ȳa) (figure 2a–c). The approach to a common or asymptotic
curve for different values of Vda is not visible on the scale of figure 2(b), since it
occurs very close to Y a. On the other hand, the temperature profiles approach the
asymptotic curve only around Ȳ ' 10 (figure 2c). Thus for Ȳ < 10, the frictional
equations together with the conduction-free energy balance, behave effectively like
a system of first-order equations, even though (49) and (50) involve the second
derivative of V . Therefore, when the frictional–kinetic equations are solved in the
lower region Ȳu > Ȳ > Ȳl (figure 1), only the values of the variables can be matched
at Ȳ = Ȳu. This results in discontinuities of derivatives such as dV/dȲ at Ȳu. These
discontinuities can be reduced by a suitable choice of Ȳu, as discussed below.
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(c)

Y

T ′

Figure 2. Effect of the values of Vda ≡ dV/dY (Ȳ = Ȳa) and Ȳa on the profile of (a)
the average horizontal velocity, (b) the vertical velocity and (c) the temperature, for the
upper region: - -, SWRG asymptotic field; —, ©, 4, quasi-one-dimensional model (—,
Ȳa = 23, Vda = 0.05113 (the SWRG value); ©, Ȳa = 23, Vda = 0.1; 4, Ȳa = 15, Vda = 0.08702
(the SWRG value), T ′(Ȳa) = 0.002616, 0.02616 and 0.007528 respectively in (c)). Parameter values:
θw = 5◦, ρp = 2650 kg m−3, β = 590, φ = 35◦, Γ1 = 1.81, λ1 = 0.025, n = 1.03, ν1 = 0.52, νmin = 0.5
and c1 = −2.77 .

Figures 2(b) and 2(c) show that the V and T ′ profiles are close to the asymptotic
fields of the SWRG problem. This is reasonable since inertial terms are small except
close to the exit, and radial gravity should be a good approximation for vertical
gravity when the wall angle is small. However, the 〈U〉 profile (figure 2a) differs
significantly from the corresponding SWRG asymptotic field. This may be due to
defects in the assumed forms for the X̄-dependence of the variables.

Let us now consider the choice of Ȳu and c1. As mentioned above, the derivatives
of the dependent variables are discontinuous at Ȳ = Ȳu, causing stress discontinuities
at Ȳ = Ȳu. For a specified value of the discharge rate c1, the value of Ȳu is chosen so
as to minimize the mean stress jump

∆ ≡ (∆xx + ∆yy + ∆xy)/3, (75)
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Figure 3. Variation of the dimensionless stress jump (defined by equation (75)) with the location of
the upstream boundary of the lower frictional–kinetic region: c1 = −2.76 (curve 1), −2.77 (curve
2),−2.80 (curve 3). Parameter values: ε = 0.024, ep = 0.8, k′ = 10, Ȳl = −0.3, the rest as in figure 2.

where

∆xx = |(σxx(Ȳ +
u )− σxx(Ȳ −u ))/σxx(Ȳ

+
u )| (76)

is the jump in σxx at Ȳu, relative to its upstream value. Figure 3 shows that Ȳu ' 0.24
for c1 = −2.77 and Ȳu ' 0.54 for c1 = −2.80. For c1 = −2.76, reliable results cannot
be obtained for Ȳu < 0.17, as the stress singularity is approached. The above procedure
generates a suitable value of Y u for each value of the dimensionless mass flow rate
c1. Some procedures for the determination of c1 are discussed below.

In the frictional models of Davidson & Nedderman (1973), Brennen & Pearce
(1978), and Kaza & Jackson (1982b), c1 is fixed by requiring the mean frictional
stress σ′ to vanish along a traction-free surface spanning the exit slot. Subsequently,
Kaza & Jackson (1984) showed that this would result in an unrealistic compaction
below the traction-free surface. An alternative approach is to use a free-fall surface
(Kaza & Jackson 1982a), across which the field variables change discontinuously to
attain a state of vertical free fall on the downstream side. This causes a density jump
near the exit slot (Y = 0) (the lower curve in figure 9), in contrast with the smooth
variation of the measured density profile (the circles in figure 9). Thus it appears
that a satisfactory procedure for the determination of c1 is not yet available. The
procedure used in the present work is indicated below.

The normal stress on the free surface of the particle jet vanishes. Hence one
possibility is to require that σn0 = 0. Here σn0 is the normal stress on the hopper wall,
evaluated at the edge of the exit slot (X = 1, Y = 0+). In the context of a viscous
fluid jet issuing from from a circular tube, Tanner, Lam & Bush (1985) used a similar
condition to locate the point at which the jet separates from the end of the tube.

