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Unsteady inviscid flow models of wings and airfoils have been developed to study the
aerodynamics of natural and man-made flyers. Vortex methods have been extensively
applied to reduce the dimensionality of these aerodynamic models, based on the
proper estimation of the strength and distribution of the vortices in the wake. In
such modelling approaches, one of the most fundamental questions is how the vortex
sheets are generated and released from sharp edges. To determine the formation of
the trailing-edge vortex sheet, the classical steady Kutta condition can be extended
to unsteady situations by realizing that a flow cannot turn abruptly around a sharp
edge. This condition can be readily applied to a flat plate or an airfoil with cusped
trailing edge since the direction of the forming vortex sheet is known to be tangential
to the trailing edge. However, for a finite-angle trailing edge, or in the case of flow
separation away from a sharp corner, the direction of the forming vortex sheet is
ambiguous. To remove any ad hoc implementation, the unsteady Kutta condition, the
conservation of circulation as well as the conservation laws of mass and momentum
are coupled to analytically solve for the angle, strength and relative velocity of the
trailing-edge vortex sheet. The two-dimensional aerodynamic model together with the
proposed vortex-sheet formation condition is verified by comparing flow structures
and force calculations with experimental results for several airfoil motions in steady
and unsteady background flows.

Key words: aerodynamics, swimming/flying, vortex shedding

1. Introduction

Mankind has been dreaming to fly for centuries. However, the fundamental flying
mechanism had not been understood until the pioneers of aerodynamics, such as Kutta
and Joukowski (Milne-Thomson 1958), connected lift generation to the circulation
of an airfoil in the steady sense. Over the last several decades, in order to design
high-performance micro aerial vehicles (MAVs), major research effort has been
focused on unveiling the unsteady aerodynamic secrets of insects and birds that have
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demonstrated unrivalled manoeuverability and agility. Early researchers (Ellington
1984; Dickinson & Gotz 1993) have attributed the high lift performance of the natural
flyers to an attached leading-edge vortex (LEV). Later, numerous investigations (Liu
& Kawachi 1998; Dickinson, Lehmann & Sane 1999; Sun & Tang 2002; Wang,
Birch & Dickinson 2004; Lua, Lim & Yeo 2008; Kim & Gharib 2010; DeVoria &
Ringuette 2012; Cheng et al. 2013; Liu et al. 2015a; Polet, Rival & Weymouth 2015;
Onoue & Breuer 2016; Xu & Wei 2016) have been carried out to study the dynamics
of the wake vortices as well as its effects on force generation for wings or airfoils
undergoing unsteady motions, such as accelerating, pitching, flapping, etc.

For theoretical investigation, inviscid potential flow together with vortex methods
have been extensively applied to provide a reduced flow model without solving the
Navier–Stokes equation. For example, Minotti (2002) adopted a virtual coordinate
frame to develop an unsteady framework for a two-dimensional (2-D) rotating flat
plate and employed a single point vortex to emulate the effect of the LEV. However,
the single vortex was still modelled in a quasi-steady manner that the location and
circulation of the vortex are fixed during the movement of the plate. Michelin &
Smith (2009), Wang & Eldredge (2013) and Hemati, Eldredge & Speyer (2014)
modelled the wake using finite sets of point vortices with varying strengths and
evolving locations. This resulted in significant improvement in capturing the unsteady
features of the flow; whereas the accuracy of the model is still limited, especially
for cases with complex near-field wake patterns, due to the overly reduced modelling
of the vortical structures. An alternative approach is to fully represent the wake
vortex sheets in a discretized sense, using either point vortices or vortex panels
as demonstrated by Katz (1981), Streitlien & Triantafyllou (1995), Jones (2003),
Yu, Tong & Ma (2003), Pullin & Wang (2004), Ansari, Zbikowski & Knowles
(2006a,b), Shukla & Eldredge (2007), Xia & Mohseni (2013a), Ramesh et al. (2014)
and Li & Wu (2015). Due to a relatively complete representation of all vortical
structures in the wake, the vortex-sheet approach generally yields promising accuracy;
however, the simulation becomes increasingly expensive as time proceeds. As a
remedy, a vortex-amalgamation method (Xia & Mohseni 2013b, 2015) has recently
been proposed to effectively restrain the growth of the computational cost for large
simulations.

In practice, our previous model (Xia & Mohseni 2013a) for a 2-D unsteady flat
plate could be readily applied to the case of a rigid wing or airfoil with negligible
thickness. However, the same extension might not be applicable for an airfoil as
the model requires us to establish an analytical mapping between the airfoil and a
circle. Although special solutions for certain types of airfoil could exist (such as
the Joukowski airfoil), it is generally challenging to obtain such transformation for
an arbitrary-shaped airfoil. To address this difficulty, the effect of the airfoil might
be substituted by a closed vortex sheet coinciding with the surface of the airfoil,
the framework of which is consistent with the boundary-element method (Morino &
Kuo 1974; Katz 1981; Katz & Plotkin 1991; Zhu et al. 2002; Jones 2003; Shukla &
Eldredge 2007; Pan et al. 2012).

The essence of vortex-based flow models lies in the accurate predictions of the
strength and distribution of the vortices in the flow field. Since the evolution of free
vortices follows the Birkhoff–Rott equation (Lin 1941; Rott 1956; Birkhoff 1962),
the key problem to be addressed is how vorticity detaches from the surface of the
solid body and enters the flow. In reality, the generation of vorticity is related to
the fluid–solid interaction that forms the shear layer, which is essentially the product
of the viscous effect. Under the framework of inviscid flow, a typical solution is
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Two-dimensional unsteady aerodynamics 441

to apply vorticity releasing conditions at the vortex shedding locations of the solid
body, e.g. the Kutta condition at a sharp trailing edge. This means that all the
viscous effects can be translated into a single condition (Crighton 1985) that yields
an estimation of the circulation around the body or the vorticity created near each
vortex shedding location. For trailing edges, the classical Kutta condition has been
shown to be effective for steady background flows, thus it is also commonly known
as the steady-state trailing-edge Kutta condition which requires a finite velocity at the
trailing edge (Saffman & Sheffield 1977; Huang & Chow 1982; Mourtos & Brooks
1996). For a Joukowski airfoil, the steady-state Kutta condition is realized by setting
the trailing edge to be a stagnation point in the mapped circle plane. The effect of
this implementation is that the stagnation streamline from the trailing edge will be
tangential to the edge (or bisect a finite-angle trailing edge), which is consistent with
the physical flow near the trailing edge. For the case of a flat plate, this condition will
guarantee the streamline emanating from this stagnation point to be in line with the
plate, fulfilling the condition proposed in previous studies (Chen & Ho 1987; Poling
& Telionis 1987). However, the stagnation streamline for a finite-angle trailing edge
is ambiguous (Poling & Telionis 1986), which a causes great challenge to modelling
the trailing-edge vortex (TEV) sheet.

To address this difficulty, an additional relationship other than the Kutta condition
is necessary. Realizing that the flow field is obtained by solving the Euler equation,
which is the Navier–Stokes equation without the viscous term, this flow model
generally has difficulty in capturing viscous effects around and behind a moving
object. The introduction of the vortex sheet could partially address this difficulty.
Physically, a vortex sheet represents a viscous shear layer in the Euler limit, by
letting the thickness of the shear layer approach zero (Saffman 1992, §2.2). From a
kinematic perspective, this approximation would yield the solution to the inviscid flow
outside the vortex sheet with the non-penetration boundary condition implemented at
the fluid–solid interface. However, a vortex sheet is inadequate to represent a viscous
shear layer in the dynamic sense. This is because the vortex sheet only conserves the
tangential velocity jump, which is also the circulation per unit length of the original
shear layer. Therefore, a vortex sheet does not resolve the velocity gradient across the
sheet; neither does it account for the mass and momentum associated with the shear
layer, nor the fluid entrained by the shear layer. To this end, a vortex-sheet-based flow
model is likely to capture the force contributions from circulation, i.e. lift and pressure
drag, but not the viscous drag which is closely related to the momentum balance of
the viscous shear layer. In order to properly capture other viscous effects, such as
entrainment, viscous drag or even energy dissipation, we propose a generalized sheet
with superimposed quantities and discontinuities associated with the original shear
layer. This enables the application of the conservation laws of mass and momentum
for a flow system containing a vortex sheet. As seen in this paper, application of
proper boundary conditions together with standard conservation laws allow for the
calculation of a correct wall-bounded vortex sheet as well as the free vortex sheet
released at the trailing edge of an airfoil.

The paper is outlined as follows. The framework of the vortex-sheet-based
aerodynamic model is presented in § 2. Section 3 provides an implicit expression
of the unsteady Kutta condition, which relates the strength of the forming vortex
sheet to its adjacent bound vortex sheet. Section 4 introduces a generalized sheet
model, which is applied to the particular case of the finite-angle trailing edge to
derive a momentum balance relation. Then, the momentum balance relation and the
conservation of circulation are incorporated in § 5 to obtain an explicit form of the
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FIGURE 1. (Colour online) Diagram showing the unsteady flow model of an airfoil.

unsteady Kutta condition, which allows analytical calculation of the angle, strength
and shedding velocity of the trailing-edge vortex sheet. The numerical implementation
and validations of this aerodynamic model are presented in § 6.

2. Unsteady aerodynamic model
The framework of the aerodynamic model for a 2-D airfoil is not fundamentally

different from that for a 2-D flat plate (Xia & Mohseni 2013a). In both situations,
potential flow is applied as the governing equation, which is based on solving the
Navier–Stokes equation in the Eulerian limit. This has two main advantages: one is
analytical representation of the entire flow field, the other is saving computational cost
since the domain of interest is reduced from the entire flow field to only finite vortical
structures.

2.1. Vortex-sheet-based flow model
Assume that the rigid-body motion of the airfoil in a quiescent environment can be
decomposed into a translational motion of velocity −U(t) and a rotational motion
of angular velocity Ω(t). Both the translational and the rotational motions can be
incorporated into the boundary condition at the solid–fluid interface. As shown in
figure 1, flow separation near the leading edge and at the sharp trailing edge of the
airfoil causes the formation of two free vortex sheets in the wake. In a Cartesian
coordinate system with the origin fixed at the rotation centre, the complex potential
of the flow around an airfoil with angle of attack, α(t), can be formulated as

w(z, t) = −
i

2π

[ ∫ SL(t)

0
ln(z− zL(s, t))γL(s, t) ds︸ ︷︷ ︸

LEV term

+

∫ ST (t)

0
ln(z− zT(s, t))γT(s, t) ds︸ ︷︷ ︸

TEV term

]
+wb(z, t)︸ ︷︷ ︸

Body term

, (2.1)

where z is the complex position, s is the curve length between the separation point and
a vortex element along a vortex sheet and γ is the vortex-sheet strength (circulation
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per unit length). The subscripts L and T denote the properties associated with the
leading-edge and trailing-edge vortex sheets, respectively. So SL and ST represent the
total lengths of the leading-edge and trailing-edge vortex sheets, respectively.

