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Abstract We deal with the incompressible Navier–Stokes equations with vortex patches as initial data.
Such data describe an initial configuration for which the vorticity is discontinuous across a hypersurface.

We give an asymptotic expansion of the solutions in the vanishing viscosity limit which exhibits an
internal layer where the fluid vorticity has a sharp variation. This layer moves with the flow of the Euler
equations.

1. Introduction and overview of the results

In this paper we deal with the equation

∂tv
ν + vν · ∇vν +∇pν = ν∆vν, (1)

with the incompressibility condition

div vν = 0, (2)

where the spatial variable x is in Rd for d = 2 or 3, where vν and pν respectively
denote the velocity and the pressure of a fluid and where ν > 0 is the viscosity
coefficient. The derivative fields vν · ∇ and ∆ are taken with respect to x and applied
componentwise to the vector-valued function vν , whereas ∇pν denotes the gradient (also
with respect to x) of the scalar function pν . Equations (1), (2) are Newton’s laws for
a homogeneous fluid (with constant density). They are the Euler equations when ν = 0
and the Navier–Stokes equations when ν > 0.

The study of these equations is naturally affected by the function space in which
initial data is provided, and in which solutions are sought. In this paper we will consider
as initial data some vortex patches which are basically fluid configurations where the
vorticity

ων := curl vν (3)

is initially discontinuous across a hypersurface of Rd.
The problem was initially considered for the Euler equations in two dimensions. The

vorticity ω0 is then scalar and a natural example of discontinuous vorticity is the
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2 F. Sueur

characteristic function of a bounded domain. In this case the existence and uniqueness
of a solution of the Euler equations in the more general case of an initial vorticity
which is a bounded function with compact support were proved by Yudovich in [88].
The corresponding velocity field is log-Lipschitz and admits a bicontinuous flow X 0

which transports the vorticity. As a consequence, in the case of a vortex patch as initial
data, the vorticity ω0 at time t remains a vortex patch relative to a domain which is
homeomorphic to the initial domain. However if we only use that the initial vorticity
is a bounded function with compact support, we can only get that the smoothness of
Yudovich’s flow X 0 is exponentially decreasing: it is in Cexp−αt where α depends on the
initial vorticity (cf. for example [10], Theorem 7.26). Therefore in the case of a vortex
patch, Yudovich’s approach only provides that the boundary of a vortex patch is in
Cexp−αt. The aim is to establish how the smoothness of the boundary of the patch really
evolves. Numerical experiments of Zabusky in [123] suggested that singularities of the
boundary of the patches would develop, presumably in finite time, whereas the ones
of Buttke [19] suggested a loss of smoothness. Majda in [96] studied theoretically the
evolution of the boundary of piecewise constant vortex patches, by a contour dynamic
approach, announcing local-in-time existence and conjecturing that there are smooth
initial curves such that the curve becomes non-rectifiable in finite time. Constantin and
Titi [40] studied a quadratic approximation of the equation governing the evolution of
the boundary for which Alinhac [7] found some evidence of finite time breakdown. As
a consequence it was very surprising when a proof of the global-in-time persistence of
the initial Cs+1,r smoothness of the boundary was given, by Chemin in [32] (see also
his earlier local-in-time results in [30, 26], his proceedings work [29, 27, 28] and his recent
survey [35]).

There were numerous works after Chemin’s results, in particular some extensions to
the three-dimensional case, that we will consider here. In three dimensions constant
patches of vorticity are not a good pattern; instead we will consider:

Definition 1.1 (vortex patches). Let a compact connected hypersurface Γ0 in the
Hölder class Cs+1,r where s is in the set N of all natural numbers including 0 and
0 < r < 1 be given. This means that there exists a function ϕ0 ∈ Cs+1,r(R3;R) such
that an equation for Γ0 is given by Γ0 = {ϕ0 = 0}, with ∇ϕ0 6= 0 in a neighborhood
of Γ0. According to the Jordan–Brouwer theorem, R3 \ Γ0 has two distinct connected
components. One of them is bounded (the ‘interior’)—we will denote it as O0,+—and
the other one (the ‘exterior’) is unbounded—we will denote it as O0,−. We assume that
O0,± = {±ϕ0 > 0}. We will consider as the initial velocity a divergence free vector field
v0 in L2(R3) whose vorticity ω0 := curl v0 is in the Hölder space Cs,r

c (O0,±), that is a
vorticity which is compactly supported in R3 and which is Cs,r on each side of Γ0.

To avoid any confusion let us recall the definition of the Hölder spaces:

Definition 1.2 (Hölder spaces). For an open subset O of Rd, for s in N and 0 < r < 1,
the Hölder space Cs,r(O) is the set of the functions of class Cs(O) such that

‖u‖Cs,r(O) := sup|α|6s

(
‖∂αu‖L∞(O) + supx 6=y∈O

|∂αu(x)− ∂αu(y)|
|x− y|r

)
<+∞,
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Viscous profiles of vortex patches 3

and Cs,r
c (O) is the subset of the functions in Cs,r(O) which are compactly supported in

the closure O of O in Rd.

The main goal of this paper is to obtain an expansion for the solutions of the
Navier–Stokes equations in the vanishing viscosity limit. It is useful to re-examine first
the case of the Euler equations.

1.1. The inviscid case

We first gather from the literature the following compendium of results regarding the
inviscid case:

Theorem 1.1. For initial velocities v0 as described in Definition 1.1 the following hold
true:

(1) Existence and uniqueness. There exist T > 0 and a unique solution

v0 ∈ L∞([0,T];Lip(R3)) ∩ Lip([0,T];L2(R3))

to the Euler equations:

∂tv
0 + v0 · ∇v0 = −∇p0, (4)

div v0 = 0, (5)

with v0 as initial velocity. From now on we denote as D the vector field

D := ∂t + v0 · ∇, (6)

and as X 0 the flow of particle trajectories defined by the differential equation
∂t X 0(t, x)= v0(t,X 0(t, x)) with initial data X 0(0, x)= x.

(2) Propagation of smoothness of the vorticity. Moreover for each t ∈ [0,T] the vorticity

ω0 := curl v0 (7)

is Cs,r
c (O±(t)) where O±(t) are respectively the domains transported by the flow at

time t starting from O0,± at time t, that is O±(t) := X 0(t,O0,±).
(3) Propagation of smoothness of the boundary. For each t ∈ [0,T] the boundary

Γ (t) := X 0(t, Γ0)= ∂O+(t)= ∂O−(t) is Cs+1,r.

(4) Propagation of smoothness of the level function. For each t ∈ [0,T] the boundary
Γ (t) is given by the equation Γ (t)= {ϕ0(t, ·)= 0}, where

ϕ0 ∈ L∞([0,T];C1,r(R3)) ∩ L∞([0,T];Cs+1,r(O±(t)))

verifies

Dϕ0 = 0, (8)

ϕ0|t=0 = ϕ0. (9)

Moreover O±(t)= {±ϕ0(t, ·) > 0} and there exists η > 0 such that for 06 t 6 T, and
x such that for |ϕ0(t, x)|< η the vector n(t, x) := ∇xϕ

0(t, x) satisfies n(t, x) 6= 0.
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4 F. Sueur

(5) The incompressible Rankine–Hugoniot condition. For each t ∈ [0,T] the function
(ω0 · n)(t, ·) is C0,r on {|ϕ0(t, ·)|< η}.

(6) Smoothness in time. Finally the internal boundary Γ (t) is analytic with respect to
t ∈ [0,T] and the restrictions on each side of the boundary of the flow X 0 are also
analytic with respect to time with values in Cs+1,r.

Remark 1.1. The notation L∞([0,T];Cs+1,r(O±(t))) is slightly improper since the
domain F(t) depends on t. One should more precisely think of u as the section of a
vector bundle. However, since we think that there should not be any ambiguity, we will
retain this notation in the sequel.

Remark 1.2. Equation (4) means that the curl of the left side is identically zero, or
equivalently, that the left side is the gradient of a scalar tempered distribution.

Remark 1.3. When v ∈ L2(R3) satisfies the equations div v = 0 and curl v = ω with
ω ∈ L∞c (R3) the Biot–Savart law holds:

v(x)=
∫

R3
ω(y) ∧ ∇F(x− y)dy where F(x) := −1/(4π |x|). (10)

Conversely if v satisfies (10) with ω ∈ L∞c (R3) then v ∈ L2(R3).

Remark 1.4. We will give a proof of Theorem 1.1 which relies on the vorticity
formulation of the Euler equations and some norms based on L∞. The condition
v0 ∈ Lip([0,T];L2(R3)) in Theorem 1.1 imposes uniqueness.

Remark 1.5. We stress that the vector n is not a unit vector even if it is so at t = 0,
since it is stretched when time proceeds according to the equation

Dn=−t(∇v0) · n. (11)

Chemin’s proof of the two-dimensional case uses vorticity smoothness with respect
to the vector fields tangential to the boundary of the patch. These vector fields move
with the fluid, and their own smoothness is therefore linked to the smoothness of the
fluid velocity. The idea of using regularity properties with respect to a family of vector
fields originates in Hörmander’s Fourier operator theory (see Hörmander [83] for a
comprehensive expository). In a nonlinear setting it goes back to the work of Bony—cf.
[14]—and to the work of Alinhac [3] and Chemin [25] for the case of non-smooth vector
fields.

Remark 1.6. This approach even allows us to deal with more general cases since it
could apply for example to initial data which are irregular with respect not just to one
hypersurface {ϕ0(t, .) = 0} but to the whole foliation of the hypersurfaces {ϕ0(t, .) = a}
for a ∈ R.

In [12] Bertozzi and Constantin succeeded in recovering global-in-time persistence of
the Cs+1,r smoothness of the boundary in the special case of constant vortex patches by
the contour dynamics approach.
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Viscous profiles of vortex patches 5

The persistence of piecewise smoothness of the vorticity (Hölder regularity up to the
boundary) was proved later—first by Depauw for the case s= 0 in [51, 50] and by Huang
[85] for the general case s in N with a Lagrangian approach.

Chemin’s approach was extended to the three-dimensional case d = 3 by Gamblin and
Saint-Raymond in [63], but it is only a short time result since in the three-dimensional
case the vorticity ω0 is stretched along particle trajectories according to the formula
ω0(t,X 0(t, x))= ω0(x) · ∇x X 0(t, x) which solves the equation

Dω0 = ω0 · ∇v0, (12)

ω0|t=0 = ω0. (13)

A rough estimate of the vorticity stretching is given by

‖ω0(t)‖L∞ 6 e
∫ t
0 ‖v0‖Lip(s)ds ‖ω0‖L∞ . (14)

Of course in some specific situations vorticity stretching vanishes, so the existence
and regularity results are in fact global in time, i.e. T > 0 can be taken arbitrarily
large as in the two-dimensional case. For instance a particular situation is the one of
an axisymmetric initial velocity, as considered by Gamblin and Saint-Raymond (and
others). We will not specifically consider this case here.

Indeed the statement of the three-dimensional case in Theorem 1.1 is not strictly
given in [62]; roughly speaking, Gamblin and Saint-Raymond deal with tangential
smoothness in the case s = 0. The tangential smoothness in the general case s ∈ N was
alluded to in the comment (ii) of ğ 1.d of Gamblin and Saint-Raymond and rigorously
proved by Zhang and Qiu in the couple of papers [125, 124]. The persistence of piecewise
C0,r smoothness (the case s = 0) was proved by Huang in [86] by means of a Lagrangian
approach (see also [55] ğ 3.1). We did not find any proof of the persistence of higher
order piecewise Cs,r smoothness in the literature. This is why we will give a few details
of the whole proof of the three-dimensional case including a proof of the persistence
of piecewise Cs,r smoothness (in the Eulerian framework of Chemin, Gamblin and
Saint-Raymond).

Theorem 1.1 gathers the results that we will need, but many other works deal
with close issues. Let us mention some papers by Chemin and Danchin on vortex
patches with singular boundary in two dimensions. By using the pseudo-locality of the
Paley–Littlewood theory and transport equations, by means of log-Lipschitz velocities
they show that if the initial boundary is regular (C0,r in Chemin’s works [33, 34], chapter
9, generalized into Cs,r in Danchin’s paper [45]) apart from a closed subset; this remains
regular for all time apart from for the closed subset transported by the flow. When
the singularity of the boundary is a cusp, the corresponding velocity is Lipschitz,
which allows Danchin (cf. [48, 47, 44]) to prove the global stability of the cusp with
conservation of the order (actually he gives a global result of persistence of conormal
regularity with respect to vector fields vanishing at a singular point, which generalizes
the structure of a cusp). On the other hand, in [38] several numerical simulations, based
on an adaptive multi-scale algorithm using wavelet interpolation, show that corners are
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6 F. Sueur

unstable, each either immediately becoming a cusp, in the case of an initial sharp corner,
or immediately becoming flat, in the case of an initial obtuse corner.

In [51] (see also [50]) Depauw addresses the case where the domain of the fluid is
a bounded subset of R2 with smooth boundary. When the boundary of the vortex
patch is away from the domain boundary, it will remain so under the evolution, and
Chemin’s result remains valid without restriction. When the vortex patch is tangent
to the material boundary (for transverse intersection there is a counterexample of
Bahouri and Chemin), the author proves that if the initial vortex patch is of class
C1,r there exists a unique solution in this class of vortex patches at least up to some
time T∗ > 0. He also proves local-in-time existence and uniqueness for several mutually
tangent vortex patches in R2.

In [55] Dutrifoy proves local-in-time existence and uniqueness in the case where
the domain of the fluid is a bounded subset of R3 with smooth boundary, when the
boundary of the vortex patch is away from the domain boundary, without restriction,
and when the vortex patch is tangent to the material boundary, under a technical
condition. In this latter case, his method allowed completing the previously mentioned
two-dimensional local-in-time result of Depauw to a global one (with a slight loss of
smoothness).

Finally the two-dimensional result of Depauw was recently extended to global-in-time
results by Huang in [87] without loss of smoothness.

1.2. The viscous case

Let us now consider the Navier–Stokes equations. The smoothing effect of the viscosity
term ν∆vν is well-known: it is even crucial in both Leray’s and Kato’s existence theories,
and several papers (see for example [36, 104, 53, 64, 23]) analyze it precisely. Here we
will show a conormal smoothing of the initial vorticity discontinuity into a layer of
width

√
νt around the hypersurface {ϕ0(t, .) = 0} where the discontinuity has been

transported at the time t by the flow of the Euler equations. Hence the fluid vorticity ων

depends—locally—on an extra ‘fast’ scale: ϕ0(t,x)√
νt

(cf. ğ 4.1) and will be described by an
expansion of the form

ων(t, x)∼Ω
(

t, x,
ϕ0(t, x)√

νt

)
, (15)

where the viscous profile Ω(t, x,X) admits some limits when X→±∞.
The idea of associating a viscous profile with an inviscid discontinuity seems to date

back to Rankine [105] and is widely known for when the singularity is a shock, as for
instance in compressible fluid mechanics (see the recent achievements by Guès, Métivier,
Williams and Zumbrun in [75, 74, 72, 73, 70]). However since they are characteristic and
conservative, the vortex patches are very different from the shocks of the compressible
fluid mechanics (which are non-characteristic and dissipative; cf. for instance [103]). We
therefore would like to be precise that we borrow the words ‘viscous profile’ from the
setting of shock profiles but that our setting is quite different. For instance, the extra
scales involved are not the same.
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Viscous profiles of vortex patches 7

Still we hope that the approach developed here can be extended to some other
setting where smoothing of characteristic conormal singularities occurs, including jump
discontinuities of the velocity gradient in compressible fluid mechanics, which are
studied for the inviscid case in [6, 5, 4, 2, 110, 102, 101], in meteorology (cf. [24]) or for
the domain walls in ferromagnetism (cf. [78]). Another challenging issue is the case of
contact discontinuities in compressible Navier–Stokes theory, where a similar diffusive
behavior appears. However, the contact problem, studied in various degrees of generality
by for instance Liu and Xin [95], Rousset [108], and Bianchini and Bressan [13], has
been treated so far in one spatial dimension only, so vorticity has up to now not directly
entered the picture.

Let us go back to the vortex patches. We will now describe the construction of the
viscous profile Ω involved in the expansion (15). We will look for a viscous profile Ω of
the form

Ω(t, x,X)= ω0(t, x)+ Ω̃(t, x,X),

where Ω̃(t, x,X) denotes a perturbation local with respect to the extra scale X such that

lim
X→±∞ Ω̃(t, x,X)= 0. (16)

Hence the Navier–Stokes vorticities ων(t, x) will be described by an expansion of the
form

ων(t, x)∼ ω0(t, x)+ ω̃ν(t, x) where ω̃ν(t, x) := Ω̃
(

t, x,
ϕ0(t, x)√

νt

)
.

The dependence of the perturbation ω̃ν on ϕ0(t,x)√
νt

encodes the ‘conormal self-similarity’
of the layer. Pragmatically, the consequences of the condition (16) on the profile
Ω̃(t, x,X) at the level of the function ω̃ν are threefold:

(1) For any (t, ν) ∈ (0,T) × R∗+, ω̃ν(t, x)→ 0 when ϕ0→±∞. This was actually our
motivation for imposing the condition (16) on the profile Ω̃(t, x,X): it sounds natural
that the viscous layer is confined to the neighborhood of the hypersurface where the
inviscid discontinuity occurs.

(2) For any t ∈ (0,T), for any x ∈ Rd \ Γ (t), ω̃ν(t, x)→ 0 when ν→ 0+. This consequence
is directly linked with another strong underlying motivation for this work that is
the issue of the inviscid limit of the Navier–Stokes equation being the Euler ones.
The ‘strength’ of this inviscid limit (that is, the functional space where it holds)
depends not only on the presence or absence of material boundaries but also on
the smoothness of the initial data. Basically the smoother the initial data, the
stronger the convergence. For smooth data the Navier–Stokes solutions are regular
perturbations of the corresponding Euler solutions in the inviscid limit (see for
instance Swann [117] and Kato [90, 91]) and converge, say, in any Hölder spaces,
with a rate of order νt. We also quote here Masmoudi [98], for a slight improvement.
At the other end, in the two-dimensional case when vortex sheets are prescribed as
initial data, one only knows the weak L2 convergence (cf. [49]). The vortex patches
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8 F. Sueur

are an intermediate case, first studied in two dimensions by Constantin and Wu
in [41]. In [1], Abidi and Danchin found the optimal rate in L∞([0,T];L2(Rd)),
and recently [98] extended this result to the three-dimensional case. We also refer
the reader to the papers of Hmidi [81, 82] for the study of two-dimensional vortex
patches (including ones with singular boundary). Here we describe what happens
locally, which reveals the optimal estimates of the convergence rates in any spaces as
a simple byproduct.

(3) For any (x, ν) ∈ Rd × R∗+, ω̃ν(t, x) → 0 when t → 0+. This yields that the
Navier–Stokes vorticities ων have the same initial value as the Euler one ω0. Let
us mention here that the analysis can be simplified if, on the contrary, we allow
ourselves to choose the initial data for the Navier–Stokes vorticities ων since there
exist some well-prepared data for which the viscous smoothing is already taken into
account (cf. ğ 7.3).

We will argue (cf. ğ 4.2) that the corresponding expansion of the velocity is of the form

vν(t, x)∼ v0(t, x)+√νt V

(
t, x,

ϕ0(t, x)√
νt

)
, (17)

with V(t, x,X) satisfying

V(t, x,X)→ 0 when X→±∞. (18)

We will be led (cf. ğ 4.3) to consider for the profile V(t, x,X) the linear partial
differential equation

LV = 0 (19)

where the differential operator L is given by

L= E − t(D + A) (20)

where D is the vector field in (6), and E and A are some operators of respective orders 2
and 0 acting formally on functions V(t, x,X) as follows:

E V := a∂2
XV + X

2
∂XV − 1

2
V, (21)

AV := V · ∇xv0 − 2
(V · ∇xv0) · n

a
n. (22)

Here a denotes a function in the space

B := L∞([0,T];C0,r(Rd)) ∩ L∞([0,T];Cs,r(O±(t))) (23)

such that

inf
[0,T]×Rd

a= c> 0 (24)

and such that a= |n|2 when |ϕ0|< η.
We expect a continuous transition of the viscous fluid velocity vν and of the

viscous fluid vorticity ων (these are the Rankine–Hugoniot conditions), instead of
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Viscous profiles of vortex patches 9

the discontinuity of the inviscid vorticity ω0. These continuity conditions would be
translated into the following Dirichlet–Neumann-type transmission conditions for the
profile V(t, x,X) on the internal boundary {X = 0} (cf. ğ 4.3.5): for any (t, x) ∈ (0,T)× R3,

[V] = 0 and [∂XV] = −n ∧ (ω0+ − ω0−)
a

, (25)

where the brackets denote the jump discontinuity across {X = 0}, that is [f (t, x,X)] :=
f |X=0+ − f |X=0− and ω0± are some well-chosen extensions of ω0|O±(t).