In the present case, σn0 decreases from 0.56 to 0.44 as −c1 increases from 2.76
to 2.80. Solutions can be constructed for larger values of −c1, but the following
difficulty arises in the lower region Ȳu > Ȳ > Ȳl (figure 1). Since (14) is linearized
about the upstream solids fraction ν = ν(Ȳu), the mean frictional stress at a critical
state (σ′c) becomes negative when ν decreases below a certain value. This happens
near the lower boundary Ȳ = Ȳl (figure 4), and larger negative stresses occur as −c1
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3
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–0.5 0 0.5

σ ′
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Y
1.0
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1

2

Figure 4. Profile of the frictional mean stress at a critical state: —, frictional solution; - -,
frictional–kinetic solution, c1 = −2.77, Y u = 0.24 (curve 1), c2 = −2.80, Y u = 0.54 (curve 2).
Parameter values as in figures 2 and 3.

0.514

0.510

0.508

–0.5 0 0.5

ν

Y
1.0

0.512

0.506

Figure 5. Profile of the solids fraction: —, frictional solution; - -, frictional-kinetic solution.
Parameter values: Ȳu = 0.24, the rest as in figures 2 and 3.

increases. Since negative values of σ′c are unacceptable for cohesionless materials, it is
not possible within the present framework to examine whether a larger value of −c1

will cause σn0 to vanish.
Here we choose c1 = −2.77 and Ȳu = 0.24, so that the mean stress jump ∆ at

Ȳ = Ȳu is small (' 0.2%), and σ′c is positive over most of the domain (figure 4).
Results will now be presented for these values of c1 and Ȳu, and with Ȳl = −0.3. As
indicated above, larger values of |Ȳl | cannot be used due to the occurrence of negative
frictional normal stresses.

The value used for c1 is −2.77, which is close to the incompressible SWRG (smooth
wall, radial gravity) estimate for a deep hopper (= −2.82). As noted by one of the
referees, an alternative estimate of c1 may be obtained by using a modification (Rose
& Tanaka 1959; Nedderman 1992, p. 296) of the correlation due to Beverloo, Liniger
& Van de Velde (1961). For θw = 5◦, this gives c1 = −1.71, which is significantly
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Figure 6. Profile of (a) the average horizontal velocity, (b) the vertical velocity and (c) the
temperature: —, frictional solution; - -, frictional–kinetic solution. Parameter values: Ȳu = 0.24, the
rest as in figures 2 and 3.

smaller in magnitude than the value used in the present work. The discrepancy may
be due to the effect of wall roughness. The present results are valid for a hopper with
perfectly smooth walls, whereas the correlation of Beverloo et al. (1961) has been
developed using data for bins. It should be noted that the exit region of a bin behaves
effectively like a hopper with rough walls.

The solids fraction decreases as the material flows down the hopper (figure 5), in
qualitative agreement with the measurements of Fickie et al. (1989) (the circles in
figure 9).

Near the hopper exit, the average horizontal velocity 〈U〉 increases as Ȳ decreases
(figure 6a), in keeping with the tendency of the solution to attain vertical free-fall.
This is in contrast with the behaviour in the upper part of the hopper (figure 2a).
The sharp increase near the lower boundary Ȳ = Ȳl is due to the downstream
boundary condition (57). This behaviour could possibly be avoided by applying the
downstream conditions at a larger value of |Ȳl |. Since the frictional normal stresses
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Figure 7. Inclination of the free surface of the jet to the vertical (in radians). The horizontal line
represents the hopper wall. Parameter values: Ȳu = 0.24, the rest as in figures 2 and 3.

1.5

1.0

0.5

0

–0.5
–0.5 0 0.5 1.0

(a)

〈σYY〉
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Figure 8. Frictional (—) and kinetic (- -) contributions to (a) the average normal stress 〈σY Y 〉 and
(b) the average shear stress 〈σXY 〉. Parameter values: Ȳu = 0.24, the rest as in figures 2 and 3.

become negative even for Ȳl = −0.3, larger values of |Ȳl | cannot be used within the
framework of the linearized problem.

The vertical velocity V increases in magnitude as Ȳ decreases (figure 6b), due to
the action of the stress gradients and gravity.

The maximum in the temperature profile (figure 6c) is in keeping with our expecta-
tion that kinetic effects are important in the exit region. It arises due to a competition
between production of pseudo-thermal energy by the working of the viscous stresses,
and dissipation of energy due to inelastic collisions and the pressure work associated
with dilation.

