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Numerical continuation is used to compute branches of spatially localized structures
in convection in an imposed vertical magnetic field. In periodic domains with finite
spatial period, these branches exhibit slanted snaking and consist of localized states of
even and odd parity. The properties of these states are analysed and related to existing
asymptotic approaches valid either at small amplitude (Cox and Matthews, Physica D,
vol. 149, 2001, p. 210), or in the limit of small magnetic diffusivity (Dawes, J. Fluid
Mech., vol. 570, 2007, p. 385). The transition to standard snaking with increasing
domain size is explored.
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1. Introduction
Convectons are spatially localized regions of convection embedded in a quiescent

background. States of this type were found in numerical studies of magnetoconvection,
i.e. convection in an imposed vertical magnetic field, in both two (Blanchflower 1999)
and three spatial dimensions (Blanchflower & Weiss 2002; Houghton & Bushby 2011),
although there is evidence for similar states in earlier work on two-dimensional natural
convection in a vertical slot (Ghorayeb & Mojtabi 1997). The existence and stability
of these structures has elicited considerable interest in recent years (Knobloch 2008).
Studies of model equations such as the Swift–Hohenberg equation and the use of
branch-following techniques on the equations of fluid dynamics have revealed a close
relationship between bistability and the presence of convectons (Burke & Knobloch
2007). Specifically, convectons are found in a region called the pinning or snaking
region in parameter space inside the region of bistability between the conduction state
and spatially periodic convection. In systems with one extended spatial dimension, the
convectons appear in a (subcritical) primary bifurcation from the conduction state and
do so simultaneously with periodic convection. Depending on the presence or absence
of midplane reflection symmetry, there are either four or two families of localized
states distinguished by their spatial phase φ (Burke & Knobloch 2007). Convectons
with phase φ = 0,π are even under spatial reflection x→ −x with either maxima
(φ = 0) or minima (φ = π) at x = 0. Convectons with phase φ = π/2, 3π/2 are odd
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under spatial reflection with either positive (φ = π/2) or negative (φ = 3π/2) slope at
x = 0. Only even-parity states remain when midplane reflection is absent (Houghton &
Knobloch 2011).

Despite its important role in identifying convectons, numerical continuation has
not been applied to the equations of magnetoconvection. Existing attempts to explain
the existence of convectons in these equations use matched asymptotic expansions
valid in the limit of small diffusivity ratio ζ (Dawes 2007) or model equations in
the spirit of the Swift–Hohenberg equation (Cox, Matthews & Pollicott 2004; Dawes
2008). In fact, the magnetoconvection problem differs in an important way from other
systems exhibiting convectons. This is because of the presence of a conserved quantity,
here the magnetic flux associated with the imposed vertical magnetic field (Matthews
& Cox 2000). As anticipated by Cox & Matthews (2001) within weakly nonlinear
analysis and subsequently by Dawes (2007) in his analysis of the ζ → 0 limit of
the full magnetoconvection equations, this fact is responsible for two new features of
the bifurcation diagram: (i) localized states exist outside the bistability region; and
(ii) the resulting snaking diagram is slanted. In the analysis both these facts are
a consequence of the presence of non-local terms in the amplitude equations, and
these non-local terms are in turn a consequence of the presence of the conserved
magnetic flux. Significantly, we also find that: (iii) slanted snaking and hence spatially
localized structures are present even when the primary instability to a periodic state is
supercritical and the region of bistability is absent. Dawes (2008) has constructed
a one-dimensional model of the magnetoconvection equations, following Cox &
Matthews (2001), which captures all three of these properties.

In this paper we use numerical continuation on the magnetoconvection equations in
two dimensions to demonstrate that the conclusions reached by Dawes (2007, 2008)
in his asymptotic analysis remain broadly correct for general parameter values. We
show, moreover, that the system behaves fundamentally like other pattern-forming
systems coupled to a conservation law (Dawes & Lilley 2010). However, we also
demonstrate that the slanted snaking that results is a finite size effect, and relate
the solutions along the slanted snaking branches to the modulated roll states first
identified in the supercritical regime by Cox & Matthews (2001) by means of a weakly
nonlinear multiscale analysis. Thus our work can be considered to be an extension of
both approaches into a parameter regime where they overlap. This extension makes
it possible in turn to relate the results of these two approaches to each other. In
particular, by calculating the branches of strongly modulated rolls (hereafter referred to
as localized states) and their stability properties, we shed additional light on the origin
of the modulational instability of periodic convection in this system first noted by Cox
and Matthews.

