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HENSELIAN VALUED FIELDS AND inp-MINIMALITY

ARTEMCHERNIKOV AND PIERRE SIMON

Abstract. Weprove that every ultraproduct of p-adics is inp-minimal (i.e., of burden 1).More generally,
we prove an Ax-Kochen type result on preservation of inp-minimality for Henselian valued fields of
equicharacteristic 0 in the RV language.

§1. Introduction. In his work on the classification of first-order theories [16] She-
lah has introduced a hierarchy of combinatorial properties of families of definable
sets, so-called dividing lines, which includes stable theories, simple theories, NIP,
and NSOP. An important line of research in model theory is to characterize various
algebraic structures depending on their place in this classification hierarchy (this
knowledge can later be used to analyze various algebraic objects definable in such
structures using methods of generalized stability theory). Here we will be concerned
with valued fields and Ax-Kochen-type statements, i.e., statements of the form “a
certain property of the valued field can be determined by looking just at the value
group and the residue field.” For example, a classical theorem of Delon [8] shows
that given a Henselian valued field of equicharacteristic 0, if the residue field is
NIP, then the whole valued field is NIP. More recent results of similar type are [3]
demonstrating preservation of NIP for certain valued fields of positive character-
istic, [17] demonstrating that the field of p-adics is strongly dependent, and [10]
demonstrating that it is in Fact dp-minimal.
A motivating example for this article is to determine the model-theoretic com-
plexity of the theory of an ultraproduct of the fields of p-adics Qp modulo a
nonprincipal ultrafilter on the set of prime numbers. Namely, let K =

∏
Qp/U ,

where U is a nonprincipal ultrafilter on the set of prime numbers. Note that the
residue field k is a pseudo-finite field of characteristic 0 and that the value group Γ
is a Z-group. Besides, both k and Γ are interpretable in K in the pure ring language
(e.g., by a result of Ax [2]). This implies that the theory of K is neither NIP, nor
simple—the two classes of structures extensively studied in model theory. However
it turns out that any ultraproduct of p-adics is NTP2 [5]. The class of NTP2 theories
was introduced by Shelah [16, Chapter III] and generalizes both simple and NIP
theories. We recall the definition.

Definition 1.1. Let T be a complete first-order theory in a language L, and let
M |= T be a monster model. Let κ be a cardinal (finite or infinite).
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HENSELIAN VALUED FIELDS AND inp-MINIMALITY 1511

1. An inp-pattern of depth κ is given by (φi (x, yi ) , āi , ki : i ∈ κ), where φi(x, yi )
are L-formulas with a fixed tuple of free variables x and a varying tuple of
parameter variables yi , āi = (ai,j : j ∈ �) are sequences of tuples of elements
fromM, and ki are natural numbers such that:
(a) For every i ∈ κ, the set {φi (x, ai,j)}j∈� is ki -inconsistent (i.e., no subset
of size ≥ki is consistent).

(b) For every f : κ → �, the set {φi (x, ai,f(i))}i∈κ is consistent.
2. T is NTP2 if there is a (cardinal) bound on the depths of inp-patterns.

Other algebraic examples of NTP2 structures were identified recently, including
bounded pseudo real closed and pseudo p-adically closed fields [15], certain model
complete multivalued fields [13] and certain valued difference fields, e.g., the theory
VFA0 of a nonstandard Frobenius on an algebraically closed valued field of char-
acteristic zero [6]. See also [7] and [12] for some general results about groups and
fields definable in NTP2 structures.
The notion of burden was introduced by Adler [1] based on Shelah’s cardinal
invariant κinp and provides a quantitative refinement of NTP2. In the special case
of simple theories burden corresponds to preweight, and in the case of NIP theories
to dp-rank (e.g., see [5, Section 3] for the details and references).

Definition 1.2. 1. T is strong if there are no inp-patterns of infinite depth.
2. T is of finite burden if there are no inp-patterns of arbitrary large finite depth,
with x a singleton.