In (2.1), wb(z, t) represents the flow induced by the body motion of the airfoil,
and is usually associated with the so-called ‘bound vortex’. Therefore, the ‘bound
vortex’ can be viewed as a substitute for the solid body so that the non-penetration
boundary condition can still be satisfied at the fluid–solid interface while the solid
body is removed from the flow model. Again, we note here that the ‘body term’
or the ‘bound vortex’ implicitly accounts for the effects of translation, rotation or
deformation, and more details will be provided in § 2.2. In general, the ‘bound vortex’
can be realized by placing image vortices inside the solid body for a Joukowski airfoil
or a flat plate, where the strength and location of the image vortices can be first
decided from Milne-Thomson’s circle theorem (Milne-Thomson 1958) in the circle
plane and then mapped back to the physical plane. However, for an arbitrarily shaped
airfoil which cannot be easily mapped to a circle, an analytical solution for wb(z, t)
is not available. In this case, the ‘bound vortex’ can be realized by placing a bound
vortex sheet along the surface of the airfoil as shown in figure 1, and wb(z, t) becomes

wb(z, t)=−
i

2π

∫ SB(t)

0
ln(z− zB(s, t))γB(s, t) ds, (2.2)

where the subscript B denotes the properties associated with the bound vortex sheet.
Note here that s for the bound vortex sheet starts from the trailing edge with a counter-
clockwise direction, and SB is the total length of the bound vortex sheet.

Combining (2.1) and (2.2) and taking the derivative dw/dz, we obtain the complex-
conjugate velocity field, V̄(z, t)= u(z, t)− iv(z, t), in the form

V̄(z, t) = −
i

2π

[ ∫ SL(t)

0

γL(s, t) ds
z− zL(s, t)︸ ︷︷ ︸

LEV term

+

∫ ST (t)

0

γT(s, t) ds
z− zT(s, t)︸ ︷︷ ︸

TEV term

+

∫ SB(t)

0

γB(s, t) ds
z− zB(s, t)︸ ︷︷ ︸

Bound vortex sheet term

]
. (2.3)

It should be noted that the velocity field represented by (2.3) is singular on the vortex
sheets, where the jump of the tangential component of velocity is equal to the strength
of the vortex sheet (Saffman 1992). More details regarding the evaluation of the vortex
sheets will be discussed in §§2.2 and 3. At this point, the calculation of the entire flow
field is reduced to determining the strength and distribution of only a few finite length
vortex sheets.

2.2. Bound vortex sheet
The instantaneous velocity field around an airfoil can now be decided if the two
free vortex sheets and one bound vortex sheet are given. This requires knowing the
strengths and positions of the vortex sheets (γL, γT, γB, zL, zT, zB). Considering the
case where the flow initially remains fully attached, this indicates no flow separation
or free vortex sheet existed at t = 0. Under this assumption, γL, γT , zL, zT for later
times might be found through solving the formation and evolution of the free vortex
sheets. So we assume that γL, γT , zL, zT are known in order to solve the bound vortex
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sheet at any given time. Furthermore, the position of the bound vortex sheet, zB, is
also known as it coincides with the surface of the airfoil at any time. As a result,
the main task here is to solve for the vortex-sheet strength γB. We should note that a
bound vortex sheet is treated differently from a free vortex sheet since zB is prescribed.
Actually, the free vortex sheet is applied to represent the physical free shear layer,
while the bound vortex sheet is introduced to ‘mimic’ the effect of a solid boundary.
Therefore, it is expected that the primary role of the bound vortex sheet is to satisfy
the non-penetration boundary condition, which can be expressed as

u(z′) · n̂(z′)= ub(z′) · n̂(z′) for z′ = zB(s′) and 0 6 s′ 6 SB, (2.4)

where u(z′) = (u(z′), v(z′)) is the flow velocity at the surface of the airfoil, zB, and
n̂(z′) is the unit normal vector to the surface. Note that the definitions for z′ and
s′ only apply to the current section. Also, time t is dropped here and in following
derivations for simplicity although they should be satisfied instantaneously. ub(z′) is
the velocity associated with the surface element of the airfoil so it generally describes
the deformation of an airfoil. However, ub(z′) can be also applied to account for
the translational motion in the complex-conjugate form, −|U|e−iα, and the rotational
motion in the complex-conjugate form, −iΩ z̄′, where z̄′ denotes the complex conjugate
of z′.

Since the bound vortex sheet is placed at the surface of the airfoil, it creates a
velocity jump across zB. Based on (2.3) and the definition of a vortex sheet (Saffman
1992), the two limiting values for u±(z′)− iv±(z′)= V̄±B (z′) can be derived as

V̄±B (z
′) = −

i
2π

[∫ SL

0

γL(s) ds
z′ − zL(s)

+

∫ ST

0

γT(s) ds
z′ − zT(s)

+−

∫ SB

0

γB(s) ds
z′ − zB(s)

]
±

1
2
γB(s′)

dz̄′

|dz′|
, (2.5)

where −
∫

denotes the Cauchy principal value which excludes the vorticity at z′ from
the integral. dz′|dz′|−1 is the complex form of the unit tangential vector, ŝ(z′), at
the surface of the airfoil. With ŝ(z′) pointing in the counter-clockwise direction of
the airfoil body, V̄+B (z′) becomes the velocity limit when the bound vortex sheet
is approached from the outside of the airfoil, whereas V̄−B (z′) is the velocity limit
when the vortex sheet is approached from the inside. Since u(z′) is the flow velocity
outside the surface of the airfoil, it should take the value V̄+B (z′). With n̂(z′) written
as −i dz′|dz′|−1, equation (2.4) has the complex form

Re
{[

V̄+B (z
′)+ |U|e−iα

+ iΩ z̄′
] −i dz′

|dz′|

}
= 0. (2.6)

Ideally, equation (2.6) would give the strength of the bound vortex sheet, γB, if γL,
γT , zL, zT and zB are given. However, a general analytical solution to (2.6) does not
exist for an arbitrarily shaped airfoil. Fortunately, it is possible to solve this problem
numerically by discretizing the bound vortex sheet into piecewise linear vortex panels,
the details of which will be discussed in § 6.1.

It should be noted that the strength of the bound vortex sheet γB can be expressed as
γB= uf · ŝ, where uf represents the potential flow velocity at the fluid–solid boundary.
With a no-slip boundary condition, γB can be divided into two terms, γb and γγ ,
according to Eldredge (2010). γb is purely associated with the body-surface motion
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relative to the reference frame, and it can be estimated from γb = ub · ŝ. γγ is the
physical vortex sheet corresponding to the viscous shear layer, which is given by
γγ = γB− γb. Therefore, γγ is invariant regardless of the reference frame being global
or body fixed, while both γb and γB could change as the reference frame changes. To
avoid ambiguity, γB in this study only represents the bound vortex sheet in the global
reference frame.

2.3. Force and torque
Following previous studies (Wu 1981; Eldredge 2010), the aerodynamic force applied
on the airfoil can be estimated based on the rate of change of the total impulse in
the form

F=−ρ
d
dt

∫
∑

S
x× γ ds, (2.7)

where x is the position vector of a vortex-sheet element. γ = γ k̂, where k̂ is the unit
vector normal to the 2-D plane and γ in this work should be substituted with γL, γT

and γB for SL, ST and SB, respectively. ρ is the density.
∑

S represents the entire
vortex-sheet system,

∑
S = SL + ST + SB. Similarly, the total torque exerted by the

fluid on the airfoil can be obtained from

Tτ =−ρ
d

2 dt

∫
∑

S
x× (x× γ ds). (2.8)

The main advantage of (2.7) and (2.8) is that the calculations of force and torque are
completely transformed into the dynamics of the bound and wake vortices, which can
be explicitly obtained from this aerodynamic model. Equations (2.7) and (2.8) will be
used to estimate aerodynamic force and torque for all simulations in § 6.

3. Unsteady Kutta condition

To implement the above-proposed flow model, we need to determine the intensities
and locations of the wake vortices, i.e. γL, γT , zL and zT associated with the leading-
edge and trailing-edge vortex sheets at any given time. Assuming no wake vortex
initially, the task requires understanding the formation and evolution of the leading-
edge and trailing-edge vortex sheets. To this end, the evolution of a free vortex sheet
is dictated by the Helmholtz laws of vortex motion (Helmholtz 1867; Saffman 1992).
According to the third Helmholtz law, the circulation of a vortex-sheet element can be
treated as time invariant once it is detached from the airfoil. Furthermore, the second
Helmholtz law dictates that a vortex element and its overlapping fluid particle should
move together. In accordance with these principles, the velocity describing the motion
of an element on a free vortex sheet can be derived using the Birkhoff–Rott equation
(Lin 1941; Rott 1956; Birkhoff 1962), the formulation of which is similar to (2.3),
with

∫
replaced by −

∫
to remove the self-induced singularity of a vortex element. This

gives the basic principle for evolving vortices in the wake. The only question left is
how vorticity is generated and detached from the surface of the airfoil to form wake
vortex sheets. We note that in reality vortex sheets could come off the airfoil from
multiple separation points. However, the current study only focuses on vortex shedding
at a sharp trailing edge, which is the most common vortex generation mechanism.
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3.1. Previous studies and main challenge
We first consider a simple case, where the vortex sheet is formed at the edge of a flat
plate or a cusped trailing edge of an airfoil. Without considering the viscous effect, a
typical way of deciding the vortex-sheet formation at the trailing edge is the classical
steady Kutta condition. This condition requires the flow velocity at the trailing edge to
be finite or the loading at the trailing edge to be zero, based on the physical sense that
flow cannot turn around a sharp edge. The application of this condition for a flat plate
or a Joukowski airfoil (with cusped trailing edge) has already been demonstrated in
several previous works (Streitlien & Triantafyllou 1995; Yu et al. 2003; Ansari et al.
2006a; Xia & Mohseni 2013a) among others. Basically, this condition is equivalent
to enforcing a stagnation point at the trailing edge in the transformed circle plane.
However, Xia & Mohseni (2014) recently pointed out that a stagnation point generally
does not exist at the trailing edge for the case of body rotation. As a result, they
proposed to implement the unsteady Kutta condition by relaxing the trailing-edge point
of the circle plane from totally stagnant to only stagnant in the tangential direction
of the surface, which still conforms to the classical Kutta condition in the sense of
preventing flow around the sharp edge. Here, we emphasize that these steady and
unsteady Kutta conditions are problem dependent, meaning they only apply to a flat
plate or an airfoil that can be mathematically mapped to a circle.

Alternatively, Jones (2003) modelled the flow around a flat plate using a bound
vortex sheet coincident with the plate and two free vortex sheets that are emanating
from the plate’s two sharp edges, which is similar to the flow model presented here
for an airfoil. By removing the singularities of the flow velocity at the trailing edge,
which complies with the classical Kutta condition that flow velocity should be finite
at a sharp edge, Jones managed to derive an analytical unsteady Kutta condition. This
condition can be summarized as follows:

(i) γg = γE;
(ii) ug = uE;

(iii) θg = 0.

Here, γg, ug and θg represent the strength, tangential velocity (relative to the edge),
and angle (relative to the tangent of the plate) of the forming vortex sheet, respectively.
γE is the strength of the bound vortex sheet at the sharp edge, and uE is the average
tangential slip between the bound vortex sheet and the plate at the edge. Therefore,
Jones’ unsteady Kutta condition allows the analytical calculation of the strength,
velocity and direction of the forming vortex sheet for the sharp edge of a flat plate
or a cusped airfoil, based on the existing bound vortex sheet. However, the current
work is concerned with a general-shaped airfoil, for which Jones’ unsteady Kutta
condition might not be suitable. Specifically, if there is a finite angle, 1θ0 ∈ [0, π),
between the upper and lower surfaces of the trailing edge, θg, of the forming vortex
sheet would be ambiguous.