We conclude that in finite domains the mechanism responsible for snaking in this
system is greatly modified by the non-local nature of the problem from the homoclinic
snaking that lies behind localized structures in other fluid systems (Batiste et al. 2006;
Bergeon & Knobloch 2008; Lo Jacono, Bergeon & Knobloch 2010; Schneider, Gibson
& Burke 2010) and explain why the results are so sensitive to the spatial period used
in the computations.

2. Basic equations
Two-dimensional magnetoconvection in an imposed vertical magnetic field is

described by the dimensionless equations (Weiss 1981)

∇2ψt + J(ψ,∇2ψ)= σRθx + σζQJ(x+ A,∇2A)+ σ∇4ψ, (2.1)
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θt + J(ψ, θ)= ψx +∇2θ, (2.2)
At + J(ψ,A)= ψz + ζ∇2A, (2.3)

with ψ , θ and A defined such that the velocity u = ∇ × ψ ŷ, the temperature
T = 1 − z + θ and the magnetic field perturbation b = ∇ × Aŷ. The system is
characterized by four dimensionless parameters: the Rayleigh number R≡ gα1Th3/κν,
measuring the strength of the thermal forcing (i.e. the temperature difference 1T
across the layer); the Chandrasekhar number Q ≡ B2

0h2/µρ0ην, measuring the strength
of the imposed magnetic field B0; and the two diffusivity ratios σ = ν/κ and ζ = η/κ .
Here α is the coefficient of thermal expansion, g is the gravitational acceleration, ρ0

is the density at a reference temperature, ν is the kinematic viscosity, and κ and η

are the thermal and ohmic diffusivities. The equations have been non-dimensionalized
with respect to the thermal diffusion time h2/κ in the vertical, where the length scale h
refers to the layer height.

We study these equations with stress-free, fixed-temperature, force-free boundary
conditions

ψ = ψzz = θ = Az = 0 on z= 0, 1. (2.4)

The resulting equations are considered on a horizontally periodic domain with
dimensionless period Γ that is large compared with the critical wavelength λc of
the (steady-state) convective instability that sets in as the Rayleigh number R is
increased. With these boundary conditions, the equations are equivariant with respect
to horizontal translations x→ x + `, (ψ, θ,A)→ (ψ, θ,A), as well as the reflections
R1, R2, where

R1 : (x, z)→ (−x, z), (ψ, θ,A)→ (−ψ, θ,−A) (2.5)

relative to an arbitrary origin, here x= 0, and

R2 : (x, z)→ (x, 1− z), (ψ, θ,A)→ (−ψ,−θ,A). (2.6)

In addition Ā ≡ Γ −1
∫ Γ

0

∫ 1
0 A(x, z, t) dx dz remains constant in time. We solve

(2.1)–(2.4) using a spectral element numerical continuation method (Assemat, Bergeon
& Knobloch 2008; Bergeon & Knobloch 2008) with Ā= 0.

Linear stability theory shows that the conduction state (ψ, θ,A) = (0, 0, 0) loses
stability with respect to exponentially growing disturbances with wavenumber k when
R reaches R(k) = (p3/k2)[1 + (π2/p2)Q], where p ≡ π2 + k2. The critical Rayleigh
number Rc ≡ R(kc) and the wavenumber kc of the critical disturbance are obtained by
minimizing the onset Rayleigh number with respect to k. Classical theory shows that
at R = Rc a steady-state bifurcation creates a branch of spatially periodic states with
wavenumber kc that bifurcates subcritically when

1+ π
2

p2

[
1+ 2π2(p− 2π2)

p(p− π2)