3. T is inp-minimal if there is no inp-pattern of depth 2, with x a singleton.

Note that inp-minimality implies finite burden implies strong (the last implication
uses submultiplicativity of burden from [5]). All the examples mentioned above
have been demonstrated to be strong of finite burden, with the exception of VFA0:
it remains open if VFA0 is strong, see [6, Question 5.2]. Some results about strong
groups and fields can be found in [7, Section 4] and [9].
Returning to ultraproducts of p-adics, we have the following more general
result.

Fact 1.3 ([5]). Let K̄ = (K, k,Γ, val, ac) be a Henselian valued field of equichar-
acteristic 0, considered as a three-sorted structure in the Denef-Pas languageLac (i.e.,
there is a sortK for the field itself, as well as sorts k for the residue field and Γ for the
value group, together with the maps v : K → Γ for the valuation and ac : K → k for
an angular component).

1. If k is NTP2, then K̄ is NTP2.
2. If both k and Γ are strong (of finite burden) then K̄ is strong (respectively, of
finite burden).

Anypseudofinite field is supersimple of SU-rank 1, so in particular is inp-minimal.
Any ordered Z-group is dp-minimal, so in particular is inp-minimal. It follows that
any ultraproduct of p-adics is strong, of finite burden. However, Fact 1.3(2) gives
a finite bound on the burden of K̄ in terms of the burdens of k and Γ via a
certain Ramsey number, and is far from optimal in general. It was conjectured in
[5, Problem 7.13] that all ultraproducts of p-adics in the pure ring language are
inp-minimal (note that in the Denef-Pas language, no valued field with an infinite
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1512 ARTEM CHERNIKOVAND PIERRE SIMON

residue field can be inp-minimal as {ac (x) = ai} , {val (x) = vi} with (ai) , (vi)
pairwise different give an inp-pattern of depth 2).
In this article we establish an Ax-Kochen type result for inp-minimality in the RV
language for valued fields, in particular confirming that conjecture.

Theorem 1.4. Let K̄ = (K,RV, rv) be a Henselian valued field of equicharacteris-
tic 0, viewed as a structure in the RV-language (see Section 2). Assume that both the
residue field k and the value group Γ are inp-minimal, and that moreover k×/(k×)p

is finite for all prime p. Then K̄ is inp-minimal.
Corollary 1.5. Any ultraproduct of p-adics is inp-minimal.
Recall the following definition, see e.g., [18].

Definition 1.6. A theory is dp-minimal if for every mutually indiscernible
sequences of tuples (ai : i ∈ �), (a′i : i ∈ �) and a singleton b in the home
sort, one of this sequences must be indiscernible over b.

Remark 1.7. An NIP theory is dp-minimal if and only if it is inp-minimal.

Johnson [14] shows that a dp-minimal not strongly minimal field admits a defin-
able Henselian valuation. It follows that if K is dp-minimal, then K×/(K×)p is
finite for all prime p (a Fact which Johnson states and uses). Combining this with
Delon’s result on preservation of NIP we have the following corollary (which also
appears in Johnson’s thesis [13]).

Corollary 1.8. Under the same assumptions on K̄, if both k andΓ are dp-minimal,
then K̄ is dp-minimal.
There are three steps in the proof of the main theorem, corresponding to the
sections of the article. First, we recall some Facts about the RV setting and show
that the whole valued field is inp-minimal if and only if the RV sort is inp-minimal.
Second, we show that the RV sort eliminates quantifiers down to the residue field
k and the value group Γ. Using this quantifier elimination, in the last section, we
show that the RV sort is inp-minimal if and only if both k and Γ are inp-minimal.
Finally, we discuss some problems and future research directions.