This challenge is further explained below. Since the forming vortex sheet moves
with the fluid as a material sheet, it resembles a streakline released from the trailing
edge in the body-fixed reference frame. Recognizing that at the origin of a streakline
the directions of the streakline and the streamline are identical to each other, this
indicates that the ambiguity of the vortex-sheet direction is equivalent to the ambiguity
of the stagnation streamline direction. In fact, for steady trailing-edge flow where the
shedding of vorticity vanishes (γg= 0), Poling & Telionis (1986) pointed out that the
steady Kutta condition requires the stagnation streamline to bisect the wedge angle
of a finite-angle trailing edge. Otherwise, an unbalance between the upper and lower
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Bound vortex sheet
Trailing edge

Trailing edge vortex sheet

Bound vortex sheet

Leading edge vortex sheet

Airfoil  0

 0

FIGURE 2. (Colour online) The vortex-sheet configuration for (3.2).

shear layers near the trailing edge would cause a non-zero vorticity generation which
would be naturally unsteady. According to this argument, an unsteady trailing-edge
flow naturally generates vorticity and causes the stagnation streamline to divert from
the wedge bisector line, which has been confirmed experimentally (Ho & Chen 1981;
Poling & Telionis 1986). A prominent theory for the unsteady situation has been
proposed by Giesing (1969) and Maskell (1971) that the stagnation streamline is an
extension of one of the two tangents at the trailing edge. Although Basu & Hancock
(1978) has provided extensive discussion supporting the Giesing–Maskell model, a
notable drawback of this model is that it does not reduce to the steady-state solution
in the limit of vanishing vorticity. Furthermore, Poling & Telionis (1986) reported
that the Giesing–Maskell model holds approximately for large rate of vorticity
generation, whereas the stagnation streamline direction changes smoothly between the
two tangents of the trailing edge when vorticity generation is low.

3.2. The condition for a finite-angle trailing edge
In this study, we seek to derive an unsteady Kutta condition for a finite-angle trailing
edge to analytically determine γg, ug, and θg associated with the forming vortex sheet.
According to our previous study of an unsteady flat plate (Xia & Mohseni 2013a,
2014), the unsteady Kutta condition can be implemented numerically by satisfying the
condition

ug · n̂g = 0, (3.1)

where ug is the vector form of the vortex-sheet velocity relative to the trailing edge
and n̂g is the unit vector normal to the vortex sheet at the trailing edge as shown
in figure 2. Basically, equation (3.1) enforces the streamline to be tangential to the
forming vortex sheet.

Here, we shall extend (3.1) to the situation of a finite-angle trailing edge to express
ug in terms of γg and θg, as well as other parameters associated with the instantaneous
background flow and the bound vortex sheet. We assume the flow field changes
smoothly so that all vortex sheets are smooth curves near the trailing edge and
their strengths also vary smoothly along the sheets. The vortex-sheet system for this
calculation is illustrated in figure 2, where γ1 and γ2 are the bound vortex strengths
and γg is the strength of the forming vortex sheet as it approaches the trailing edge.
Noting that the vortex-sheet strength is not well defined at the trailing-edge point,
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where γ1, γ2 and γg are discontinuous with each other, the trailing-edge point is
actually a singularity point in the vortex-sheet system. Fortunately, according to the
Birkhoff–Rott equation (Lin 1941; Rott 1956; Birkhoff 1962), ug should be estimated
in the desingularized flow field excluding the vorticity at the trailing edge point. This
allows us to represent ug, based on the vortex-sheet configuration of figure 2 and
(2.3), in the limit form

V̄g = −
i

2π
lim
ε→0

[∫ SL

0

γL(s) ds
zT(0)− zL(s)

+

∫ ST

ε

γT(s) ds
zT(0)− zT(s)

+

∫ SB1

ε

γγ 1(s) ds
zT(0)− zB1(s)

+

∫ SB2

ε

γγ 2(s) ds
zT(0)− zB2(s)

]
+ V̄CT, (3.2)

where V̄CT is the velocity difference associated with the coordinate transformation
from the global reference frame to the body-fixed reference frame. t in (2.3) is
dropped here for brevity. Recall the discussion of the bound vortex sheet in § 2.2,
γγ (s) rather than γB(s) should be used here for velocity calculation because γb(s)= 0
in the body-fixed reference frame. For convenience, we further divide γγ (s) into two
parts, γγ 1(s) and γγ 2(s), as shown in figure 2. The relationships between the original
and the divided bound vortex sheets are given by γγ 1(s)= γγ (s) and zB1(s)= zB(s) for
0< s6SB1, and γγ 2(s)=γγ (SB− s) and zB2(s)= zB(SB− s) for 0< s6 (SB−SB1), where
SB1 and SB2 satisfy SB1+ SB2= SB. In this way, the two bound vortex sheets both ‘stem’
from the trailing edge, meaning limε→0 zB1(ε)= limε→0 zB2(ε), and limε→0 γγ 1(ε)= γ1

and limε→0 γγ 2(ε)= γ2.
The main challenge of calculating (3.2) is that the integrands of

∫ ST

ε
,
∫ SB1

ε
and

∫ SB2

ε

become singular as ε→ 0. As a remedy, we only evaluate its leading-order terms as
demonstrated in appendices A and B. Based on the smoothness assumption of the
vortex sheets, there exist finite values, ε1, ε2 and εT , so that γγ 1(s) and zB1(s) are
smooth on [0, ε1], γγ 2(s) and zB2(s) are smooth on [0, ε2], and γT(s) and zT(s) are
smooth on [0, ε2]. Accordingly, equation (3.2) can be divided as

V̄g = −
i

2π
lim
ε→0

[∫ εT

ε

γT(s) ds
zT(0)− zT(s)

+

∫ ε1

ε

γγ 1(s) ds
zT(0)− zB1(s)

+

∫ ε2

ε

γγ 2(s) ds
zT(0)− zB2(s)

]
−

i
2π

[∫ SL

0

γL(s) ds
zT(0)− zL(s)

+

∫ ST

εT

γT(s) ds
zT(0)− zT(s)

+

∫ SB1

ε1

γγ 1(s) ds
zT(0)− zB1(s)

+

∫ SB2

ε2

γγ 2(s) ds
zT(0)− zB2(s)

]
+ V̄CT . (3.3)

Applying appendix A to the first three integrals and appendix B to the last four
integrals yields

V̄g =−
i

2π
lim
ε→0

[
γge−iθg ln (ε)+ γ1e−iθ1 ln (ε)+ γ2e−iθ2 ln (ε)

]
+ V̄add, (3.4)

where V̄add represents all additional terms of o(ln(ε)) as ε → 0. θ1, θ2 and θg

correspond to the angles of the vortex sheets (γγ 1, γγ 2 and γT) in the complex
domain as they approach the trailing edge. Now, we combine (3.4) and Im{V̄geiθg}= 0
(the complex form of (3.1)) and then divide both sides by the leading-order term,
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ln(ε), to obtain γg + γ1 cos(θg − θ1) + γ2 cos(θg − θ2) = 0. Together with the angle
relations defined in figure 2, the unsteady Kutta condition takes the form

γg = γ1 cos1θ1 + γ2 cos1θ2. (3.5)

For the case of a flat plate or a cusped trailing edge, where both 1θ1 and 1θ2 are
zero, equation (3.5) is reduced to γg = γ1 + γ2, which is consistent with condition (i)
of § 3.1 given by Jones (2003). For a finite-angle trailing edge, equation (3.5) tells us
that the strength of the forming vortex sheet γg depends on its direction θg and the
strengths of its adjacent bound vortex sheets, γ1 and γ2. In § 5, equation (3.5) will be
combined with the momentum balance relation and the conservation of circulation to
analytically determine γg, ug and θg of the forming vortex sheet.

4. Momentum balance at the trailing edge
The unsteady Kutta condition alone does not give the full information about the

forming vortex sheet at a finite-angle trailing edge. Physically, we believe that the
formation of the free vortex sheet is the outcome of the upper and lower shear flows
merging at the trailing edge. As such, the momentum of the merging process must
be balanced not only along the direction of the forming vortex sheet but also in the
normal direction. We hypothesize that this momentum balance provides an important
dynamic condition relating to the angle of the forming vortex sheet, in addition to the
kinematic condition (i.e. the Kutta condition).

Before we proceed, it is necessary to discuss the main challenges of applying
the conservation laws of mass and momentum to a system of vortex sheets. Take
the bound vortex sheet as an example, the non-penetration and no-slip boundary
conditions are the physically correct conditions for fluid–solid interactions in most
applications. While the Navier–Stokes equation allows for the matching of both
normal and tangential velocity components between the fluid and the solid, the Euler
equation allows only for the matching of the wall-normal velocity component and
it does not impose any constraints on the tangential velocity component. In order
to remedy this for large Reynolds number flows, where the Euler equation is often
accepted as a suitable model, we superimpose the Euler equations with a physical
vortex sheet, γγ , as introduced in § 2.2 to satisfy the no-slip boundary condition.
Therefore, γγ actually represents the physical viscous shear layer at the fluid–solid
interface, in the sense of preserving the tangential velocity jump or the circulation
across the shear layer. As has been demonstrated in § 3.2, the modelling of the
physical vortex sheet allows us to perform calculations related to the formation
of a free vortex sheet, especially in term of the sheet strength. However, since
the thickness and the velocity profile of a viscous shear layer are not resolved by
a vortex sheet, the mass and momentum associated with the shear layer are not
captured. Although this will not directly affect the solution of the original Euler
equation, it would definitely cause unbalanced equations of mass and momentum
within the vortex sheet, especially in the tangential direction, and thereby affecting
the correct prediction of viscous shear force exerted on the shear layer in inviscid
flows.

In this section, a generalized sheet model, which incorporates the mass and
momentum fluxes associated with the original shear layer, is proposed to enable
the correct implementation of the momentum conservation law for a system of vortex
sheets. Then, the new sheet model is applied to derive a momentum balance relation
for a control volume of the merging zone near the finite-angle trailing edge.
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Viscous shear layer

A sheet of discontinuities

FIGURE 3. A generalized sheet model to represent a viscous shear layer.

4.1. A generalized sheet model for viscous shear layer
In order to properly model the dynamics of a viscous shear layer, here we propose
a generalized sheet model on top of the original vortex sheet where all relevant
quantities or discontinuities associated with the viscous shear layer are superimposed.
A schematic of this modelling approach is illustrated in figure 3. As a first step, a
sheet of discontinuity in the streamfunction ψ is placed at the location of the original
vortex sheet, so that Jψ(s)K is equal to the volumetric flow rate of the viscous shear
layer in the form

JψK=
∫ δs

0
us dn, (4.1)

where δs is the thickness of the shear layer and us is the tangential velocity component.
Thus, the mass conservation for the new sheet can be written in the differential form

dρs

dt
= ρ

∂JψK
∂s
− ṁe = 0, (4.2)

where ṁe(s) is the per-unit-length mass entrainment associated with the shear layer
and ρs is the per-unit-length density defined as ρs = ρδs.

To apply the momentum conservation law to a shear layer, we define a new
discontinuity, JχK, in analogy to JψK such that

JχK=
∫ δs

0
(us)2 dn. (4.3)

Therefore, JχK represents the momentum flux associated with the generalized sheet.
Furthermore, it is assumed that the new sheet has a characteristic velocity uI(s) =
us

I ŝ, satisfying us
I = JχK/JψK. In this way, the momentum flux of the shear layer is

conserved. To further generalize the vortex sheet, we also superimpose a pressure
jump, Jp(s)K, a shear stress jump, Jτ(s)K and a surface stress (tension) tensor, T s,
which is related to the surface stress ts as ts= ŝ ·T s in two dimensions. Now, applying
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the Reynolds transport theorem to a sheet element with a length of 1s, the momentum
conservation can be expressed as

ρ
d(JψKŝ)

dt
= ρ

∂(JψKŝ)
∂t

+ ρ
∂(JψKuI)

∂s
− ṁeue =−JpKn̂+ JτKŝ+∇ · T s, (4.4)

where ue is the velocity of the entrained fluid. We note that by assigning proper
quantities and discontinuities this new sheet is capable of modelling the dynamics of a
viscous shear layer at fluid–fluid or fluid–solid interfaces in single and multiple phase
flows.