1
ζ 2

]
Q< 0 (2.7)

and supercritically otherwise (Knobloch, Weiss & Da Costa 1981; Weiss 1981).
Moreover, when the condition (2.7) holds and the problem is formulated on the real
line, this instability gives rise, in addition, to four subcritical branches of spatially
localized states, characterized by their spatial phase φ = 0,π/2,π, 3π/2 (Burke
& Knobloch 2007). The states with φ = 0,π have even parity, i.e. they satisfy
R1(ψ, θ,A) = (ψ, θ,A) and are related by R2. Likewise, the states φ = π/2, 3π/2
are of odd parity, i.e. they satisfy R2 ◦ R1(ψ, θ,A) = (ψ, θ,A) and are also related
by R2. We mention that in a periodic domain of finite period the branches of localized
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FIGURE 1. (Colour online available at journals.cambridge.org/flm) The convecton branches
L+ (red/grey in print) and L− (black) together with the periodic states P10 and P9 (dashed)
when Γ = 10λc, ζ = 0.1, shown in terms of the total kinetic energy E in the domain (left
panels) and the maximum Amax of the potential A(x, z) in the domain (right panel), both as
functions of the Rayleigh number R. The insets at top left show enlargements at the locations
indicated by arrows, and reveal that the convecton branches bifurcate together from the P10
branch and are intertwined at larger amplitude. This intertwining is shown more clearly in the
right panel in terms of Amax . The convectons on the upper branch between the left and right
saddle node bifurcations are stable.

states cannot bifurcate from the conduction state and necessarily bifurcate from the
periodic states in a secondary bifurcation; this bifurcation occurs at small amplitude
when Γ � λc.

The above properties of the system are shared with other doubly diffusive systems
(Batiste et al. 2006; Lo Jacono et al. 2010) and are a consequence of the symmetry R2

of (2.1)–(2.4) with respect to midplane reflection. However, when we initialize
numerical continuation using analytically constructed approximations to the even and
odd convectons and follow the resulting convecton branches, we find that the system
behaves quite differently, as shown next.

3. Results
In this section we present results for Q = 4, σ = 1 and ζ = 0.1 (subcritical case)

and ζ = 0.5 (supercritical case), and explore the role played by the aspect ratio Γ

of the domain. For these parameter values Rc ≈ 769.98, kc ≈ 2.3948, independently
of the value of ζ , and overstability is absent. Thus the first bifurcation encountered
as R increases is the steady-state bifurcation at R = Rc. We consider spatial periods
Γ = 10λc, 20λc, 40λc, where λc ≡ 2π/kc is the basic wavelength of the unstable mode.

Figure 1 (left panels) shows the kinetic energy E ≡ (1/2) ∫ Γ0 ∫ 1
0 |u |2 dx dz as a

function of the Rayleigh number R for a pair of periodic states labelled P10 and
P9 (dashed lines), and a pair of spatially localized states of even (L+, red line/grey
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FIGURE 2. (Colour online) Solution profiles along the stable upper convecton branches
L+ (left column) and L− (right column) in figure 1 at the Rayleigh numbers indicated on
the right in terms of contours of the streamfunction ψ (upper panels) and the profiles of
ψ(x, 1/2) (red, dashed) and the resulting vertical magnetic field B ≡ 1 + Ax(x, 1/2) (black,
solid).

in print) and odd (L−, black line) parity, both for ζ = 0.1 and Γ = 10λc. This
representation does not distinguish between states related by the midplane symmetry
R2 or by translations. The P10 state consists of 10 wavelengths (20 rolls) within the
period Γ and hence bifurcates from the conduction state at Rc. Since ζ is small, this
bifurcation is strongly subcritical, and, as predicted by general theory (Bergeon et al.
2008), is accompanied by two pairs of branches of opposite-parity spatially localized
structures that bifurcate from P10 at small amplitude in a secondary bifurcation and do
so together and likewise subcritically. These structures are initially weakly localized
and unstable, and the resulting behaviour corresponds to the usual picture of the origin
of localized states in systems of this type (Burke & Knobloch 2007). This is because
for these small amplitudes the magnetic flux constraint exerts essentially no influence.
It is this constraint, however, that is responsible for the subsequent behaviour of the
localized states, and in particular for the fact that the localized branches extend to
Rayleigh numbers substantially below not only the saddle node of P10 but in fact
the saddle nodes of all the periodic branches bifurcating from the conduction state
(figure 1). Thus localized states are present in a parameter regime with no coexistence
between homogeneous and periodic states (Blanchflower 1999).

