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Using simulations and a virtual-spring-based approach, we measure the segregation force,
Fseg, in size-bidisperse sphere mixtures over a range of concentrations, particle-size ratios
and shear rates to develop a semiempirical model for Fseg that extends its applicability
from the well-studied non-interacting intruders regime to finite-concentration mixtures
where cooperative phenomena occur. The model predicts the concentration below which
the single-intruder assumption applies and provides an accurate description of the pressure
partitioning between species.

Key words: dry granular material

1. Introduction

Flowing granular materials segregate by particle size, density or other physical properties,
which is a phenomenon crucial to many industrial and geophysical processes (Ottino
& Khakhar 2000; Ottino & Lueptow 2008; Frey & Church 2009). Despite decades of
research on this topic, fundamental aspects of granular flow-driven segregation remain
elusive, and state-of-the-art continuum segregation models largely rely instead on ad hoc
or configuration-specific closure schemes (Gray 2018; Umbanhowar, Lueptow & Ottino
2019; Thornton 2021). Recent efforts characterizing forces on single-intruder particles
in otherwise species-monodisperse granular flows have advanced our understanding of
segregation at the particle level (Tripathi & Khakhar 2011; Guillard, Forterre & Pouliquen
2016; Jing, Kwok & Leung 2017; Staron 2018; van der Vaart et al. 2018; Jing et al. 2020)
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Figure 1. (a) Large (4 mm, blue) and small (2 mm, red) particles (cl = cs = 0.5) in a controlled,
constant-shear-rate flow. (b) Scaled restoring force, Fres,i, vs time for large (blue) and small (red) particles. Data
points sampled at 0.01 s intervals; bold curves are averages using a 1 s long sliding window. Horizontal lines
are averages from 2 to 5 s. (c) Mean centre of mass offset between species, z̄l − z̄s, remains unchanged from
its initial value with reactive restoring forces opposing segregation. Without restoring forces, large particles
rise and small particles sink, such that z̄l − z̄s increases. (d–f ) Local concentration of large particles away from
walls (i.e. 0.1 � z/H � 0.9) remains unchanged over time when the restoring force is ON, unlike the case
without restoring forces (OFF), where the effects of segregation are clearly evident by t = 50 s.

and led to segregation force models applicable across flow configurations (Guillard et al.
2016; Jing et al. 2021). However, it is unclear whether or how single-intruder results
can be applied to granular mixtures with finite species concentration (Rousseau et al.
2021; Tripathi et al. 2021). More fundamentally, the mechanisms governing changes in
segregation behaviours between intruder and mixture regimes as the species concentration
is varied remain unresolved.

In this paper, we extend the virtual-spring-based ‘force meter’ approach for a
single-intruder particle (Guillard et al. 2016; van der Vaart et al. 2018; Jing et al. 2020)
to size-bidisperse mixtures of arbitrary species concentration and use it to characterize
the dependence of the segregation force on concentration for various particle-size ratios
in controlled, constant-shear-rate flow simulations, see figure 1(a). We find that the
segregation force exhibits a plateau at lower concentrations and changes monotonically
above a critical concentration, indicating a transition from non-interacting intruders
to cooperative phenomena in mixtures, which is reminiscent of previously observed
asymmetric concentration dependence in the segregation flux (van der Vaart et al.
2015; Jones et al. 2018). We also show that these results can provide closures for
connecting segregation models with continuum-based frameworks for flowing granular
mixtures.
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2. Simulations and methods

An in-house discrete element method (DEM) code running on CUDA-enabled NVIDIA
GPUs (Isner et al. 2020) is used to simulate a size-bidisperse particle mixture with
species volume concentration ci, diameter di and density ρi = 1 g cm−3 (i = l, s for large
or small particles, respectively) sheared in a streamwise (x) and spanwise (y) periodic
domain of length L = 35dl, width W = 10dl and height H = 25dl to 50dl (varied as
needed) in the presence of gravity (g = 9.81 m s−2, in the negative z-direction), see
figure 1(a). The standard linear spring-dashpot model (Cundall & Strack 1979) is used to
resolve particle–particle and particle–wall contacts of spherical particles using a friction
coefficient of 0.5, a restitution coefficient of 0.2 and a binary collision time of 0.15 ms. The
contact stiffness number κ = kn/(Pd̄) ≈ 104 (where kn is the normal contact stiffness,
P is the local pressure and d̄ = cldl + csds is the mean particle diameter) is sufficiently
large that particle stiffness should have negligible influence on the flow (da Cruz et al.
2005). We have verified that increasing or decreasing κ by an order of magnitude does not
affect the simulation results. Changing bounding walls from smooth to bumpy (randomly
attached particles) does not affect the results. Large (dl = 4 mm) and small particles (ds
varied to adjust the size ratio, dl/ds) have a ±10 % uniform size distribution to minimize
layering (Staron & Phillips 2014) (increasing the size variation to ±20 % does not alter our
results). Depending on the size ratio, between 26 000 and 150 000 particles are included in
each simulation.