Next, we apply (4.2) and (4.4) to a special case, the physical vortex sheet γγ
around the surface of an airfoil with free vortex sheets attached. Equation (4.2) can
be integrated around the airfoil to give

ρ
∑

JψgK−
∫ SB

0
ṁe ds= 0, (4.5)

where the
∑

term sums up the mass flux drained into each attached free vortex sheet,
and JψgK is the streamfunction jump at the origin of a free vortex sheet. Considering
that fluid is physically entrained from the outer flow into the shear layer, the velocity
of the entrained fluid should equal the fluid-side velocity of the bound vortex sheet.
This gives ue= uf − ub in the body-fixed reference frame, where ub= us

bŝ+ un
bn̂. With

the non-penetration boundary condition, we have uf = us
f ŝ + un

bn̂ and γγ = us
f − us

b.
Neglecting surface tension and plugging in (4.2), equation (4.4) can be expanded in
the ŝ and n̂ directions as

ρ

(
∂JψK

dt
+ JψK

∂us
I

∂s
+
∂JψK
∂s

(us
I − γγ )

)
ŝ= JτKŝ, (4.6)

0= JpKn̂. (4.7)

Equation (4.7) is still consistent with previous studies (Saffman 1992; Wu, Ma &
Zhou 2006) in that pressure is continuous across a vortex sheet. This means that the
generalized sheet model does not affect the force balance in the normal direction of
the sheet. In this sense, equation (2.7) still captures the total force contributed from
the pressure term. Now, we further integrate equation (4.6) around the airfoil to obtain

Jf τ K= ρ
∫ SB

0

(
∂JψK

dt
+ JψK

∂us
I

∂s
+
∂JψK
∂s

(us
I − γγ )

)
ŝ ds+ ρ

∑
JψgKu∗g, (4.8)

where Jf τ K is the jump of the total shear force between the fluid and solid sides
of the vortex sheet around the airfoil. Similar to (4.5), the

∑
term sums up the

momentum flux, JχgK, entering each attached free vortex sheet. u∗g is the momentum-
based characteristic velocity of a free vortex sheet, satisfying u∗g = JχgK/JψgK. It is
noted that the fluid side of γγ is a free shear surface with zero shear stress, Jf τ K is
actually the unsteady viscous drag exerted by the solid body, which is not captured
by (2.7). Similar to that reported by Liu, Zhu & Wu (2015b), the term JψK in this
study is also the core parameter in drag generation, while here the calculation is
performed for the unsteady case. Last, we note that other necessary global quantities
and discontinuities can also be superimposed at the location of the original vortex
sheet at the solution level for improved force calculation and accurate prediction of
vortex-sheet formation, as summarized in table 1.
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Name Symbol Feature Captured global quantity

Free vortex sheet γ Free shear surfaces at both
sides

Circulation per unit length
of wake shear layer

Bound vortex sheet γγ Free shear surface at one
side; no-slip at the other
side

Circulation per unit length
of body shear layer

Mass-flux sheet JψK Captures the entrainment Mass flux
Momentum-flux sheet JχK Enables the analysis of

momentum transportation
Momentum flux

Energy-flux sheet JλK Enables the analysis of
energy dissipation

Flux of kinetic energy

Stress sheet Jσ K Enables the force analysis,
especially the viscous force

Jumps of pressure, shear
stress or surface stress

TABLE 1. A summary of the sheet models for a viscous shear layer. JλK is defined as
JλK=

∫ δs

0 (u
s)3 dn.

4.2. Momentum balance for a finite-angle trailing edge
With the generalized sheet model proposed in § 4.1, we are now ready to derive the
momentum balance for the merging flow at a finite-angle trailing edge, a schematic
of which is provided in figure 4 with the main notations explained in table 2. To
formulate the problem, a 2-D material volume Am is defined in the body-fixed
reference frame with its boundary ∂Am marked by the dashed contour. εs is the
characteristic length of Am, and is defined as the length of the common interface
Sγ g between Am1 and Am2 as shown in figure 4. It is noted that the bulk of the
merging area Am is immersed in the inviscid flow outside the sheet system. This is
because the inviscid flow also plays an essential part in dictating the flow regime
near the trailing edge. In fact, for large Reynolds number situation, where mass and
momentum contributions from the viscous shear layer become negligible, the direction
of the trailing-edge streamline should be solely governed by the inviscid flow. Here,
a few physical assumptions and conditions are listed to simplify this problem.

(i) The merging process does not happen until the upper and lower streams meet
each other at the trailing edge, so any lead region of Am before the trailing edge
should be much smaller than Am itself. To this end, the lengths of Sγ 1 and Sγ 2
are assumed to be o(εs), whereas all other surfaces of Am, including S1, Sf 1, Sg−,
Sg+, Sf 2 and S2, have dimension of O(εs).

(ii) Sf 1 and Sf 2 coincide with streamlines, so there is no mass flux across the surfaces
and un = u · n̂m = 0.

(iii) Assuming the flow field changes smoothly, ∂/∂t of any quantity is finite.

To obtain the momentum balance equations, we start with the mass conservation.
Note that the dividing surface Sγ g overlaps with the forming vortex sheet, so there is
no mass flux across it and the mass conservation for Am can be written separately for
Am1 and Am2 in the form

d
dt

∫
Am1

ρ dA=
∫

Am1

∂ρ

∂t
dA+

∮
∂Am1

ρ(u · n̂m) ds= 0, (4.9)

d
dt

∫
Am2

ρ dA=
∫

Am2

∂ρ

∂t
dA+

∮
∂Am2

ρ(u · n̂m) ds= 0. (4.10)
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Streamline

Bound vortex sheet

Streamline
Trailing-edge vortex sheet

Bound vortex sheet

Airfoil

FIGURE 4. (Colour online) The formation of a free vortex sheet at a finite-angle trailing
edge. The definitions of the main symbols are listed in table 2.

Am The control volume representing the merging area at a finite-angle trailing
edge

Am1, Am2 The upper and lower volumes of Am, respectively
S1, S2 The flow-entering boundaries of Am1 and Am2, respectively
Sg+, Sg− The flow-exiting boundaries of Am1 and Am2, respectively
Sf 1, Sf 2 The outer boundaries of Am1 and Am2, respectively, corresponding to

streamlines
Sγ 1, Sγ 2 The inner boundaries of Am1 and Am2, respectively, on the surface of the

airfoil
Sγ g The common interface between Am1 and Am2

εs The length of the vortex sheet from the sharp corner to the end of the
control volume Am

∂Am The contour of Am surrounded by Sγ 1, S1, Sf 1, Sg−, Sg+, Sf 2, S2 and Sγ 2

ŝm, n̂m The unit tangential and normal vectors defined on ∂Am

ŝg, n̂g The unit tangential and normal vectors defined on the forming vortex sheet
u1+, u2− The fluid-side velocities of the upper and lower bound vortex sheets,

respectively
u1−, u2+ The solid-side velocities of the upper and lower bound vortex sheets,

respectively
ug−, ug+ The velocities at the upper and lower sides of the forming vortex sheet,

respectively
γ1, γ2, γg Strengths of the upper and lower bound vortex sheets and the forming

vortex sheet, respectively

TABLE 2. Nomenclature table summarizing the main notations in figure 4.
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For the bulk of Am, which contains incompressible isotropic Newtonian fluid, the
momentum equation in the body-fixed reference frame is expressed as

du
dt
=

1
ρ
(−∇p+∇ · τ )+ u̇Ω, (4.11)

where τ is the shear stress tensor. Here, u̇Ω = −2Ω × u − Ω × (Ω × r) − U̇b −

Ω̇ × r, where U̇b =−U̇ represents the linear acceleration of the airfoil and U is the
translational background flow velocity at the infinity in the body-fixed reference frame.
Ω̇ is the angular acceleration of the airfoil and r is the position vector relative to the
rotation centre. At this point, the momentum conservation for the whole Am can be
derived as

d
dt

∫
Am

ρu dA =
∫

Am

∂(ρu)
∂t

dA+
∮
∂Am

ρu(u · n̂m) ds

=

∫
Am−

(−∇p+∇ · τ + ρu̇Ω) dA

+

∫
Sγ 1+Sγ 2+Sγ g

(JτK+∇ · T s) ds, (4.12)

where Sγ 1, Sγ 2 and Sγ g correspond to the vortex sheets in Am and Am− denotes the bulk
of Am excluding Sγ 1, Sγ 2 and Sγ g. The first term in the second equation is obtained
by integrating equation (4.11), whereas the second term is derived from (4.4) with the
pressure jump across a vortex sheet being zero.

Considering the infinitesimal size of the control volume normal to the vortex sheets,
any variation of the velocity over S1, S2, Sg− and Sg+ is neglected. Together with
condition (ii) of this section, equations (4.9) and (4.10) can be further derived as

u1+S1 + Jψ1K+ ug−Sg− + Jψg−K= 0, (4.13)
u2−S2 + Jψ2K+ ug+Sg+ + Jψg+K= 0, (4.14)

where the velocities associated with the vortex sheets (u1−, u1+, u2−, u2+, ug− and ug+)
are normal to the surfaces of Am and are calculated from un= u · n̂m. The jump of the
streamfunction is applied here to account for the mass flux associated with a vortex
sheet, similar to (4.1). And the mass flux associated with the forming vortex sheet is
divided into Jψg−K and Jψg−K by the trailing-edge streamline.

To simplify (4.12), we first apply conditions (i) and (iii) of the current section to
argue that the integral associated with ∂(ρu)/∂t has magnitude O(ε2

s ). Physically, p
is continuous so ∇p should be finite. Moreover, ∇ · τ = 0 holds for Am− because
it corresponds to the inviscid flow outside the vortex sheets. Together with the
boundedness of u̇Ω , equation (4.12) is reduced to∮

∂Am

u(u · n̂m) ds+O(ε2
s )=

1
ρ

∫
Sγ 1+Sγ 2+Sγ g

(JτK+∇ · T s) ds. (4.15)

In the current study, there is no surface tension so ∇ · T s= 0. Sγ g corresponds to the
free vortex sheet which physically means JτK = 0. Furthermore, JτK is finite on the
bound vortex sheets Sγ 1 and Sγ 2 according to (4.6). With condition (i), the right-hand
side of (4.15) becomes o(εs). Now, applying the velocity boundary conditions of ∂Am,
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the momentum balance can be written in the ŝg and n̂g directions, respectively, in the
form

(u2
1+S1 + Jψ1Ku∗1+) cos1θ1 + (u2

2−S2 + Jψ2Ku∗2+) cos1θ2

= u2
g−Sg− + Jψg−Ku∗g− + u2

g+Sg+ + Jψg+Ku∗g+ +O(ε2
s )+ o(εs), (4.16)

(u2
1+S1 + Jψ1Ku∗1+) sin1θ1

= (u2
2−S2 + Jψ2Ku∗2+) sin1θ2 +O(ε2

s )+ o(εs), (4.17)

where the superscript ∗ denotes the characteristic velocity scale based on the
momentum flux of a vortex sheet, similar to (4.8).

In general, the JψK and u∗ terms need to be given or solved for an actual flow. In
the current study, for the large Reynolds number situation, the mass and momentum
associated with the vortex sheet are neglected as a first approximation. So the JψK
and u∗ terms become zero in (4.13), (4.14), (4.16) and (4.17). Furthermore, the terms
O(ε2

s ) and o(εs) can be neglected in the limit εs→ 0. So (4.17) gives 1θ1 ·1θ2 > 0.
Since

1θ1 +1θ2 =1θ0, (4.18)

it yields 1θ1, 1θ2 > 0 which means that the direction of the forming vortex sheet
should vary between the two tangents of the trailing-edge surfaces. Now, we can
combine (4.13), (4.14), (4.16) and (4.17) and cancel S1, S2, Sg− and Sg+ to obtain

u1+u2− sin1θ0 − u1+ug+ sin1θ1 − u2−ug− sin1θ2 = 0. (4.19)

This gives the momentum balance at a finite-angle trailing edge for large Reynolds
number flow. Equation (4.19) offers another relation between the forming vortex sheet
(ug+, ug−, 1θ1 and 1θ2) and the existing bound vortex sheets (u1+ and u2−). It will
be applied in the next section to solve γg, ug and θg of the forming vortex sheet.