The localized states acquire stability via saddle node bifurcations (R≈ 696.2), where
the branches turn around towards larger R and thereafter increase monotonically in
energy as the length of the structure progressively increases. This is in contrast to
systems exhibiting standard homoclinic snaking in which the nucleation of a new cell
is reflected in the presence of a saddle node bifurcation in the bifurcation diagram.
Figure 2 shows the details of this process, showing snapshots of both even- and
odd-parity states of increasing energy. With increasing R both branches encounter a
further saddle node at which they lose stability, and turn back towards smaller R
before terminating together on a different periodic branch, P9, with 18 rolls in the
domain. Beyond this point the P9 state is stable. Note that even and odd convectons
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terminate in different (symmetry-related) P9 representatives, as explained by Mercader
et al. (2011).

During the growth process initiated near the left saddle nodes the midplane magnetic
potential A(x, z = 1/2) develops a negative slope within the structure, which remains
almost constant despite the changing Rayleigh number and the growing number of
rolls on either side. The rolls imprint a staircase structure on this overall slope, by an
essentially kinematic flux expulsion process elucidated by Weiss (1966). Figure 2
shows the resulting vertical component of the magnetic field in the midplane,
B ≡ 1 + Ax(x, 1/2). The overall appearance of B is almost identical for both even
and odd states. This is a consequence of the fact that the cells expel magnetic field
regardless of their direction of rotation. Thus a churning array of cells expels field
to the boundary of the array regardless of whether the outermost cells rotate in the
same or opposite directions. Owing to the finite periodic domain, the expelled field
raises the strength of the vertical magnetic field outside the structure, resulting in a
vertical magnetic field that has an essentially piecewise constant profile when averaged
over the cellular structure, reduced within the structure and enhanced outside, and
largely independent of parity. The slanted convecton branches are therefore almost
identical (albeit intertwined, a fact barely discernible when Γ = 10λc, figure 1).
This is in contrast to binary fluid convection, where the pumping properties of a
convecton depend strongly on its parity (Batiste et al. 2006). However, since the
expelled magnetic field, whose magnitude depends only on the vigour of the cells and
therefore on the imposed Rayleigh number, is redistributed over the domain outside of
the convecton, the enhancement of the outside field depends inversely on Γ − `convecton,
where `convecton is the convecton length, and so vanishes in the limit Γ →∞, much as
occurs in the corresponding binary convection problem (Mercader et al. 2009). This
fact has important consequences, as we now describe.

Figure 3 shows that for larger values of Γ we start seeing the development of pairs
of adjacent saddle nodes as the Rayleigh number increases. For moderate Γ these
saddle nodes are associated with the filling of the domain and occur only after the
localized structure has grown to almost fill the domain. Thus the saddle nodes on
the branches of localized states are not associated with the growth mechanism of the
localized structure. Indeed, for sufficiently small Γ the localized structure can grow
gradually and monotonically in extent without undergoing any saddle node bifurcations
whatsoever (figure 2) in a process dubbed ‘smooth snaking’ (Dawes & Lilley 2010).
Thus the growth mechanism differs fundamentally from that associated with standard
homoclinic snaking in a finite periodic domain (Burke & Knobloch 2007; Bergeon
et al. 2008). The saddle nodes set in earlier and become more prominent for larger
values of the aspect ratio Γ . Moreover, the slope that the branches make as a function
of the Rayleigh number increases dramatically. Figure 4(a) shows that this increase is
approximately linear in Γ , while figure 4(b) shows that, as Γ increases, the number of
rolls in the structure at fixed Rayleigh number R also increases. Based on the results
of figure 4 we conclude that this process continues indefinitely, implying that the slope
continues to increase with increasing values of the period Γ becoming asymptotically
vertical as in standard homoclinic snaking. During this process the even and odd
localized states remain intertwined with the pairs of saddle nodes corresponding more
and more closely to the insertion of a new pair of cells. However, for every finite Γ
the slope remains finite and the snaking slanted. Consequently the presence of slanted
snaking (Firth, Columbo & Scroggie 2007; Dawes 2008) is a finite size effect and one
recovers the results from standard theory only in the limit Γ →∞. In this limit the
magnetic field enhancement in the background vanishes (Mercader et al. 2009) and the
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FIGURE 3. (Colour online) The convecton branches L+ (red/grey in print) and L− (black)
together with the periodic states P10 (dashed) when Γ = 10λc, 20λc, 40λc, ζ = 0.1, shown in
terms of the total kinetic energy E in the domain (left panel) and the maximum Amax of the
potential A(x, z) in the domain (right panel), both as functions of the Rayleigh number R. The
insets at top left show enlargements at the locations indicated by arrows, and reveal that with
increasing Γ the convecton branches bifurcate from P10 at smaller and smaller amplitude and
that they develop pairs of saddle node bifurcations but remain intertwined. This intertwining
is shown more clearly in the right panel in terms of Amax . For Γ = 20λc, 40λc, only the initial
part of the convecton branches is shown. In all cases the convectons on the upper branch
between the left and right saddle node bifurcations are stable, except for the short intervals
between successive saddle nodes.

