
The TOPAS symbolic computation system

A. A. Coelhoa)

72 Cedar Street, Wynnum, 4178 Brisbane, Australia

J. Evans and I. Evans
Department of Chemistry, Durham University, Science Laboratories, South Road, Durham DH1 3LE, UK

A. Kern
Bruke rAXS, Karlsruhe, Germany

S. Parsons
School of Chemistry, The University of Edinburgh, King’s Buildings, W. Mains Road, Edinburgh, Scotland,
EH9 3JJ

(Received 20 October 2011; accepted 22 October 2011)

Computer algebra removes much of the drudgery from mathematics; it allows users to formulate

models by using the language of mathematics and to have those models evaluated with little effort.

This symbolic form of representation is often thought of as being separate to dedicated computa-

tional programs such as Rietveld refinement. These dedicated programs are often written in low

level languages; they are relatively inflexible in what they do and modifying them to change func-

tionality in a small manner is often a major programming task. This paper describes a symbolic sys-

tem that is integrated into the dedicated Rietveld refinement program called TOPAS. The symbolic

component allows large functional changes to be made at run time and with a relatively small

amount of effort. In addition, the system as a whole reduces the programming complexity at the de-

velopmental stage. VC 2011 International Centre for Diffraction Data. [DOI: 10.1154/1.3661087]

Key words: symbolic computation, computer algebra, Rietveld refinement

I. INTRODUCTION

The computer program TOPAS V5 (Bruker AXS, 2011)

is primarily a nonlinear least-squares optimization program

used in the field of crystallography. It is written in the cþþ
programming language and at its core is a symbolic compu-

tation system. Symbolic computation is a powerful tool as it

extends program functionality at run time. Equally impor-

tant is the simplicity it offers at program development stage

by hiding (not eliminating) underlying complexity. Often

cited against the use of symbolic computation is slowness in

computation. This is largely overcome by calculating only

what has been changed at the symbolic equation node level.

Optimization programs generally receive parameter

input in the form of numeric values, and these values are

modified during the course of optimization. Invariably input

flags are used to convey information such as whether to treat

a particular parameter value as a constant or whether to

modify the parameter value during optimization.

TOPAS is similar, except that information to the optimiza-

tion routines is passed through symbolic algebraic equations

which we will call the TOPAS symbolic system. These equa-

tions can describe parameter dependencies or they can define

functionality at key points in the model function. The extent to

which functionality can be extended is dependent on the

design of the model function, written in cþþ, and the aspects

of the model function that are exposed to the symbolic system.

Consider the case of the generalized model function in

TOPAS called “fit_obj.” It is written in cþþ code and the

only symbolic variable it manages is the abscissa x; this

type of variable will be called a multivalued variable.The

symbolic system defines the model itself at run time. For

example, a normalized Gaussian peak profile P(x) can be

defined by writing in the symbolic form (1).

PðxÞ ¼ a ð2 SqrtðLnð2Þ=pÞ=f Þ Expð � 4Lnð2Þ
� ððx� xoÞ=f Þ2Þ: (1)

Here, there are three parameters: the area a, the full width at

half maximum f, and the peak position xo. These parameters

and the Gaussian itself are defined symbolically at run time,

and as such they can be redefined. Say, for example, that the

full width at half maximum is redefined to vary with respect

to x (2).

f ¼ f1xþ f2x:2 (2)

The symbolic system recognizes this and forms a depend-

ency tree where f is now dependent on f1 and f2, with f1 and

f2 becoming independent parameters. At the calculation

stage, the optimization routines substitutes (f1 xþ f2 x2) for f
and performs the desired calculation. Without the symbolic

system, a new peak type would need to be defined at the pro-

gramming stage and the program recompiled and debugged.

There are limitations to the TOPAS symbolic system; it

does not operate on arrays nor does it allow for the creation

of storage arrays. This simplicity, however, allows for speed

of calculation whilst still providing a great deal of flexibility.

II. THE TOPAS SYMBOLIC SYSTEM

Symbolic equations are represented in computer mem-

ory as equation trees. Nodes of an equation tree comprise

operators (such as the plus operator) and leaves, which can

a)Author to whom correspondence should be addressed. Electronic mail:

AlanCoelho@bigpond.com

S22 Powder Diffraction Suppl. 26 (S1), December 2011 0885-7156/2011/26(S1)/S22/4/$30.00 VC 2011 JCPDS-ICDD S22

https://doi.org/10.1154/1.3661087 Published online by Cambridge University Press

https://doi.org/10.1154/1.3661087

be variables, constants or pointers to other equations. In addi-

tion, parameter dependency trees are formed and independent

parameters are identified. For small problems, where there

are not many equations such a system will perform the sym-

bolic equation evaluations within an acceptable time period.