Figure 7 shows that dθ∗/dY , and hence dU∗/dY , are discontinuous at the hopper
exit Ȳ = 0. The latter discontinuity arises because the variation of the normal stress on
the hopper wall does not in general match the ad hoc exponential variation prescribed
along the ‘free surface’ of the jet. Hence dU∗/dY (0−), obtained by differentiating
(65), differs from the upstream value of dU∗/dY (0+) = θwdV/dY (0+). At the lower
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0.5
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ν
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0.4

Figure 9. Profile of the solids fraction for glass beads: upper curve – present work (—,
frictional solution, - -, frictional-kinetic solution), lower curve – results of Prakash & Rao (1991).
The circles represent the data of Fickie et al. (1989), measured along the centreline of a
hopper with θw = 230. Parameter values: present work – θw = 5◦, ρp = 2900 kg m−3,
β = 548, φ = 32.4◦, Γ1 = 1.47, λ1 = 0.049, n = 1.03, ν1 = 0.52, νmin = 0.5, c1 = −3.27, ε = 0.024,
ep = 0.8, k′ = 10, Y u = 0.36, Ȳl = −0.3, angle of wall friction (φw) = 0◦ (smooth walls);

Prakash & Rao (1991) – θw = 23◦, ρp = 2900 kg m−3, β = 548, φ = 32.40, Γ1 = 1.62, λ1 = 0.027,
n = 1.05, ν1 = 0, φw = 15.1◦.

boundary Y = Y l , θ∗ ' 0.02. Therefore, U∗(Y l) 6= 0 and the downstream conditions
do not strictly correspond to vertical free-fall.

The kinetic stresses are dominated by the frictional stresses, except near the down-
stream boundary Ȳ = Ȳl (figure 8a and 8b). The major role of the former is to ensure
that the downstream conditions are satisfied, thus ensuring a smooth transition from
approximately radial flow in the hopper to vertical free-fall in the jet.

6.2. Results for glass beads

Fickie et al. (1989) have measured the density profiles for glass beads flowing through
a hopper with θw = 23◦. The experimental value of θw = 23◦ could not be used
directly here, as the iterations associated with the frictional initial value problem did
not converge. For θw = 10◦, a solution can be constructed, but the mean frictional
stress σ′c is negative over a large part of the domain. So results will be presented for
θw = 5◦.

Figure 9 compares the predictions of the present frictional–kinetic model (the upper
curve) and the frictional model of Prakash & Rao (1991) (the lower curve) with the
data of Fickie et al. (1989) (the circles). Let us first consider the present model. The
solids fraction profile is qualitatively similar to the data of Fickie et al. (1989), but
the range of variation is much less than that observed. It remains to be seen whether
the model results for θw = 23◦ and rough walls agree well with the data. Though
the model of Prakash & Rao (1991) performs much better than the present model, it
has the following defect. It predicts a large density jump near the exit slot (Y = 0),
whereas the data show a smooth variation. On the other hand, the present model
predicts a smooth profile, but quantitative agreement is poor.

The data of Fickie et al. (1989) (figure 9) raise an intriguing point. Since ν < 0.5
for Ȳ < 0.8, the frictional stresses vanish for Ȳ < 0.8 if the parameter νmin in (14)
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is chosen as 0.5. Therefore, in the absence of any other stress gradients, free-fall
must occur below Ȳ = 0.8. However, the resulting free-fall trajectories would be
incompatible with the geometry of the hopper wall. Thus in the region 0 < Ȳ < 0.8,
either the kinetic stresses or forces of some other origin must contribute significantly
to the momentum balances, at least near the walls. With the present form of the kinetic
equations, this appears possible only if the velocity gradients are of O(1/ε), where ε is
� 1. The simple forms (46) assumed for the profiles preclude the occurrence of large
gradients in the X̄-direction. The two-dimensional model will have to be solved to
properly assess the role of the kinetic stresses. Since the kinetic constitutive equations
of Lun et al. (1984) were developed for small mean field gradients, they may have to
be modified along with the flow model, if the observed dilation is to be predicted.

As stated by one of the referees, it is possible that νmin, the value of ν below
which frictional effects vanish, is < 0.5. At present, however, the data available from
experiments (Richardson 1971, pp. 51–52; Onoda & Liniger 1990) and simulations
(Nolan & Kavanagh 1992) suggest that νmin > 0.5.