A constant shear rate γ̇ = U/H varied from 25 to 50 s−1 is imposed on the flow by
the combination of the translating upper bounding wall and a streamwise stabilizing force,
Fstabilize,k = Ks(uk − γ̇ zk), on each particle k at every simulation time step, where U is
the upper bounding wall velocity, uk is the particle streamwise velocity, zk is the vertical
particle position and Ks is a gain parameter (Lerner, Düring & Wyart 2012; Clark et al.
2018; Fry et al. 2018; Saitoh & Tighe 2019; Duan et al. 2020; Jing et al. 2020). This
stabilizing force reduces the granular temperature in the streamwise direction but does not
affect the rheological behaviour (Jing et al. 2020) or segregation (Jing et al. 2021), and the
constant shear rate eliminates forces associated with shear gradients (Fan & Hill 2011a,b;
Guillard et al. 2016; Jing et al. 2021). An overburden pressure P0 equal to the pressure at
a depth of Hw = 20dl (i.e. P0 = ρφgHw where the bulk solid fraction φ varies from 0.56
to 0.59 depending on flow conditions) is applied using a massive flat frictional top wall
that is free to move vertically (fluctuates by ±2 % or less after an initial rapid dilatation
of the particles at flow onset) and moves horizontally at a velocity determined by the
constant-shear-rate velocity profile. The inertial number, I = γ̇ d̄

√
ρ/P, varies between

0.06 to 0.26 depending on the flow conditions, indicating a dense granular flow.
A spring-like vertical restoring force proportional to the difference in the vertical centre

of mass positions of the two initially mixed species is applied uniformly to all particles of
each species i at every simulation time step in order to characterize the particle forces. The
restoring force simultaneously suppresses segregation throughout the flow domain which
otherwise would change the local species concentration. This method is inspired by the
virtual-spring-based technique used in single-intruder DEM simulations to measure the
segregation force (Guillard et al. 2016; van der Vaart et al. 2018; Jing et al. 2020). The
difference here is that the same virtual-spring restoring force is applied to all particles
of each species rather than to just a single-intruder particle, allowing us to consider a
wide range of relative concentrations of the two species. This approach resembles that in a
recent study where opposing forces are applied to all particles of each species to study the
interspecies drag (Bancroft & Johnson 2021). Here, the restoring force on each particle of
species i is Fres,i = −Kr[(z̄i − z̄j) − (z̄i,0 − z̄j,0)]/Ni, where the centre of mass of species
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i is z̄i = ∑Ni
k∈i zkVk/

∑N
k=1 Vk and z̄i,0 = z̄i(t = 0), Vk is the volume of particle k, subscript

j indicates the other species, and Ni and N are the number of particles of species i and the
total number of particles, respectively. The applied restoring forces balance, i.e.

Fres,iNi + Fres,jNj = 0, (2.1)

and the bulk flow behaviour (e.g. shear flow, bulk pressure) is unaltered. Similar to the
imposed velocity profiles, we have further confirmed both here and in previous work
(Jing et al. 2021) that the particle-restoring forces do not affect either the rheological
characteristics of the flow or kinetic stress fields in the segregation direction.

Figure 1(b) plots the instantaneous restoring force scaled by particle weight,
Fres,i/(mig), at 0.01 s intervals for the example case shown in figure 1(a) with dl/ds = 2
and cl = cs = 0.5. The scaled restoring forces for large (blue) and small (red) particles
are equal and opposite for cl = cs = 0.5 due to the force balance, which can be written
as clFres,l/(mlg) + csFres,s/(msg) = 0 based on (2.1), noting that particle mass mi = ρVi
and species volume concentration ci = NiVi/Vtot, where Vtot is the total particle volume.
The time average Fres,i/(mig) over 1 s time windows (bold curve) remains relatively
constant 2 s after flow onset, although small force fluctuations are evident due to the
stochastic nature of granular flows. In addition, varying the uniform shear rate γ̇ , the
layer thickness H or the gain parameters Ks and Kr has minimal influence on Fres,i/(mig),
indicating that the restoring force is independent of the details of the flow geometry
and control parameters, and that its effect is uniform through the depth of the particle
bed.