For larger problems, equations can comprise hundreds of mil-

lions of nodes when expanded, where expanded means insert-

ing the symbolic form of an equation into its corresponding

equation node. For example, the two equations in Eq. (3a)

expands to those shown in Eq. (3b).

a ¼ bþ c; b ¼ cþ d; (3a)

a ¼ ðcþ dÞ þ c; b ¼ cþ d: (3b)

For computational speed, it is desirable not to continually

recalculate equation nodes that have unchanged dependents.

The TOPAS symbolic system accomplishes this by assigning

a storage value and a recalculation flag at the equation node

level for nonleaf items. A change in an independent parame-

ter value results in a signal being sent to corresponding

equation nodes to inform that a recalculation is necessary. In

example of Eq. (3a), a change in the value of c leads to c
informing the corresponding nodes in equations a and b.

Note only the nodes in a and b that need recalculation are

signalled. This signalling seems computationally intensive,

however, in practice c signals to b only if it has not already

been flagged for recalculation and b signals to a only if it

has not already been flagged for recalculation. The signal-

ling also considers that during a derivative calculation of a

nonindependent parameter equation with respect to an inde-

pendent parameter, the number of equation nodes signalled

lies at the intersection of two sets: one set defined as all pa-

rameters that are dependencies of the nonindependent equa-

tion and the other set defined as all parameters that have the

independent parameter as a dependent. The net effect is that

the traversing of dependency trees is a small part of the

computation.

A subtle point that is easy to miss in the “Recalculate If

Necessary” paradigm is that calculation is essentially per-

formed on simplified equations. In the case of the Gaussian

defined in Eq. (1), the optimization routines effectively see

the equation shown in Eq. (4) where # denotes equation

node storage values. In different problems, each # value

could correspond to a lengthy calculation.

PðxÞ ¼ # expð#ððx�#Þ#Þ2Þ: (4)

A. Equation simplification

Simplifying symbolic equations is the process of manip-

ulation equations to reduce the computational effort. There

are many facets to simplifying symbolic equations; TOPAS is

not exhaustive in this respect with complex operations such

as factorization not performed. It does, however, reduce the

equations according to approximately 100 rules and in addi-

tion it looks for numeric equivalent forms that reduce the

number of equation nodes. For example, the equation a/2

can be manipulated to 0.5*a which remove the divide; thus

a “rule” can be made such that a variable divided by a con-

stant should be changed to a constant times the variable. A

more complicated rule is �Min(# a, # b)¼Max(# a, # b)

where # corresponds to constants. An unsimplified normal-

ized Pseudo-Voigt, comprising 39 nodes, reduces to 18 dur-

ing calculation as shown in Eq. (5) with two expensive

divides being eliminated.

PðxÞ ¼ # Expððx�#Þ2Þ þ#=ð#þ ðx�#Þ2Þ: (5)

Some of the simplifications are not rule based and are

instead hard coded to increase speed. Speed is of the

essence, as simplification occurs at run time during each

nonlinear least squares iteration for each independent pa-

rameter, and often during derivative calculations. Attention

is given to the fact that simplification can take as long as the

calculation itself and in these cases the Recalculate if Neces-

sary approach is relied upon. Equations, the size of normal-

ized Pseudo-Voigts, can be simplified on present 2 GHz

desktop computers at the rate of over 300 000 per second.

Equations are also analyzed globally and new equations

are created from duplicate patterns; trivial patterns are not

duplicated as the function call overhead negates the advant-

age of having fewer nodes. Multivalued independent varia-

bles, such as x in the Gaussian example above, are isolated

as much as possible. For example, Eq. (6a) could be stored

in a binary tree representation as either Eq. (6b) or Eq. (6c).

PðxÞ ¼ a � x � b; (6a)

PðxÞ ¼ ða � xÞ � b; (6b)

PðxÞ ¼ a � ðx � bÞ: (6c)

In Eq. (6b) or Eq. (6c), not having to recalculate a and b would

not decrease the number of operations performed in calculating

P(x). P(x) is therefore rearranged as shown in Eq. (7).

PðxÞ ¼ ða � bÞ � x: (7)

In another example, x/a becomes (1/a)*x which during multi-

ple calculations, as a result of the multivalued variable x

changing, becomes #*x which removes the expensive divide.