5. Explicit form of Kutta condition for general unsteady flow
The forming vortex sheet at a finite-angle trailing edge has been related to its

connecting bound vortex sheets through (3.5) and (4.19). For bound vortex sheets,
the no-slip boundary condition gives u1−= 0 and u2+= 0, so γ1= u1+ and γ2=−u2−.
Thus, equation (3.5) takes the form

γg =−ug− + ug+ = u1+ cos1θ1 − u2− cos1θ2. (5.1)

So far, only two equations are provided while three unknowns, ug+, ug− and 1θ1 (or
1θ2), need to be solved.

Here, we present an additional relationship between the forming vortex sheet and
the bound vortex sheets to close the equation system. Recognizing that in general
vorticity generation only happens at the fluid–solid interface and that the merging zone
Am behind the trailing edge is barely connected to the airfoil body, we hypothesize
that the total vorticity generation as fluid passing Am should approach zero in the
limiting case Am → 0. In other words, the total change of circulation in Am should
equal zero, which can be interpreted as an extension of the Kelvin’s circulation
theorem. Physically, the vortex-sheet system near the trailing edge consists of two
surface-bounded vortex sheets and a free vortex sheet released to form the wake.
Each of these vortex sheets can be considered as a material sheet advected following
its local velocity field. In this sense, the vorticity of the forming vortex sheet is

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

51
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.513


456 X. Xia and K. Mohseni

not ‘generated’ at the trailing edge, but is the result of vorticity advection of the
surface-bounded vortex sheets. To substantiate this hypothesis, a detailed derivation
consistent with the current framework is provided in appendix C, where (C 9) or
(C 10) provides the desired relationship.

At this point, we are ready to solve the explicit form of the unsteady Kutta
condition using (5.1), (4.19) and (C 9). We first combine (C 9) and (5.1) to express
ug− and ug+ in terms of u1+, u2−, 1θ1 and 1θ2. And the results can be further
plugged into (4.19) to give

(u1+ sin1θ1 + u2− sin1θ2)
2(u1+ sin1θ1 − u2− sin1θ2)= 0 for u1+ 6= u2−,

− cos1θ1 + cos1θ2 = 0 for u1+ = u2−.

}
(5.2)

Since 1θ1, 1θ2 > 0, equation (5.2) has the simplified form

u1+ sin1θ1 − u2− sin1θ2 = 0. (5.3)

Again, because 1θ1, 1θ2 > 0 and 0 6 1θ0 < π, this equation indicates that u1+ and
u2− cannot take different signs. In the current study of vortex shedding (ug−, ug+> 0),
this further indicates u1+, u2−6 0 which means no backward flow. Finally, with (4.18),
equation (5.3) becomes

1θ1 = cos−1

(
u2

1+ + u2
3 − u2

2−

2u1+u3

)
, 1θ2 = cos−1

(
u2

2− + u2
3 − u2

1+

2u2−u3

)
for u1+, u2− < 0,

1θ1 = 0, 1θ2 =1θ0 for u2− = 0,

1θ1 =1θ0, 1θ1 = 0 for u1+ = 0,


(5.4)

where u3 = −
√

u2
1+ + u2

2− + 2u1+u2− cos1θ0. Therefore, equation (5.4) analytically
determines the direction of the forming vortex sheet (θg) at the trailing edge. The
current work is derived for the case where no backward flow is present at the
trailing edge; and for the special case of a flat plate it predicts the angle of the
trailing-edge streamline to be tangential to the plate, which is consistent with the
‘full’ Kutta condition derived by Orszag & Crow (1970), Daniels (1978) for flat
plates. Equation (5.4) can be plugged into (C 10) and (5.1) to obtain the analytical
vortex-sheet strength (γg) and relative velocity (ug). This closes the task of deriving
the explicit form of the unsteady Kutta condition based on the existing bound vortex
sheets. The implementation of this condition will be presented in § 6.1. In the
remaining part of this section, we shall discuss the significance of this work and its
potential extension to the leading-edge vortex-sheet formation on a smooth surface.

The classical Kutta condition requires the rear stagnation streamline of an airfoil
to be attached to the sharp trailing edge. Physically, this means that flow cannot turn
around the sharp edge. For steady flow at the trailing edge, Poling & Telionis (1986)
has summarized a number of conditions that are equivalent to this condition:

(i) Continuous pressure at the trailing edge.
(ii) The velocity at the trailing edge is finite or zero.

(iii) The shedding of vorticity vanishes (γg = 0).
(iv) The stagnation streamline bisects the wedge angle of the trailing edge (1θ1 =

1θ2).
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FIGURE 5. The angle of the stagnation streamline (or the forming vortex sheet) vs. the
ratio between u2− and u1+.

For unsteady flow at the trailing edge, only condition (i) is valid according to Basu
& Hancock (1978) and Poling & Telionis (1986). The difference for an unsteady
trailing-edge flow lies in the ambiguity of the direction of the stagnation streamline
line. Giesing (1969) and Maskell (1971) have proposed that either 1θ1 = 0 or 1θ2 =

0 should be satisfied at the trailing edge. Although Poling & Telionis (1986) have
provided experimental support for this model when γg is large, they also pointed out
a serious flaw that the Giesing–Maskell model does not approach the steady solution
(condition (iv)) as γg → 0. Poling & Telionis (1986) further confirmed this flaw as
they observed a smooth change between the scenarios of 1θ1 = 0 and 1θ2 = 0 when
γg approaches zero.

The current model provides a compelling explanation for the flaw of the
Giesing–Maskell model, as we have analytically derived in (5.4) the relationship
between the angle of the stagnation streamline (or the forming vortex sheet) and the
flow velocities at both sides of the trailing edge. The result of (5.4) can be interpreted
by figure 5, where 1θ1 and 1θ2 vary between 0 and 1θ0, and are solely determined
by u2−/u1+. We note that 1θ1 = 0 or 1θ2 = 0 can be obtained as u2− = 0 or u1+ = 0,
respectively. This indicates that the Giesing–Maskell model actually corresponds to the
two limiting cases of the current model. We also note that condition (iv) of the steady
solution can be recovered at u2−/u1+ = 1. Most importantly, the continuous transition
between the Giesing–Maskell model and the steady solution is fully captured as
u2−/u1+ varies between 0 and ∞. We believe that the flaw of the Giesing–Maskell
model is originated from the non-physical assumption that the potential flow on either
side of the trailing edge has to be stagnant on all occasions. In fact, this stagnation
assumption could be true on the suction side of the trailing edge if the preceding
flow has already separated. However, if the flow remains attached on both side of
the trailing edge, the flow being stagnant on either side of the trailing edge is not
justified.
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Airfoil

Separation point
Bound vortex sheet

Bound vortex sheet

Separated vortex sheet

FIGURE 6. (Colour online) The structure of viscous sheer layers and the corresponding
vortex sheets near a flow separation point on a smooth surface. It is noted that u2+ =

u2− = 0 and γ2 = 0.

The current model for the trailing-edge vortex sheet is based on conservation
laws and the unsteady Kutta condition which only requires a continuous pressure
distribution. In this sense, there should not be any fundamental difference for the
formation of a vortex sheet due to flow separation on a smooth surface. Thus, we
further propose to extend this model to deciding the formation of a leading-edge
vortex sheet. For this purpose, the separated vortex sheet can be viewed as being
generated due to the merging of the two bound vortex sheets at both sides of the
separation point. Considering the actual viscous shear layers near a separation point
as shown in figure 6, the downstream-side shear layer consists of a reverse-flow
layer and a separated-flow layer. In the vortex-sheet limit, the reverse-flow layer
becomes the bound vortex sheet while the separated-flow layer becomes the separated
vortex sheet. Apparently, the velocities at both sides of the reverse-flow layer are
zero (u2+ = u2− = 0), meaning the corresponding bound vortex-sheet strength is zero
(γ2 = 0) near the separation point. Based on the above discussions, we can attribute
the formation of the separated vortex sheet to the scenario of the Giesing–Maskell
model. Because 1θ0 = π for a smooth surface, we immediately obtain 1θ1 = 0 and
1θ2 = π, which means that the forming vortex sheet from a separation point of a
smooth surface should be tangential to the surface. Finally, applying (C 10) and (5.1)
gives the strength and velocity of the forming vortex sheet, which are actually equal
to the values of its upstream bound vortex sheet (γg = γ1 and ug = u1+/2).

6. Simulations and validations
To verify the unsteady flow model together with the vortex-sheet formation

conditions for a 2-D airfoil, this section will simulate different airfoils in steady
and unsteady background flows, and then compare the results with experimental data
or empirical models. Here, we note that the formation of the leading-edge vortex
sheet at large angle of attack (AoA) requires predicting the leading-edge separation
point, which could be a topic of a future investigation. Furthermore, equation (5.4)
implies that the current unsteady Kutta condition applies to the situation where no
backward flow presents at the trailing edge. This means that the model does not
account for any separation happening before the trailing edge, which would likely to
occur for highly unsteady flows. To this end, the following assumes fully attached
flow and vortex shedding only at the trailing edge. For this reason, the applications
of this study are limited to small-to-medium AoA regimes, where the flow might be
considered to remain attached without losing much accuracy.
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Airfoil

Trailing-edge panels
nth point vortex

nth panel

1

1

2

2

–1
–1

g

FIGURE 7. (Colour online) Discretization of the bound and wake vortex sheets. The panels
representing the bound vortex sheet have linearly varied strength. The g panel represents
the vortex-sheet segment being formed instantaneously at the trailing edge. For the nth
panel of the bound vortex sheet, the red point represents the control point located at zn

C,
which is also the centre of the panel. NB and NT are the total numbers of bound vortex
panels and wake point vortices, respectively.

6.1. Numerical approach

This section introduces the numerical approaches for implementing the vortex-sheet-
based flow model. Mathematically, a vortex sheet can be viewed as a continuous
sheet of point singularities of vorticity. Thus, numerical implementation of the model
requires discretization of the bound and wake vortex sheets. In this work, the bound
vortex sheet and the wake vortex sheet are treated differently based on the following
considerations. As the shape of the airfoil is given, each element of the bound vortex
sheet is considered to be fixed locally to the surface of the solid body with varying
strength to instantaneously satisfy the wall boundary condition. This inspires us to
segment the continuous bound vortex sheet into piecewise linear panels, the essence
of which is consistent with the traditional panel method (Morino & Kuo 1974; Katz
1981; Katz & Plotkin 1991). On the other hand, since the wake vortex sheet is free,
the motion of its element follows the Birkhoff–Rott equation while the strength being
invariant under inviscid assumption. Thus, the wake vortex sheet would be constantly
deforming subject to its background flow. If the same discretization technique as
the bound vortex sheet were to be implemented, refinement and reconstruction of
the panel system would be necessary to resolve the shrinking or stretching of each
sheet element as well as the curvature change. As a result, the numerical cost would
grow rapidly as time proceeds, especially when vortex sheet roll up occurs. In the
current study, we discretize the wake vortex sheet with an alternative approach, the
point-vortex approximation, which is more computationally efficient. The detailed
approaches are provided below.