saddle nodes align at R values corresponding to the first and last intersections between
the unstable manifold of the conduction state (in space) and the corresponding centre-
stable manifold of the periodic state (Woods & Champneys 1999).

In figure 5 we show the corresponding results for ζ = 0.5. For this value of ζ
all periodic branches bifurcate supercritically and existing theory (Burke & Knobloch
2007) shows that no localized states homoclinic to the conduction state as x→±∞
bifurcate from the conduction state at R = Rc. Instead one finds a pair of branches of
solutions homoclinic to a periodic state that appear together with the periodic state
(Iooss & Pérouème 1993; Dias & Iooss 1996). States of this type represent a defect
in an otherwise uniform periodic state, and in a finite period domain bifurcate from
the primary periodic branch in a secondary bifurcation as shown in figure 5. As a
result the periodic state is stable close to Rc but loses stability almost immediately to
perturbations with wavelength Γ . Figure 5 shows that this bifurcation in fact produces
two defect states, of even and odd parity, both of which bifurcate subcritically from
the periodic state and are therefore initially unstable. Further from this bifurcation the
defect broadens and the defect states come to resemble the localized structures present
in the subcritical case ζ = 0.1, and both branches turn around towards larger R, again
forming a large loop before terminating on a longer-wavelength periodic branch. Thus
away from R= Rc the localized states in the sub- and supercritical cases in fact behave
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FIGURE 4. (Colour online) (a) The mean slope 〈dE /dR〉 of the convecton branches as a
function of the spatial period Γ when ζ = 0.1 (solid circles) and ζ = 0.5 (open circles).
The slope is independent of ζ and is well fitted by the relation 〈dE /dR〉 = 0.18(Γ − 0.35)
(dashed line). (b) The convecton streamfunction (upper panels) and the profiles of ψ(x, 1/2)
(red, dashed) and B≡ 1 + Ax(x, 1/2) (black, solid) for Γ = 10λc, 20λc, 40λc (from bottom to
top) when R = 700. The solutions are plotted as a function of the scaled variable x/Γ . The
convectons grow more and more rapidly in length as Γ increases.

in a very similar fashion (cf. figures 3 and 5) and with the same growth properties.
The gradual steepening of the branches with increasing Γ follows the pattern already
observed in the subcritical case, indicating the presence of finite size effects at any
finite Γ . However, the pairs of saddle nodes on the solution branches now only appear
for large values of Γ and are less prominent, suggesting that in the limit Γ →∞ the
width of the snaking region may approach zero.