Equation trees are balanced to reduce the number of

operations performed. For example, a change in a in the

unbalanced equation shown in Eq. (8a) requires three multi-

plies for recalculation, whereas only two are required for the

balanced equation shown in Eq. (8b). A change in b results

in three multiplies for Eq. (8a), two for Eq. (8b), etc. Chang-

ing each parameter individually, as is the case in derivative

calculations, and recalculating, results in one less multiply

for Eq. (8b) than Eq. (8a). This gain in efficiency is magni-

fied for larger problems and for the case where multivalued

variables are the only variables changing over many

calculations.

ððða � bÞ � cÞ � dÞ; (8a)

ða � bÞ � ðc � dÞ: (8b)

B. Recalculate if necessary and penalties

In the optimization of penalties (also known as Restraints),

where a penalty is a user defined symbolic representation of a

S23 Powder Diffr. Suppl., Vol. 26, No. S1, December 2011 The TOPAS symbolic computation system S23

https://doi.org/10.1154/1.3661087 Published online by Cambridge University Press

https://doi.org/10.1154/1.3661087

model function, a particular penalty is calculated many times

during derivative calculations with just one independent pa-

rameter value changing. The Recalculate If Necessary

approach greatly speeds up these calculations, as only equation

nodes that need recalculation are calculated. On complex prob-

lems, an increase in speed greater than 10 is often achieved.

Simplifying penalties with all parameters treated as con-

stants except for the one for which the numerical derivative

is being sought is largely impractical, as the act of simplifi-

cation often takes longer that the calculation itself; hence

the importance of Recalculate If Necessary.

The only way to better the Recalculate If Necessary

approach in speed (and not by much) is to code separate

simplified cþþ functions for each independent parameter.

For problems with hundreds of equations and parameters

this means writing hundreds of cþþ routines and compil-

ing/debugging each time the user defines a new set of pen-

alty functions.

C. The implementation

A basic understanding of present day compilers and

CPUs helps in understanding how speed can be maintained

with a symbolic system. For the past 20 to 30 years, CPU

speed has been advancing at a rate faster than the speed of

regular memory. CPU’s therefore have fast cache memory

for program data (data cache) and program code (instruc-

tion cache). Modern compilers analyze program functions

and “inline” them for speed depending on a cost benefit

analysis; this saves a function call to regular memory

which, depending on memory access, can take a number of

clock cycles. Inlining also gives the compiler an opportu-

nity to optimize the inlined code. On the negative side too

much inlining increases the amount of code placed in the

instruction cache, which may result in a cache miss (which

results in the CPU having to wait for instructions to be

loaded).

To speed up the calculation of the symbolic equations,

TOPAS performs (inlines) up to three operations in a single

function call, for example, in the equation (aþb) there are,

without inlining, three function calls; one to the Plus opera-

tor and two for the loading of the variables. The inlining per-

formed in TOPAS reduces this to one function call. This is

accomplished by generating 315 small functions using cþþ
templates. To avoid large code, the number of functions nec-

essary has been minimized by arranging equations in as few

patterns as possible. For example, 3*a, where a is a variable,

can be arranged as a*3 and hence only one function is nec-

essary to perform a constant multiplied by a variable rather

than two.

With the performing of up to three operations in a single

function call only N�1 function calls are necessary for a

binary system comprising N leaves. Without inlining the

number of function calls would be 2N�1 with N�1 of them

being the binary operators such as Plus etc. With the use of

the Register Calling Conventions (a compiler switch that

exists in most compilers that passes/returns arguments to

functions in registers) the speed of the symbolic system is

optimized.

Apart from specialized CPUs, the maximum speed in

present day desktop CPUs is around one double precision

floating point addition or multiplication per clock cycle. Per-

forming a test in cþþ (using Microsoft’s Visual Studio

cþþ compiler) on the summation of an array of double pre-

cision numbers
PN

i¼1 ai results in a speed rating of slightly

less than one Gigaflop on a 2 GHz pc. Note that in perform-

ing timing tests, it is important to check the assembler code

to ensure that the compiler is not optimizing out the code

being timed. In performing the test on a two dimensional

array
PN

i¼1 ai;0ai;1 the cþþ version gave exactly the same

time as
PN

i¼1 ai. This is due to the fact that whilst the copro-

cessor is performing the addition on ai,0 the CPU is fetching

ai,1 and placing it on the coprocessor stack independently of

the addition; thus the speed rating is around two Gigaflops.

A further sum of
PN

i¼1 ai;0ai;1ai;2ai;3 does not increase the

number of Gigaflops. Performing the same loops using the

symbolic system results in eight to ten times less speed; this

is expected due to the N�1 function calls performed by the

symbolic system. Performing the test on a loop comprising a

divide however of
PN

i¼1 1=ai results in the symbolic system

being 1.8 times slower. The times for the symbolic system

include the loading of the ai variable with random values

before actually performing the symbolic computation.