§2. Reduction to RV. We recall some basic Facts about the RV setting, we are
going to use [11] as a reference. Fix a valued fieldK , with value group Γ and residue
fieldk. LetRV be thequotient groupK×/ (1 +m)wherem = {x ∈ K : val (x) > 0}
is themaximal ideal of the valuation ring.We have a short exact sequence 1→ k× →
RV

valrv→ Γ→ 0.
Consider now the two-sorted structure K̄ = (K,RV, rv) in the language LRV+
consisting of:

• the quotient map rv : K → RV,
• on the sort K , the ring structure,
• on the sort RV, the structure ·, 1 of a multiplicative group, a symbol 0, a symbol
∞ and a ternary relation ⊕.
The multiplicative group structure is interpreted as the group structure induced
from K× and 0 · x = x · 0 = 0, ∞ = rv(0). The relation ⊕ is interpreted as
the partially defined addition inherited from K : ⊕(a, b, c) ⇐⇒ ∃x, y, z ∈
K

(
a = rv(x) ∧ b = rv(y) ∧ c = rv(z) ∧ x + y = z).
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Remark 2.1. 1. One can define the set WD(x, y) of pairs of elements for
which the sum is well defined as ∀z, z′(⊕(x, y, z) ∧ ⊕(x, y, z′) =⇒ z = z′).
Given a pair of elements x, y ∈ RV such that WD(x, y) holds, we write x + y
to denote the unique element z ∈ RV satisfying ⊕(x, y, z).

2. We have WD(rv(a), rv(b)) ⇐⇒ val(a + b) = min {val(a), val(b)}, in which
case rv(a + b) = rv(a) + rv(b) (see [11, Proposition 2.4]).

3. The relation valrv(x) ≤ valrv(y) on RV is definable in this language [11,
Proposition 2.8(1)]. Namely, let d ∈ RV be arbitrary with valrv(d ) = 0. Then
valrv(x) > 0 ⇐⇒ dx + 1 = 1, and valrv(x) = 0 ⇐⇒ ¬ valrv(x) > 0 ∧
∃y(x · y = 1 ∧ ¬ valrv(y) > 0). Then valrv(x) = valrv(y) ⇐⇒ ∃u(valrv(u) =
0 ∧ x = u · y) and valrv(x) < valrv(y) ⇐⇒ x 
=∞∧ x + dy = x.

Let K̄ � K̄ be a monster model. We may always assume that K̄ admits a cross-
section map ac : K → k×, so we can view K̄ also as a structure in the language Lac
with ac added to the language.

Fact 2.2 ([11], Proposition 5.1). 1. Let K be a Henselian valued field with
char (k) = 0, and suppose that S ⊆ K is definable. Then there are α1, . . . , αk
and a definable subsetD ⊆ RVk such that

S = {x ∈ K : (rv (x − α1) , . . . , rv (x − αk)) ∈ D} .
2. The RV sort is fully stably embedded (i.e., the structure on RV induced from K̄ ,
with parameters, is precisely the one described above).

The following two lemmas are easy to verify (see [4], or the proof of [17, Claim
1.17] for the details).

Lemma 2.3. Let (ai)i∈I be an Lac-indiscernible sequence of singletons in K, and
consider the function (i, j) �→ val (aj − ai) for i < j ∈ I . Then one of the following
cases occurs:

1. It is strictly increasing depending only on i (so the sequence is pseudo-
convergent).

2. It is strictly decreasing depending only on j (so the sequence taken in the reverse
direction is pseudo-convergent).

3. It is constant (we’ll refer to such a sequence as a “fan”).

Lemma 2.4. Let (ai)i∈I be an Lac-indiscernible pseudo-convergent sequence from
K. Then for any d ∈ K there is some i∗ ∈ Ī ∪ {+∞,−∞} (where Ī is the Dedekind
closure of I ) such that the following holds (taking a∞ from K such that I � a∞ is
indiscernible).

• For i < i∗: val(a∞ − ai) < val(d − a∞), val(d − ai) = val(a∞ − ai) and
ac(d − ai) = ac(a∞ − ai).