As discussed previously, the key to determining an instantaneous bound vortex sheet
is to solve its strength distribution through (2.6). Accordingly, the bound vortex sheet
can be discretized into piecewise linear vortex panels as shown in figure 7. For the
nth panel, assuming its strength varies linearly from γ n

B to γ n+1
B , the complex-conjugate

velocity at z induced by the vortex-sheet segment corresponding to this panel can be
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approximated as

−
i

2π

∫ Sn
B

Sn−1
B

γB(s) ds
z− zB(s)

≈ −
i|zn+1

B − zn
B|

2π(zn+1
B − zn

B)

{
γ n

B

[
z− zn+1

B

zn
B − zn+1

B
ln
(

z− zn
B

z− zn+1
B

)
+ 1
]

− γ n+1
B

[
z− zn

B

zn+1
B − zn

B
ln
(

z− zn+1
B

z− zn
B

)
+ 1
]}

, (6.1)

where zn−1
B = zB(Sn−1

B ) and zn
B = zB(Sn

B). For an instantaneous flow, the only unknown
parameters are the strengths γ n

B and γ n+1
B associated with each vortex panel.

Point-vortex approximation is adopted to discretize the wake vortex sheet, similar
to numerous previous studies (Moore 1974; Krasny 1986a,b, 1991; Nitsche & Krasny
1994; Jones 2003; Shukla & Eldredge 2007). According to Krasny (1986a,b), this
approximation is ill posed, meaning the discretization errors would grow in time and
lead to irregular configuration of the sheet. Krasny proposed to resolve this problem
by applying a filtering technique, which replaces the singular term z−1 in the complex-
conjugate velocity with the so-called vortex-blob kernel, |z|2[(|z|2 + δ2

v)z]
−1, where δv

is a small value compared to |z|. As explained by Jones (2003), the essence of this
technique is that the desingularization of the velocity kernel would likely to suppress
the Kelvin–Helmholtz instability inherent with the discretization at wavelengths below
the order of δv. Figure 7 illustrates how point vortices are distributed to represent
the wake vortex sheet. As a result, the complex-conjugate velocity induced by the
vortex-sheet segment corresponding to the nth trailing-edge vortex takes the form

−
i

2π

∫ Sn
T

Sn−1
T

γT(s) ds
z− zT(s)

≈−
iΓ n

T

2π(z− zn
T)

(
|z− zn

T |
2

(|z− zn
T |

2 + δ2
v)

)
, (6.2)

where zn
T and Γ n

T are the location and circulation of the nth wake vortex, respectively.
We note that Γ n

T is an invariant and zn
T is obtained by evolving the Birkhoff–Rott

equation, so they are known quantities for an instantaneous flow.
In accordance with the unsteady Kutta condition developed in § 3.2 and to properly

reconcile the different discretization schemes between the bound and wake vortex
sheets, a vortex panel of constant strength γg, namely the g panel, is employed to
represent the segment of the wake vortex sheet being formed at the trailing edge.
As shown in figure 7, the g panel will be transformed into individual wake vortex
as flow evolves, based on the conservation of circulation. The trailing-edge panels
are ε (a small number compared to each panel) distance away from the trailing-edge
point, which is consistent with the set-up in (3.2) and figure 2, to account for the
discontinuous strength of the vortex-sheet system. The complex-conjugate velocity
induced by the vortex-sheet segment corresponding to g panel can be expressed as

−
i

2π

∫ S1
T

ε

γT(s) ds
z− zT(s)

≈−
iγg|z1

g − z0
g|

2π(z1
g − z0

g)
ln

(
z− z0

g

z− z1
g

)
, (6.3)

where z0
g= zT(ε) and z1

g= zT(S1
T). Now, we have completed the task of discretizing the

total vortex-sheet system.
The following summarizes the procedure for advancing the simulation from t to t′=

t+1t.
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Step 1: Wake evolution. By the end of the previous step, the flow field is solved,
so zn

B(t), γ
n
B (t), zn

T(t), Γ
n

T (t), z1
g(t) and γg(t) are known variables. To obtain the wake

distribution for the new step, the g panel is first replaced by a new point vortex using

zNT+1
T (t′)= (z0

g(t)+ z1
g(t))/2, (6.4)

Γ NT+1
T (t′)= γg(t)|z1

g(t)− z0
g(t)|, (6.5)

where the latter is essentially the conservation of circulation. Then, zn
T(t
′) of each wake

vortex is evolved by integrating the Birkhoff–Rott equation with a fourth-order Runge-
Kutta scheme.

Step 2: Motion update. Since the motion of the airfoil is prescribed in this study, the
translational and rotational motions of the airfoil, U(t′) and Ω(t′), need to be updated.
If the airfoil is deformable, updating zn

B(t
′) is also necessary.

Step 3: g panel addition. The new g panel at t′ should be added based on the
proposed unsteady Kutta condition. This requires a full knowledge of its connecting
bound vortex panels at t′, which are yet to be computed. Here, the bound vortex
panels together with the g panel are solved in a coupled sense. To avoid nonlinearity
in solving this coupled system, the direction θg(t′) and shedding velocity ug(t′) of the
g panel are computed from (5.4), (5.1) and (C 10), based on the bound vortex panels
of the previous time step. Consequently, z1

g(t
′) can be decided from

z1
g(t
′)= zTE + (ε + ug(t′)1t)eiθg(t′), (6.6)

where zTE is the complex coordinate of the trailing edge point.

Step 4: Equation solving. At this stage, the unknown variables are the strengths of
the bound vortex panels and the g panel. In figure 7, zn

C marks the control point
where the wall boundary condition is satisfied for each panel. Applying the velocity
approximations of (6.1), (6.2) and (6.3), the boundary condition specified by (2.5)
and (2.6) can be written in the form,

NB+1∑
m=1

Dnmγ
m
B + Enγg =Hn, n= 1, 2, . . . ,NB, (6.7)

where Dnm, En and Hn are coefficients or constants expressed by zn
C and other known

parameters. For brevity, their detailed expressions are not presented. Furthermore, the
Kelvin’s circulation theorem predicts that all vortices in the flow field should satisfy

1
2

NB∑
m=1

|zm+1
B − zm

B |γ
m
B +

1
2

NB+1∑
m=2

|zm
B − zm−1

B |γ
m
B + |z

1
g − z0

g|γg =−

NT∑
m=1

Γ m
T . (6.8)

Therefore, equations (6.7), (6.8) and (3.5) together constitute a (NB+ 2)th-order linear
system, which is solved analytically to give [γ 1

Bγ
2
B . . . γ

NB+1
B γg]

T. This completes the
computation of the entire vortex-sheet system at time t′. Last, for flow initialization
at t= 0, step 4 should be performed with γg= 0 and NT

= 0, so the (NB+ 1)th-order
linear system of the combined equations (6.7) and (6.8) is solved to give the initial
strength distribution of the bound vortex sheet.
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FIGURE 8. (Colour online) Non-dimensional bound circulation vs. non-dimensional
distance travelled. The Wagner functions for circulation are provided by Ford & Babinsky
(2013) and Li & Wu (2015).

6.2. Airfoils in steady background flow
An impulsively started NACA 0012 airfoil is simulated at various angles of attack. In
the body-fixed reference frame, the problem is equivalent to that with a background
flow abruptly accelerating from zero to a constant. Although the background flow can
be treated as a steady flow for t> 0, the problem itself is naturally unsteady because
of the formation of a starting trailing-edge vortex. Eventually, a steady flow field
around the airfoil can be achieved and the lift will saturate as the starting TEV moves
downstream. Therefore, the estimation of the circulation shed from the trailing edge is
essential to the accurate prediction of lift generation on the airfoil. For an impulsively
started thin airfoil or flat plate, Wagner (1925) has provided the numerical data of
the time-variant bound circulation, which can be approximated by Γb(s∗)/Γb(∞) ≈

0.9140 − 0.3151e−s∗/0.1824
− 0.5986e−s∗/2.0282, given by Ford & Babinsky (2013). Γb

is the total bound circulation; s∗ = st/c where st is the total distance travelled by
the airfoil and c is the chord length. Later, Li & Wu (2015) modified this function
as Γb(s∗)/Γb(∞) ≈ 1 − 0.8123e−

√
s∗/1.276

− 0.188e−s∗/1.211
+ 3.2683 × 10−4e−s∗2/0.892 to

improve its asymptotic behaviour. In this study, the formation of the TEV is solved
by implementing the proposed unsteady Kutta condition at each time step. Then, the
total bound circulation can be obtained using Kelvin’s circulation theorem as Γb =

−ΓTEV , where ΓTEV is the total circulation of the trailing-edge vortices. ΓTEV can be
calculated from ΓTEV =

∫
Γ̇g dt, with Γ̇g determined by (C 10). Now, we compare

the variation of the bound circulation predicted by this model with the approximated
Wagner functions in figure 8. A general good agreement can be observed between this
result and the modified Wagner function by Li & Wu (2015), except at early stages
(s∗ < 5) where this simulation is slightly different from both Wagner functions. Since
Wagner’s simulation was based on a flat plate, this difference is likely to reflect the
difference of initial vortex shedding between a finite-camber airfoil and a flat plate. In
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FIGURE 9. (a) Lift coefficient (Cl) vs. non-dimensional distance travelled (s∗) for a NACA
0012 airfoil at various angles of attack. (b) The variation of the angle of the trailing-edge
vortex sheet. θg = 0 corresponds to the bisector of the finite-angle trailing edge. θg varies
between −1θ0/2 and 1θ0/2 that correspond to the two tangents of the trailing edge.

addition, we note that similar to the Wagner function Γb(s∗)/Γb(∞) in this simulation
is also independent of the angle of attack, although full data are not presented here
for brevity.

Figure 9(a) shows the variation of the lift coefficient, Cl, for the NACA 0012 airfoil
with AoA ranging from 0◦ to 10◦. We can verify the saturation trend of the lift
coefficient as s∗ increases, which corresponds to the transition of the flow field near
the airfoil from unsteady to steady. This transition is also evident in figure 9(b), which
shows the variation of the angle (θg) of the trailing-edge vortex sheet. The trend of θg
approaching zero also indicates the recovery of condition (iv) of the steady-state Kutta
condition summarized by Poling & Telionis (1986) (§ 5). Furthermore, it is important
to note here that Cl at s∗= 0 does not start from zero although the bound circulation
increases from zero, capturing the added-mass effect. Following recent studies (Xia &
Mohseni 2013a; Li & Wu 2016) that attributed major lift generation to the effect of
vortex motion, this initial lift should be caused by a strong redistribution effect of the
vorticity inside the bound vortex sheet.

The steady-state lift coefficients of this study are compared with experimental
data for NACA 0012 and NACA 2415 airfoils, as shown in figure 10. The lift
calculations of this model generally match well with experiment at small angles of
attack. Furthermore, better agreement can be confirmed for the experimental cases
with larger Re. This is because larger Re corresponds to smaller mass and momentum
deficits associated with the boundary layer, and is therefore better approximated by
the vortex-sheet-based inviscid flow model. Lastly, the lift stall at larger AoA is not
captured because this model does not account for flow separation occurring upstream
of the trailing edge.

6.3. Airfoils with unsteady motions
Next, the performance of this vortex-sheet-based aerodynamic model is further
justified by simulating a series of unsteady motions of the NACA airfoils. We first
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FIGURE 10. (Colour online) Lift coefficient (Cl) vs. angle of attack (α) for (a) a NACA
0012 airfoil and (b) a NACA 2415 airfoil. The experimental data for (a) and (b) are from
Sheldahl & Klimas (1981) and Abbott, von Doenhoff & Stivers (1945), respectively.