More demanding trigonometric or power functions

result in a closer match between the compiled and the sym-

bolic times. This again is due to the fact that the coprocessor

processes the floating point operation independently of the

CPU. Note the time taken for many floating point operations

is dependent on the arguments provided; for example, 1/2

takes fewer clock cycles than 1.0/1.234; thus the timing tests

were performed on floating point numbers that are similar

for both the cþþ case and the symbolic case.

These results indicate that the symbolic system is not too

far off compiled speed for operations more elaborate than addi-

tion or multiplication. A comparison of fitting a single Pseudo-

Voigt comprising 1200 data points using the TOPAS symbolic

fit_obj and the equivalent function hard coded in TOPAS gave,

for four independent parameters refining over 5000 iterations,

2.34 and 1.48 s for the symbolic and hard coded equivalent,

respectively. The optimized hard coded equivalent uses storage

arrays such that during a particular refinement iteration the

actual Pseudo-Voigt is calculated only twice. To ensure the

same number of recalculations of the Pseudo-Voigt, the only

nonlinear parameter (the full width at half maximum) was

refined with times of 1.38 and 1.01 s for the symbolic and hard

coded equivalent, respectively. It is surprising that the sym-

bolic system is so close to the hard coded equivalent; the latter

does, however keep, storage arrays and in addition it treats the

Gaussian and Lorentzian parts of the Pseudo-Voigt separately.

Thus in an attempt to speed up the hard coded equivalent in a

general sense overheads are often required.

III. LARGE RIETVELD REFINEMENT EXAMPLE

Rietveld refinement by Wood et al. (2008) comprised

seven neutron Time of Flight data sets and one single crystal

data set; a total of 29 structural phases, 2707 symbolic

S24 Powder Diffr. Suppl., Vol. 26, No. S1, December 2011 Coelho et al. S24

https://doi.org/10.1154/1.3661087 Published online by Cambridge University Press

https://doi.org/10.1154/1.3661087

equations, 22941 equation nodes, and 276 independent param-

eters. Were the equations expanded they would yield

1,706,390,373 equation nodes. Without the Recalculate If

Necessary paradigm there would be tens of millions of

unnecessary equation evaluations and refinement time would

be orders of magnitude longer. With Recalculate If Necessary,

the refinement takes six nonlinear least squares iterations and

a total of 6.1 s. The percentage of time spent on the symbolic

equation evaluations is about 20% of the total refinement time

with the other 80% spent in cþþ code calculating structure

factors, reflection peaks, etc. In more typical Rietveld refine-

ment problems, the percentage is less than 10% and in prob-

lems where there are only penalties then its 100%.

To perform this refinement with the symbolic equations

written in cþþ would be very time consuming as it would

mean coding and debugging hundreds of cþþ routines and

determining the dependencies for the independent parameters.

It is, therefore, not practical to examine the effects of not

using the TOPAS symbolic system in this particular example.

IV. CONCLUSION

Programs comprising model functions written in low

level languages, such as cþþ, that expresses key aspects of

functionality in a symbolic form can greatly increase overall

program functionality at run time. The logic of the low level

code is often simplified and at the same time repetitive pro-

gram logic is hidden from the user. A balance between the

amount of low level and symbolic code is necessary in order

to maintain computational speed. In the TOPAS symbolic sys-

tem, the user can typically experiment with many crystallo-

graphic scenarios in a short time period and with a relatively

small amount of effort.

Bruker AXS (2011). TOPAS, V5.0. (Computer Software), Bruker AXS,

Karlsruhe, Germany.

Wood, P. A., Francis, D., Marshall, W. G., Moggach, S. A., Parsons, S.,

Pidcock, E., and Rohl, A. L. (2008). “A study of the high-pressure poly-

morphs of L-serine using ab initio structures and PIXEL calculations,”

CrystEngComm 10, 1154–1166.

S25 Powder Diffr. Suppl., Vol. 26, No. S1, December 2011 The TOPAS symbolic computation system S25

https://doi.org/10.1154/1.3661087 Published online by Cambridge University Press

http://dx.doi.org/10.1039/b801571f
https://doi.org/10.1154/1.3661087

	s1
	E1
	E2
	s2
	cor1
	E3a
	E3b
	E4
	s2A
	E5
	E6a
	E6b
	E6c
	E7
	E8a
	E8b
	s2B
	s2C
	s3
	s4
	B1
	B2