To demonstrate the effectiveness of the restoring force in balancing the segregation
force, the centre of mass offset between the two species scaled by the large particle
diameter is shown in figure 1(c). Note that (z̄l − z̄s)/dl ≈ 0.5 at t = 0, which is close to
the ideal uniformly mixed value of 0 (our dense packing is achieved by placing particles
in a grid pattern and letting them settle under gravity before applying shear, which results
in the slight initial offset between the centres of mass of the two species of 0.5dl). Without
restoring forces, (z̄l − z̄s)/dl increases with time as the two species segregate with a
constant segregation velocity after an initial dilatation of particles (t < 0.5 s) following
flow onset at t = 0. The segregation velocity remains nearly constant until the local particle
concentration changes enough to affect the segregation, typically after 20 s, depending
on particle properties and flow conditions. In contrast, with the restoring force ON to
reactively balance the segregation force, (z̄l − z̄s)/dl remains near its initial value of 0.5,
corresponding to no segregation.

The effectiveness of the restoring force in maintaining the mixed (unsegregated) state
is also evident in the concentration profiles in figure 1(d–f ), where cl remains at its initial
value of 0.5 away from the walls (i.e. 0.1 � z/H � 0.9) when the restoring force is ON.
Near the walls, cl slightly decreases because small particles can reside closer to the walls
than the large particles. This wall exclusion effect due to particle-size differences does
not change the mean centre of mass offset between species, z̄l − z̄s. As a result, the
force measurement approach is unaffected. For example, doubling the layer thickness H
significantly decreases the proportion of the flow affected by the walls, but the measured
segregation force differs by less than 5 %. With the restoring forces OFF, segregation
occurs throughout the depth of the layer with a local segregation rate inversely proportional
to the square root of depth (Duan et al. 2020). As a result, cl deviates from 0.5 with
noticeable segregation near the top wall (z/H > 0.7) at t = 5 s (figure 1e) and throughout
the layer at t = 50 s (figure 1f ).
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Closing the gap between single intruders and mixtures

Since Fres,i, which is determined as the time average of the reactive restoring force,
balances the particle segregation force, Fseg,i and the particle weight, mig,

Fseg,i = mig − Fres,i. (2.2)

The segregation force Fseg,i is always upward, opposing gravity. Since Fres,s > 0
(figure 1b), Fseg,s < msg so small particles would sink without the restoring force;
likewise, since Fres,l < 0, Fseg,l > mlg so large particles would rise without the restoring
force. From here on, we scale the segregation force with the particle weight, F̂i =
Fseg,i/(mig).

3. Results

The first key result of this paper is measurements of the dependence of the segregation
force on concentration for various particle-size ratios. Figure 2(a–c) shows examples of
the dimensionless segregation force, F̂i (symbols) vs concentration for three size ratios
(dl/ds = 1.3, 2 and 3), where the error bars reflect fluctuations of the reactive restoring
force in figure 1(b). Although the error bars are relatively large at low concentrations, F̂i
clearly plateaus to a maximal (minimal) value approaching the single-intruder limit F̂i,0 at
ci ≈ 0 and decreases (increases) monotonically with ci for large (small) particles. For both
small and large species, F̂i,1 = 1 (or, equivalently, Fseg,i = mig) in the monodisperse limit
(ci = 1), since the segregation force exactly offsets the particle weight.