Experiment This simulation(a) (b)

FIGURE 11. (Colour online) Comparison between flow visualization and simulation for a
pitching and heaving NACA 0012 airfoil with St= 0.45, αmax = 30◦ and h0 = 0.75c. The
flow visualization image is from Schouveiler, Hover & Triantafyllou (2005). The dash line
in (b) marks the trajectory of the airfoil.

investigate a NACA 0012 airfoil with a combined pitching and heaving motion
adapted from the experiment of Read, Hover & Triantafyllou (2003). For all tests,
the chord length and the towing speed are fixed at c= 0.1 m and Utow = 0.4 m s−1,
respectively. The corresponding Reynolds number is 4 × 104. The pivot for the
pitching motion is fixed at 1/3 chord. The phase difference angle between the
pitching and heaving motions is set to 90◦. The characteristic parameters for this
motion are the Strouhal number, St, the amplitude of the angle of attack, αmax, and
the heave amplitude, h0, which could be adjusted by controlling the pitching and
heaving motions. Figure 11 compares the wake structures between this simulation
and the flow visualization for a sample case (St = 0.45, αmax = 30◦ and h0 = 0.75c).
The matching of the wake patterns between experiment and simulation is promising.
Figure 12 further plots the instantaneous force vectors along the trajectories of
two different pitching and heaving motions. The results demonstrate reasonable
agreement of the force magnitude and direction between experiment and simulation.
This quantitatively validates the performance of the aerodynamic model and the TEV
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FIGURE 12. (Colour online) Comparison of instantaneous thrust vectors between
experiment and simulation for a NACA 0012 airfoil. The experimental results are adapted
from Read et al. (2003). For both cases, St= 0.4 and h0 = c.

formation conditions for airfoils undergoing unsteady motions. However, since the
LEV shedding has not been considered here, the simulations with larger αmax or St
values tend to overestimate the force due to possible flow separation after the leading
edge.

The unsteadiness of the airfoil motion can be further increased by adding an
oscillatory in-line motion on top of the pitching and heaving motion introduced above.
Two typical such motions were experimentally studied by Izraelevitz & Triantafyllou
(2014), namely, the bird-like forward biased downstroke and the turtle-like backwards
moving downstroke. The trajectories of these two motions are shown in figure 13(b)
and (c), with the simulated flow field showing the vortical structures in the wake. For
comparison, a symmetric flapping case without any additional in-line motion is shown
in figure 13(a). The airfoil investigated here is a NACA 0013 type with c= 0.055 m
and the pivot at the quarter chord. The Reynolds number is fixed at 11 000 which
corresponds to a constant towing speed of Utow = 0.2 m s−1. For the pitching and
heaving motions of all cases, the characteristic parameters are St = 0.3, αmax = 25◦
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FIGURE 13. (Colour online) The panels on the left show the trajectories and force vectors
of different unsteady motions of a NACA 0013 airfoil adapted from the experiment
of Izraelevitz & Triantafyllou (2014). The panels on the right show the corresponding
simulated wake patterns. Note that this figure only illustrates the unsteady motions of the
airfoil, and is not intended for validation.

and h0 = c. The controlling parameter here is the stroke angle, β, associated with
the added in-line motion. β is defined based on the x and y positions of the airfoil
in the carriage reference frame. The interested readers are referred to Izraelevitz &
Triantafyllou (2014) for more details of the original experiment.

For quantitative comparison, the force and torque coefficients are estimated for the
unsteady motions presented in figure 13. Similar to Izraelevitz & Triantafyllou (2014),
the force coefficients in the x and y directions together with the torque coefficient
are defined as Cx = 2Fx(ρU2

towc)−1, Cy = 2Fy(ρU2
towc)−1 and CM = 2Tτ (ρU2

towc2)−1,
respectively, where Fx, Fy and Tτ are computed from (2.7) and (2.8). The evolution
of Cx, Cy and CM during each cycle of the prescribed unsteady motions are compared
with the experimental data in figures 14(a), 15(a) and 16(a). We again observe
a generally good agreement between experiment and simulation, verifying the
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FIGURE 14. (Colour online) Result of the symmetric flapping motion corresponding
to figure 13(a). (a) Comparison between the measured force coefficients of Izraelevitz
& Triantafyllou (2014) and the estimated force coefficients from this simulation. (b)
Variations of α, U and θg during one cycle.
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FIGURE 15. (Colour online) Result of the bird-like forward biased downstroke
corresponding to figure 13(b). (a) Comparison between measured and estimated force
coefficients. (b) Variations of α, U and θg during one cycle.

performance of the proposed flow model. Especially, the results of Cy have promising
accuracy for all three different cases. Since Cy physically represents the lift coefficient,
this indicates a prospective application of the current model for lift estimation without
modelling the leading-edge separation. However, the void of flow separation in the
current simulation seems to have a notable impact on Cx, which corresponds to
the thrust coefficient. This is reflected by the over-prediction of Cx in some cases
displayed in figures 14(a) and 15(a). Other than the flow separation, the viscous
effect at the solid–fluid interface could also affect the accuracy of predicting thrust
or drag using an inviscid flow model.
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FIGURE 16. (Colour online) Result of the turtle-like backwards moving downstroke
corresponding to figure 13(c). (a) Comparison between measured and estimated force
coefficients. (b) Variations of α, U and θg during one cycle.

To explain the effect of the additional in-line motion on force generation of the
airfoil, the variations of the airfoil velocity U and the angle of attack α are plotted in
figures 14(b), 15(b) and 16(b). We can observe that the variations of α in figures 15
and 16 are identical, and α only changes in the first half-cycle while it remains zero
in the second half-cycle. Since the shedding of strong vorticity mainly occurs at non-
zero angles of attack, the force generation associated with vortex shedding should
mostly happen during the first half-cycle. In this sense, the first half-cycle is the
actual ‘stroke’ while the second half can be considered as the ‘recovery’. However,
the different in-line motions during the first half-cycle cause U to increase significantly
for the bird-like downstroke in figure 15 and decrease significantly for the turtle-like
downstroke in figure 16. This creates stronger and faster trailing-edge vortices of the
bird-like downstroke compared to the turtle-like downstroke. As a result, the bird-like
downstroke provides much higher lift than the turtle-like downstroke. Finally, we note
that the angle of the trailing-edge vortex sheet, θg, varies smoothly within the limits
of the two tangential directions of the trailing edge, −1θ0/2 and 1θ0/2. This also
implies the correct implementation of the proposed models, and is in accordance with
the experimental observation of Poling & Telionis (1986) that the direction of the
trailing-edge streamline changes smoothly.

7. Conclusions

An unsteady aerodynamic model for an airfoil was derived based on the dynamics
of the bound vortex sheet and the wake vortices. The vorticity generation mechanism
at the trailing edge was studied since it is essential to predict the vortex shedding and
evolution processes in the wake. For a flat plate or a cusped trailing edge, this can
be solved by applying an unsteady Kutta condition, based on the physical sense that
flow cannot turn around a sharp edge. The current work extended this condition to
a more general situation, the finite-angle trailing edge of an airfoil, by enforcing the
flow direction at the trailing edge to be tangential to the forming vortex sheet. This
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resulted in an implicit Kutta condition which relates the strength of the forming vortex
sheet to its adjacent bound vortex sheets.

This unsteady Kutta condition is not straightforward to implement because it also
depends on the direction of the forming vortex sheet, which is ambiguous for a
finite-angle trailing edge. To address this problem, this study proposed a generalized
sheet model to enable momentum balance analysis for the vortex-sheet system and its
surrounding flow at the trailing edge. The essence of the generalized sheet model is
that a physical viscous shear layer could be adequately represented by a vortex sheet
if the dynamics is captured by relevant global quantities. Specifically, the modelling
of mass and momentum fluxes through jump conditions would allow the estimations
of entrainment and viscous force of the original shear layer in an inviscid flow. The
application of this model in the case of the finite-angle trailing edge provided another
implicit relation between the forming vortex sheet and the existing bound vortex
sheets.

The combination of the implicit unsteady Kutta condition and the momentum
balance equation, together with the conservation of circulation, gave the analytical
expression of the angle, strength and shedding velocity of a free vortex sheet formed
at a finite-angle trailing edge, establishing a general unsteady Kutta condition for
relevant problems. The significance of this work is that the vortex-sheet formation
condition allows the angle of the forming vortex sheet to continuously change
between the two tangents of the trailing edge. This resolves the paradox of the
Giesing–Maskell model that it does not converge to the steady-state Kutta condition.
Airfoils in various steady and unsteady flows were simulated and the resulting flow
field and force calculations were compared with experimental data. The promising
agreement between simulation and experiment confirmed the validity of the proposed
unsteady Kutta condition as well as the vortex-sheet-based aerodynamic model.
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Appendix A.

This appendix, together with appendix B, provides the detailed calculation for (3.4).
In this study, we are faced with the task of computing the line integral

∫
γ (s)(Z0 −

Z(s))−1 ds between two different points, Z(a) and Z(b) (0 < a < b), along a simple
open (without self-intersection) curve, C1, which starts from Z0 in the complex domain,
as shown in figure 17. s is the curve length between Z0 and an arbitrary point Z(s)
on C1, so Z0 = Z(0). γ (s) is a real function defined on curve C1. Given C1 and
γ (s) are smooth (class C∞) for a 6 s 6 b, it means that Z(s) and γ (s) are infinitely
differentiable on Cab = {Z(s), a 6 s 6 b}.

Since γ (s) is infinitely differentiable for a 6 s 6 b, it can be expanded to Taylor
series at s= a:

γ (s)=
∞∑

n=0

gn(s− a)n where gn =
γ (n)(a)

n!
. (A 1)
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Z(s)

Z(b)

Z(a)

FIGURE 17. (Colour online) A diagram of the curve C1 for calculating the integral∫
γ (s)(Z0 − Z(s))−1 ds.

Plugging in (A 1), the objective integral takes the form

Iab =

∫
Cab

γ (s) ds
Z0 − Z(s)

=

∫
Cab

∞∑
n=0

gn(s− a)n

Z0 − Z(s)
ds. (A 2)

As the series
∑
∞

n=0 gn(s − a)n converges uniformly on the interval [a, b], we can
interchange summation and integration in (A 2) to obtain the series,

Iab =

∞∑
n=0

gn

∫
Cab

(Z0 − Z(s))−1(s− a)n ds. (A 3)

Let In denote the nth term of the series in (A 3). With Z(s) being infinitely
differentiable on [a, b], we may substitute (Z0 − Z(s))−1 in (A 3) with a Taylor
series and then integrate to show that In is O((b − a)n+1) as (b − a) → 0. Thus,
In+1 = o(In) as (b− a)→ 0 which qualifies

∑
∞

n=0 In as an asymptotic expansion.
At this point, for small b − a the original integral can be approximately by the

zeroth-order term,

I0 = g0

∫
Cab

(Z0 − Z(s))−1 ds= g0

∫
Cab

ds/dz
Z0 − z

dz, (A 4)

where z= Z(s) for z ∈Cab. Dz(s)= ds/dz can be expanded to Taylor series,

Dz(s)=
∞∑

m=0

fzm(s− a)m where fzm =
D(m)

z (a)
m!