The transmission conditions (25) are normal for the operator E which is elliptic with
respect to X thanks to the condition (24). Actually we point out here that because of
its unbounded coefficient X, the operator E does not strictly enter in the classical theory
of elliptic operators (with t, x as parameters through the coefficient a). However we will
see that it shares their main features, at least for our purposes. For instance omitting,
to simplify, the dependence on t (which is here only a parameter), we have the following
result (cf. ğ 5.1):

Proposition 1.1. For any f ∈ L2(R3;H−1(R)) and g ∈ L2(R3) there is exactly one
solution V ∈ L2(R3;H1(R)) of the equation E V = f with the transmission conditions
[V] = 0 and [∂XV] = g across {X = 0}.

One can verify that this is actually the kind of equation that arises for the layer created
in the very particular case of stationary two-dimensional circular vortex patches (see
[1]). In this case, because of the symmetry, there is neither convection nor stretching,
and the norm of the normal vector is conserved, so the profile equation is simply an
ODE, whose solutions involve a Gaussian function.

Of course the full equation (19) is much more intricate. Roughly speaking, for t > 0
equation (19) is hyperbolic in t, x and parabolic in t,X; but it degenerates for t = 0
precisely into the previous elliptic equation. However we will show that equation (19),
with the transmission conditions (25) and the conditions (18) at infinity, is well-posed.
We stress that since the hypersurface {t = 0} is characteristic for the operator L, no
initial condition at t = 0 has to be prescribed for equation (19). We will use here an
L2 setting, for two reasons. First, with a view to future extensions we want to give a
claim that one hopes is robust. In particular it has been well-known since [18] that in
(multi-dimensional) compressible fluid mechanics the inviscid system should be tackled
in L2-type spaces. This aim of robustness is also the reason for choosing to put the
emphasis on the velocity in this presentation, more than on the vorticity. The second
reason for an L2 setting is linked to the degeneracy at t = 0 of equation (19), which
leads to the existence of parasite solutions. For instance if we look for solutions V
not depending on X and neglect the term involving A, equation (19) simplifies to the
Fuchsian differential equation t∂tV = −V

2 , which admits an infinity of solutions, i.e.
V(t) = C√

t
, for C ∈ R. However only one is in L2(0,T), corresponding to C = 0; and

we expect that the scaling is relevant enough for us to have a solution with L2(0,T)
smoothness, even in the case of the full equation (19). Let us give a precise statement:
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10 F. Sueur

denoting as E1 the space

E1 := L2((0,T)× R3;H1(R)
)
,

and as E′1 its topological dual space, we will prove:

Theorem 1.2. For any f ∈ E′1, for any g ∈ L2((0,T) × R3) there exists exactly one
solution V(t, x,X) ∈ E1 of LV = f with the transmission conditions ([V], [∂XV]) = (0, g)
on Γ := (0,T)×R3 × {0}. In addition the function

√
t‖V(t, ·, ·)‖L2(R3×R) is continuous on

(0,T).

The equation LV = f is satisfied in the sense of distributions on both sides, U± :=
(0,T) × R3 × R∗±, of the hypersurface Γ . Since V is in E1 the jump discontinuity [V] is
in L2(Γ ). The sense given to the jump of the derivative [∂XV] is actually a part of the
problem. The idea is to give some sense by using the equation put into a weak form
thanks to Green’s formula. We will explain this in detail in ğ 5.2.

In the case of the transmission conditions (25), the source terms are orthogonal to n.
It is then possible to use the uniqueness part of the previous theorem to prove that the
function V(t, x,X) · n(t, x) vanishes identically. This orthogonality condition is consistent
with the incompressibility condition (see ğ 5.4) and with the linearity of the equation
(see ğ 4.3.2).

We are now interested in the smoothness of the solution V given by Theorem 1.2.
It is judicious to look again at the associated elliptic problem first. We will prove that
the solution inherits the smoothness with respect to the usual variables t, x from the
coefficients; and these are piecewise smooth with respect to the fast variable X. To be
more precise, let us denote as p-S(R) the space of the functions f (X) whose restrictions
to the half-lines R± are in the Schwartz space of rapidly decreasing functions, and as A
the space (of the functions f (t, x,X))

A := L∞
(
(0,T);C0,r(R3, p-S(R)

)) ∩ L∞
([0,T];Cs,r(O±(t), p-S(R)

))
.

In ğ 5.1 we will prove:

Theorem 1.3. The solution V(t, x,X) of the equation E V = 0 with the transmission
conditions (25) is in A.

The main idea of the proof is to use a spectral localization with respect to x, which is
here a parameter. The point is that this process is compatible with some classical elliptic
arguments used to get smoothness with respect to X.

We will be able to prove the same for the full equation (19):

Theorem 1.4. The solution V(t, x,X) of equation (19) with the transmission conditions
(25) is in A.

In contrast to the case for Theorem 1.2, we will use here the particular properties of
equation (19) through point 6 of Theorem 1.1. To explain this, let us define for any
Fréchet space E of functions depending on t, x and possibly on X the space

ED :=
{

f ∈ E/∃C > 0
/(

Dkf

Ckk!
)

k∈N
is bounded in E

}
.
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Viscous profiles of vortex patches 11

Thanks to point 6 of Theorem 1.1, we will be able to construct (see ğ 4.3.5) the
extensions ω0± of the vorticities and the function a in the space BD . As a consequence we
will actually prove in ğ 5.3 that V is in AD .

The vorticity profile Ω in the expansion (15) is then constructed as

Ω(t, x,X) := ω0±(t, x)+ n(t, x) ∧ ∂XV(t, x,X) for ± X > 0. (26)

If piecewise smoothness of the initial data is sufficient, it is possible to continue
the expansion with respect to νt of the solutions of the Navier–Stokes equations. At
the extreme limit, if the initial data is piecewise smooth on each side of the interface
{ϕ0 = 0}—that is if s = +∞—then it is possible to write a complete formal asymptotic
expansion of the vorticity of the form

ων(t, x)∼
∑
j>0

√
νt

j
Ω j
(

t, x,
ϕ0(t, x)√

νt

)
, (27)

where the first profile Ω0 is the one previously constructed: Ω0 :=Ω.
This vorticity expansion corresponds to some expansions of the velocity and of the

pressure of the form

vν(t, x)= v0(t, x)+
∑
j>1

√
νt

j
V j
(

t, x,
ϕ0(t, x)√

νt

)
+ O(
√
νt
∞
), (28)

pν(t, x)= p0(t, x)+
∑
j>2

√
νt

j

t
Pj
(

t, x,
ϕ0(t, x)√

νt

)
+ O(
√
νt
∞
) (29)

where the profile V1 is the one constructed in the previous section: V1 := V.
The other profiles V j and Pj, for j> 2, will be chosen such that substituting

vνa(t, x)= v0(t, x)+
∑
j>1

√
νt

j
V j
(

t, x,
ϕ0(t, x)√

νt

)
, (30)

pνa(t, x)= p0(t, x)+
∑
j>2

√
νt

j

t
Pj
(

t, x,
ϕ0(t, x)√

νt

)
(31)

for vν , pν leads to arbitrarily small errors in the Navier–Stokes equations.
More precisely we will consider the following reformulation of (1), (2):

∂tv
ν + vν · ∇vν +∇pν = ν∆vν on O±, (32)

div vν = 0 on O±, (33)

[vν] = 0, (34)

[∂nvν] = 0, (35)

[pν] = 0, (36)

where O± denote the space–time domains

O± := {(t, x) ∈ (0,T)× R3/x ∈O±(t)},
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12 F. Sueur

and

∂O := {(t, x) ∈ (0,T)× R3/x ∈ ∂(O±(t))}
the interface between them, and the brackets denote here the jump across {ϕ0(t, .) = 0},
that is [f ] := f |ϕ0=0+ − f |ϕ0=0− .

Let us recall that the conditions (34)–(36) are the Rankine–Hugoniot conditions
associated with the Navier–Stokes equations. Indeed if vν± and pν± are in
C∞((0,T);C∞(O±(t))), satisfy (1), (2) on O± and are such that vν±, curl vν± and pν±
have the same values on ∂O, then vν and pν , defined by vν = vν± and pν = pν± on O±, are
in C∞((0,T) × R3) and satisfy (1), (2) on (0,T) × R3. We point out that for a piecewise
smooth velocity vector field vν± which is continuous across ∂O, the requirement that
curl vν± is also continuous across ∂O is equivalent to the requirement that ∂n((vν±)tan) is
continuous across ∂O, where utan denotes the tangential part of a vector field u, defined
by utan := u− 1

a (u · n)n.
On formally substituting vνa and pνa respectively for vν and pν , we get

∂tv
ν
a + vνa · ∇vνa +∇pνa − ν∆vνa =

∑
j>1

√
νt

j

t
Fj

a

(
t, x,

ϕ0(t, x)√
νt

)
on O±, (37)

div vνa =
∑
j>1

√
νt

j
Fj

b

(
t, x,

ϕ0(t, x)√
νt

)
on O±, (38)

[vνa] =
∑
j>2

√
νt

j [V j], (39)

[∂n(v
ν
a)tan] =

∑
j>2

√
νt

j [a∂XV j
tan + ∂nV j−1

tan ], (40)

[pνa] =
∑
j>2

√
νt

j

t
[Pj], (41)

where, here, the notation [U], where U denotes a function which depends on t, x and X,
stands for

[U] := Ũ|X=0+,ϕ0=0+ − Ũ|X=0+,ϕ0=0+ .

In ğ 6 we will construct the profiles V j and Pj, for j > 2, such that the resulting profiles
in the right hand sides of (37)–(41) vanish, that is such that Fj

a = 0 and Fj
b = 0 for any

j> 1, and [V j] = [a∂XV j
tan + ∂nV j−1

tan ] = 0 and [Pj] = 0 for any j> 2.
We plan to address the stability of these expansions in a forthcoming paper. More

precisely we believe that there exists ν0 > 0 such that for 0< ν < ν0 for all k ∈ N for any
(t, x) ∈ (0,T)× R3,

ων(t, x)=
k∑

j=0

√
νt

j
Ω j
(

t, x,
ϕ0(t, x)√

νt

)
+√νt

k+1
ωνR, (42)

where (
√
νt

s′+r′‖ωνR‖L∞((0,T);Cs′,r′ (R3))
)0<ν<ν0 is bounded for any s′ ∈ N, for any r′ ∈ (0, 1).
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Remark 1.7. Regarding the transmission aspect of our strategy we refer the reader to
[113], in the setting of the approximation of semi-linear symmetric hyperbolic systems of
PDEs by the vanishing viscosity method. We also mention [76, 77] by Guès and Rauch,
in the context of internal waves for semi-linear symmetric hyperbolic systems, and [79]
by Guès and Williams, in the context of viscous shocks profiles.

2. A compendium on the Littlewood–Paley theory

In this section we gather some usual results of the Littlewood–Paley theory that we will
need. We begin with the case of the whole space for which we refer the reader to, for
example, the books [10, 119] for a much more detailed expository.

2.1. Dyadic decomposition

We first recall the existence of a smooth dyadic partition of unity: there exist two radial
functions ϕ and χ valued in the interval [0, 1], belonging respectively to C∞c (B(0, 4/3))
and to C∞c (C(3/4, 8/3)) (where B(0, 4/3) and C(3/4, 8/3) denote respectively the ball
B(0, 4/3) := {‖ξ‖R3 < 4/3} and the shell C(3/4, 8/3) := {3/4 < ‖ξ‖R3 < 8/3}; and C∞c (U)
denotes the space of the smooth functions whose support is a compact included in U)
such that

∀ξ ∈ R3, χ(ξ)+
∑
j>0

ϕ(2−jξ)= 1,

|j− j′|> 2⇒ supp ϕ(2−j·) ∩ supp ϕ(2−j′ ·)= ∅,
j> 1⇒ supp χ(2−j·) ∩ supp ϕ(2−j·)= ∅.

The Fourier transform F is defined on the space of integrable functions f ∈ L1(R3) by

F f :=
∫

R3
e−x.ξ f (x)dx

and extended in an automorphism of the space S ′(R3) of the tempered distributions,
which is the dual of the Schwartz space S(R3) of rapidly decreasing functions. We will
use the non-homogeneous Littlewood–Paley decomposition (in S ′(R3)) Id =∑j>−1∆j,
where the so-called dyadic blocks ∆j correspond to the Fourier multipliers: ∆−1 :=
χ(∇) and ∆j := ϕ(2−j∇) for j> 0, that is

∆−1u(x) :=
∫

R3
h̃(y)u(x− y)dy and ∆ju(x) := 23j

∫
R3

h̃(2jy)u(x− y)dy for j> 0, (43)

where h := F−1ϕ and h̃ := F−1χ . We also introduce the low frequency cutoff operator
Sj :=∑k6j−1∆j.

2.2. Besov spaces

We now recall the definition of the Besov spaces Bλp,q on the whole space R3 which are,
for λ ∈ R (the smoothness index), p, q ∈ [1,+∞] (respectively the integral exponent and
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14 F. Sueur

the sum exponent), some Banach spaces defined by

Bλp,q(R
3) := {f ∈ S ′(R3)/‖f‖Bλp,q(R3) := ‖(2jλ‖∆jf‖Lp(R3))j>−1‖lq <∞}.

These spaces do not depend on the choice of the dyadic partition above.
When p = q = +∞ the Besov spaces Bλp,q are simply the Hölder–Zygmund spaces Cλ∗

and in particular for λ ∈ R+ \ N they coincide with the Cs,r spaces of the introduction in
the sense that Bλ∞,∞(R3)= Cs,r(R3) where s is the entire part of λ and r := λ− s. We will
use the short notation ‖ · ‖λ for ‖ · ‖Bλ∞,∞(R3) and ‖ · ‖s,r for ‖ · ‖Bs+r∞,∞(R3).

It is worth mentioning that the space L∞(R3) is continuously embedded in the Besov
space B0∞,∞(R3):

L∞(R3) ↪→ B0∞,∞(R3). (44)

Conversely for λ > 0 the spaces Bλ∞,∞(R3) are continuously embedded in the space
L∞(R3), and the L∞ norm can also be estimated by the following logarithmic
interpolation inequality:

‖f‖L∞(R3) . L(‖f‖B0∞,∞(R3), ‖f‖Bλ∞,∞(R3)), (45)

where we define for a and b strictly positive L(a, b) := a ln(e + a
b )—which is increasing

with respect to both a and b. Here, and in the remainder of the paper, we use the
notation . to avoid writing meaningless constants.

We also recall the way in which Fourier multipliers act on Besov spaces: if f is a
smooth function such that for any multi-index α there exists an integer m ∈ N such that

∀ξ ∈ R3, |∂αf (ξ)|6 Cα(1+ |ξ |)m−|α|, (46)

then for all λ ∈ R and p, q ∈ [1,+∞] the operator f (∇) is continuous from Bλp,q to Bλ−m
p,q .

In particular if χ is a function in C∞0 (R3;R), positive and equal to 1 near 0, and Λ

is the Fourier multiplier associated with the Fourier symbol (χ(ζ ) + |ζ |2) 1
2 , then we get

a one-parameter group of elliptic operators Λt, for t ∈ R, continuous from Bλp,q(R3) to
Bλ+t

p,q (R3).

2.3. Bony’s paraproduct

When v and w are two Hölder distributions, we denote by Tvw Bony’s paraproduct of w
by v:

Tvw :=
∑
j>1

Sj−1v ·∆jw (47)

for which we have the following tame estimates:

‖Tv w‖λ . ‖v‖L∞ ‖w‖λ for λ ∈ R, (48)

‖(v− Tv)w‖λ . ‖v‖λ ‖w‖L∞ for λ > 0. (49)

We will also use the following commutator estimate (cf. [10] Lemma 2.92): if f is a
smooth function, homogeneous, and of degree m away from a neighborhood of 0 then
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the commutator [Ta, f (∇)] := Taf (∇)− f (∇)Ta between a paraproduct Ta and the Fourier
multiplier f (∇) may be estimated for any λ ∈ R and for any r ∈ (0, 1) by

‖[Ta, f (∇)]u‖λ−m+r . ‖a‖r ‖u‖λ. (50)

We also mention the following useful estimate for commutators of the form Rj :=
[v0 · ∇,∆j] f (cf. [10] Lemma 2.93):

sup
j>−1

2jλ ‖Rj‖Lp . ‖∇v0‖
Bd/p

p,∞ ∩L∞ ‖f‖Bλp,∞ for 0< λ < 1+ d/p, (51)

sup
j>−1

2jλ ‖Rj‖Lp . ‖∇v0‖L∞ ‖f‖Bλp,∞ + ‖∇f‖Lp ‖∇v0‖Bλ−1p,∞ for 0< λ. (52)

2.4. Transport estimates

We recall the following transport estimates, where r ∈ (0, 1) and D is the vector field
defined in (6). For s = −1 or s = 0, there exists a positive constant C such that for any
function f ∈ C([0,T],Cs,r(R3)), for any t ∈ [0,T],

‖f (t)‖s,r e−CV(t) 6 ‖f (0)‖s,r +
∫ t

0
‖(Df )(τ )‖s,r e−CV(τ )dτ, (53)

where

V(t) :=
∫ t

0
‖(∇v0)(τ )‖L∞(R3)dτ,

and for any s > 1, there exists a positive constant C such that for any function
f ∈ C([0,T],Cs,r(R3)), for any t ∈ [0,T],

‖f (t)‖s,re−CVs−1,r(t) 6 ‖f (0)‖s,r +
∫ t

0
‖(Df )(τ )‖s,re−CVs−1,r(τ )dτ, (54)

where

Vs−1,r(t) :=
∫ t

0
‖(∇v0)(τ )‖s−1,rdτ.

We refer the reader to, for example, [10] Theorem 3.11 for a proof of the estimates (53),
(54) by spectral localization, that is by applying the dyadic block ∆j to the equation and
then making use of an energy method, taking care of the commutators thanks to Bony’s
paraproduct.

2.5. Besov spaces on Lipschitz domains

When Ω is a Lipschitz domain we define the Besov spaces Bλp,q(Ω) (see for instance
[118]) as the set of restrictions of all elements of Bλp,q(R3) in the sense of D′(Ω), the space
of the distributions on Ω. In other words, the spaces Bλp,q(Ω) consist of exactly those
distributions f ∈ D′(Ω) which have extensions belonging to Bλp,q(R3). Endowed with the
quotient space norms, they become Banach spaces.

We will make use of extension operators. We give the following nice general result.
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Theorem 2.1 (Rychkov [109]). Let Ω be a Lipschitz domain in Rn with a bounded
boundary. There exists a so-called universal extension operator that is a linear operator
ext which maps Bs

p,q(Ω) continuously into itself for any s ∈ R, 0< p, q6∞, and satisfies
(ext, u)|Ω = u.

We may use this result to give intrinsic characterizations of Besov spaces on Lipschitz
domains. Dispa [52] has shown in particular that—as in the case of the whole
space—the Besov spaces Bλ∞,∞(Ω) still coincide with the Hölder spaces: for λ ∈ R+ \ N,
Bλ∞,∞(Ω)= Cs,r(Ω) where s is the entire part of λ and r := λ− s.

We will also use the following result concerning characteristic functions as pointwise
multipliers in Besov spaces.

Theorem 2.2 (Frazier and Jawerth [56]). The characteristic function χΩ of a Lipschitz
domain Ω ⊂ Rn with a bounded boundary is a pointwise multiplier in Bs

p,q (that is the
map u 7→ χΩu is bounded from Bs

p,q(Rn) into itself) if and only if max ((1
p−1), n(1

p−1)) <

s< 1
p .

Let us stress that this theorem says in particular that the characteristic function of a
Lipschitz domain is a pointwise multiplier in the Hölder spaces C−1,r, with 0< r < 1.

3. On the proof of Theorem 1.1

In this section we give a unified proof of the three-dimensional case of Theorem 1.1
in the Eulerian framework of Chemin, Gamblin and Saint-Raymond including the
persistence of piecewise Cs,r smoothness.

3.1. Existence from a priori estimates

We first recall that local existence and uniqueness of solutions of the Euler equations
when the initial velocity field is assumed to be in Cs+1,r(R3) ∩ L2(R3) (that is, without
a hypersurface of discontinuity) were proved by Chemin in the paper [31]. Moreover
Bahouri and Dehman in [11] prove that the criterion obtained by Beale, Kato and
Majda (singularities will not form in the flow as long as there is no rapid accumulation
of vorticity, i.e., as long as the integral, in time, of the L∞ norm of vorticity remains
bounded) remains valid in this setting. Actually Gamblin and Saint-Raymond begin
their paper [62] by collecting these results, so we also refer the reader to [62]
Theorem 2.8 (uniqueness) and Theorem 2.9 (existence). We also refer the reader to the
book [10], Theorems 7.1 and 7.20, for a complete expository concerning local existence
and uniqueness of solutions of the Euler equations in supercritical Besov spaces.