• For i > i∗: val(a∞ − ai) > val(d − a∞), val(d − ai) = val(d − a∞) and
ac(d − ai) = ac(d − a∞).
Remark 2.5. Note also that for any nonzero x, y ∈ K , rv (x) = rv (y) if and
only if val (x − y) > val (y); and for any z ∈ K and x, y ∈ K \ {z}, rv (x − z) =
rv (y − z) if and only if val (x − y) > val (y − z).
In the remainder of this section we will reduce inp-minimality of K̄ to inp-
minimality of the RV sort with the induced structure.
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First we treat a key special case. Assume that there is an inp-pattern consisting
of formulas � (x, yz) = φ (rv (x − y) , z) and �′ (x, yz′) = φ′ (rv (x − y) , z′) and
mutually Lac-indiscernible sequences (ci)i∈Z

, (c′i )i∈Z
with ci = aîbi and c′i = a′îb′i

where φ and φ′ are RV-formulas, bi ∈ RV|z|, b′i ∈ RV|z
′| and ai , a′i ∈ K . Without

loss of generality both {φ (rv (x − ai) , bi)}i∈Z
and {φ′ (rv (x − a′i ) , b′i)}i∈Z

are k-
inconsistent, and let d |= φ (rv (x − a0) , b0)∧φ′ (rv (x − a′0) , b′0). Wemay also add
to the base elements a∞, a−∞, a′∞, a′−∞ continuing our sequences on the left and
on the right.

Claim 2.6. val (d − ai) ≤ val (d − a′0) and val
(
d − a′j

) ≤ val (d − a0) for all i
and j. In particular, val (d − a0) = val (d − a′0) = � for some � ∈ Γ.
Proof. Assume that val (d − ai) > val (d − a′0) for some i . Then rv (d − a′0) =
rv (ai − a′0). So |= φ′ (rv (ai − a′0) , b′0), and by mutual indiscernibility ai |={
φ′

(
rv

(
x − a′j

)
, b′j

)}
j∈�—a contradiction. The other part is by symmetry. �

Claim 2.7. � ≤ val (a0 − a′0).
Proof. As otherwise val (d − a0) = val (d − a′0) = � > val (a0 − a′0), hence
val(a0 − a′0) = val((d − a′0)− (a0 − a′0)) = val (d − a0)—a contradiction. �
We now consider several cases separately.

Case A. val
(
ai − a′j

)
is constant, equal to some � ′ ∈ Γ.

As in this case the two sequences are mutually indiscernible over � ′, we may add
it to the base.
Note that � ≤ � ′ by Claim 2.7. The following subcases cover all the possible
situations, using mutual indiscernibility of the sequences over � ′.
Subcase 1. � < � ′.
Then rv (d − ai) = rv

(
d − a′j

)
= α for all i, j, for some some α ∈ RV with

valrv (α) = �. Note furthermore that for any α∗ ∈ RV such that valrv (α∗) < � ′ we
can find some d∗ ∈ K such that rv (d∗ − ai) = rv (d∗ − a′i ) = α∗.
But then consider the array

φ̃ (x̃, bi) = φ (x̃, bi) ∧ valrv (x̃) < � ′,
φ̃′ (x̃, b′i) = φ

′ (x̃, b′i ) ∧ valrv (x̃) < � ′,
where x̃ and bi , b′i are ranging over the RV sort and φ̃, φ̃′ are RV-
formulas (we are abusing the notation by writing valrv (x̃) < � ′ as a short-
cut for valrv(x̃) < valrv (a∞ − a′∞)). We have |= φ̃ (α, b0) ∧ φ̃′ (α, b′0) and{
φ̃ (x̃, bi)

}
i∈Z

,
{
φ̃′ (x̃, b′i)

}
i∈Z

are both inconsistent by the previous observation

as the original array was inconsistent. This gives us an inp-pattern in the structure
induced on the RV sort, and so implies that RV is not inp-minimal.

Subcase 2. � = � ′, val (ai − aj) > � and val
(
a′i − a′j

)
> � for all i < j.