7. Discussion
Hybrid frictional–kinetic constitutive equations have been used to develop a model

for hopper flow. The resulting equations contain many sources of difficulty, such
as a small parameter multiplying the highest derivative, a stress singularity, abrupt
change of boundary conditions at the hopper exit, and a free surface which must
be determined as a part of the solution. In order to gain some insight, the above
equations have been simplified to obtain a quasi-one-dimensional model. The latter
shows that it is possible to construct solutions which tend smoothly (barring minor
stress jumps at Ȳ = Ȳu) from the frictional solution in the hopper to free-fall in the
jet. This represents an advance over existing frictional models, which could never be
solved satisfactorily in the exit region due to the occurrence of a stress singularity.
Within the hopper, the density profile is qualitatively similar to the data of Fickie
et al. (1989). Near the downstream boundary, the profile is much flatter than that
observed. The range of density variation is also underestimated. These defects may
be due to the forms of the constitutive equations, and the simplifying assumptions
used in model formulation.

Overall, the use of a hybrid frictional–kinetic model appears to be promising.
However, there is considerable scope for refinement, both with regard to the model
proposed and the constitutive equations used. In this context, the present work may be
regarded as a small step towards the solution of an outstanding problem in granular
flow.

We are grateful to the referees for many constructive comments, to Professor R.
Jackson for sending us the raw density data of Fickie et al. (1989), and to Dr Prabhu
Nott for helpful discussions.

Appendix A. Asymptotic fields for compressible flow through a
smooth-walled hopper with radial gravity

An interesting and useful feature of the frictional equations for hopper flow
is the existence of asymptotic density, velocity, and stress fields. These fields are
independent of the boundary conditions specified far upstream. They are likely to
be applicable even in the frictional–kinetic case, since far above the exit the kinetic
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stresses are expected to be very small. Further, asymptotic temperature fields have
been constructed for the incompressible frictional–kinetic SWRG problem (Jyotsna
& Rao 1991), and are expected in the compressible case too. This is indeed true as
will be seen shortly.

The asymptotic fields are of interest, since they can be used to generate upstream
conditions for the solution of the frictional–kinetic equations in the exit region of the
hopper. In particular, the fields for the SWRG problem are useful for the problem
of flow through a smooth-walled hopper with steep walls. This is because the fields
for the former are easy to determine, and are also expected to be a fairly good
approximation to the asymptotic solution for the latter.

Far above the hopper exit, it is reasonable to assume that both inertial and kinetic
terms are negligible in the momentum balances. Further, from the results of Jyotsna &
Rao (1991), conduction may be neglected in the energy balance. Thus, the asymptotic
fields are determined from the mass balance, momentum balances with inertial and
kinetic terms omitted, and the conduction-free energy balance.

Using polar coordinates with origin located at the apparent vertex of the hopper,
the relevant frictional equations admit a solution wherein all the dependent variables
are functions of the dimensionless radial coordinate ξ′ = r/w.

The asymptotic solids fraction and velocity fields are constructed using a perturba-
tion method due to Prakash & Rao (1991). This generates a series solution in powers
of λ1, where λ1 is a parameter occurring in (12). The two-term solution is given by

v′ =
−c1

ξ′θw

[
−Γ1 + λ1 ln

(
s1 ξ

′

β

)]
, (A 1)

ν =
1

Γ1

+

(
λ1

Γ1
2

)
ln

(
s1 ξ

′

β

)
, (A 2)

where v′ = vr/(gw)1/2 is the dimensionless radial velocity, and s1 = 1/(Γ1(3 sinφ −1)).
We now determine the asymptotic temperature field, if any, for the compressible

frictional–kinetic problem. In polar coordinates, the conduction-free energy balance
is given by

3
2
νv′

dT ′

dξ′
+

[
h1T

′ − h2T
′1/2
(

dv′

dξ′
+
v′

ξ′

)][
dv′

dξ′
+
v′

ξ′

]
− 4

3
h3T

′1/2

[(
dv′

dξ′

)2

+

(
v′

ξ′

)2

− dv′

dξ′
v ′

ξ′

]
+ h6T

′3/2 = 0, (A 3)

where the functions hi are defined in table 1. Since the hi are sensitive functions of ν,
we use a three-term solution to the solids fraction field instead of (A 2). Thus

ν =
1

Γ1

+

(
λ1

Γ1
2

)
ln

(
s1ξ
′

β

)
+
λ1

2

Γ1
3

[
ln

(
s1ξ
′

β

)(
1 + ln

(
s1ξ
′

β

))
+ s2 −

s1Γ1(n− 1)