Details of the dependence of F̂i on ci vary with the size ratio, di/dj. First, consider
figure 2(a) for dl/ds = 1.3 (corresponding to di/dj = 1.3 and 1/1.3), which shows that the
plateau in F̂i for both species extends from ci = 0 to a critical concentration, ci,crit ≈ 0.3
(defined precisely below). For ci < ci,crit, particles of species i interact so infrequently
with each other that the segregation force acting on them is essentially that for a
single-intruder particle (i.e. concentration independent). As ci increases beyond ci,crit,
interactions between particles of species i become significant, eventually resulting in
the segregation force approaching the monodisperse limit as ci approaches one. The
segregation force plateau extends to higher concentrations (greater than 0.5) as di/dj
increases, see figure 2(b,c). Furthermore, cl,crit � cs,crit, indicating that large particles act
like intruders at higher concentrations than small particles. For example, for dl/ds = 3
(figure 2c), the plateau for large particles extends to cl,crit ≈ 0.6, which is nearly four
times the value of cs,crit ≈ 0.15. Results similar to those in figure 2(a–c) are obtained for
seven additional size ratios in the range 1 < dl/ds � 3 considered here.

The total segregation force across both species for the entire system, which sums to the
total particle weight, can be expressed using (2.1) and (2.2), as

F̂ici + F̂jcj = 1. (3.1)

Noting that cj = 1 − ci and F̂j = Fj,0 for cj � cj,crit (or, equivalently, ci � 1 − cj,crit), we
can predict F̂i for mixtures not only in the intruder regime of species i, but also in the
intruder regime of species j:

F̂i =
{

F̂i,0 ci � ci,crit,[
1 − F̂j,0(1 − ci)

]
/ci ci � 1 − cj,crit.

(3.2)

Figure 2(a–c) show that the predictions of (3.2) for both large (dashed curves) and small
particles (dotted curves) match the segregation force data (symbols) in the vicinity of
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Figure 2. (a–c) Scaled particle segregation force F̂i = Fseg,i/(mig) vs species concentration ci for large (©,
blue) and small (�, red) particles with size ratio dl/ds = 1.3 (a), 2 (b) and 3 (c). Error bars are the standard
deviation for the time average of Fres,i. Dashed and dotted curves are predictions of the single-intruder
segregation force model extended to mixtures (3.2). Solid curves are fits of (3.3) using large particle data.
Arrows indicate the concentration ci,crit where Fi deviates from the intruder limit, see text. (d) F̂i,0 from fits of
(3.3) to large (©, filled blue) and small (�, filled red) particle data. Dashed curve is a single-intruder model
based on single-intruder simulations (Jing et al. 2020).

the concentration extremes when F̂i,0 and F̂j,0 are based on the intruder-limit values
given in figure 2(d) and determined by fitting the data to (3.3) as described shortly.
That is, determining F̂l,0 for cl < cl,crit for large particles (dashed blue horizontal line
in figure 2a–c) leads to the corresponding prediction for F̂s at large cl (dashed red curve
in figure 2a–c) and likewise for small particles (dotted red horizontal line and dotted blue
curve in figure 2a–c). This approximation fits the data well, except in the middle of the
concentration range where the initial deviation of the data from the horizontal line reflects
the approximate value of ci,crit.

Though (3.2) combined with F̂i,0 and F̂j,0 predicts F̂i at the concentration extremes, a
greater challenge is to model F̂i in the intermediate transition regime (i.e. ci,crit < ci <

1 − cj,crit). Since F̂i is bounded at both ends of the concentration range, we propose a
relation of the form

F̂l = 1 + (F̂l,0 − 1) tanh

(
1 − F̂s,0

F̂l,0 − 1

cs

cl

)
(3.3a)
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Closing the gap between single intruders and mixtures

for large particles, noting that the characteristics of the hyperbolic tangent function, i.e.
limcl→0 tanh(cs/cl) = 1 and limcl→1 tanh(cs/cl) = 0, satisfy the theoretical constraints
that F̂l = F̂l,0 at cl = 0 and F̂l = 1 at cl = 1. Substituting (3.3a) into the force balance
of (3.1) and solving for F̂s gives

F̂s = 1 − (F̂l,0 − 1)
cl

cs
tanh

(
1 − F̂s,0

F̂l,0 − 1

cs

cl

)
. (3.3b)

Equation (3.3b) also satisfies the same constraints at both concentration limits, i.e. F̂s =
F̂s,0 at cs = 0 and F̂s = 1 at cs = 1. The fit parameters F̂l,0 and F̂s,0 correspond to intruder
segregation forces and can be obtained by fitting (3.3a) to the data for large particles or,
equivalently, fitting (3.3b) to the data for small particles with no significant differences in
the fit quality or fit parameter values.