In order to construct the solutions of Theorem 1.1 we proceed by regularization of the
initial data, taking limits thanks to some a priori estimates—uniform with respect to
the regularization parameter—on the smooth solutions given by the results above. We
refer the reader to [62] Proposition 5.2 for this passage to the limit, and we now focus on
the way to get the a priori estimates. Actually we will study precisely in the following
sections very carefully what happens in the passage to the limit when we regularize the
Euler equations into slightly viscous Navier–Stokes equations.
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We will use the vorticity formulation (12), (13) where the velocity v0 is deduced from
the vorticity ω0 by using the Biot–Savart law (10).

3.2. The first smoothness property of the boundary

As a direct application of the estimate (53) with s= 0 we have the following estimate for
the function ϕ0 which satisfies the transport equations (8), (9)

‖ϕ0(t)‖0,r 6 ‖ϕ0‖0,r eCV(t). (55)

3.3. Initial conormal vector fields

We first observe that at the initial time t = 0 the vector fields

w1
0 :=

 0

−∂3ϕ0

∂2ϕ0

 , w2
0 :=

 ∂3ϕ0

0

−∂1ϕ0

 , w3
0 :=

−∂2ϕ0

∂1ϕ0

0


are tangential to the foliation of hypersurfaces given by ϕ0. As in our case we deal with
only one initial hypersurface {ϕ0 = 0} of singularity, we also add the vector fields

w4
0 :=

 ∂3(χx3)

0

−∂1((1− χ)x3)

 , w5
0 :=

 −∂2(χx1)

∂1((1− χ)x1)

0


to the previous triplet, where χ is a smooth function compactly supported and
identically equal to 1 when |ϕ0(t, .)| < η. We therefore get a set W0 := {wi

0/1 6 i 6 5}
of five divergence free vector fields, in Cs,r(R3) and tangential to the boundary Γ0 of the
initial vortex patch: wi

0 · n= 0 for any 16 i6 5 on ΓO0. Moreover this set is maximal in
the sense that it satisfies

[W0] := inf
R3

sup
16i6=j65

|wi
0 × wj

0|> 0.

We now illustrate that the initial vorticity ω0 has ‘good’ derivatives in the directions
that are tangential to the boundary of the patch. To do this we first set up the notion of
conormal derivatives. For u ∈ L∞(R3) and for 16 i6 5 we define the distributions

wi
0 † u := div (wi

0 ⊗ u)=
3∑

j=1

∂j(w
i
0,j · u),

where we denote by wi
0,j, for j = 1, 2, 3, the components of the vector field wi

0. Since the
wi

0 are divergence free, it holds that wi
0 †u= wi

0 ·∇u when this last quantity is defined. To
express iterated conormal derivatives we will define for k ∈ N, for smooth enough vector
field u,

(w0†)βu := wβ10 † (wβ20 † (. . . (wβk
0 † u)) . . .),

where β := (β1, . . . , βk) ∈ {1, . . . , 5}k. We are going to prove
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Proposition 3.1. The kth-order conormal derivatives of the initial vorticity for any
integer k between 1 and s, that is the vector fields (w0†)βω0 for β := (β1, . . . , βk) ∈
{1, . . . , 5}k, are in the space C−1,r(R3).

Proof. To do this we first use Rychkov’s extension Theorem 2.1 to get from the
restrictions ω0|O0,± on O0,± two functions ω0,± both in Cs,r(R3). Since the initial
vorticity may be decomposed thanks to these extensions and to the characteristic
functions χO0,± of O0,± it is sufficient to show that the (w0†)β(ω0,± · χO0,±) are in
C−1,r(R3). But since the vector fields wi

0 are tangential to the patch, they commute with
the characteristic functions χO0,± . Moreover thanks to Theorem 2.2 the characteristic
functions χO0,± are some pointwise multipliers in the Hölder spaces C−1,r, so the
question of the C−1,r(R3) regularity of the (w0†)βω0 finally reduces to that of the
(w0†)βω0,± which is deduced from the paraproduct rules (48), (49). �

3.4. Time-dependent conormal vector fields

Since the vorticity satisfies the transport-stretching equation (12) we expect the
tangential smoothness to be conserved. However the boundary of the patch moves with
the flow, so the notion of tangential smoothness depends itself on the solution. Indeed
we define time-dependent conormal vector fields wi via the following formula, which
imitates the dynamics of the vorticity ω0:

wi(t, x) := (wi
0 · ∇x X 0)(t, (X 0(t, ·))−1(x)), (56)

so they verify the equations

Dwi = wi · ∇v0, (57)

wi|t=0 = wi
0. (58)

By using a straightforward estimate we can show that for any t the set W(t) of the vector
fields wi(t) remains maximal. Indeed (cf. [62] Corollary 4.3) they satisfy the estimate

[W(t)]−1 6 eC
∫ t
0 ‖v0‖Lip(R3) [W0]−1. (59)

The vector fields wi remain divergence free when time proceeds.
Let us define for any circular permutation of (i, j, k) of (1, 2, 3) the vector ui := wj ∧ wk.

It emerges that the vector n satisfies

n(t,X 0(t, x))=
∑

16i63

∂iϕ0(x)

|∇xϕ0(x)|u
i(t,X 0(t, x)). (60)

In particular the vector fields wi(t) remain conormal to the moving boundary Γ (t) when
time proceeds: wi · n= 0 for any 16 i6 5 on Γ (t).

The conormal vector fields satisfy the transport-stretching equation (57) so we expect
their smoothness to persist as long as we have good estimates of the velocity. In order to
prove this we need a Lipschitz estimate as well as conormal and piecewise estimates of
the velocity. The next section is devoted to the method used to deduce such estimates
from those for the vorticity.
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3.5. Static estimates

Let us start with the Lipschitz estimate of the velocity. As the
Marcinkiewicz–Calderon–Zygmund theorem fails to give a Lipschitz estimate of the
velocity simply by ‖ω0‖L∞∩L2 , we need to consider a larger norm in the right hand
side. But using normal derivatives (i.e. along n) would lead to estimates non-uniform
with respect to the understood regularization parameter (the vorticity is expected to be
only bounded not discontinuous across the patch boundary). There is an argument for
overcoming this difficulty which dates back to Chemin in the two-dimensional case (see
[35, 29, 27, 28, 26]). He used the ellipticity of the div–curl system to establish a Lipschitz
estimate of the velocity field with respect to the L∞ norm and to conormal derivatives
only of the vorticity. Moreover one can manage to involve the conormal derivatives only
through a log, which is helpful in a subsequent Gronwall lemma since an inequality of
the form y′ 6 y log y does not lead to a blowup. For the three-dimensional case Gamblin
and Saint-Raymond (cf. [62] Lemma 3.5) also succeed in getting rid of the derivatives
normal to the boundary, proving:

Proposition 3.2. The velocity v0 (deduced from the vorticity ω0 by using the
Biot–Savart law (10)) satisfies

‖v0‖Lip . ‖ω0‖L2 ∩L∞ + L(‖ω0‖L∞ , ‖ω0‖C0,r
co
), (61)

where L is the function defined in (45) and the conormal C0,r
co norm is denoted as

‖u‖C0,r
co
:= ‖u‖L∞ + [W]−1

∑
16i65

(‖wi‖0,r‖u‖L∞ + ‖wi † u‖−1,r).

Let us stress that all the norms are relative to the whole space R3. It is useful to recall
the proof for the sequel.

Proof. First ‖v0‖L∞ can be estimated by ‖v0‖L∞ . ‖ω0‖L∞∩L2 thanks to an appropriate
splitting into the near and far field in the integral formula of the Biot–Savart law. Let us
introduce a function χ in C∞0 (R3), positive, and equal to 1 near 0, and χ(∇), the highly
smoothing corresponding Fourier multiplier. Let λ(ζ ) := (χ(ζ ) + |ζ |2) 1

2 and Λ := λ(∇),
the corresponding elliptic Fourier multiplier. We split v0 into a low frequencies part and
a high frequencies part as follows:

v0 := v0
LF + v0

HF with v0
LF := χ(∇)Λ−2 v0 and v0

HF := (1− χ(∇)Λ−2)v0. (62)

Since the low frequencies part can simply be estimated by

‖∂jv
0
LF‖−1,r . ‖v0‖L∞ (63)

we are left to estimate the high frequencies part ‖∂jv0
HF‖L∞ . We first use the relations

1− χ(∇)Λ−2 =−Λ−2∆ and −∆v0 = curlω0 to get

‖∂jv
0
HF‖L∞ 6

∑
16k63

‖Λ−2 ∂j∂kω
0‖L∞ . (64)
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Gamblin and Saint-Raymond (cf. [62] Lemma 3.5) succeed in writing

∂j∂k =∆aj,k +
∑
l,i,p

∂l∂pbl,i
j,kwi

p, (65)

where the functions aj,k and bl,i
j,k are built by partitioning of unity from local expressions

of the form

aj,k = (w
m × wn)j(wm × wn)k

|wm × wn|2 , (66)

bl,i
j,k =

Pl,i
j,k(w

m,wn)

|wm × wn|2 , (67)

where the Pl,i
j,k(w

m,wn) are homogeneous polynomials of wm, wn of degree 7 and wm × wn

does not vanish, such that

‖aj,k‖L∞ 6 1 and ‖bl,i
j,k‖C0,r 6 C(‖[W(t)]−1.

∑
16i65

‖wi‖0,r)19.

We then rewrite the function Λ−2 ∂j∂kω
0 in (64) as

Λ−2 ∂j∂kω
0 = f1 + f2 where f1 := −(1− χ(∇)Λ−2)aj,kω

0 and

f2 :=Λ−2(∂j∂k −∆aj,k)ω
0. (68)

Since ‖f1‖L∞ . ‖ω0‖L∞ we are left with the estimate of ‖f2‖L∞ . We then apply the
logarithmic interpolation inequality:

‖f2‖L∞ . L(‖f2‖B0∞,∞(R3), ‖f2‖0,r) (69)

and observe that

‖f2‖B0∞,∞(R3) . ‖ω0‖L∞ ,

‖f2‖0,r .
‖[W(t)]−1

∑
16i65

‖wi‖0,r
19

‖ω0‖C0,r
co

which allows us to conclude the estimate (61). �

In the same vein we have that conormal estimates on the vorticity imply conormal
estimates on the velocity. More precisely it holds that

‖wi † v0‖0,r . ‖wi † ω0‖−1,r + ‖v0‖Lip‖wi‖0,r. (70)

Proof. To prove the estimate (70), we make use of Bony’s paraproduct, writing

wi † v0 = (wi − Twi) · ∇v0 + Twi · ∇v0, (71)

where Twi · ∇ denotes the paradifferential operator
∑

16j63 Twi
j
∂j. We estimate the first

term by ‖v0‖Lip‖wi‖0,r thanks to the paraproduct rule (49). Then to estimate the second
term we once again split the velocity v0 into low and high frequencies parts as in (62).
On one hand, we have the inequality ‖Twi · ∇v0

LF‖0,r . ‖v0‖Lip‖wi‖0,r. On the other
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hand, Twi · ∇v0
HF is a combination, with coefficients valued in {−1, 0, 1}, of the terms

Twi · ∇Λ−2 ∂kω
0. To control these last terms, we commute:

Twi · ∇Λ−2 ∂kω
0 =

∑
16j63

[Twi
j
,Λ−2 ∂k∂j]ω0

+Λ−2 ∂kwi † ω0 +Λ−2 ∂kdiv ((Twi − wi)⊗ ω0). (72)

Now the first term in the right hand side of (72) can be estimated by ‖v0‖Lip‖wi‖0,r
thanks to the commutator estimate (50) with m = λ = 0. The second one is estimated
simply by ‖wi † ω0‖−1,r and the third one by ‖v0‖Lip‖wi‖0,r thanks to the paraproduct
rule (49). �

3.6. C0,r dynamic estimates

With the previous velocity estimates in hand we can now prove a persistence result of
vorticity smoothness. Actually Gamblin and Saint-Raymond (cf. [62] Proposition 4.1)
prove the following estimate:

‖wi(t)‖0,r + ‖(w
i † ω0)(t)‖−1,r

‖ω0(t)‖L∞ 6 eCV(t) (‖wi
0‖0,r +

‖wi
0 † ω0‖−1,r

‖ω0‖L∞
)
, (73)

where V(t) denotes V(t) := ∫ t
0 ‖v0‖Lip and where the constant C depends only on r. All

the norms above are relative to the whole space R3.

Proof. We apply the transport estimate (53) with s = 0 to the conormal vector fields
f = wi, which satisfy the transport-stretching equations (57), (58), and we estimate
‖wi · ∇v‖0,r by (70). This yields

‖wi(t)‖0,r e−CV(t) 6 ‖wi
0‖0,r +

∫ t

0
(‖wi † ω0‖−1,r + ‖v0‖Lip‖wi‖0,r)(τ )e−CV(τ )dτ. (74)

By using equations (12), (13) for the vorticity ω0 and equations (57), (58) for the
conormal vector fields wi we next observe that the field wi † ω0 involved in the inequality
above satisfies the following Cauchy problem:

D(wi † ω0)= wi † (ω0 · ∇v0), with (wi † ω0)|t=0 = wi
0 † ω0. (75)

We apply the estimate (53) with s=−1 to the field f = wi † ω0:

‖wi † ω0(t)‖−1,r e−CV(t) 6 ‖wi
0 † ω0‖−1,r +

∫ t

0
‖wi † (ω0 · ∇v0)(τ )‖−1,re−CV(τ )dτ. (76)

Let us recall that the initial data ‖wi
0 † ω0‖−1,r are estimated by Proposition 3.1. Now to

estimate the integral we first notice that

wi † (ω0 · ∇v0) := div (ω0 ⊗ (wi † ω0))+ div (ζ ⊗ v0) (77)

with ζ := div (ω0 ⊗ wi − wi ⊗ ω0). Then we make use of the paraproduct to commute the
divergence operator in the first term of the right hand side of (77):

div (ω0 ⊗ (wi † ω0))= [∂k,Twi†ω0
]ω0

k + ∂k
(
(wi † ω0 − Twi†ω0

)ω0
k

)
,
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the sum over k being understood. This gives, thanks to the estimate (49) and (50),

‖div (ω0 ⊗ (wi † ω0))‖−1,r . ‖wi † v0‖0,r‖ω0‖L∞ .
Now to estimate the second term in the right hand side of (77) we first notice that ζ is
divergence free, so

‖div (ζ ⊗ v0)‖−1,r . ‖v0‖Lip‖ζ‖−1,r.

Since the tame estimates (48) and (49) yield

‖ζ‖−1,r . ‖wi † v0‖0,r + ‖ω0‖L∞‖wi‖0,r
we finally get—using one more time the estimate by (70)—the following estimate of the
conormal derivative of the stretching term:

‖wi † (ω0 · ∇v0)‖−1,r . ‖v0‖Lip(‖wi † ω0‖−1,r + ‖ω0‖L∞‖wi‖0,r). (78)

Now we observe that for any 0 6 s 6 t 6 T the vorticity ω0 obeys the following L∞
estimate:

eV(s)−V(t) 6
‖ω0(s)‖L∞
‖ω0(t)‖L∞ 6 eV(t)−V(s). (79)

Combining the estimates (76), (78) and (79) leads to

‖wi † ω0(t)‖−1,r

‖ω(t)‖L∞ e−CV(t) 6
‖wi

0 † ω0‖−1,r

‖ω0‖L∞ +
∫ t

0
‖v0(τ )‖Lip(‖wi(τ )‖0,r

+ ‖w
i † ω0(τ )‖−1,r

‖ω(τ)‖L∞ )e−CV(τ )dτ. (80)

We add the estimates (80) and (74) and conclude by a Gronwall argument. �

3.7. Gamblin and Saint-Raymond’s result

Putting together the estimates (14), (59) and (61) (Notice that the growth of
the vorticity support is controlled by the norm of v0 in L∞([0,T];Lip(R3)) which
allows us to estimate the L2 norm of the vorticity) and (73), Proposition 3.1 and,
thanks to the relation (60), one then concludes that there exist T > 0 and a solution
v0 ∈ L∞([0,T];Lip(R3)) to the Euler equations such that for each t ∈ (0,T) the
boundary Γ (t) is C1,r, and can be given by the equation Γ (t) = {ϕ0(t, ·) = 0}, where
ϕ0 ∈ L∞([0,T];C1,r(R3)) verifies (8), (9). In addition O±(t) = {±ϕ0(t, ·) > 0} and there
exists η > 0 such that for |ϕ0| < η, t 6 T, it holds that ∇ϕ0 6= 0. We refer the reader to
[62] Theorem 2.8 for a proof of the uniqueness of the solution to the Euler equations
in L∞([0,T];Lip(R3)) ∩ Lip([0,T];L2(R3)). The flow map X 0 of particle trajectories is
defined as the solution of the differential equation ∂t X 0(t, x) = v0(t,X 0(t, x)) with initial
data X 0(0, x)= x. It is for any t ∈ [0,T] a C1 volume-preserving diffeomorphism. Finally
since the vorticity is divergence free and is tangentially regular, the normal component
of the vorticity (ω0 · n)(t, ·) is continuous, including across Γ (t)= {ϕ0(t, ·)= 0}.
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3.8. Iterated tangential regularity

In this section we briefly explain how to prove the propagation of the higher
order smoothness—that is the Cs+1,r smoothness—of the boundary Γ (t) (point 3 of
Theorem 1.1). This was done by Zhang and Qiu in the couple of papers [125, 124], by
adapting the method used by Chemin in the two-dimensional case in [30].

By local inversion there exists a parameterization of the initial boundary Γ0 given by
a function x0(τ1, τ2) ∈ Cs+1,r(S1 × S1;R3). Then for each t ∈ [0,T] the boundary Γ (t) is
given by the function

x(t, τ1, τ2) := X 0(t, x0(τ1, τ2)), (81)

and our goal in this section is to show that this function x is in L∞([0,T];Cs+1,r(S1 ×
S1;R3)), which means that the boundary Γ (t) is L∞([0,T];Cs+1,r).

Since for k = 1, 2 the vector field ∂τk x0 is tangent to Γ0 at the point x0(τ1, τ2) and
since the set of the vector fields {w1

0,w2
0,w3

0} is maximal on Γ0 there exist some functions

ak(τ1, τ2) := (ak
1(τ1, τ2), ak

2(τ1, τ2), ak
3(τ1, τ2)) ∈ Cs,r(S1 × S1,R3)

such that

∂τkx0(τ1, τ2)=
3∑

i=1

ak
i (τ1, τ2)w

i
0(x0(τ1, τ2)).

We apply the derivatives ∂ατ := ∂α1τ1 ∂α2τ2 to the function x in (81) for α := (α1, α2) ∈ N× N
with |α| := α1 + α2 6 s+ 1. We obtain

∂ατ x(t, τ1, τ2)=
|α|∑
l=1

∑
β∈{1,2,3}l

aβ(τ1, τ2)
(
(w0†)βX 0

)
(t, x0(τ1, τ2))

with the functions aβ in C0,r(S1 × S1,R). Going back to the definition of the wi

in (56) we get by iteration that the iterated derivatives ((w0†)βX 0)(t, x0(τ1, τ2))

can be transformed into the iterated derivatives ((w†)β
′
wβl)(t, x(t, τ1, τ2)), where we

define β := (β ′, βl) with β ′ := (β1, . . . , βl−1). Thus it suffices to prove that for any
β ′ := (β1, . . . , βl−1) ∈ {1, 2, 3}l with |β ′| 6 s and for any i ∈ {1, 2, 3} the function (w†)β

′
wi

is in L∞([0,T];C0,r(R3)).
Since each wi† commutes with D the (w†)β

′
wi satisfy

D(w†)β
′
wi = (w†)βv0, with (w†)β

′
wi|t=0 = (w0†)β

′
wi

0,

where β := (β ′, i). Applying the transport estimate (54) with s = 0 yields for any
t ∈ [0,T]

‖(w†)β
′
wi(t)‖0,r 6

(‖(w0†)β
′
wi

0‖0,r +
∫ t

0
‖(w†)βv0(τ )‖0,re−CV(τ )dτ

)
eCV(t). (82)

Of course V(t) := ∫ t
0 ‖∇v0‖L∞(R3)ds is now under control. Moreover the initial conormal

vector fields wi
0 are in Cs,r, so for |β ′| 6 s the paraproduct rules yield that the initial
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data (w0†)β
′
wi

0 is in C0,r. As a consequence the estimate (82) now simply reads

‖(w†)β
′
wi(t)‖0,r .