2n sinφ

]
, (A 4)

where s2 = (1− sinφ)/(3 sinφ− 1) and n is a parameter occurring in (13).
Equations (A 1) and (A 4) are used to solve the energy balance (A 3). Unlike the

solutions for ν and v′, a perturbation method cannot be used for the temperature field,
owing to the following difficulty. As part of the perturbation scheme, the functions
hi(ν) are linearized about the zero-order solution for ν, i.e. about ν = 1/Γ1. For the
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Figure 10. Profile of the temperature for the SWRG problem (a) near ξ′ = r/w = 150, and (b) near
the hopper exit: —, Ti ≡ T ′(ξ′ = 150) = 0.1;©, Ti = 0.01. Here ξ′ = (Y +cot θw)/ cos θ ' Y +(1/θw)
in view of the small angle approximation (§ 3.1), and θ is the angle measured from the vertical to
any radial line drawn from the apparent vertex of the hopper. The broken vertical line represents
the exit slot. Parameter values as in figures 2 and 3.

value of Γ1 = 1.47 estimated from the data of Fickie et al. (1989) (see §A 1), 1/Γ1

exceeds ν0, the volume fraction of solids for a random close packing. For ν > ν0,
the functions hi cannot be evaluated, since the radial distribution function g0 is not
defined in this range. Therefore, instead of using a perturbation method, the energy
balance is solved numerically using a semi-implicit Runge–Kutta method (Villadsen
& Michelsen 1978, pp. 319–323).

For Leighton Buzzard sand, the temperature profiles obtained for different ‘initial’
values of T ′ (specified at ξ′ = 150) asymptote to a common one nearly immediately
below the upstream boundary (figure 10). Here the initial value of ξ′ is chosen as 150
to ensure that the integration is started sufficiently far above the hopper exit for the
asymptotic solution to be reached. For glass beads, a similar asymptotic behaviour is
observed when the initial values are specified at ξ′ = 50.

Thus the asymptotic fields for the compressible frictional–kinetic SWRG problem
are given by (A 1), (A 4), and the numerical solution of the conduction-free energy
balance.

A.1. Estimation of the parameters Γ1 and λ1 for glass beads

The values of Γ1 and λ1 are estimated by fitting the asymptotic solids fraction field
to the data of Fickie et al. (1989). The experiments were conducted in a hopper with
aluminium walls. Since (A 2) has been derived for the case of smooth walls, it cannot
be directly used with the data. When the assumptions of smooth walls and radial
gravity are relaxed, (A 2) may be replaced by (Prakash & Rao, 1991)

ν =
1

Γ1

+

(
λ1

Γ1
2

)
ln

(
s3(θ) ξ′

β

)
, (A 5)

where the function s3(θ) is obtained by numerical integration of ordinary differential
equations corresponding to the incompressible radial stress field (Jenike 1961, 1964),
and θ is the angle measured from the vertical (as in figure 1). Since the density
measured along the centreline is used for parameter estimation, we set θ = 0 in (A 5).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

97
00

64
60

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112097006460


Flow of granular materials through a wedge-shaped hopper 267

0.60

0.56

0.54
1.6 2.6

ν

lnξ ′

0.58

1.8 2.0 2.2 2.4

Figure 11. Fit of SWRG asymptotic solids fraction profile (A 7) (—) to the data (©) of Fickie et al.
(1989). Parameter values: θw = 23◦, β = 548, φ = 32.4◦, φw = 15◦ (γw = 23.1◦), Γ1 = 1.47, λ1 = 0.049.

Further, s3(0) is approximated by the solution due to Brennen & Pearce (1978) to get

s3(0) =
1

Γ1(3 sinφ− 1 + 2(γw/θw) sinφ)
. (A 6)

Here γw = γ(θ = θw) can be calculated once the values of the angle of internal friction
φ and the angle of wall friction φw are specified (Brennen & Pearce 1978). In the
limit of smooth walls (γw = 0), (A 5) reduces to (A 2).

To estimate the values of Γ1 and λ1, (A 5) is rewritten as

ν = a+ b (ln ξ′), (A 7)

where

a =
1

Γ1

+
λ1

Γ 2
1

ln

(
s3(0)

Γ1β

)
; b =

λ1

Γ 2
1

.

The constants a and b are estimated using the method of least squares, and the above
equations are then solved iteratively to obtain the values of Γ1 and λ1.

The angle of wall friction φw for glass beads flowing past an aluminium wall is
taken as 15◦ (R. Jackson 1989, private communicaton). Using the density data in
the range 1.6 < ln ξ′ < 2.6, and setting φ = 32.4◦ (see § 5), we get Γ1 = 1.47 and
λ1 = 0.049. The fit to the data is shown in figure 11. It is interesting to note that the
values of Γ1 and λ1 are of the same order as those used by Thorpe (1992), namely
Γ1 = 1.38 and λ1 = 0.064. The latter differ from the present values because they were
estimated using a slightly different approach.
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