To demonstrate the validity of our simulation and fitting approach, figure 2(d) shows F̂i,0
based on curve fits to (3.3) for both large (blue circles) and small (red triangles) particle
data. The two data sets match within the uncertainty, demonstrating the robust nature of
the hyperbolic functional form of (3.3) in characterizing the segregation force. In addition,
the results are comparable to predictions (dashed curve) of a single-intruder model
derived from single-intruder simulations (Jing et al. 2020), even though these simulations
use different particle properties (i.e. dl = 1–40 mm, ds = 5 mm and ρ = 2.5 g mm−3),
implement a different contact model (i.e. Hertz contact model with Young’s modulus
of 5×107 Pa and Poison’s ratio 0.4), use a different flow geometry (inclined chute and
uniform shear) and have a slightly lower solid volume fraction (φ = 0.55 instead of
φ = 0.56–0.59 here). This validates not only the values we find for the segregation force
at the single-intruder limit, but also our approach for direct measurement of segregation
forces in bidisperse mixtures.

With an accurate model for F̂i, i.e. (3.3), we now define the critical concentration,
ci,crit, as the concentration at which F̂i − 1 deviates by 5 % from F̂i,0 − 1. Based on 260
simulations at different concentrations, size ratios and shear rates, and fitting the resulting
segregation force data to (3.3), the dependence of ci,crit for a wide range of conditions
can be determined. The phase diagram in figure 3(a) shows the dependence of ci,crit,
which describes the limiting concentration below which a particle acts as an intruder and
above which cooperative phenomena between similar particles makes the system act like
a mixture. This is the second key result of this paper.

In figure 3(a), ci,crit (symbols) for both large and small particles increases monotonically
with size ratio for the range explored here (1 < dl/ds � 3) and is reasonably well fit by
the expression ci,crit = 0.74[1 − exp(−0.52di/dj)]. The limiting value of ci,crit = 0.74 for
di/dj � 1 matches the free-sifting limit for small particles in a network of randomly
close-packed large particles at φmax = 0.64, i.e. 1/(2 − φmax) (Prasad, Santangelo &
Grason 2017). This suggests that for cl > 0.74 small particles percolate downward through
the voids without significantly affecting the flow of large particles, indicating a possible
change in the size segregation mechanism (Golick & Daniels 2009; Schlick et al.
2015).

In the monodisperse mixture limit (di/dj = 1), the exponential fit gives ci,crit =
0.30, which implies that the corresponding large-particle concentration for cs,crit is
cl = 1 − cs,crit = 0.70, as shown in figure 3(a). Values of cl for cl,crit and cs,crit are
necessarily symmetric about cl = 0.5, since the intruder is the same as the surrounding
particles. Intriguingly, ci,crit = 0.30 is nearly identical to 0.31, the conducting sphere
concentration at which disordered packings of monodisperse conducting and insulating
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Intruder-like (large)
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3
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0
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4

(a) (b)

0.6 0.5 0.4
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Figure 3. (a) Segregation force regimes (shaded areas) dependence on large particle concentration, cl, and size
ratio, dl/ds. Symbols represent ci,crit for large (©, filled blue) and small (�, filled red) particles. Curves are
ci,crit = 0.74[1 − exp(−0.52di/dj)] (see text). (b) Sheared bed images for dl/ds = 2 (vertical dotted line in (a))
at cl intervals of 0.1. For cs < cs,crit ≈ 0.18 (or, equivalently, cl � 0.82), the small-particle segregation force
equals that on a single small intruder, while for cl < cl,crit ≈ 0.46 the large-particle segregation force equals
that on a single large intruder. Intermediate concentrations (0.46 � cl � 0.82), where segregation forces are
less than for intruders, are termed mixture-like.

spheres become globally conductive (i.e. exhibit long-range electrical conduction, thereby
exceeding what is known as the ‘percolation threshold’) (Powell 1979; Ziff & Torquato
2017). Further, the critical concentrations for 1/3 � ds/dl < 1 from this study also
match the percolation thresholds in size-bidisperse mixtures (He & Ekere 2004),
suggesting that the particle segregation force and geometric percolation are related.
Anecdotal support for this picture is provided by figure 3(b), which shows shear flow
images for dl/ds = 2. In the intruder-like regime for small particles (large cl), small
particles appear to contact each other infrequently and only in the voids between
large particles, whereas in the intruder-like regime for large particles (small cl), large
particles appear to be well-separated by a continuous phase of small particles on average,
and are therefore unlikely to interact directly with each other. In an attempt to better
understand the connection between the intruder regimes and the percolation limit, the
coordination number and the radial distribution function of each species were evaluated
for mixtures with different size ratios. However, unlike the segregation force, these
quantities vary smoothly over the concentration range, failing to duplicate the plateau
and rapid change in Fseg,i near ci,crit (see Appendix A). Further investigation of the
intruder regime transition at ci,crit is clearly necessary but is beyond the scope of this
paper.