(
1+

∫ t

0
‖(w†)βv0(τ )‖0,rdτ

)
. (83)

Now we can estimate the right hand side of (83) by following the approach of Gamblin
and Saint-Raymond mentioned in ğ 3.5, proving on one hand that iterated conormal
regularity for the vorticity implies iterated conormal regularity for the velocity and on
the other hand that iterated conormal regularity for the vorticity is preserved when time
proceeds. For the first step we proceed by iteration on |β ′|6 s. We have

‖(w†)βv0‖0,r . ‖(w†)βω0‖−1,r + ‖(w†)β
′
wi‖0,r,

where the quantities which have been already estimated in the previous steps are
omitted (cf. [124] p. 387). Now in order to prove the second step we apply the derivatives
(w†)β to equation (12). We get

D(w†)βω0 = (w†)βω0∇v0, with ((w†)βω0)|t=0 = (w0†)βω0.

We use again the transport estimate (54) but this time with s=−1, which yields for any
t ∈ [0,T]

‖(w†)βω0(t)‖−1,r . ‖(w0†)βω0‖−1,r +
∫ t

0
‖(w†)βω0∇v0(τ )‖−1,rdτ. (84)

Let us recall that the estimation of the initial data is performed in Proposition 3.1. The
estimation of the integral term is done in [124], p. 388. It can be seen as an extension
in the setting of iterated conormal derivatives of the estimate (78) of the conormal
derivatives of the stretching term. It reads as follows:

‖(w†)βω0∇v0‖−1,r . ‖(w†)βω0‖−1,r + ‖(w†)β
′
wi‖0,r.

Plugging this in the inequality (84) yields an inequality of the form

‖(w†)βω0(t)‖−1,r . 1+
∫ t

0
‖(w†)βω0‖−1,r + ‖(w†)β

′
wi‖0,r,

so a Gronwall-type argument leads to

‖(w†)βω0‖−1,r . ‖(w†)β
′
wi‖0,r.

Now the estimate (83) reads

‖(w†)β
′
wi(t)‖0,r . 1+

∫ t

0
‖(w†)β

′
wi‖0,r(τ )dτ,

summations over β ′ and i being understood. Hence applying a Gronwall argument to the
previous estimate yields that the (w†)β

′
wi are in L∞([0,T];C0,r(R3)). As a consequence,

for any α with |α| 6 s + 1 we get that ∂ατ x is in L∞([0,T];C0,r(R3)), which proves that
the boundary Γ (t) is L∞([0,T];Cs+1,r).

3.9. Piecewise transport estimates
In this section we give some piecewise estimates for the transport equations of the form

Df := ∂tf + v0 · ∇f = g, with f |t=0 = f0, (85)
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where f0, v0 and g are assumed to be given, the two latter being time dependent. We will
use from now on the short notation Ck,r

± (t) for Ck,r(O±(t)).

Proposition 3.3. There hold the following piecewise estimates:

‖f (t)‖C0,r
± (t) 6 C(t)

(‖f0‖C0,r
± (0) +

∫ t

0
‖g(τ )‖C0,r

± (τ )
e−CV±(τ )dτ

)
eCV±(t), (86)

‖f (t)‖Ck,r
± (t)
6 C(t)

(‖f0‖Ck,r
± (0)
+
∫ t

0
‖g(τ )‖Ck,r

± (τ )
e−CVk,r

± (τ )dτ
)
eCVk,r

± (t), for k > 1, (87)

with

V±(t) :=
∫ t

0
‖v0‖Lip(O±(s))ds, Vk,r

± (t) :=
∫ t

0
‖v0‖Ck,r

± (s)
ds, (88)

and where the constant C(t) depends only on the sup for s over [0,T] of the Lipschitz
norm of the domain O+(s).

Proof. To fix the idea let us consider the case of the estimate on O+. We make use of
Theorem 2.1 to get from the restrictions f0|O0,+ and g|O+(t) of the initial data f0 and of
the source term g some extensions f0,+ and g+ defined in the whole space R3, with, for
any k > 0,

‖f0,+‖Ck,r(R3) 6 C‖f0|O0,+‖Ck,r
0,+
, ‖g+‖Ck,r(R3) 6 C(t)‖g|O+(t)‖Ck,r

+ (t)
, (89)

where the constant C and C(t) depend only on the Lipschitz norm of the domains O0,+
and O+(t). To extend the velocity field v0 we distinguish two cases. When k = 0 we make
use of the McShane–Whitney extension theorem (cf. McShane [99] and Whitney [120])
to get a Lipschitz extension v0+ defined in the whole space R3 of the restriction v0|O+(t).
When k > 1 we use again the Rychkov extension Theorem 2.1 to get from the restriction
v|O+(t) an extension v0+ defined in the whole space R3, with

‖v0+‖Ck,r(R3) 6 C(t)‖v0|O+(t)‖Ck,r(O+(t)). (90)

Then we apply the estimates (53) and (54) to the transport equation

∂tf+ + v0+ · ∇f+ = g+, with f+|t=0 = f0,+. (91)

This yields for k = 0

‖f+(t)‖Ck,r(R3) 6
(‖f0,+‖Ck,r(R3) +

∫ t

0
‖g+(τ )‖Ck,r(R3)e

−CṼ+(τ )dτ
)
eCṼ+(t), (92)

where Ṽ+(t) :=
∫ t

0 ‖v0+‖Lip(R3)ds and for any k > 1

‖f+(t)‖Ck,r(R3) 6
(‖f0,+‖Ck,r(R3) +

∫ t

0
‖g+(τ )‖Cs,r(R3)e

−CṼk,r
+ (τ )dτ

)
eCṼk,r

+ (t), (93)

where Ṽk,r
+ (t) :=

∫ t
0 ‖v0+‖Ck,r(R3)ds.
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Next we observe that since O+(t) is the domain transported by the flow at time t
starting from O+,0, the transport equation (85) is well-posed in ∪t∈(0,T){t} × O+(t)
without any boundary condition. By restriction of the transport equation (91), the
function f+|O+(t) also satisfies the transport equation (85) in O+,0. Now we can conclude
that f+|O+(t) = f |O+(t) by uniqueness and it suffices to use the estimates (89), (90) to
conclude. �

3.10. Propagation of piecewise regularity

In this section we investigate the propagation of piecewise regularity for the Euler
equations. Indeed we finish proving parts 2, 4 and 5 of Theorem 1.1. For the convenience
of the reader we recall here the decomposition (68):

Λ−2 ∂j∂kω
0 = f1 + f2 where f1 := (1− χ(∇)Λ−2)aj,kω

0 and

f2 :=Λ−2
∑
l,i,m

∂l∂pbl,i
j,kwi

pω
0.

Let us denote by Ω the collection of the wi and of the coefficients aj,k and bl,i
j,k

which appear in the decomposition above. For any m ∈ N∗ we introduce the set Opm

(respectively the set Õpm) the collection of the operators T (respectively T̃) of the form

Tf :=Ω0∂i1Ω1∂i2 . . . ∂imΩmf (respectively T̃f := (wi1†)Ω1(w
i2†)Ω2 . . . (w

im†)Ωmf ).

Our strategy is to prove by iteration for 06 k 6 s that

For 16 i6 5, wi ∈ L∞([0,T];Ck,r
± (t)) and wi † ω0 ∈ L∞([0,T];Ck−1,r

± (t)), (94)

v0 ∈ L∞([0,T];Ck+1,r
± (t)), (95)

For |α|6 k, ∂α∇v0 = Sω0 +
∑
m6k

Tmω
0 +Λ−2 ∂j

∑
m6k+1

T̃mω
0, (96)

where S is infinitely smoothing, and Tm (respectively T̃m) is in Opm (respectively Õpm).

Remark 3.1. Of course the estimate (95) implies that ω0 is in L∞([0,T];Ck,r
± (t)). Still

in order to prove the estimate (95) we will use transport features of the vorticity and it
will turn out that it is useful to get some extra static estimates for deducing piecewise
estimates on ∇v0 from piecewise estimates on ω0. For an operator the property of acting
continuously between some spaces of piecewise regularity is usually referred to as the
‘transmission property’ or the ‘transmission condition’; cf. [15, 16, 67, 107]. In particular
the references above prove that the operator T : ω 7→ ∇v satisfies the transmission
property across smooth boundaries. In the present case the smoothness of the boundary
is limited and we need to estimate carefully how the smoothness of the boundary
is involved in the constant of continuity of the operator T above in C0,r(O±(t)). In
particular, as a byproduct, what follows will extend the previous results, giving that for
an open subset O+ of class Cs+1,r the operator T is bounded from Cs,r(O±) into itself.
Actually the analysis would be complicated here by the time-dependent setting. The key
point is the decomposition (96) which basically allows one to write any derivatives of the
velocity as the sum of a smooth term (the low frequencies part), a local term involving
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derivatives of the vorticity, which allows a direct piecewise estimate, and a term which
despite being nonlocal involves (iterated) conormal derivatives (up to commutators)
which behave better (than normal derivatives) when estimated in the whole space.

Let us start the proof by iteration of (94)–(96). Regarding the step k = 0 we
already know that the assertions concerning the wi and the wi † ω0—the estimates
(94)—are satisfied from the estimates (73) (which actually even give that the wi and the
wi † ω0 are respectively in L∞([0,T];C0,r(R3)) and L∞([0,T];C−1,r(R3))) whereas the
decomposition (96) reduces to the decomposition (68) proved in ğ 3.5 and recalled above.
As a consequence, to conclude the step k = 0 it only remains to prove the estimate (95).
In order to prove it we apply the piecewise transport estimate (86) to the vorticity,
which satisfies equation (12). Since the functions V± are under control by the previous
sections we get an estimate of the following form:

‖ω0‖C0,r
± (t) . 1+

∫ t

0
‖ω0 · ∇v0‖C0,r

± (τ )
dτ. (97)

Now let us use the decomposition (68) to get some extra static estimates to deduce
piecewise estimates on ∇v0 from piecewise estimates on ω0. From the low/high
frequencies splitting of the ğ 3.5 estimates (63), (64) the task reduces to proving that
the operators Λ−2 ∂j ∂k act continuously in C0,r

± (t). Indeed—since the operator χ(∇)Λ−2

is smoothing—we get

‖f1‖C0,r
± (t) . ‖aj,k‖C0,r

± (t).‖ω0‖C0,r
± (t).

Now we use the local representation of the coefficients aj,k given in (66) to estimate
the norms ‖aj,k‖C0,r by the norms ‖wi‖C0,r and [W] which have already been estimated
(cf. ğ 3.6 and estimate (59)). In the same way as for the aj,k, that is by using the
local representation of the coefficients bl,i

j,k given in (67), we can estimate the norms

‖bl,i
j,k‖C0,r by some quantities already under control. As a consequence we simply estimate
‖f2‖C0,r

± (t) by ‖f2‖C0,r(R3) what reduces to the estimate of ‖wi † ω0‖C−1,r(R3) which were

already controlled in ğ 3.6 estimate (73). Finally we get ‖∇v0‖C0,r
± (t) . ‖ω0‖C0,r

± (t) and
since we have the tame estimates

‖ω0 · ∇v0‖C0,r
± (t) . ‖ω0‖C0,r

± (t) · ‖∇v0‖L∞ + ‖ω0‖L∞ · ‖∇v0‖C0,r
± (t),

we infer the following piecewise estimate of the stretching term:

‖ω0 · ∇v0‖C0,r
± (t) . ‖ω0‖C0,r

± (t).

Then by applying a Gronwall argument to (97) we conclude that the vorticity ω0 is in
L∞([0,T];C0,r

± (t)). Using the static estimates once more yields the estimate (95) and the
proof of the step k = 0 is complete.

At this point we can use that the normal component of the vorticity (ω0 · n)(t, ·)
including across Γ (t) = {ϕ0(t, ·) = 0} is continuous (cf. ğ 3.7) to get part 5 of
Theorem 1.1: for each t ∈ [0,T] the function (ω0 · n)(t, ·) is C0,r on {|ϕ0(t, ·)|< η}.
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Let us now assume that (94)–(96) hold for 0 6 k 6 s − 1. We are going to prove that
(94)–(96) hold at the order k+ 1. In order to do so, we first apply the piecewise transport
estimate (87) to the conormal vector fields f = wi with g = wi · ∇v0 as respective right
hand sides (we recall that the conormal vector fields wi satisfy equations (57), (58)).
Since the functions Vk+1,r

± are under control by the previous step we get an estimate of
the following form:

‖wi‖Ck+1,r
± (t) . 1+

∫ t

0
‖wi · ∇v0‖Ck+1,r

± (τ )
dτ. (98)

We consider the extensions (to the whole space) wi± and v0± given by Theorem 2.1 from
the restrictions wi|O± and v0|O±(t) on each side of the patch of wi and v0. We denote by
ω0± the curl of v0±. We have therefore

‖wi · ∇v0‖Ck+1,r
± (t) . ‖wi± · ∇v0±‖Ck+1,r(R3).

Now that we are dealing with functions in the full space we can use the paraproduct.
Indeed we can adapt the estimate (70) into the following one (with only modifications of
the indexes in the proof of (70)):

‖wi± † v0±‖k+1,r . ‖wi± † ω0±‖k,r + ‖v0±‖Lip‖wi±‖k+1,r.

We bound ‖v0±‖Lip thanks to the embedding (44) and then we use Theorem 2.1 to get

‖wi‖Ck+1,r
± (t) . 1+

∫ t

0
‖wi‖Ck+1,r

± (τ )
+ ‖wi † ω0‖Ck,r

± (τ )
dτ. (99)

To estimate the conormal derivatives wi † ω0 in Ck,r
± we apply the transport estimate

(87) to (75). At the initial time the conormal derivatives wi
0 † ω0 are in Ck,r

± , and the
amplification factor involves only Vk,r

± so we infer an estimate of the form

‖wi † ω0‖Ck,r
± (t)
. 1+

∫ t

0
‖wi † (ω0 · ∇v0)‖Ck,r

± (τ )
dτ. (100)

Now to estimate the integrals above we proceed as follows. We consider once again the
extensions wi± and v0± such that

‖wi † (ω0 · ∇v0)‖Ck,r
±
. ‖wi± † (ω0± · ∇v0±)‖Ck,r .

Now we recall the decomposition (77) which for the extensions reads

wi± † (ω0± · ∇v0±) := div (ω0± ⊗ (wi± † ω0±))+ div (ζ± ⊗ v0±) (101)

with ζ± := div (ω0± ⊗ wi± − wi± ⊗ ω0±). The first term of the right hand side of (101) can
be estimated by proceeding in the same way as in ğ 3.6. This yields

‖div (ω0± ⊗ (wi± † ω0±))‖Ck,r . ‖wi± † v0±‖Ck+1,r‖ω0±‖L∞ .
Now for the second term we have the following tame estimates:

‖div (ζ± ⊗ v0±)‖Ck,r . ‖wi± † ω0±‖Ck,r + ‖wi±‖Ck+1,r(R3).
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Thus using the continuity properties of the extension operator the estimate (100) now
becomes

‖wi † ω0‖Ck,r
± (t)
. 1+

∫ t

0
‖wi † ω0‖Ck,r

± (τ )
+ ‖wi‖Ck+1,r(O±(τ )). (102)

Combining this with the estimate (99) and up to a Gronwall argument, we conclude
that the conormal vector fields wi and the conormal derivatives of the vorticity wi † ω0

are respectively in L∞([0,T];Ck+1,r
± (t)) and in L∞([0,T];Ck,r

± (t)). Thus we have already
proved that the estimate (94) holds at the order k + 1.

We are now going to show that ω0 is in L∞([0,T];Ck+1,r
± (t)). In order to prove this we

apply the estimate (87) to get

‖ω0‖Ck+1,r
± (t) . 1+

∫ t

0
‖ω0 · ∇v0‖Ck+1,r

± (τ )
dτ. (103)

Now we deduce from Definition 1.2 and from Leibniz’s rule the piecewise tame estimates

‖ab‖Ck,r
± (t)
. ‖a‖Ck,r

± (t)
‖b‖Ck−1,r

± (t) + ‖a‖Ck−1,r
± (t)‖b‖Ck,r

± (t)
. (104)

This yields

‖ω0 · ∇v0‖Ck+1,r
± (t) . 1+ ‖∇v0‖Ck+1,r

± (t) + ‖ω0‖Ck+1,r
± (t). (105)

We apply the spatial derivatives to the decomposition (96) at order k and we eliminate
the double derivatives thanks to the identity (65) to get the decomposition (96) at order
k + 1. Now let us remark that thanks to the local representation (66), (67) we can
estimate the Ck+1,r

± (t) norm of the coefficient Ω by a power of the Ck+1,r
± (t) norms of

the wi which have been previously controlled. We also know from ğ 3.8 that the iterated
conormal derivatives (w†)βω0 are in L∞

([0,T];C−1,r
± (t)

)
. As a consequence we get

‖∇v0‖Ck+1,r
± (t) . 1+ ‖ω0‖Ck+1,r

± (t). (106)

Plugging this in the estimate (105) and then the resulting estimate in the estimate (103)
yields

‖ω0‖Ck+1,r
± (t) . 1+

∫ t

0
‖ω0‖Ck+1,r

± (τ )
dτ,

so ω0 is in L∞([0,T];Ck+1,r
± (t)). Using again the previous static estimate we infer

that the estimate (95) holds at order k + 1. The iteration can be done and part 2 of
Theorem 1.1 is therefore proved.

Using the relation (60) we next infer that n is in L∞([0,T];Cs,r
± (t)) which together

with the tangential estimates gives that ϕ0 is in L∞([0,T];Cs+1,r
± (t)), and we finish

proving part 4 of Theorem 1.1.

3.11. Analyticity

In this section we say a few words about the final statement regarding time analyticity
(part 6 of Theorem 1.1). Actually the study of smoothness in time of the boundary was
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already done by Chemin in the pioneering work [30]. He incorporates the material field
D := ∂t + v0 · ∇ into its conormal fields and carries out iterated conormal derivations. In
[31] he proves the smoothness with respect to time of classical solutions (v0 in C1,r) in
any dimensions and of Yudovich’s solutions (with bounded vorticity) in two dimensions.
This result was extended to analyticity by Serfati [111] (see also the doctoral thesis)
in the case of classical solutions and in the present case of vortex patches, thanks
to Lagrangian methods (by considering the Euler equations as an ODE for the flow).
Let us mention papers [61, 60] which recover by an Eulerian approach the result by
Serfati of time analyticity of classical solutions and prove Gevrey-3 smoothness in time
of Yudovich solutions. Finally we mention that such results also hold in the case of
solid boundaries: the paper [92] of Kato proves the C∞ smoothness in time for classical
solutions in a smooth bounded domain in any dimension; the paper [65] extends Kato’s
result to analyticity and also proves the analyticity of the motion of a body immersed
into a perfect incompressible fluid with a C1,r initial velocity.

4. Looking for a profile problem

In this section we look for an expansion for the solutions of the Navier–Stokes equations
(1), (2), with an initial velocity v0 as described in Definition 1.1, which describes as
well as possible their behavior with respect not only to the variables t, x but also
to the viscosity coefficient ν. ğğ 4.1–4.3 give the heuristic of the derivation of the
profile problem—equations (19)–(25)—mentioned in the introductory part, ğ 1.2. More
precisely, in ğ 4.1 we will identify the inner fast scale as ϕ0(t,x)√

νt
. This means that the

initial discontinuity of the vorticity is smoothed out into a layer of size
√
νt around the

hypersurface {ϕ0 = 0} where the inviscid discontinuity occurs. In ğ 4.2 we pay attention
to the expected order of amplitudes of the velocity and pressure profiles. We will see that
it is natural to associate with a vorticity expansion of the form

ων(t, x)∼Ω
(

t, x,
ϕ0(t, x)√

νt

)
a velocity expansion of the form

vν(t, x)∼ v0(t, x)+√νt Ṽ

(
t, x,

ϕ0(t, x)√
νt

)
,

and a pressure expansion of the form

pν(t, x)∼ p0(t, x)+ νtP̃

(
t, x,

ϕ0(t, x)√
νt

)
.

In ğ 4.3 we look for the profile equations. We choose there to deal with the velocity
formulation of the Navier–Stokes equations.