. (A 5)

So (A 4) can be derived as,

I0 = g0

∞∑
m=0

fzm

∫
Cab

(s− a)m

Z0 − z
dz

=

∞∑
m=0

g0fzm

[
(−ln(Z0 − z)(s− a)m)|Z(b)Z(a) +

∫
Cab

ln(Z0 − z)m(s− a)m−1 ds
]
, (A 6)

where the second equation is obtained using integration by parts. Let Rm denote the
mth term of the series in (A 6). It can be readily verified that the first part of Rm is
O((b− a)m) as (b− a)→ 0. For the second part, its magnitude can be shown to be
O((b − a)m), by expanding ln(Z0 − z) to Taylor series and then applying integration.
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Similar to the argument provided for
∑
∞

n=0 In, we can now show that Rm+1 = o(Rm)
as (b− a)→ 0, which indicates

∑
∞

m=0 Rm is an asymptotic expansion. Its zeroth-order
term takes the form,

R0 =−g0fz0 ln
(

Z0 − Z(b)
Z0 − Z(a)

)
, (A 7)

where g0 = γ (a) and fz0 = (dz/ds)−1
|s=a = e−iθa . Moreover, the leading-order terms for

Z0 − Z(b) and Z0 − Z(a) are estimated to be −beiθa and −aeiθa , respectively. In the
problem of interest, we are concerned with the limiting case where Z(a)→Z0 or a→
0. So ln(b)= o(ln(a)) and Iab can be simplified as

lim
a→0

Iab = γ (a)e−iθa ln(a)+ o(ln(a)). (A 8)

In this way, the objective integral is approximated by the leading-order term of the
asymptotic expansion. It is noted that the nature of the asymptotic expansion requires
b− a to be sufficiently small.

Appendix B.
This appendix is a continuation of appendix A. Appendix A has calculated the

integral
∫
γ (s)(Z0−Z(s))−1 ds between Z(a) and Z(b) for the limiting case Z(a)→Z0.

In this part, the goal is to prove that the objective integral is bounded if a is a finite
value or Z(a) is away from Z0.

For this purpose, we only require γ (s) to be bounded for a 6 s 6 b. Let Dm =

min{|Z − Z0|, Z ∈ Cab} and γM = max{γ (s), s ∈ [a, b]}, the objective integral has the
inequality∣∣∣∣∫

Cab

γ (s) ds
Z0 − Z(s)

∣∣∣∣6 ∫
Cab

∣∣∣∣ 1
Z0 − Z(s)

∣∣∣∣ |γ (s)| ds<
∫

Cab

γM

Dm
ds=

γM(b− a)
Dm

. (B 1)

This completes the proof for the boundedness of the objective integral.

Appendix C.
The objective of this appendix is to derive Kelvin’s circulation theorem for the

trailing-edge merging zone Am shown in figure 4. We begin by expressing the total
change of the circulation within Am as

d
dt

∫
Am

ω dA=
d
dt

∮
∂Am

u · ŝm ds=
∮
∂Am

du
dt
· ŝm ds+

∮
∂Am

1
2

d(u · u), (C 1)

where ω is the vorticity. The left-hand equation is based on the Green theorem. Since
a vortex sheet corresponds to a velocity discontinuity, the Green theorem should be
derived for a volume containing discontinuous surfaces as presented in appendix D.
We note that since the velocity derivative across a vortex sheet satisfies the Dirac
delta function specified in (D 5), the Green theorem should take its original form. In
the right equation, since u is a Heaviside step function across any vortex sheet, it is
single valued throughout the entire domain. So the second term on the right-hand side
of (C 1) is equal to zero. Now, we plug the momentum equation (4.11) into (C 1) to
obtain

d
dt

∫
Am

ω dA=
∮
∂Am

[
1
ρ
(−∇p+∇ · τ )+ u̇Ω

]
· ŝm ds. (C 2)
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This gives a general equation for the total change of circulation inside Am. Now, we
apply physical boundary conditions to simplify (C 2). Since Sγ 1 and Sγ 2 correspond to
fluid–solid interfaces that satisfy the no-slip boundary condition, we obtain du/dt= 0
in the body-fixed reference frame. Furthermore, the flow outside the vortex sheets are
assumed to be inviscid, so we have ∇ · τ = 0 on the other boundaries ∂Am− Sγ 1− Sγ 2.
Therefore, equation (C 2) becomes

d
dt

∫
Am

ω dA=
∫
∂Am−Sγ 1−Sγ 2

(
−
∂p
ρ∂sm

+ u̇Ω · ŝm

)
ds. (C 3)

Under condition (iii) of § 4.2, u̇Ω · ŝm should be finite. Together with condition (i), the
second integral of (C 3) has the magnitude O(εs). So (C 3) has the simplified form

d
dt

∫
Am

ω dA=−
1
ρ

∫
∂Am−Sγ 1−Sγ 2

dp+O(εs). (C 4)

Let p1 and p2 be the pressure of the points shown in figure 4, the result of (C 4)
becomes (p2− p1)/ρ+O(εs). Physically, pressure should be continuous at the trailing
edge which means p1 = p2 as εs→ 0. Therefore, equation (C 4) becomes zero in the
limit εs→ 0, which gives Kelvin’s circulation theorem.

On the other hand, vorticity can be viewed as a material quantity moving with a
fluid element. So the total change of circulation inside Am can be expressed using the
Reynolds transport theorem as

d
dt

∫
Am

ω dA=
∫

Am

∂ω

∂t
dA+

∮
∂Am

ω(u · n̂m) ds. (C 5)

The first term on the right-hand side of (C 5) can be derived as∫
Am

∂ω

∂t
dA=

∂

∂t

∫
Am

ω dA=
∂γm

∂t
Lm, (C 6)

where γm and Lm represent the effective strength and length of the total vortex-sheet
system inside Am, respectively. Again, ∂γm/∂t should be finite according to condition
(iii) of § 4.2. Condition (i) gives Lm∼O(εs), so (C 6) also approaches zero in the limit
εs→ 0. Together with (C 4) being zero as εs→ 0, equation (C 5) is reduced to∮

∂Am

ω(u · n̂m) ds= 0. (C 7)

Now, the vorticity is defined as ω = ∂un/∂sm − ∂us/∂nm on S1, S2 and Sg. Since the
tangential directions of the vortex sheets, γ1, γ2 and γg, are normal to S1, S2 and Sg,
respectively, sm and nm are actually n and s in the s− n coordinate defined locally on
each vortex sheet. For a physical shear layer, the boundary layer approximation could
be applied so |∂/∂n|� |∂/∂s| in the s− n coordinate. This is translated into |∂/∂sm|�

|∂/∂nm| in the sm − nm coordinate. Thus, |∂un/∂sm| � |∂un/∂nm| and |∂us/∂sm| �

|∂us/∂nm|. Together with the continuity equation, ∂us/∂sm + ∂un/∂nm = 0, it gives
|∂un/∂sm|� |∂us/∂nm|. This means that the ∂us/∂nm term has a negligible contribution
in the vorticity expression and is dropped in the following derivation for simplicity.
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FIGURE 18. Domain D divided by a discontinuous interface S.

Applying condition (ii) of § 4.2 (un = 0 on Sf 1 and Sf 2) and ω = ∂un/∂sm on S1, S2
and Sg, equation (C 7) takes the form∫

S1+Sg+S2

un dun = 0. (C 8)

Plugging in the values of un on S1, S2 and Sg, equation (C 8) becomes

1
2(u

2
1+ − u2

1−)+
1
2(u

2
2+ − u2

2−)+
1
2(u

2
g+ − u2

g−)= 0. (C 9)

This provides an additional relationship between the forming vortex sheet and the
bound vortex sheets, which is used in § 5 to derive the explicit form of the unsteady
Kutta condition. For the free vortex sheet formed at the trailing edge, its strength and
relative velocity satisfy γg =−ug− + ug+ and ug = (ug− + ug+)/2, respectively. Recall
that u1− = 0 and u2+ = 0, equation (C 9) can be combined with (4.134) of Wu et al.
(2006) to give

∂Γg

∂t
= ugγg =

1
2
(u2

2− − u2
1+), (C 10)

where Γg is the total circulation of the forming vortex sheet, so ∂Γg/∂t is the rate
at which circulation is generated at the sharp edge to form the free vortex sheet.
Note that (C 10) was experimentally derived by Fage & Johanson (1927) for vorticity
shedding from a flat plate. Similar formulations have also been obtained by Sears
(1956, 1976) and Basu & Hancock (1978) for airfoils, and it can be viewed as
the differential form of the well-known Morino condition (Morino & Kuo 1974).
According to the above discussion, this condition determines the rate of circulation
being shed from the trailing edge, and is valid for unsteady flows in the body-fixed
reference frame.

Appendix D.
This appendix derives the Green’s theorem used in (C 1) for a domain containing

discontinuous interfaces. The process is similar to the proof of the original Green’s
theorem (Kaplan 2002). We start with the simple case where a 2-D domain D is
enclosed by a smooth simple closed curve C, as shown in figure 18. P(x, y) and
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Q(x, y) are continuous functions and have continuous first partial derivatives in D,
except on a dividing interface S (S = {(x, fs(x)), c 6 x 6 d}). C can be divided into
C1 (C1 = {(x, f1(x)), a 6 x 6 b}) and C2 (C2 = {(x, f2(x)), a 6 x 6 b}).

Now, the first integral to evaluate is∫∫
D

∂P
∂y

dx dy =
∫ b

a

∫ f2(x)

f1(x)

∂P
∂y

dy dx

=

∫ c

a
[P(x, f2(x))− P(x, f1(x))] dx+

∫ b

d
[P(x, f2(x))− P(x, f1(x))] dx

+

∫ d

c

[
P(x, f2(x))− P(x, f+s (x))

+

∫ f+s (x)

f−s (x)

∂P
∂y

dy+ P(x, f−s (x))− P(x, f1(x))

]
dx

=

∫ b

a
[P(x, f2(x))− P(x, f1(x))] dx

+

∫ d

c

[
−JP(x, fs(x))K+

∫ f+s (x)

f−s (x)

∂P
∂y

dy

]
dx, (D 1)

where f+s (x) and f−s (x) represents the upper and lower limits of fs(x), and the jump
term JP(x, fs(x))K = P(x, f+s (x)) − P(x, f−s (x)). Note here, ∂P/∂y is not well defined
on S and is dependent on the physical problem. In general, we assume ∂P/∂y to be
finite on S so (D 1) takes the form∫∫

D

∂P
∂y

dx dy=−
∮

C
P dx−

∫
S
JPK dx. (D 2)

Similarly,
∫∫

D (∂Q/∂x) dx dy can be derived as∫∫
D

∂Q
∂x

dx dy=
∮

C
Q dy+

∫
S
JQK dy. (D 3)

Therefore, combining (D 2) and (D 3) yields a general Green’s theorem for a domain
with a discontinuous interface:∫∫

D

(
∂Q
∂x
−
∂P
∂y

)
dx dy=

∮
C
(P dx+Q dy)+

∫
S
(JPK dx+ JQK dy). (D 4)

Apparently, the discontinuity associated with the interface S causes an additional jump
term on the right-hand side of the original Green’s theorem.

However, here we consider a special case where the derivatives of P and Q on S
are not finite and have the form

∂P
∂n
= JP(s)Kδ(n),

∂Q
∂n
= JQ(s)Kδ(n),

 (D 5)
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where δ is the Dirac delta function, n and s are the normal and tangential coordinates
of S, respectively. Therefore, ∂P/∂y on S can be written as

∂P
∂y
= JP(x, fs(x))Kδ(y− fs(x)) for (x, y) ∈ S. (D 6)

Now, equation (D 6) can be plugged into (D 1) to obtain∫∫
D

∂P
∂y

dx dy=−
∮

C
P dx. (D 7)

In the same way, the counterpart for (D 3) becomes∫∫
D

∂Q
∂x

dx dy=
∮

C
Q dy. (D 8)

Thus, Green’s theorem in this case has its original form∫∫
D

(
∂Q
∂x
−
∂P
∂y

)
dx dy=

∮
C
(P dx+Q dy). (D 9)

Finally, applying domain decomposition similar to that in Kaplan (2002), the above
results can be extended to a general-shaped volume with multiple discontinuous
surfaces.
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