4. Discussion and conclusions

Our results characterizing the segregation force can be applied to continuum descriptions
of segregation. Some previous studies assume F̂i depends linearly on ci to close the
momentum equation (Gray & Thornton 2005; Rousseau et al. 2021). Despite some success
for these continuum models in predicting concentration profiles of equal-volume mixtures,
a linear relation between F̂i and ci does not capture the segregation force plateau for
intruders clearly evident in figure 2(a–c). In addition, the resulting symmetric form for
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Figure 4. (a–c) Ratio of species-specific pressure to bulk pressure, fi = Pi/P, for different size ratios. Symbols
represent data for large (©, blue) and small (�, red) particles. Solid curves are predictions of (3.3) recast as
a pressure ratio, i.e. fi = ciF̂i. Dashed black curves are best fits of the quadratic (Gajjar & Gray 2014) model
to the data for each size ratio, dl/ds. Dotted lines represent the monodisperse case (dl/ds = 1) where fi = ci.
(d–f ) Scaled segregation force from simulation data (symbols), F̂i = fi/ci, is well fit over the full ci range by
(3.3) (solid curves) but poorly fit by the quadratic model (black dashed curves) at low ci. Data and (3.3) fits are
reproduced from figure 2(a–c).

the species-specific pressure, when coupled with a linear drag model, does not predict
the asymmetric concentration dependence of segregation (i.e. small particles among
mostly large particles segregate faster than vice versa) (Golick & Daniels 2009; Gajjar
& Gray 2014; Jones et al. 2018). To address the asymmetric segregation flux, F̂i has been
proposed to be quadratic in ci (Gajjar & Gray 2014; Duan et al. 2021; Trewhela, Ancey
& Gray 2021; Tripathi et al. 2021). Although the coefficients in a quadratic model can be
adjusted to minimize the difference between the model and the data, the quadratic form
cannot reproduce the plateau approaching the intruder limit (ci ≈ 0), as will be shown
shortly.

To address these shortcomings in modelling the segregation force within a continuum
model framework, we recast our results (data and model (3.3)) as partial pressures
(normal stresses), i.e. ∂Pi/∂z = NiFseg,i/(LWH) = niFseg,i (Rousseau et al. 2021), where
ni = ciφ/Vi is the particle number density. Combined with the bulk pressure gradient
∂P/∂z = φρg, the ratio of the pressure contribution of species i to the bulk pressure,
or normal stress fraction, is fi = Pi/P = ciF̂i (Tunuguntla, Weinhart & Thornton 2017),
which, unlike the standard mixture theory, does not necessarily equal the species volume
fraction.

Having measured F̂i vs ci, we can directly evaluate fi as figure 4(a–c) shows for three
examples at dl/ds = 1.3, 2 and 3. At all concentrations, the pressure partition functions
for large and small particles sum to 1 (i.e. fl + fs = 1), and the curves based on the
segregation force model of (3.3) match the simulation data. The deviation of the pressure
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partitioning for dl/ds /= 1 from the linear monodisperse case, fi = ci (dotted line) is
evident. Two previously proposed models assuming fi is a weighted function of particle
size, fi = dici/

∑
(dici) (Marks, Rognon & Einav 2012), or volume, fi = d3

i ci/
∑

(d3
i ci)