4.1. The inner fast scale

The goal of this section is to explain how we identify the inner fast scale as ϕ0(t,x)√
νt

.
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4.1.1. A highly simplified model. To identify the inner fast scale we first look at
the one-dimensional scalar heat equation: ∂tω

ν = ν∂2
x ω

ν , which plays here the role of a
‘baby model’ for the NS equations. We prescribe as initial data a discontinuous vorticity:
ων |t=0 = 1R+ . In the inviscid case ν = 0—which stands for (highly) simplified Euler
equations—the solution is simply equal to the initial data ω0(t, ·) := 1R+ for any time,
whereas for ν > 0 and t > 0 one can explicitly compute the solutions ων by convolution:

ων(t, x) :=Ω
(

x√
νt

)
where Ω(X) := 1√

π

∫ ∞
− X

2

e−y2dy. (107)

Hence the initial discontinuity of the vorticity is smoothed out into a layer of size
√
νt

where there occurs—smoothly—the transition between the values 0 and 1. It is useful to
rewrite the ων as

ων(t, x) := ω0(t, x)+ Ω̃±
(

x√
νt

)
when ± x> 0,

where

Ω̃±(X) := 1√
π

∫ ∓∞
− X

2

e−y2dy when ± X > 0.

One then sees the ‘viscous’ solutions ων as the sum of the ‘inviscid’ solution ω0 plus a
‘double initial (internal) boundary layer’ Ω̃± which satisfies the double ODE

∂2
XΩ̃± +

X

2
∂XΩ̃± = 0 when ±X > 0, (108)

obeying the continuity conditions for ων and ∂xω
ν at the internal boundary x = X = 0

(for t > 0):

ω0|x=0+ + Ω̃+|X=0+ = 1− 1/2= 0+ 1/2= ω0|x=0− + Ω̃−|X=0− , (109)

∂XΩ̃+|X=0+ =
1

2
√
π
= ∂XΩ̃−|X=0− (110)

and the vanishing

Ω̃±(X)→ 0 in the limits X→±∞. (111)

These last limits correspond both to the limits t > 0, x→±∞ and the limits ±x > 0,
νt→ 0+ (we recall that X is the placeholder for x√

νt
). Conversely the two second-order

elliptic equations (108) with the four ‘normal’ boundary conditions (109)–(111) (the last
one contains two conditions) determine uniquely the profiles Ω̃±.

4.1.2. The inner scale in the NS equations. Of course the case of the NS equations
is really much more complicated than the previous baby model. In particular the inviscid
discontinuity moves: Theorem 1.1 states that the inviscid discontinuity occurs at the
hypersurface {ϕ0(t, .) = 0} given by the eikonal equations (8), (9) associated with the
particle derivative D := ∂t + v0 · ∇x. Therefore we are led to consider the inner fast scale
ϕ0(t,x)√

νt
and we expect that in the case of vortex patches as initial data, the solutions ων of
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NS can be described by an expansion of the form

ων(t, x)∼ ω0(t, x)+ Ω̃
(

t, x,
ϕ0(t, x)√

νt

)
, (112)

where Ω̃(t, x,X) denotes a local perturbation such that

lim
X→±∞ Ω̃(t, x,X)= 0. (113)

Actually we will consider profiles even rapidly decreasing at infinity.

Remark 4.1. At this point experts in mathematical geometric optics should argue that
the fast scale ϕ0(t,x)√

ν
should be more intuitive, since applying the particle derivative D to

a function Ω(t, x, ϕ
0(t,x)√
ν
) produces the singular term

1√
ν

Dϕ0.(∂X Ω)|X= ϕ0(t,x)√
ν

which fortunately vanishes thanks to the eikonal equation.
The point is that such a choice of inner scale does not lead to totally satisfactory

results. Let us show that on our baby model. If one looks for a representation of the
solutions ων of the form

ων(t, x) := ω0(t, x)+Ω±
(

t,
x√
ν

)
when ±x> 0, (114)

one then sees that the ‘double (internal) boundary layer’ Ω± has this time to satisfy the
parabolic equation

∂tΩ± = ∂2
XΩ± when ±X > 0, (115)

with the same boundary conditions:

Ω+|X=0+ −Ω−|X=0− =−1, (116)

∂XΩ+|X=0+ − ∂XΩ−|X=0− = 0, (117)

Ω±(X)→ 0 in the limits X→±∞. (118)

Since we prescribe the same initial data for ων as for ω0, one has to prescribe zero initial
data for the layers:

Ω±|t=0 = 0, (119)

so the condition of compatibility between the transmission condition (116) and the
initial condition (119) on the ‘corner’ {t = X = 0} is not satisfied even at order zero,
which removes any hope for smoothness as regards the profiles Ω±.

Now let us stress that if the ‘phase’ ψ(t, x) := ϕ0(t,x)√
t

chosen in the asymptotic
expansions (112) does not satisfy exactly the eikonal equation but rather satisfies
Dψ =− 1

2tψ , then applying the particle derivative D to a function

ων(t, x) :=Ω
(

t, x,
ψ(t, x)√

ν

)
(120)
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produces the term

− 1
2t
(X∂X Ω)|X= ϕ0(t,x)√

νt

(121)

which is no longer singular (with respect to ν). The point is that in the present setting
of a localized profile Ω the derivative X∂X in (121) does not cause any difficulty (note
that such a term even appears in our baby model; see (108)), in particular because the
prefactor 1

t echoes that in the term

|n(t, x)|2
t

∂2
X Ω|X= ϕ0(t,x)√

νt

(122)

which is the larger one produced by applying the Laplace operator ν4x to the function
ων(t, x) in (121). Let us recall that the vector n(t, x) above is defined in Theorem 1.1.

Of course this additional derivative X∂X is more problematic in the traditional context
of periodic oscillations of geometric optics.

4.2. Amplitudes

We now pay attention to the expected order of amplitudes of velocity and pressure
profiles. In the full plane the Biot–Savart law has Fourier symbol (− ξ

|ξ |2 ∧ ·). It is
a pseudo-local operator of order −1, so we expect that the velocity vν given by the
Navier–Stokes equations can be described by an asymptotic expansion of the form

vν(t, x)∼ v0(t, x)+√νtṼ

(
t, x,

ϕ0(t, x)√
νt

)
, (123)

where the profile Ṽ(t, x,X) is also expected to satisfy

lim
X→±∞ Ṽ(t, x,X)= 0. (124)

Arguably, since the Euler velocity v0 is Lipschitz we expect its viscous perturbations vν

to be uniformly Lipschitz, which gives support to the ansatz (123). Plugging (112) and
(123) into the relations (3), taking into account (7) and setting the leading order terms
equal leads to

n ∧ ∂XṼ = Ω̃. (125)

Hence the vorticity profile Ω̃ has to satisfy the orthogonality condition

Ω̃ · n= 0. (126)

This condition is not a surprise: since w0 is divergence free, w0 ·n is continuous (cf. part 5
of Theorem 1.1), so no (large amplitude) layer is expected on the normal component of
the vorticity.

Now the pressure pν can be recovered from the velocity vν by applying the operator
divergence to equation (1) which yields the Laplace problem

4x pν =−
∑

16i,j63

(∂iv
ν
j )(∂jv

ν
i ). (127)
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If the velocity vν satisfies the expansion (123), the right hand side of (127) should admit
an expansion of the form

4x pν ∼4x p0 + F̃

(
t, x,

ϕ0(t, x)√
νt

)
,

where the function F̃ satisfies

lim
X→±∞ F̃(t, x,X)= 0.

Since the Laplacian is of order −2 we are led to consider a perturbation of order νt on
the pressure:

pν(t, x)∼ p0(t, x)+ νtP̃

(
t, x,

ϕ0(t, x)√
νt

)
, (128)

where—once again—the fast scale ϕ0(t,x)√
νt

is expected to be a local inner scale, so

lim
X→±∞ P̃(t, x,X)= 0. (129)

4.3. Looking for a profile problem
Now that we have an intuition of the amplitude of the profiles, we look for the profile
equations. We choose here to deal with the velocity formulation of the NS equations,
which is believed to be a more robust method (with a view to future adaptation to
the compressible case for instance). We proceed in several steps. In ğ 4.3.1 we plug the
ansatz into the velocity equation, setting the leading order terms equal. We then pay
attention to the divergence free condition which leads to a crucial observation in ğ 4.3.2.
In ğ 4.3.3 we get rid of the pressure in the velocity profile equation. As the vector field n
may vanish, away from the patch boundary, it is useful to modify the resulting equation
in order to avoid a degeneracy of the order. This will be done in ğ 4.3.4. In ğ 4.3.5 we
study the transmission conditions on the inner interface X = 0. We will use several times
the following Leibniz formulas, where we define Φν(t, x) := (t, x, ϕ

0(t,x)√
νt
). For any smooth

function h(t, x,X) it holds that

∂t

[
(νt)

j
2 h ◦Φν

]
= (νt)

j
2

(
∂tϕ

0

√
νt
∂Xh− 1

2t
X∂Xh+ j

2t
h+ ∂th

)
◦Φν, (130)

∇x

[
h ◦Φν

]
=
(

1√
νt
(∂Xh)n+∇xh

)
◦Φν (131)

and

νt4x

[
h ◦Φν

]
=
(
|n|2∂2

Xh+√νt(4ϕ0 ∂Xh+ 2n · ∇x∂Xh)+ νt 4x h
)
◦Φν . (132)

4.3.1. The velocity equation. We plug the ansatz (123) and (128) into equation (1),

setting the leading order terms, which are of order
√
νt

0, equal:

Dv0 +∇p0 +Dϕ0 · ∂XṼ = 0. (133)
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This is satisfied since the velocity v0 satisfies the Euler equations and ϕ0 satisfies the
eikonal equation (8). At the following order

√
νt, we get the equality

DṼ + Ṽ · n ∂XṼ + Ṽ · ∇xv0 + ∂XP̃ n= 1
t

(
|n|2∂2

XṼ + X

2
∂XṼ − 1

2
Ṽ

)
. (134)

4.3.2. Incompressible transparency. We now pay attention to the divergence free

condition. Plugging the ansatz (123) into equation (2), retaining the terms at order
√
νt

0

and taking into account that the velocity v0 given by Euler is divergence free, leads to
the orthogonality equation n · ∂XṼ = 0, which by integration with the condition (124)
leads to the condition

n · Ṽ = 0. (135)

An important consequence of the condition (135) is to kill the second term in (134)
which is the only nonlinear one. Here lies an analogy with the WKB theory of the
propagation of high frequency oscillations for hyperbolic systems (see for instance [103]).
The condition (135) can be seen as a polarization of the singularity on the components
tangential to the ‘phase’ ϕ0. Then the vanishing of the Burgers-like term in (134) can
be interpreted as a transparency property: the self-interaction of the singularity vanishes
because this latter is characteristic for a field which is linearly degenerate (actually this
concept belongs to the hyperbolic theory but the incompressible limit is reminiscent of
this fact).

4.3.3. Getting rid of the pressure. Equation (134) involves both Ṽ and P̃. However
the pressure in the NS equations is not truly an unknown but can be recovered from the
velocity (as recalled in (127)) so we expect the same to hold for the profiles. One way
to proceed is to project normally equation (134), taking into account equation (11) for
n(t, x) and using the condition (135), to get

∂XP̃ := −2
(Ṽ · ∇xv0) · n
|n|2 . (136)

For ±X > 0, we integrate between X and ±∞, taking the condition at infinity (129) into
account, to find

P̃ := −2
∫ ±∞

X

(Ṽ · ∇xv0) · n
|n|2 . (137)

Remark 4.2. Another way to proceed is to make explicit the term F̃ which occurred
in the expansion (128) when we were discussing the amplitude of the pressure layers by
means of the Laplace problem satisfied by the viscous pressure pν . Taking into account
the condition (135), we get

F̃ =−2(∂XṼ · ∇xv0) · n. (138)

Plugging, on the other hand, the expansion (128) in the left hand side of (128) yields

|n|2∂2
XP̃=−2(∂XṼ · ∇xv0) · n (139)
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and we recover (137) by integrating twice with vanishing conditions at infinity for P̃ and
∂XP̃.

It is interesting to note that though the second method involves one more derivative,
it has the advantage of involving fewer terms. Furthermore we do not need to combine
with the equation for n.

Remark 4.3. We note that the profile P̃ is in general discontinuous at X = 0. Actually
this discontinuity is compensated by another pressure profile which depends only on t, x.
This profile will be constructed in § 6. On the other hand we will construct a velocity
profile Ṽ that is continuous, including at X = 0, so ∂XP̃ will also be continuous including
at X = 0.

We now use equation (136) to get rid of the pressure profile in equation (134). This
yields

ĽṼ := |n|2∂2
XṼ + X

2
∂XṼ − 1

2
Ṽ − t

(
DṼ + Ṽ · ∇xv0 − 2

(Ṽ · ∇xv0) · n
|n|2 n

)
= 0. (140)

4.3.4. Avoiding a far-field degeneracy. The vector field n may vanish, away from
the patch boundary; hence so may the coefficient in front of the leading order in
equation (140). To remedy this we consider a function a in the space

B := L∞([0,T];C0,r(R3)) ∩ L∞([0,T];Cs,r(O±(t)))

satisfying the condition inf [0,T]×R3 a =: c > 0 and such that a = |n|2 when |ϕ0| < η, and
we consider for the profile V(t, x,X) the linear partial differential equation LV = 0 where
the differential operator L is given by L := E−t(D+A) where E and A are some operators
of respective orders 2 and 0 acting formally on functions V(t, x,X) as follows:

E V := a∂2
XV + X

2
∂XV − 1

2
V and AV := V · ∇xv0 − 2

(V · ∇xv0) · n
a

n.

Roughly speaking, equation (140) is now hyperbolic in t, x and parabolic in t,X, for
t > 0, and degenerates into an elliptic equation in X for t = 0.

Remark 4.4. The substitution of a in place of |n|2 is quite harmless since

ĽV − LV = (|n|2 − a)∂2
XV + tC(t, x)V (141)

where C(t, x) is a matrix such that C(t, x)V := 2(V · ∇xv0) · n( 1
|n|2 − 1

a )n. Therefore the

right hand side of (141) vanishes for |ϕ0(t, x)| < η. On the other hand, for |ϕ0(t, x)| > η,
the third argument of V(t, x, ϕ

0(t,x)√
νt
) tends to ∞ as

√
νt tends to 0, so, because of the

vanishing condition (124), the right hand side of (141) will be small.

4.3.5. Transmission conditions. Of course we hope to extirpate from the previous
equation a non-trivial solution. To this purpose an important point is that we look
for a solution Ṽ with an X-derivative ∂XṼ discontinuous in X = 0. Actually because
of the parabolic nature of the Navier–Stokes equations, we expect that vν and ων
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are continuous including through ϕ0 = 0 (these are the Rankine–Hugoniot conditions
associated with the problem), which lead to the transmission conditions: Ṽ and ω0 + Ω̃
should be continuous, which (taking into account the equalities (125), (126) and (135))
is equivalent to the transmission conditions: Ṽ and n∧ω0−|n|2∂XṼ should be continuous.
More precisely this means a priori that

Ṽ|X=0+,ϕ0=0+ − Ṽ|X=0−,ϕ0=0− = 0, (142)

|n|2∂XṼ|X=0+,ϕ0=0+ − |n|2∂XṼ|X=0−,ϕ0=0− = −(n ∧ ω0|ϕ0=0+ − n ∧ ω0|ϕ0=0−). (143)

Since X is the placeholder for ϕ0(t,x)√
νt

the function Ṽ(t, x,X) needs to be defined

only when X and ϕ0(t,x)√
νt

share the same sign. However it is useful to look for a

profile V(t, x,X) defined for (t, x,X) in the whole domain U := (0,T) × R3 × R. As a
consequence we will actually look at the following transmission conditions: for any

(t, x) ∈ (0,T)× R3: [V] = 0 and [∂XV] = − n∧(ω0+−ω0−)
a , where the brackets denote the jump

discontinuity [V] = V|X=0+ − V|X=0− across {X = 0} and where the ω0± are functions

in L∞
(
(0,T);Cs,r

(
R3
))

such that ω0±|O±(t) = ω0. More precisely we recall from the

compendium (to be precise, part 6 of Theorem 1.1) that the restrictions of the flow χ0

of the Euler solution on each side of the boundary are analytic with respect to time
with values in Cs+1,r. Thanks to Theorem 2.1 there exist some extensions χ0± analytic on
(0,T) with values in Cs+1,r(R3) of the restriction χ0|O0,± . We define the corresponding
velocities v0± by v0±(t, .) := (∂tχ

0±)(t, (χ0±)−1(t, .)) and the corresponding vorticities ω0± by
ω0± := curl v0±. As a consequence, with the notation of the introduction, ω0± are in BD .

The profile equations (19)–(25) announced in the introductory part ğ 1.2 are therefore
derived.

5. Solving the profile problem

In this section we study the profile equations (19)–(25). In ğ 5.1 we study the problem
obtained when setting formally t = 0 in the profile problem. In ğ 5.2 we prove the
existence and uniqueness of the layer profile in an L2 setting, and we prove the
smoothness properties of this solution in ğ 5.3. The other properties of the profile are
proved in ğ 5.4 which achieves the proof of Theorem 1.4 given in the introduction.

5.1. At the initial time
We expect the initial values V0(x,X) := V(0, x,X) to satisfy the problem obtained on
formally setting t = 0 in equations (19)–(25), i.e.,

a0∂
2
XV0 + X

2
∂XV0 − 1

2
V0 = 0 when ± X > 0, (144)

V0|X=0+ − V0|X=0− = 0, (145)

a0∂XV0|X=0+ − a0∂XV0|X=0− = g0. (146)

The functions a0(x) and g0(x) which denote respectively the initial value of a and that of
n ∧ (ω0+ − ω0−) are in C0,r(R3) ∩ Cs,r(O±,0).
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Proposition 5.1. There exist a unique couple of solutions

V0(x,X) ∈ C0,r(R3; p-S(R)
) ∩ Cs,r(O±,0; p-S(R)

)
(147)

which satisfy the problem (144), (145), (146). Moreover

V0(x,X) · n0(x)= 0 for ± X > 0. (148)

Proof. We first reduce the transmission conditions to the homogeneous case by defining
the functions Ṽ0 by

Ṽ0 := V0 ± 1
2

g0

a0
(e∓X − e∓2X) when ± X > 0, (149)

so the problem (144), (145), (146) is turned into the following one (dropping the tilde
and the index 0):

a0∂
2
XV + X

2
∂XV − 1

2
V = f when ± X > 0, (150)

V|X=0+ − V|X=0− = 0, (151)

∂XV|X=0+ − ∂XV|X=0− = 0, (152)

with f ∈ C0,r
(
R3;H−1(R)

)∩C0,r
(
R3; p-S(R)

)∩Cs,r
(

O±,0;H−1(R)
)∩Cs,r

(
O±,0; p-S(R)

)
.

Because of the unbounded coefficient X in equation (144), the previous problem does
not enter in the classical theory of elliptic problems (with x as parameter). To remedy
this we introduce a cutoff. We consider σ > 0 and a smooth function χσ such that
χσ (X) = X for |X| < σ , χσ (X) = 3σ/2 for |X| > 2σ and ‖χ ′σ‖L∞(R) < 1. We will work with
the modified equation

a0∂
2
XV + χσ (X)

2
∂XV − 1

2
V = f when ±X > 0. (153)

The variational formulation of the problem (153), (151), (152) reads: for f ∈
L2(R3;H−1(R)) find V ∈ L2(R3;H1(R)) such that Bσ (V,W) = −〈f ,W〉 for all W ∈
L2(R3;H1(R)) where 〈., .〉 denotes the bracket of duality between L2(R3,H−1(R))
and L2(R3;H1(R)), and Bσ (V,W) is the following bilinear form on L2(R3;H1(R)) ×
L2(R3;H1(R)):

Bσ (V,W) :=
∫

R3×R
a0∂XV · ∂XW − χσ (X)

2
∂XV ·W + 1

2
V ·W. (154)

Since the bilinear form Bσ is continuous (thanks to the cutoff χσ ) and coercive:

Bσ (V,V)=
∫

R3×R
a0|∂XV|2 + 1

2

(
1+ χ

′
σ (X)

2

)
|V|2, (155)

we infer from the Lax–Milgram theorem that there exists a unique weak/variational
solution of problem (153), (151), (152).

We now turn our attention to regularity, restricting ourselves for brevity to
establishing a priori estimates. First multiplying equations (153) by V and integrating

https://doi.org/10.1017/S1474748013000285 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748013000285


Viscous profiles of vortex patches 39

(only) in X yields for any x ∈ R3∫
R

a0|∂XV|2 + 1
2

(
1+ χ

′
σ (X)

2

)
|V|2dX =−〈〈f ,W〉〉 (156)

where 〈〈., .〉〉 denotes this time the bracket of duality between H−1(R) and H1(R), so we
get

‖V‖L∞(R3;H1(R)) . ‖f‖L∞(R3;H−1(R)). (157)

We follow the same strategy as in § 3.9. By Rychkov’s Theorem 2.1 there exist some
extensions a±,0 in Cs,r(R3) and

f± ∈ Cs,r(R3;H−1(R)
) ∩ Cs,r(R3; p-S(R)

)
of the restrictions of a0 and f to O±,0. Then we obtain estimates of the solutions V± of
the problems

a±,0∂2
XV± + χσ (X)2

∂XV± − 1
2

V± = f± when ± X > 0, (158)

V±|X=0+ − V±|X=0− = 0, (159)

∂XV±|X=0+ − ∂XV±|X=0− = 0, (160)

for x running in the full range R3, through a Fourier analysis. Finally we observe that
V|O±,0 and V± satisfy all of equations (153), (151), (152) for x in O±,0. Proceeding as in
step 3 we get that they are equal.