4. Discussion
It remains to understand the presence of localized states for parameters for which

there is no bistability between conduction and convection. We have found two distinct
cases where this occurs: in the subcritical case below the minimum of the saddle
nodes of all the periodic states that bifurcate from the conduction state for R > Rc; and
also in the supercritical case. We have seen that these states are in fact closely related
and take the form of modulated rolls with a modulation scale that is comparable
to the available domain. The appearance of this length scale in the problem is a
consequence of the conserved quantity Ā or equivalently of a mean negative gradient
of A(x, 1/2) within the convecton, which must be balanced by a positive gradient
outside if periodic boundary conditions are imposed. It is the resulting large horizontal
scale of A(x, 1/2) that is responsible for the ever-present finite size effects; these
effects only disappear in an infinite domain in which the background gradient of
A(x, 1/2) vanishes and the non-local magnetic flux constraint formally drops out and
the problem becomes local, with an intrinsic localization length. This distinction is
an essential one: in a periodic domain a convecton is part of a periodic array of like
convectons and the expulsion of flux from each of them raises the magnetic field
between them. This is not the case in an infinite domain. This effect displaces the
leftmost saddle nodes on L± towards larger Rayleigh numbers compared to the infinite
domain, by an amount that decreases with increasing Γ as shown in figures 3 and
5. Since in small domains the saddle nodes of the periodic state and the convecton
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FIGURE 5. (Colour online) As for figure 3 but for ζ = 0.5 and Γ = 10λc, 20λc, 40λc. The
insets at top left show enlargements at the locations indicated by arrows, and reveal that with
increasing Γ the convecton branches bifurcate from P10 at smaller and smaller amplitude and
that they develop pairs of saddle node bifurcations. The right panel shows this behaviour in
terms of Amax . In all cases the convectons on the upper branch between the left and right
saddle node bifurcations are stable, except for the short intervals between successive saddle
nodes.

states occur at comparable values of R, it follows that in large domains the saddle
nodes of the latter necessarily fall substantially below the saddle node of the periodic
state(s). Moreover the flux expulsion from the convecton reduces the magnetic field
within the convecton and so enhances the vigour of the resulting motion and hence the
kinetic energy E . Thus the convection amplitude within the convecton exceeds that for
periodic convection in which flux remains trapped between adjacent cells.

From figures 3 and 5 it is evident that in the limit Γ →∞ the left saddle
nodes accumulate at a well-defined value of the Rayleigh number, R∗(ζ ), with
R∗(ζ = 0.1) ≈ 690 and R∗(ζ = 0.5) ≈ 746. Both values fall substantially below both
Rc and the saddle nodes of the periodic states (if present). At R∗ the mean slope
〈dE /dR〉 of the intertwined L± branches diverges, as the localized states approach a
spatially extended state of infinite energy, i.e. the solutions transition into a standard
snaking scenario with no slant despite the absence of periodic states at this value
of R∗. Figures 3 and 5 also show that at large amplitude the convecton branches
track the P10 branch, suggesting that the solutions on the L± branches approach a
spatially extended convection state with a defect. This defect collects the expelled
magnetic flux, enhancing the kinetic energy of the asymptotic state over that of
the corresponding P10 state. States of this type have been observed in other doubly
diffusive systems as well (Bergeon & Knobloch 2008; Bergeon et al. 2008).

We can also understand the transition from the subcritical to the supercritical regime
in the limit Γ →∞. As the parameter ζ increases, the periodic state bifurcates less
and less subcritically but the bifurcation to localized states remains at Rc until the
critical value ζ = ζ ∗(Q) at which the quantity (2.7) vanishes. At this point homoclinics
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to the conduction solution turn into homoclinics to a periodic state (Dias & Iooss
1996). Nothing significant occurs elsewhere in the bifurcation diagram. Thus the broad
features of the bifurcation diagrams are insensitive to the value of the parameters ζ
and Q, provided overstability is absent, and indeed resemble those identified by Dawes
& Lilley (2010) in their study of an oscillon model.

Our computational results confirm the basic conclusion of Cox & Matthews (2001)
that the presence of the conserved flux Ā destabilizes periodic convection in the
supercritical case, and the prediction by Dawes (2008) of slanted snaking in the
subcritical case. These predictions were obtained on the basis of weakly nonlinear
theory and a simplified model, respectively, but extend into the fully nonlinear regime,
where neither procedure remains valid: in the former approach the solution amplitude
and modulation length scale (i.e. domain length) are linked to the distance from
threshold, while in the latter it is the inverse domain length that plays the role of
the small parameter. In contrast, our calculations decouple the domain size from the
Rayleigh number, allowing us to examine domains for which the scaling assumptions
used in the theory no longer apply. This approach has allowed us to understand in
detail the crossover from slanted snaking characteristic of finite domains to standard
snaking on the real line.

This work was supported by the National Science Foundation under grant DMS-
0908102 and by CNES under grant GdR MFA 2799.
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