(Tunuguntla, Bokhove & Thornton 2014) have been shown (Tunuguntla et al. 2017) to
be significantly less accurate than the quadratic model of Gajjar & Gray (2014) for the
partial kinetic stress for 1.3 � dl/ds � 1.7 in a free-surface flow, but the results for the
normal stress are inconclusive. Basing the normal stress fraction fi on the particle size
(Marks et al. 2012) or volume (Tunuguntla et al. 2014) does not match our uniform shear
flow data over the range of 1.1 � dl/ds � 3 (see Appendix B). The Gajjar & Gray (2014)
model, which is included in figure 4(a–c), can be made to match the fi data by fitting two
arbitrary model parameters via a least squares approach. However, when compared with
measurements of F̂i in figure 4(d–f ), it is evident that (3.3) better captures the intruder
plateau as ci approaches zero. We further note that the fit parameters for the Gajjar
& Gray (2014) model are not universal, depend on dl/ds and lack a physical meaning,
whereas (3.3) depends only on the physically meaningful and measurable single-intruder
limit segregation forces, F̂l,0 and F̂s,0. Thus, the pressure partition function based on
(3.3), i.e. fi = ciF̂i where F̂i is determined from (3.3), shows promise for application
to continuum models of flowing mixtures of bidisperse granular materials (Marks et al.
2012; Tunuguntla et al. 2014; Staron & Phillips 2015; Rousseau et al. 2021; Trewhela
et al. 2021; Tripathi et al. 2021), although further work is necessary to elucidate any
differences between the uniform shear flow studied here and more general free-surface
flows.

Our results capture and characterize the concentration dependence of the segregation
force in uniform shear flows, but a word of caution about extensions is in order.
Recent studies indicate that the intruder segregation force F̂i,0 also depends on the shear
gradient (Fan & Hill 2011a,b; Guillard et al. 2016; Jing et al. 2021). Although the shear
rate gradient-induced component of Fseg is negligible in most free-surface flows (Jing
et al. 2020), further study of the concentration dependence of Fseg in flows where shear
rate gradients matter (e.g. wall-driven flows) and for larger size ratios, where free sifting
of small particles alters the segregation, is warranted.
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Appendix A. Coordination number and radial distribution function

To explore the difference in local structure between intruder and mixture regimes, the
coordination number Zi is plotted as a function of large-particle concentration cl for
an example case with size ratio dl/ds = 2 in figure 5. Unlike the segregation force, Zi
for both large and small particles varies nearly linearly over the concentration range,
failing to duplicate the plateau and change in segregation force near cl,crit ≈ 0.46 for size
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Figure 5. Dependence of coordination number Zi for (a) large and (b) small particles on large-particle
concentration for size ratio dl/ds = 2. Zi for large or small particles (solid curve) can be separated into
same-species (dash-dot) and interspecies (dashed) coordination numbers depending on the species of the
contacting particles.
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Figure 6. Radial distribution functions of (a) large and (b) small particles near cl,crit ≈ 0.5 for dl/ds = 2.
Large particles at the centre of the domain are used as reference points. Data are averaged over 200 distinct
times at intervals of 0.01 s. Colours represent different mixture concentrations as indicated in (a).

ratio 2. Likewise, Zi for different types of particle interactions is nearly linear in cl, with
no indication of abrupt changes in contact behaviour between the intruder and mixture
regimes.

The radial distribution function (RDF), g(r), of large and small particles neighbouring
large particles at the centre of the domain are plotted in figure 6. Here large particles
are chosen as reference points because the segregation force plateau extends to higher
concentration. For the example case with dl/ds = 2, the RDF for both large and small
particles at cl = 0.4, 0.5 and 0.6 are almost the same, also indicating no significant changes
in the local structure of neighbouring particles near cl,crit ≈ 0.46 for dl/ds = 2.

Appendix B. Other models for fi

Previously proposed models assume that fi is a weighted function of particle size, fi =
dici/

∑
(dici) (Marks et al. 2012) or volume, fi = d3

i ci/
∑

(d3
i ci) (Tunuguntla et al. 2014).

These approaches do not fit our simulation data for fi (figure 7a–c) or F̂i (figure 7d–f ) in
uniform shear flows.
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Figure 7. (a–c) Ratio of species-specific pressure to bulk pressure, fi = Pi/P, for different size ratios. Symbols
represent data for large (©, blue) and small (�, red) particles. Solid curves are predictions of (3.3) recast as
a pressure ratio, i.e. fi = ciF̂i. Thin curves are fi as assumed in previous studies: fi = dici/

∑
(dici) (dashed)

(Marks et al. 2012) and fi = d3
i ci/

∑
(d3

i ci) (dash-dot) (Tunuguntla et al. 2014). Dotted lines represent the
monodisperse case (dl/ds = 1) where fi = ci. (d–f ) The dependence of the scaled segregation force, F̂i = fi/ci,
on ci for various models compared with simulation data and (3.3). Data and (3.3) fits are reproduced from
figure 2(a–c).
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