We have therefore reduced to the case where the functions a0 and g0 are respectively
in Cs,r(R3) and Cs,r

(
R3;H−1(R)

) ∩ Cs,r
(
R3; p-S(R)

)
. We are going to prove by iteration

for −16 l6 s that

‖V‖Cl,r(R3;H1(R)) . ‖f‖Cl,r(R3;H−1(R)).

To do this we make use of a spectral localization with respect to x; that is we apply the
operators ∆j to equations (153) to get for j>−1 the equations

a0∂
2
X∆jV + χσ2 ∂X∆jV − 1

2
∆jV =∆jf + |[a0,∆j]∂2

XV (161)

for ±X > 0 and to the interface condition (151), (152) to get at X = 0∆jV|X=0+ −∆jV|X=0− = 0,

∆j∂XV|X=0+ −∆j∂XV|X=0− = 0.
(162)

We want to show that

supj>−1 2j(l+r)‖∆jV‖L∞(R3;H1(R)) <∞.
To do this we multiply equation (161) by ∆jV, we integrate in X over R±, and we
sum the two resulting equations, noticing that the boundary term produced by the
integration by parts of the sum of the respective first terms vanishes. We thus get for
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any x ∈ R3 the identity∫
R

a0|∂X∆jV|2 + 3
4
|∆jV|2 =−〈〈∆jf + |[a0,∆j]∂2

XV,∆jV〉〉.

Now we also have

|[a0,∆j]∂XV|X=0+ = |[a0,∆j]∂XV|X=0−

so ∫
R

a0|∂X∆jV|2 + 1
4
|∆jV|2 . ‖∆jf‖2H−1(R) + Ij(x), (163)

where Ij(x) denotes

Ij(x) :=
∫

R
|∂X∆jV| · |[a0,∆j]∂XV|.

We will prove the following commutator estimate:

Lemma 5.1. For any x ∈ R3 it holds that

supj>−1 22j(l+r)Ij(x). ‖∂XV‖
Cl,r
(

R3;L2(R)
) · ‖∂XV‖

Cl−1,r∩L∞
(

R3;L2(R)
).

Let us assume Lemma 5.1 for a while and infer from the estimate (163) that

‖V‖
Cl,r
(

R3;H1(R)
) . ‖f‖

Cl,r
(

R3;L2(R)
) + ‖∂XV‖

Cl−1,r∩L∞
(

R3;L2(R)
)

so that starting with the case l=−1—which is a consequence of the estimate (157)—the
iteration can be done until we get V ∈ Cs,r(R3;H1(R)).

Proof of Lemma 5.1. We will consider only j > 0, the case j = 0 corresponding to
minor modifications of notation and being actually easier. We make use of the
paraproduct, writing

[a0,∆j]∂XV = [Ta0 ,∆j]∂XV + (a0 − Ta0)∆j∂XV −∆j(a0 − Ta0)∂XV,

so Ij = I1
j + I2

j + I3
j where

I1
j (x) :=

∫
R
|∂X∆jV| · |[Ta0 ,∆j]∂XV|,

I2
j (x) =

∫
R
|∂X∆jV| · |(a0 − Ta0)∆j∂XV|,

I3
j (x) =

∫
R
|∂X∆jV| · |∆j(a0 − Ta0)∂XV|.

Referring to the definitions (47) and (43) we have

[Ta0 ,∆j]∂XV =
∑
k>1

[Sk−1a0,∆j]∆k∂XV

=
∑

k>1,|k−j|65

23j
∫

R3
(Sk−1a0(x)− Sk−1a0(y))h̃(2j(x− y))∆k∂XV(y)dy.
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Hence

|[Ta0 ,∆j]∂XV|6 2−j
∑

k>1,|k−j|65

‖Sk−1a0‖Lip

∫
R3

g(2j(x− y))|∆k∂XV(y)|23jdy

where g denotes the function g(x) := |x| · |h̃(x)| which is in L1(R3). Using the Fubini
theorem we get that for any x ∈ R3

I1
j (x).

∑
k>1,|k−j|65

2−j
∫

R3
g(2j(x− y))

(∫
R
|∂X∆jV(x,X)| · |∂X∆kV(y,X)|dX

)
23jdy.

We now use the Cauchy–Schwarz inequality to get for any x ∈ R3

I1
j (x) .

∑
k>1,|k−j|65

2−j‖∂X∆jV(x, .)‖L2(R)

∫
R3

g(2j(x− y))‖∂X∆kV(y, .)‖L2(R)2
3jdy

.
∑

k>1,|k−j|65

2−j‖∂X∆jV(x, .)‖L2(R)‖∂X∆kV(y, .)‖L∞(R3,L2(R))

and hence

supj>−1 22j(l+r)I1
j (x). ‖∂XV‖Cl,r(R3;L2(R)) · ‖∂XV‖Cl−1,r(R3;L2(R))

Similar bounds for I2
j and I3

j can be obtained, mixing once again classical paradifferential
arguments with a Fubini argument. �

Proceeding as previously we can prove that

‖V‖Cs,r(R3;H1(R)) . ‖f‖Cs,r(R3;p−L2(R)). (164)

Then, proceeding by induction we obtain that for all k and l in N, Vk,l,0 := Xk∂ l
XV ∈

Cs,r
(
R3; p− H1(R)

)
. This yields the estimate (147).

We now let σ go to infinity.
Finally it suffices to use a uniqueness argument based on equality (156). �

5.2. Existence and uniqueness of the layer profile

Let us now study the time-dependent equation (19). We denote by U the domain
U := (0,T) × R3 × R, by U± the restrictions U± := (0,T) × R3 × R± on each side of the
boundary Γ := (0,T)× R3 × {0} and by A, L̃ and L the operators of respective orders 0,
1 and 2 acting formally on functions V(t, x,X) as follows:

AV := V · ∇xv0 − 2
(V · ∇xv0) n

a
n

L̃V := X

2
∂XV − 1

2
V − t(∂tV + v0 · ∇xV + AV),

LV := a∂2
XV + L̃V.

The profile problem now reads as follows:

LV = f on U±, ([V], [∂XV])= (0, g) on Γ, (165)
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the decreasing of V for large X being encoded in the choice of the space E1 :=
L2((0,T)× R3;H1(R)).

Theorem 5.1. For any f ∈ E′1, for any g ∈ L2((0,T) × R3) there exists exactly one
solution V ∈ E1 of (165). In addition the function

√
t‖V(t, ·, ·)‖L2(R3×R) is continuous on

(0,T).

The first equation of (165) is satisfied in the sense of distributions on both U± and the
sense given to the jump conditions is explained in the proof below.

Proof. We consider σ > 0 and a smooth function χσ such that χσ (X) = X for |X| < σ ,
χσ (X) = 3σ/2 for |X| > 2σ and ‖χ ′σ‖L∞(R) < 1. We will work with the modified
operators L̃σ := L̃+ χσ (X)−X

2 ∂XV and LσV := a∂2
XV+ L̃σV whose coefficients are bounded.

Furthermore, the coefficients of the first-order part are Lipschitz.
We now explain the meaning of the jump conditions in equation (165). Since V is in

E1, the jump [V]|Γ is in L2(Γ ). To give a sense to the jump of the derivative [∂XV] we
will use the equation. For any V in the space E2 := {V ∈ C0(U)/V|U± ∈ C∞} and W in
H1(U) we have, integrating by parts, the following Green identity:∑

±

∫
U±

LσV ·W =−
∫

U
a∂XV · ∂XW +

∫
U

L̃∗σW · V −
∫
Γ

a[∂XV] ·W − T
∫
Γ̃

W · V (166)

where Γ̃ := {T} × R3 × R and where L̃∗σ denotes the operator (the adjoint of L̃σ )

L̃∗σV := −χσ (X)
2

∂XV − 1
2
(1+ χ ′σ (X))V + t(DV + (1+ div v0 − A)V). (167)

In fact, less smoothness is needed. Let us introduce the Hilbert space E4 := {V ∈
E1/LσV ∈ H−1(U)} endowed with the norm ‖V‖E4 := ‖V‖E1 + ‖LσV‖H−1(U). Thanks to a
classical lemma of Friedrichs [57], the space E2 is dense in E4.

Lemma 5.2. The map

V ∈ E2 7→ τ :=
a[∂XV] on Γ

TV on Γ̃
(168)

extends uniquely to a continuous linear map from E4 to H−
1
2 (Γ ∪ Γ̃ ) and Green’s identity

(166) is still valid for any couple (V,W) in E4 × H1(U) in the generalized sense that

〈LσV,W〉H−1(U),H1(U)

=
∫

U
(V · L̃∗σW − a∂XV · ∂XW)− 〈τ,W|Γ∪Γ̃ 〉H− 1

2 (Γ∪Γ̃ ),H 1
2 (Γ∪Γ̃ ). (169)

Proof. Let V be in E2 and W̃ be in H
1
2 (Γ ∪ Γ̃ ). There exists a function W in H1(U) such

that W|Γ∪Γ̃ = W̃. From Green’s identity (166) we infer that∣∣∣∣∫
Γ∪Γ̃

τW̃

∣∣∣∣6 C‖V‖E4‖W‖H1(U) 6 C‖V‖E4‖W̃‖H 1
2 (Γ∪Γ̃ ).
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Hence by the Hahn–Banach theorem we get the existence of a continuous extension,
which is unique because of the density stated above. �

We therefore have given a meaning to the problem (165). This meaning can seem
weak, but the next result says that it is actually strong. We introduce the space H1,2(U)
of the functions V ∈ H1(U) such that ∂2

XV|U± are in L2.

Lemma 5.3. If V ∈ E4 satisfies the jump conditions [V] = 0 and [∂XV] = g on Γ in
the sense given by Lemma 5.2 then there exists a sequence Vε in H1,2(U) converging to
V in E4 and a sequence gε converging to g in L2((0,T) × R3) such that [Vε] = 0 and
[∂XVε] = gε on Γ .

Proof. As this kind of process is very classical—see for instance Rauch [106]—we only
briefly sketch the proof. The idea is to construct the sequence Vε by convoluting in the
variables t, x only to preserve the jump conditions, to use the Friedrichs lemma to prove
the convergence in E4 and then to gain the extra X derivative, that is to prove that the
Vε are in H1,2(U), thanks to the equation. �

We will now prove uniqueness as a consequence of the following estimate: for any
function V in E1 satisfying

LσV = f when on U±, [V] = 0 and [∂XV] = g on Γ, (170)

it holds that

‖V‖E1 . ‖f‖E′1 + ‖g‖L2(R3×R). (171)

Let us first see the case where V is in H1,2(U). Then using Green’s identity (166) with
V =W and density we get that∫

U
|V|2 + |∂XV|2 + T

∫
Γ̃

|V|2 .
∫

U
t|V|2 + |f · V| +

∫
Γ

|g · V|,

actually not only for T but for any t in (0,T), so using Gronwall’s lemma we get

‖V‖E1 +
√

T‖V(T, ·, ·)‖L2(R3×R) . ‖f‖E′1 + ‖g‖L2(R3×R). (172)

Now to deal with the general case we introduce the Hilbert space E3 := {V ∈ E1/LσV ∈
E′1} endowed with the norm ‖V‖E3 := ‖V‖E1 + ‖LσV‖E′1 . From its definition (167) we see
that L̃∗σV is in E′1 whenever V ∈ E3. Estimate (171) will be deduced from

Lemma 5.4. The map

(V,W) ∈ E2 × E2 7→ ρ :=
{

a[∂XV] ·W on Γ

TV ·W on Γ̃

extends uniquely to a continuous bilinear map from E3 × E3 to Lip(Γ ∪ Γ̃ )′ and Green’s
identity (166) is still valid for any couple V,W in E3 × E3 in the generalized sense that

〈LσV,W〉E′1,E1
=−

∫
U

a∂XV · ∂XW + 〈L̃∗σW,V〉E′1,E1
− 〈ρ, 1〉Lip(Γ∪Γ̃ )′,Lip(Γ∪Γ̃ ). (173)
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Proof. Now let V,W be in E3 and let ϕ be in Lip(Γ ∪ Γ̃ ) where there exists a
function Φ in Lip(U) such that Φ|Γ∪Γ̃ = ϕ and such that ‖Φ‖Lip(U) 6 ‖ϕ‖Lip(Γ∪Γ̃ ) with
c independent of ϕ. From Green’s identity (166) we infer that∫

Γ

ρϕ =−
∫

U
LσV · ϕW −

∫
U

a∂XV · ∂XϕW +
∫

U
L̃∗σϕW · V,

so ∣∣∣∣∫
Γ

ρϕ

∣∣∣∣ 6 ‖Φ‖Lip(U).‖LσV‖E′1 .‖W‖E1 + ‖Φ‖Lip(U).‖V‖E1 .‖W‖E1

+‖L̃∗σϕW‖E′1 .‖V‖E1 , (174)

6 C‖ϕ‖Lip(Γ∪Γ̃ ).‖V‖E3 .‖W‖E3 . (175)

Hence by the Hahn–Banach theorem we get the existence of a continuous extension,
which is unique because of the density of E2 in E3. �

In order to prove the existence part of Theorem 5.1 we will need another Green formula
which involves the complete transposition of the operator L. At a smooth level, that is
for any V, W in the space E2, this Green identity reads∑

±

∫
U±

LσV ·W =
∫

U
L∗σW · V −

∫
Γ

a[∂XV] ·W +
∫
Γ

aV · [∂XW] − T
∫
Γ̃

W · V (176)

where L∗σ = a∂2
X + L̃∗σ denotes the adjoint of the operator Lσ .

Lemma 5.5. The map

V ∈ E2 7→ τ :=
a[∂XV] on Γ

TV on Γ̃
(177)

extends uniquely to a continuous linear map from E4 to H−
3
4 (Γ ∪ Γ̃ ) and Green’s identity

(176) is still valid for any couple V,W in E4 × H1,2(U) in the generalized sense that

〈LσV,W〉H−1(U),H1(U) = 〈L∗σW,V〉E′1,E1
− 〈τ,W|Γ∪Γ̃ 〉H− 1

2 (Γ∪Γ̃ ),H 1
2 (Γ∪Γ̃ )

+
∫
Γ

[∂XW] · aV|Γ . (178)

Proof. By adapting the classical lifting method—see for instance [94]—we get that for
any W̃1 in H

3
2 (Γ ∪ Γ̃ ) and W̃2 in L2(Γ ) there exists a function W in H1,2(U) such

that W|Γ∪Γ̃ = W̃1, [∂XW]|Γ = W̃2. The proof then follows the same lines as that of
Lemma 5.4; we use Green’s identity (176) for V in E2 and a W obtained by lifting W̃1 in
H

3
2 (Γ ∪ Γ̃ ) and W̃2 = 0, and then we use the Hahn–Banach theorem and density. �

Proceeding as previously, we get that the estimate (171) also holds for the adjoint
operator. We infer the existence of a solution to the direct problem by using Riesz’s
theorem and Green’s identity (178).
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We now use again a sequence of approximation of the solution, and use the linearity
of the problem together with the a priori estimate (172) to show that this sequence
is a Cauchy sequence in the space of the functions V such that

√
t‖V(t, ·, ·)‖L2(R3×R) is

continuous on (0,T). Completeness yields the conclusion.
We finally let σ go to infinity. The estimate (172) is uniform with respect to σ . Using

weak compactness we can pass to the weak limit so that we get a solution to equation
(165). �

5.3. Smoothness of the layer profile

We now study the smoothness of V(t, x,X). It is convenient to recall here some notation
given in the introduction. For any Fréchet space E of functions depending on t, x and
possibly on X we will denote as ED the set

ED :=
{

f ∈ E/∃C > 0/
(

Dkf

Ckk!
)

k∈N
is bounded in E

}
,

where D denotes the material derivative D := ∂t + v0 · ∇x. We define

A := L∞
(
(0,T);C0,r(R3; p-S(R±)

)) ∩ L∞
(
(0,T);Cs,r(O±(t); p-S(R±)

))
,

B := L∞
(
(0,T);C0,r(R3)) ∩ L∞

(
(0,T);Cs,r(O±(t)

))
.

Moreover we recall from ğ 4.3.5 that the functions a and A are in BD .

Theorem 5.2. For any f ∈AD , for any g1, g2 ∈ BD there exists one solution V ∈AD of

LV = f on U±, ([V], [∂XV])= (g1, g2) on Γ. (179)

Proof. We first reduce the transmission conditions on the internal boundary Γ to
homogeneous ones by defining the functions Ṽ by

V := Ṽ ± 1
2

(
(2g1 + g2)e

∓X − (g1 + g2)e
∓2X
)

when ± X > 0. (180)

Hence that the problem now reads as follows:

LṼ = f̃ on U±, [Ṽ] = [∂XṼ] = 0 on Γ, (181)

with f̃ ∈AD . Let us stress that there is no loss of regularity in this lifting process, since
the X-derivative has been applied innocuously to the second term in (180), as well as D
since g1, g2 and a are in BD .

The proof now reduces to showing that there exists only one solution Ṽ ∈AD of (181).
We first prove that Ṽ is in CD where we define C := L∞

(
(0,T)× R3;H1(R)

)
. Let us

first establish an a priori estimate, applying for any k ∈ N the field Dk to the problem
(181) to get

(E − k)Ṽ [k] = f̃ [k] + tṼ [k+1] + tAṼ [k] on U±, [Ṽ [k]] = [∂XṼ [k]] = 0 on Γ, (182)

where we denote by Ṽ [k] := DkṼ the kth iterated derivative of Ṽ along D and where
f̃ [k] := ∑3

l=1 f̃
[k]
l , where f̃ [k]1 := Dk f̃ whereas f̃ [k]2 and f̃ [k]3 denote respectively the
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commutators

f̃ [k]2 := [Dk, E] =
k−1∑
l=0

(
k

l

)
Dk−la · ∂2

XṼ [l], f̃ [k]3 := −[Dk, tA] = −
k−1∑
l=0

(
k

l

)
Dk−ltA · Ṽ [l].

The last sums have to be omitted when k = 0. Here we have used that [Dk, tD] = kDk.
We now multiply the first equation of (182) by Ṽ [k] and we now integrate with respect to
X only. This yields for any t, x ∈ (0,T)× R3 the estimate∫

R
a|∂XṼ [k]|2 +

(
k + 3

4

)∫
R
|Ṽ [k]|2

6

∣∣∣∣∫
R

f̃ [k] · Ṽ [k]
∣∣∣∣+ ∫

R
t|Ṽ [k+1] · Ṽ [k]| + C1

∫
R

t|Ṽ [k]|2. (183)

Using the condition (24), the left hand side of (183) is larger than

c
∫

R
|∂XṼ [k]|2 + 3

4
(k + 1)

∫
R
|Ṽ [k]|2.

We now bound the right hand side of (183). Using the Cauchy–Schwarz and Young
inequalities we have∫

R
|f̃ [k]1 · Ṽ [k]|6

4
k + 1

∫
R
|f̃ [k]1 |2 +

k + 1
4

∫
R
|Ṽ [k]|2. (184)

Integrating by parts yields∣∣∣∣∫
R

f̃ [k]2 · Ṽ [k]
∣∣∣∣6 k−1∑

l=0

(
k

l

)∫
R
|Dk−la∂XṼ [l]∂XṼ [k]|. (185)

Since a is analytic, there exists Ca > 0 such that for any l ∈ N, ‖Dla‖B 6 (Ca)
l l!, so using

the Cauchy–Schwarz and Young inequalities yields∣∣∣∣∫
R

f̃ [k]2 · Ṽ [k]
∣∣∣∣6 C2

(
k−1∑
l=0

k!
l! C

k−l
a ‖∂XṼ [l]‖

)2

+ c

2

∫
R
|∂XṼ [k]|2, (186)

where we define here ‖f‖ := (∫R |f (t, x,X)|2dX)
1
2 . In a similar way, there exist C3,CA > 0

such that ∣∣∣∣∫
R

f̃ [k]3 · Ṽ [k]
∣∣∣∣6 C3

(
k−1∑
l=0

k!
l! C

k−l
A ‖Ṽ [l]‖

)2

+ 1
8

∫
R
|Ṽ [k]|2. (187)

Finally for 0< t < T 6 T we have∣∣∣∣∫
R

tṼ [k+1] · Ṽ [k]
∣∣∣∣6 k + 1

8

∫
R
|Ṽ [k]|2 + 4T

k + 1

∫
R
|Ṽ [k+1]|2. (188)

Hence

c

2

∫
R
|∂XṼ [k]|2 + k + 1

4

∫
R
|Ṽ [k]|2 6 4

k + 1

∫
R
|f̃ [k]1 |2 + C2

(
k−1∑
l=0

k!
l! C

k−l
a ‖∂XṼ [l]‖

)2
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+C3

(
k−1∑
l=0

k!
l! C

k−l
A ‖Ṽ [l]‖

)2

+ 4T

k + 1

∫
R
|Ṽ [k+1]|2 + C1T

∫
R
|Ṽ [k]|2

and thus we infer—keeping the notation C1–C3 for their square roots—that

c

4
‖∂XṼ [k]‖ +

√
k + 1
8
‖Ṽ [k]‖ 6 2√

k + 1
‖f̃ [k]1 ‖ + C2

k−1∑
l=0

k!
l! C

k−l
a ‖∂XṼ [l]‖

+C3

k−1∑
l=0

k!
l! C

k−l
A ‖Ṽ [l]‖

+
√

4T

k + 1
‖Ṽ [k+1]‖ + C1

√
T‖Ṽ [k]‖. (189)

We introduce the functions

ak(t, x) := ‖Ṽ
[k]‖

k!Ck , bk(t, x) := ‖∂XṼ [k]‖
k!Ck
√

k + 1
and fk(t, x) := ‖f̃ [k]1 ‖

(k + 1)!Ck ,

where C is a positive real which will be chosen in a few lines. Dividing the estimate (189)
by k!Ck

√
k + 1 yields

c

4
bk + 1

8
ak 6 2fk + C2

k−1∑
l=0

(
Ca

C

)k−l

bl + C3

k−1∑
l=0

(
CA

C

)k−l

al

+√4TCak+1 + C1

√
Tak. (190)

We choose C large enough that max( C2
C

CA
−1
, C3

C
Ca
−1
)6min( c

8 ,
1
16 ) and then T > 0 is chosen

small enough that
√

4TC 6 1
64 and that C1

√
T 6 1

64 . Hence summing over k ∈ N, the
estimates (190) yield the following a priori estimate: for any t, x ∈ (0,T)× R3,∑

k∈N

(
c

8
bk + 1

32
ak

)
6 2

∑
k∈N

fk. (191)

We now define the iterative scheme (Ṽn)n∈N by setting Ṽ0 as the solution of

E Ṽ0 = f̃ on U±, [Ṽ0] = [∂XṼ0] = 0 on Γ,

and Ṽn+1 as the solution of

E Ṽn+1 = f̃ + t(D + A)Ṽn on U±, [Ṽn+1] = [∂XṼn+1] = 0 on Γ.

It is not difficult to see that Ṽ0 is in CD . Then proceeding as in the proof of the estimate
(191) we infer the convergence of the iterative scheme for any t, x ∈ (0,T) × R3 to a
solution Ṽ of the problem (181). Using several time slices yields that Ṽ is in CD .

Now to prove Theorem 5.2, we increase the smoothness with respect to x thanks
to the operators ∆j of spectral localization. We proceed as previously dealing with
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the additional spectral commutators as in § 5.1 (in particular using the commutator
estimate Lemma 5.1).

If we denote by B̃ the space of the functions f (t, x,X) with B smoothness in t, x with
values in H1(R), this yields that Ṽ is in B̃D . Then we prove by induction that XkṼ is in
B̃D for all k in N. Finally we use the equation to increase by induction the number of
derivatives with respect to X and get that Ṽ is in AD . �

5.4. Other properties of the profile

Let us now prove that the normal projection V · n vanishes. We multiply equation (134)
by n and take into account the equation (11) for n(t, x), so we get

|n|2∂2
X(V · n)+

X

2
∂X(V · n)− 1

2
(V · n)= t(∂t + v0 · ∇x)(V · n). (192)

Moreover also taking the scalar product of the transmission conditions on the internal
boundary X = 0 with n we get

(V · n)|X=0+ = (V · n)|X=0− , (193)

∂X(V · n)|X=0+ = ∂X(V · n)|X=0− . (194)

Proceeding as in ğ 5.2 we get an energy estimate for the problem (192), (193), (194) from
which we infer that V · n vanishes.

When s > 2 the first and second time derivatives of the functions n and ω0 are in
the space L∞([0,T],C0,r(R3)). This allows us to get some estimates for the second time
derivative ∂2

t V by commuting ∂2
t with equations (19)–(25). Hence we can define a trace

at t = 0 of all the terms in equations (19)–(25). We hence get that the trace V|t=0

satisfies (144), (145), (146).

6. Full expansion

We are now concerned with the following terms in the expansion with respect to νt of
the solutions of the Navier–Stokes equations. Actually in this section we show that if
the initial data is piecewise smooth on each side of the interface {ϕ0 = 0}—that is, if we
consider an initial velocity v0 as described in the Definition 1.1 with s =+∞—then it is
possible to write a complete asymptotic expansion of the vorticity of the form

ων(t, x)=
∑
j>0

√
νt

j
Ω j
(

t, x,
ϕ0(t, x)√

νt

)
+ O(
√
νt
∞
), (195)

where the first profile Ω0 is the one constructed in the previous section: Ω0 :=Ω.
Let us explain the underlying intuition for guessing the expansion (195): when the

initial data is globally smooth, the vorticity ων given by the NS equations admits a
regular (Taylor-type) expansion:

ων(t, x) :=
∑
j>0

(νt)j ωj(t, x)+ O((νt)∞), (196)
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so we expect that when the initial data is piecewise smooth on each side of the interface
{ϕ0 = 0}, the same should still hold true when we incorporate the fast scale ϕ0(t,x)√

νt
, so we

should write ων through the ν-dependent profile:

ων(t, x)=Ων

(
t, x,

ϕ0(t, x)√
νt

)
, (197)

where Ων(t, x,X) admits a regular expansion:

Ων(t, x,X) :=
∑
j>0

√
νt

j
Ω j(t, x,X)+ O(

√
νt
∞
). (198)

Once again, in order to prove this, we will consider the velocity formulation, looking
first for a determination of the velocity profiles of the expansion

vν(t, x)= v0(t, x)+
∑
j>1

√
νt

j
V j
(

t, x,
ϕ0(t, x)√

νt

)
+ O(
√
νt
∞
), (199)

where the profile V1 is the one constructed in the previous section: V1 := V.
Then we will recover the vorticity profiles by plugging (195) and (199) into the

relation (3) and setting the terms of order
√
νt

j equal; this leads to

Ω j = curl xV j + n ∧ ∂XV j+1. (200)

Moreover we will look for a pressure expansion of the form

pν(t, x)= p0(t, x)+
∑
j>2

√
νt

j

t
Pj
(

t, x,
ϕ0(t, x)√

νt

)
+ O(
√
νt
∞
). (201)

The profiles above are of the following form: for ±X > 0,

U(t, x,X) := U(t, x)+ Ũ(t, x,X), (202)

where the function Ũ(t, x,X) is rapidly decreasing when ±X→∞, and the letter U is the
placeholder for the Ω j, the V j and the Pj. We will refer to the term U as the regular part
and to the term Ũ as the layer part.

The layer part P̃2 is equal to P̃2 = tP where P is the profile of the previous section.
This possibility of being smoothly factorized by t is very particular to the order 2.
This follows from the orthogonality property (135). Furthermore, to satisfy the pressure
continuity we will have to add to this layer part P̃2 a regular part P2, as anticipated in
Remark 4.3.

As explained in the introduction, we will construct some profiles V j and Pj, for j > 2,
such that the resulting profiles in the right hand sides of (37)–(41) vanish, that is such
that Fj

a = 0, Fj
b = 0, and [V j] = [a∂XV j

tan + ∂nV j−1
tan ] = 0 and [Pj] = 0 for any j.

Actually, using (130)–(132) we obtain that for any j> 1, Fj
a and Fj

b are of the form

Fj
a =−

(
L− j− 1

2

)
V j + f j +∇xPj + ∂XPj+1n, (203)

Fj
b = ∂X(V

j+1 · n)+ divx V j, (204)
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where f j would be decomposed into f j = f j + f̃ j—as the profiles U were in (202)—and
depends only on lower order profiles. The profiles Fj

a and Fj
b will be decomposed into

Fj
a = Fj

a + F̃j
a and Fj

b = Fj
b + F̃j

b as well.
Here, it is understood that we substitute a for |n|2, by considering the operator L, in

order to avoid a spurious degeneracy of the profile equations, as we have already done
when we were constructing the first profile; cf. Remark 4.4. The decay property of the
layer parts of the profiles entails that the error due to this substitution is O(

√
νt
∞
).

Let us now be more precise about the spaces that we will use for these profiles. Let us
recall that O± are the space–time domains O± := {(t, x) ∈ (0,T)×R3/x ∈O±(t)} and ∂O
the interface between them. We will denote as H∞(O±) the space of the functions f (t, x)
which are H∞, that is in Hs for any s ∈ R+, on both O+ and O−; as (R ⊕ H∞)(O±) the
space of the functions f (t, x) which are, on both O+ and O−, the sum of a constant and
of a function in H∞ and

A∞ := H∞(O±, p-S(R)),

which therefore contains functions of t, x and X. It follows from the assumptions made
in this section that v0 is in H∞(O±). On the other hand it is plain sailing to check that
when the profiles V j, for j > 1, and Pj, for j > 2, are respectively in H∞(O±) ⊕ A∞ and
(R⊕H∞)(O±)⊕A∞, then the corresponding profiles Fj

a and Fj
b given by (203) and (204)

are in H∞(O±)⊕A∞.
Then the main result of this section is the following.

Theorem 6.1. There exist some profiles V j, for j > 1, and Pj, for j > 2, respectively
in H∞(O±) ⊕ A∞ and (R ⊕ H∞)(O±) ⊕ A∞, such that the corresponding profiles
Fj

a and Fj
b given by (203) and (204) satisfy Fj

a = 0 and Fj
b = 0 for any j > 1, and

[V j] = [a∂XV j
tan + ∂nV j−1

tan ] = 0 and [Pj] = 0 for any j> 2.

The remainder of this section is devoted to the proof of this result.
Let us denote, for any j> 1, by (P j) the following problem:

(P j) : F̃j−1
b = 0, Fj

a = 0, Fj
b = 0, [V j] = [a∂XV j

tan + ∂nV j−1
tan ] = 0, [Pj] = 0.

where we define F̃0
b = ∂X(V1 · n), and the requirement [Pj] = 0 is dropped out for j= 1.

We will determine iteratively the velocity and pressure profiles, V j, for j > 1, and Pj,
for j> 2, in order to satisfy the problems (P j) for any j> 1.

For j> 1, we will split the problem (P j) into three subproblems. In order to do this we
first observe that the jump conditions [V j] = [a∂XV j

tan + ∂nV j−1
tan ] = 0, [Pj] = 0 reduce to

[V j · n] = −[Ṽ j · n], (205)

[Ṽ j
tan] = −[V j

tan], (206)

[a∂XṼ j
tan] = −[∂nV j−1

tan ], (207)

[Pj] = −[P̃j]. (208)

https://doi.org/10.1017/S1474748013000285 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748013000285


Viscous profiles of vortex patches 51

We now introduce, for any j> 1, the following subproblems:

(P j
I) : F̃j−1

b = 0,

(P j
II) : Fj

a = 0, Fj
b = 0, (205), (208),

(P j
III) : F̃j

a = 0 (206), (207).

Now, proving the problem (P j) amounts to proving (P j
I), (P j

II) and (P j
III).

However it is crucial to incorporate in the iteration process the following condition:

∀t ∈ [0,T], ∀s ∈ (−η, η), ∀X,
∫
∂(O+(t))s

Ṽ j(t, x,X) · n(t, x) dσt,s(x)= 0, (209)

where we define ∂(O+(t))s := {σ − sn(t, σ )/σ ∈ ∂O+(t)} and dσt,s is the surface measure
on ∂(O+(t))s.

We will prove the following by iteration:

(Π j) : ∃(V j)k6j, (P
j)k6j respectively in H∞(O±)⊕A∞ and (R⊕ H∞)(O±)⊕A∞,

and P̃j+1 ∈A∞ satisfying (P k)k6j and (209).

To determine the velocity and pressure profiles we proceed iteratively, determining at
the step j the velocity profile V j, the regular part of the pressure profile Pj and the layer
part of the following pressure profile P̃j+1, from the profiles already known from the
previous steps. The step j = 1 was done in the previous section. We now explain how to
do a step j > 2 when the previous ones are done. We therefore assume that (Π j−1) is
satisfied.

6.1. Determination of the normal component of the layer part Ṽj

We start with determining the layer part Ṽ j of the profile V j. The problem (P j
I) reads

∂X(Ṽ
j · n)=−divx Ṽ j−1. (210)

Since we look for a layer profile Ṽ j in A∞, the only solution is given by the following
formula: for ±X > 0,

Ṽ j · n := −
∫ ±∞

X
divx Ṽ j−1. (211)

Above, the integral refers to the third variable of the function divx Ṽ j−1(t, x, ·).
Let us now prove that, moreover, any layer profile Ṽ j with its normal component given

by (211) satisfies (209). We use Fubini’s principle to get that such a layer profile satisfies∫
∂(O+(t))s

Ṽ j(t, x,X) · n(t, x) dσt,s(x)=
∫ ±∞

X
A(t, s,Y)dY, (212)

with

A(t, s,Y) :=
∫
∂(O+(t))s

(divxṼ j−1)(t, x,Y)dσt,s(x).
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The integral of a function f over ∂(O+(t))s is linked to the integral over ∂(O+(t)) by
the following relation:∫

∂(O+(t))s
f (x)dσt,s =

∫
∂(O+(t))

f#(σ, s)γt,s(σ )dσt,0, (213)

where γt,s(σ ) denotes the Jacobian of the transformation σ 7→ σ − sn(t, σ ) which maps
∂(O+(t)) to ∂(O+(t))s and f#(σ, s) := f (σ − sn(t, σ )). Let us recall that the divergence
splits into the following decomposition (see for example Theorem C.4.8 of [17]):

divxf = (γt,s(σ ))
−1

×
(
−∂s(γt,s(σ )f# · n)+ div∂(O+(t))

(
γt,s(σ )(Id − s Dxn)−1(f#)tan

))
, (214)

where div∂(O+(t)) denotes the divergence operator on ∂(O+(t)).
Combining (212), (213) and (214), we get that A= A1 + A2 with

A1 := −∂s

∫
∂(O+(t))s

Ṽ j−1
# · n# dσt,s and

A2 :=
∫
∂O+(t)

div∂Ω
(
γt,s(σ )(Id − sDxn)−1(Ṽ j−1

# )tan

)
dσt,0,

where we define Ṽ j−1
# (t, σ, s, ·) := Ṽ j−1(t, σ − sn(t, σ ), ·).

Using (209) at the order j − 1 we obtain A1 = 0. On the other hand A2 = 0 thanks to
Stokes’s theorem. Going back to (212), this proves (209) at the order j.

6.2. Determination of Vj and Pj

This section is devoted to the existence of V j and Pj respectively in H∞(O±) ⊕ A∞ and
(R⊕ H∞)(O±)⊕A∞, satisfying the problem (P j

II).
For the reader’s comfort let us stress that, in this section, the functions depend only

on t and x (and not on X). In particular the notation ∇ stands in this section for ∇x.
Referring to (203), (204), the equations Fj

a = 0 and Fj
b = 0 read

j

2
V j + t(DV j + V j · ∇v0)+∇Pj = f j, (215)

and

div V j = 0. (216)

Equations (215) together with (216) can be seen as some modified linearized Euler
equations. The main difference from the classical linearized Euler equations is the
extra factor t in front of the time derivative that makes the initial hypersurface {t = 0}
characteristic. As a consequence, as for the Fuchsian equations, a growth condition, with
respect to time, insures the existence and uniqueness of solutions, without prescribing
any initial condition. Here we will use an L2 setting, both in space and in time.

Here we are interested in the transmission problem made up of the equations (215),
(216) on each side, O±, with the conditions (205) and (208) on the interface ∂O. The
main result in this section is the following:

https://doi.org/10.1017/S1474748013000285 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748013000285


Viscous profiles of vortex patches 53

Proposition 6.1. There exist V j and Pj respectively in H∞(O±) ⊕ A∞ and (R ⊕
H∞)(O±) ⊕ A∞, satisfying equations (215), (216) on each side, O±, with the
transmission conditions (205)–(208) of the interface ∂O.

To be slightly more general we will actually consider the following problem:

βV + t(DV + V · ∇v0)+∇P = f for (t, x) in O±, (217)

div V = 0 for (t, x) in O±, (218)

[V · n] = g for (t, x) in ∂O, (219)

[P] = h for (t, x) in ∂O, (220)

where β > 1
2 and the boundary data g satisfies the following condition of compatibility

(between equation (218) and the condition (219)):∫
∂O+(t)

g(t, .)dσt,0 = 0, (221)

for any time t ∈ (0,T).
Equations (215), (216) are of the form (217), (218) with β = j

2 (so β > 1
2 , since j > 2)

and the transmission condition (205) is of the form (219) with g := −[Ṽ j · n], which
satisfies the compatibility condition (221) thanks to (209).

Thus Proposition 6.1 will be deduced from the following result.

Proposition 6.2. For any f , g, h ∈ H∞(O±), with g satisfying the compatibility
condition (221), there exist V and P respectively in H∞(O±)⊕A∞ and (R⊕H∞)(O±)⊕
A∞ satisfying (217)–(220).

6.2.1. A pressureless system. Let us first consider the pressureless version of the
problem (217)–(220), that is the set of two equations

βV + t(DV + δV · ∇v0)= f , for (t, x) in O±, (222)

where δ ∈ {0, 1}. In the case where δ = 0, the equation above makes sense for a
scalar-valued unknown V. Such a case will be useful in the next section.

Since the domain is precisely transported by the vector field D and these equations are
now local, they do not need any transmission condition and are totally independent.

More precisely we will prove the following result.

Lemma 6.1. For β > 1
2 , for any f in H∞(O±) there exists only one solution V in

H∞(O±) of (222).

Proof. The basic energy estimate is formally obtained by multiplying equation (222) by
V and by integrating over O±. This yields

T
∫

O±(T)
V2(T, .)+

(
β − 1

2

)∫
O±

V2 6
∫

O±
|f · V| + C

∫
O±

tV2, (223)

where C := ‖∇v0‖L∞(O±). The last term in (223) can be absorbed by the first one by a
Gronwall lemma. On the other hand we use the Cauchy–Schwarz and Young inequalities
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to get that ∫
O±
|f · V|6 C

∫
O±

f 2 + (β −
1
2 )

2

∫
O±

V2,

so we finally get the a priori estimate

T
∫

O±
V2(T, .)+ 1

2
(β − 1

2
)

∫
O±

V2 .
∫

O±
f 2. (224)

Classical variational methods then allow us to deduce that for any f in L2(O±) there
exists only one solution V in L2(O±) of (222).

Now let us consider the regularity issues. The point here is that the boundary ∂O± is
totally characteristic for equation (222), which is local. As a consequence the regularity
of the solution V can be established as if the equation holds in the full space R3. In
effect, thanks to the universal extension operator, there exist f± and v0± with

‖f±, v0±‖Hs(R3×(0,T))) . ‖f , v0‖Hs(O±),

such that, for any t ∈ (0,T), f±|O± = f and v0±|O± = v0. Proceeding as previously we get
that the L2 result is also true when the domain O± is replaced by the full space R3: there
exists only one solution V± ∈ L2

(
(0,T)× R3

)
of

t(∂tV± + v0± · ∇V± + V± · ∇v0±)+ βV± = f±, in R3 × (0,T).

The restrictions V±|O± satisfy equation (222), so by uniqueness V± = V±|O± . We have
therefore reduced the problem to proving the regularity of V±. The gain of dealing with
the full space R3 is that we can now use a spectral localization, that is we apply the
dyadic blocks ∆j to the equation and then we obtain an energy estimate. We then get
that:

Lemma 6.2. For any s > 0, for any f ∈ L2 ((0,T),Hs(O±(t))) the solution V of (222) is
also in L2 ((0,T),Hs(O±(t))).

Now to get smoothness in time, we simply apply the time derivative ∂t to equation (222).
Indeed the time derivative V [1] := ∂tV of the solution satisfies the equation

t(∂tV
[1] + v0 · ∇V [1] + V [1] · ∇v0)+ (β + 1)V [1] = f [1], in O±, (225)

with f [1] := ∂tf − t((∂tv0) ·∇V+V ·∇∂tv0). Using Lemma 6.2 we get, for s> 1, an estimate
of V [1] in L2

(
(0,T),Hs−1(O±(t))

)
by the L2

(
(0,T),Hs−1(O±(t))

)
norm of ∂tf (and of

course depending also on v0). We then proceed by induction to conclude the proof of
Lemma 6.1. �

6.2.2. The auxiliary system. Let f , g, h be as in Proposition 6.2. Let V ∈ H∞(O±(t)).
We define Π [V] ∈ (R⊕ H∞)(O±(t)), the solution to

∆Π [V] = div f − 2t∇v0 : ∇V, for x in O±(t),
[∂nΠ [V]] = [f · n] − (β + tD)g− t[V · (∇v0+t∇v0) · n] + C[V](t) for x in ∂O(t),
[Π [V]] = h for x in ∂O(t),
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where the constant C[V](t) is chosen in order to satisfy the condition of compatibility
between the two first equations. Such a Π [V] is unique up to a additive constant.

Moreover the operator which maps V to Π [V] is a pseudo-differential linear operator
of order 0 in V, which satisfies the transmission property, so it preserves piecewise
smoothness at any order (we recall that in this section the interface is assumed to be
smooth, so we only need here to refer the reader to classical works, for instance [107]).

In particular there exists C > 0 (depending only on the Euler solution, f and g) such
that for any V ∈ H∞(O±), for any s> 0,

‖∇Π [V]‖Hs(O±(t)) 6 C
(‖V‖Hs(O±(t)) + 1

)
.

Then proceeding as in the previous subsection, we obtain that there exists V ∈
H∞(O±) satisfying

βV + t(D + V · ∇v0)+∇Π(V)= f , for x in O±(t). (226)

6.2.3. Proof of Proposition 6.2. Equations (217) and (220) are then satisfied with
P=Π(V). It remains to prove that equations (218) and (219) are satisfied as well.

First, taking the divergence of (226) we obtain that (β + tD)div V = 0, so div V = 0, by
using the uniqueness part of Lemma 6.1.

Now we use (226) to estimate the jump of V · n across ∂O±(t). Using that n satisfies
equation (11) we get

(β + tD)([V · n] − g)=−tC[V](t).
Thanks to the uniqueness part of Lemma 6.1 we infer that, for each time t, [V · n] − g
does not depend on x ∈ ∂O±(t). To prove that (219) is satisfied it is therefore
sufficient to observe that

∫
∂O±(t)([V · n] − g)dσt vanishes, because of Stokes’s theorem

and of the assumption that g satisfies the compatibility condition (221). The proof of
Proposition 6.2 is then achieved.

6.3. Determination of the tangential component of the layer part Ṽj

The tangential part of V j is in general discontinuous at {ϕ0 = 0}. This jump discontinuity
will have to be compensated by the layer part Ṽ j, that we now look for.

Lemma 6.3. There exists a couple (Ṽ j, P̃j+1) in A∞ satisfying (P j
I) and (P j

III), and the
condition (209).

Proof. We have already determined above the normal component Ṽ j · n of the velocity
profile Ṽ j in order to verify (P j

I) and the condition (209). The equation for F̃j
a reads(

L− j− 1
2

)
Ṽ j = ∂XP̃j+1 · n+ f̃ j. (227)

This problem reduces to a problem for the tangential part Ṽ j
tan. In effect the pressure

P̃j+1 can be determined as a function of Ṽ j:

|n|2∂XP̃j+1 =
(

L− j− 1
2

)
(Ṽ j · n)+ 2tṼ j · ∇xv0 · n− f̃ j · n. (228)
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Here we have taken the scalar product of equation (227) with n and use the equation for
n, that is equation (11). Then plugging (228) into equation (227) and using again the
equation for n leads to (

L− j− 1
2

)
(Ṽ j

tan)= f j
tan + tÃṼ j (229)

where ÃṼ j denotes the local zero-order operator

ÃṼ j := 2(Ṽ j · ∇xv0 · n)n+ 1
a
(Ṽ j · n)

(
1
a
(n · ∇xv0 · n)n−t(∇xv0 · n)

)
. (230)

Thanks to the analysis of § 5.2 there exists Ṽ j
tan in A∞ satisfying equations (229)

on each side ±X > 0 of the interface, with the transmission conditions (206), (207).
Moreover one deduces from (228) a corresponding profile layer profile P̃j+1 in A∞. �

7. Some remarks

7.1. On the smoothing of the level function

We may be tempted to take into account the viscous smoothing of the level function ϕ0,
that is instead of the solution ϕ0 of

Dv0 := ∂tϕ
0 + v0 · ∇xϕ

0 = 0.

to consider the solution ϕν of the ‘viscous eikonal equation’

∂tϕ
ν + vν · ∇xϕ

ν = ν∆xϕ
ν, (231)

with, again, the initial data ϕν |t=0 = ϕ0. Actually, reading again the formulas (130),
(131), (132) we notice that these terms are the ones in the prefactor of 1√

νt
∂XU when one

applies the transport–diffusion operator to a function of the form U(t, x, ϕ
0(t,x)√
νt
).

In that case, proceeding as previously we have that ϕν admits an expansion of the
form

ϕν(t, x)∼ ϕνa (t, x) := ϕ0(t, x)+ νtΦ
(

t, x,
ϕ0(t, x)√

νt

)
(232)

where the profile Φ(t, x,X) is defined as Φ(t, x,X) :=Φ(t, x)+ Φ̃(t, x,X), where the Φ are
the solutions of

(1+ tD)Φ=∆xϕ
0 (233)

and Φ̃ is the solution of the equations(
E − 1

2
− tD

)
Φ̃= 0 (234)

with the following transmission conditions across X = 0:

[Φ̃] = −(Φ+ −Φ−), and [∂XΦ̃] = 0, (235)
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where Φ± are suitable extensions of Φ. Let us show that ∆xϕ
ν
a does not have a jump

discontinuity. We have, at least in a neighborhood of {ϕ0}, the following identity:

∆xϕ
ν
a =∆xϕ

0 + a∂2
XΦ̃+√νt(∆xϕ

0 · ∂XΦ̃+ 2n · ∇x∂XΦ̃)+ νt∆xΦ. (236)

In the expression above the profiles are evaluated in X = ϕ0(t,x)√
νt

. Using equation (234) we
have

[a∂2
XΦ̃] = [(1+ tD)Φ̃]. (237)

Since D := ∂t + v0 · ∇x is tangent to the hypersurface {ϕ0(t, x) = 0} we infer from (235)
that

[a∂2
XΦ̃] = −[(1+ tD)Φ ]. (238)

Using equation (233) we get [a∂2
XΦ̃] = −[∆xϕ

0], so

[∆xϕ
ν
a ] =
√
νt[(∆xϕ

0.∂XΦ̃+ 2n · ∇x∂XΦ̃)] + νt[∆xΦ]. (239)

Besides, differentiating with respect to x the transmission conditions (235) we get
[∆xϕ

ν
a ] = 0.

One can see the link between the two points of view through a Taylor expansion: for
any smooth profile U there exists a smooth profile U[ such that

U

(
t, x,

ϕνa (t, x)√
νt

)
= U

(
t, x,

ϕ0(t, x)√
νt

)
+√νtU[

(
t, x,

ϕ0(t, x)√
νt

)
. (240)

In effect it is sufficient to define U[ by U[(t, x,X) := U†(t, x,X,Φ(t, x,X)) where
U†(t, x,X, h) := h−1

(
U[(t, x,X + h)− U[(t, x,X)

)
.

We believe that the point of view of the phase smoothing adopted in this section
could be interesting with a view to future extensions to singular vortex patches. Let us
say for instance that ∇xϕ0 has a jump discontinuity on the hypersurface ψ0. Then the
corresponding solutions ϕν given by (231) admit an expansion of the form

ϕν(t, x)∼ ϕ0(t, x)+√νtϕ1
(

t, x,
ψν(t, x)√

νt

)
(241)

where ψν also solve the eikonal equation

∂tψ
ν + v0 · ∇xψ

ν = ν∆xψ
ν, ψν |t=0 = ψ0. (242)

Let us assume that ψ0 is smooth, so ψν is well-approximated by the solution ψ0 of the
inviscid eikonal equation

∂tψ
0 + v0 · ∇xψ

0 = 0, ψ0|t=0 = ψ0. (243)

As a consequence, the expansion (241) can be simplified to

ϕν(t, x)∼ ϕ0(t, x)+√νtϕ1
(

t, x,
ψ0(t, x)√

νt

)
. (244)
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Now we plug (244) into the expansion

ων(t, x)∼Ω
(

t, x,
ϕν(t, x)√

νt

)
,

to get

ων(t, x)∼ Ω̃
(

t, x,
ϕ0(t, x)√

νt
,
ψ0(t, x)√

νt

)
, (245)

where Ω̃(t, x,X1,X2) :=Ω(t, x,X1 + ϕ1(t, x,X2)).

7.2. Tangent parallel layers do not interact

As mentioned in Remark 1.6, the proof à la Chemin of Theorem 1.1 also succeeds in
covering the case where the initial vorticity ω0 is discontinuous across two hypersurfaces
{ϕ0 = 0} and {ϕ0 = η}, where η > 0: it yields that the corresponding solution of the Euler
equations has—at time t—a vorticity ω0 that is piecewise smooth and discontinuous
across the two hypersurfaces {ϕ0(t, .) = 0} and {ϕ0(t, .) = η}, where ϕ0 is again the
solution of the transport equation (8), (9). For the corresponding solution of the
Navier–Stokes equations two layers of width

√
νt develop around the hypersurfaces

{ϕ0(t, .) = 0} and {ϕ0(t, .) = η}. When t proceeds there comes a time when the layers
overlap. However they do not interact and the NS velocities can be described by the
superposition of the two layers, that is by an expansion of the form

vν(t, x)∼ v0(t, x)+√νt

(
V

(
t, x,

ϕ0(t, x)√
νt

)
+W

(
t, x,

ϕ0(t, x)− η√
νt

))
, (246)

where the profile V is again the solution of equation (19) with the transmission
conditions (25), whereas the extra profile W is the solution of equation (19), with
the transmission conditions

[W] = 0 and [∂XW] = −n ∧ (ω̌0+ − ω̌0−)
a

,

where the brackets denote the jump discontinuity of W(t, x,X) across {X = 0}, that is
[W] := W|X=0+ − W|X=0− , and ω0± are some well-chosen extensions of the restriction of
the Euler vorticity to both sides {±(ϕ0(t, .)− η) > 0}.

The point is that both profiles V and W satisfy the orthogonality condition
V · n=W · n= 0, so the Burgers term

(V +W) · n∂X(V +W)

which should induce a nonlinear coupling of the two layers identically vanishes (as the
self-interaction did in ğ 4.3.2).

In the same vein—using this argument locally—we can infer that there is no nonlinear
interaction between two vortex patches tangent at one point.
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7.3. Well-prepared expansions

Let us also stress that it is also possible to construct some asymptotic expansions of the
form

ων(t, x)=
∑
j>0

√
ν

j
Ω j
(

t, x,
ϕ0(t, x)√

ν

)
+ O(
√
ν
∞
), (247)

vν(t, x)= v0(t, x)+
∑
j>1

√
ν

j
V j
(

t, x,
ϕ0(t, x)√

ν

)
+ O(
√
ν
∞
), (248)

pν(t, x)= p0(t, x)+
∑
j>2

√
ν

j
Pj
(

t, x,
ϕ0(t, x)√

ν

)
+ O(
√
ν
∞
), (249)

for both the Euler and the NS equations. Let us see how the construction is modified, at
least for the first velocity profile.

For the Euler equation one gets for V1 the profile equation

(D+ A)V1 = 0, (250)

which is a transport equation along the flow of v0 with an extra term, local, of order 0.
Notably this equation involves X only as a parameter.

For the NS equations one get the profile equation

(D+ A− a∂2
X)V

1 = 0 (251)

which is hyperbolic in t, x and parabolic in t,X. In particular the hypersurface {t = 0} is
now non-characteristic.

Equations (250), (251) are therefore both well-posed when set for X in the whole
real line. Let us explain an analogy which makes this sound natural. The expansions
(247)–(249) could be seen as viscous and local counterparts of the asymptotic
expansions of weakly nonlinear geometric optics (cf. for instance [100]). In this latter
case the profiles are periodic with respect to the fast variable X and the small
parameter

√
ν refers to short wavelengths. In this setting of geometric optics it is

well-known—at least to experts—that a viscosity of size ν only parabolizes the profile
equations corresponding to an ansatz of the form (247)–(249), without disturbing the
well-posedness (on the contrary actually). We refer the reader to the papers [69, 37, 89]
which illustrate this remark in some nearby settings.

Now if one looks for some solutions vν of the NS equations with a vortex patch vI

as initial data, one has to prescribe zero initial data for the layers, so the condition
of compatibility between the transmission conditions and the initial condition on the
‘corner’ {t = X = 0} are not satisfied even at order zero (cf. Remark 4.1). This destroys
any hope for smoothness with respect to X, which leads to some difficulties in the
analysis of the stability of the expansions. One way to get the compatibility conditions
is to choose the initial condition, restricting ourselves to a kind of well-prepared initial
data, assuming that the initial data is already of the form (247)–(249), that we could
qualify by ‘well-prepared’ initial data. It is possible to prove the existence of such
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well-prepared initial data thanks to some Borel lemma. We refer the reader, for an
insight into the method, to the papers [114, 113]. For such data one observes that the
transmission conditions persist when time proceeds, and the lifetime of such expansions
is that of the solution of the Euler equation (‘the ground state’) which traps the main
part of the nonlinearity of the problem.

7.4. Weaker singularities
Let us mention that both kinds of expansions, (195)–(201) and (247)–(249), can be
useful in the case of conormal singularities weaker than vortex patches. If for instance
the vorticity is continuous through the initial internal boundary {ϕ0(x) = 0} but not the
derivative of the vorticity, then the profiles Ω0, V1 and P2 no longer depend on X. The
layers appear only at the following orders (as for instance in (232)). More generally if for
k ∈ N the vorticity is Ck through the initial internal boundary {ϕ0(x) = 0}, it is possible
to write a complete asymptotic expansion of the vorticity of the form

ων(t, x)= ω0(t, x)+
k−1∑
j=1

(νt)j Ω j(t, x)+
∑
j>k

√
νt

j
Ω j
(

t, x,
ϕ0(t, x)√

νt

)
+ O(
√
νt
∞
).

Such an observation was mentioned in the setting of the approximation of semi-linear
symmetric hyperbolic systems of PDEs by the vanishing viscosity method in [113].

7.5. Stronger singularities
Let us now talk about singularities stronger than vortex patches, for which layers
of larger amplitude are expected. Let us first deal with vortex sheets which involve
a jump discontinuity of the velocity (instead of the vorticity). An initial velocity
that is piecewise smooth with a jump discontinuity across an hypersurface {ϕ0 = 0}
is an extremely unstable configuration for the Euler equations: in general the
jump discontinuities of the velocity do not stay localized on a smooth hypersurface
{ϕ0(t, .) = 0} when time proceeds. A few positive results are available with analytic
initial data: local-in-time persistence was proved by Bardos et al. in [116] (see also an
extension to global persistence for small analytic perturbation by Caflisch and Orellana
in [21] and by Duchon and Robert in [54]), but the papers [22, 93, 121, 66] destroy any
hope of extending out from the unphysical case of analytic data. Still a few physical
phenomena are known to yield some stability, such as compressibility (see [42] for the
two-dimensional supersonic case) and surface tension (see [84, 8]).

If for one of the previous reasons the velocity v0 given by the Euler equation (or an
appropriately modified inviscid system) stays piecewise smooth with discontinuity jumps
only across a hypersurface {ϕ0(t, .)= 0}, we expect the corresponding velocities given by
the Navier–Stokes equation (or a modified viscous system) to be given by an expansion
of the form

vν(t, x)∼ v0(t, x)+ V

(
t, x,

ϕ0(t, x)√
νt

)
,

since the perturbation term V should have to compensate the jumps of the inviscid
solution v0 through the transmission conditions [V] = −[v0] where the first brackets
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denote the jump discontinuity of V across {X = 0} and the second ones the jump of v0

across {ϕ0(t, .) = 0}. In addition we have to prescribe [∂XV] = 0. Actually because of
some nonlinear effects, we have to consider also the next term in the expansion:

vν(t, x)∼ v0(t, x)+ V0
(

t, x,
ϕ0(t, x)√

νt

)
+√νt V1

(
t, x,

ϕ0(t, x)√
νt

)
(252)

to close the profile equations. In fact, plugging this ansatz into the NS equations and
setting—with the notation of the introduction—the equations equal according to the
orders of

√
νt yields

V0 · n= 0,
(

L+ 1
2

)
V0 = t{(V0) · ∇x(v

0 + V0)+ (V1 · n)∂XV0} and

∂XV1 · n=−div xV0. (253)

This equation presents the same difficulty as the Prandtl equations: to get rid of V1

in the second equation we use the third equation, which leads to a loss of a derivative.
It is likely that here again some positive results are possible in the case of analytic
data. Indeed Caflisch and Sammartino in [20] have succeeded in proving well-posedness
for analytic data in the well-prepared counterpart of equations (253) in two dimensions
when the radius of curvature of the curve is much larger than the thickness of the layer.

A more radical solution for avoiding this loss of a derivative is to consider some cases
without variation in the transverse directions. For instance we can consider the following
very special case: we set the phase ϕ0(t, x) ≡ x1 and an inviscid velocity v0 of the form
v0(t, x) ≡ f (x1)e2 where the function f is C∞c on R±. The solutions of the Navier–Stokes
equations are then simply

vν(t, x)= v0(t, x)+ V

(
x1√
νt

)
e2,

where V is the solution of the elliptic equation ∂2
XV + X

2 ∂XV = 0 with the following
transmission conditions on {X = 0}: [V] = −[f ] and [∂XV] = 0, where [f ] denotes the
jump discontinuity of f across {x1 = 0}.

If now we strengthen the amplitude again, looking for expansions of the form

vν(t, x)= (νt)−α V

(
t,

x1√
νt

)
e1,

with α > 0, we get for V the equation

∂2
XV + X

2
∂XV + αV = 0,

which is still coercive in H1(R) for α < 1
4 , but admit 0 for an eigenvalue for α = k

2 ,
with k ∈ N∗. The corresponding eigenfunctions are the Hermite functions Hk := ∂k−1

X H1

with H1 := e−
X2

4 . Hence when strengthening the amplitude of the transition layer (that
is when increasing α) there are still some non-trivial solutions of the profile equation,
but the nature of the profile problem totally changes, from an elliptic problem with
non-homogeneous condition transmissions to an eigenvalue problem.
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In this latter case it is then possible to consider also some viscous perturbations
singular with respect to several dimensions. For instance it is possible to exhibit some
family of solutions of the two-dimensional NS equations with velocities of the form

vν(t, x)= 1√
νt

V

(
t,

x√
νt

)
, (254)

where the profile V(t,X) vanishes when the fast variable X := (X1,X2) goes to infinity.
The corresponding vorticities are of the form

ων(t, x)= 1
νt
Ω

(
t,

x√
νt

)
with Ω := curlXV. (255)

Plugging these ansätze into the NS equations, whose vorticity formulation reads as
follows in two dimensions:

∂tω
ν + vν · ∇ων = ν∆ων, (256)

and setting the terms of order 1
(νt)2 and those of order 1

νt equal, we get the following pair
of equations:

V · ∇XΩ = 0 and
(
∆X + 1

2
X · ∇X + 1

)
Ω = t∂tΩ, (257)

where we define ∆X := ∂2
X1
+ ∂2

X2
and ∇X := (∂X1 , ∂X2). We then see that the first equation

in (257) is satisfied if the vorticity profile Ω is radially symmetric since in this case
the corresponding velocity profile V is orthoradial. The initial hypersurface {t = 0} is
characteristic for the second equation in (257) which therefore has parasite solutions.
Actually, omitting the X dependence we get the ODE Ω = t∂tΩ whose solutions are
Ω = C ln t. However only one, namely Ω ≡ 0, has a correct behavior for t near 0. Now
setting t = 0 in the second equation we get the equation(

∆X + 1
2

X · ∇X + 1
)
Ω = 0

whose solution is given by Ω(X) = Ce−X2
; here C is determined by the conservation

of the vorticity mass. The ansätze (254) describe the viscous smoothing of an initial
Dirac mass at x = 0 and are usually referred to as the Oseen vortex. We refer the
reader here to, for instance, the papers [59, 58], and to the references therein, for a much
more precise study. We do not claim any novelty in this section but we think that it
was thought-provoking to incorporate a little bit of this material here. In particular
we found it interesting to gather the profile equation (257) and the profile equation
(19) corresponding to the vortex patches, and to observe in particular the shift of the
spectrum caused by the difference of amplitude, which made the analysis quite different.
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