It follows by Remark 2.5 that there are α,α′ ∈ RV with valrv (α) = valrv (α′) =
� such that rv (d − ai) = α and rv (d − a′i ) = α′ for all i . Furthermore,
rv

(
ai − a′j

)
= α′ − α =: 	 for all i, j. It follows that our sequences are mutually

indiscernible over 	 and we can add it to the base.
We then consider a new array
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φ̃ (x̃, bi) = φ (x̃, bi) ∧ valrv (x̃) = �,
φ̃′ (x̃, b′i) = φ

′ (x̃ − 	, b′i) ∧ valrv (x̃) = �.
It follows that α |= φ̃ (x̃, b0)∧ φ̃′ (x̃, b′0), so to contradict inp-minimality of RV it is
enough to show that

{
φ̃ (x̃, bi)

}
i∈Z

,
{
φ̃′ (x̃, b′i )

}
i∈Z

are both inconsistent. Letα∗ ∈
RV with valrv (α∗) = � be arbitrary, and take d∗ ∈ K such that rv(d∗ − a0) = α∗.
Using Remark 2.5 again, we then have rv (d∗ − ai) = α∗ and rv (d∗ − a′i ) = α∗+	
for all i . Hence any α∗ realizing a row in the new array gives d∗ realizing a row in
the original array.

Subcase 3. � = � ′, val (ai − aj) > � and val
(
a′i − a′j

)
= � for all i < j.

In this case we still have some α ∈ RV such that rv (d − ai) = α for all i . On the
other hand, it follows that rv (d − a′i ) = rv (d − a∞) + rv (a∞ − a′i ).
We then consider a new array given by

φ̃ (x̃, bi) = φ (x̃, bi) ∧ valrv (x̃) = �,
φ̃′

(
x̃, b̃′i

)
= φ′ (x̃ + rv (a∞ − a′i ) , b′i ) ∧ valrv (x̃) = � ∧WD(x̃, rv (a∞ − a′i )) ,

so b̃′i = rv (a∞ − a′i )̂b′i . Note that (bi)i∈Z
and

(
b̃′i
)
i∈Z

are mutually indiscernible

sequences in RV. It follows that α |= φ̃ (x̃, b0) ∧ φ̃′
(
x̃, b̃′0

)
, hence to contradict

inp-minimality ofRV it is enough to show that both
{
φ̃ (x̃, bi)

}
i∈Z

,
{
φ̃′

(
x̃, b̃′i

)}
i∈Z

are inconsistent. Let α∗ ∈ RV be arbitrary such that valrv (α∗) = � and
WD(α∗, rv(a∞ − a′i )) for all i . Let d∗ ∈ K be such that rv(d∗ − a∞) = α∗.
Then rv (d∗ − ai) = α∗ and rv (d∗ − a′i ) = α∗+rv (a∞ − a′i ) for all i . This implies
that for any α∗ realizing a row in the new array, the corresponding d∗ realizes the
same row in the original array.

Subcase 4. � = � ′, val (ai − aj) = val
(
a′i − a′j

)
= � for all i < j.

Then rv (d − ai) = rv (d − a∞)+ rv (a∞ − ai) and rv (d − a′i ) = rv (d − a∞)+
rv (a∞ − a′i ) (as val (d − a′i ) = val (d − ai) = val (d − a∞) = val (a∞ − a′i ),
because the first three are equal to � and the last one to � ′).
We consider a new array given by

φ̃
(
x̃, b̃i

)
= φ (x̃ + rv (a∞ − ai) , bi) ∧ valrv (x̃) = � ∧WD(x̃, rv (a∞ − ai)) ,

φ̃′
(
x̃, b̃′i

)
= φ′ (x̃ + rv (a∞ − a′i ) , b′i ) ∧ valrv (x̃) = � ∧WD(x̃, rv (a∞ − a′i )) ,

so b̃i = rv (a∞ − ai)̂bi and b̃′i = rv (a∞ − a′i )̂b′i . Note that (b̃i)
i∈Z

and
(
b̃′i
)
i∈Z

are mutually indiscernible sequences in RV. It follows that α |= φ̃
(
x̃, b̃0

)
∧

φ̃′
(
x̃, b̃′0

)
, so to contradict inp-minimality of RV it is enough to show that

both
{
φ̃
(
x̃, b̃i

)}
i∈Z

,
{
φ̃′

(
x̃, b̃′i

)}
i∈Z

are inconsistent. Let α∗ ∈ RV be arbi-
trary such that valrv (α∗) = �. Let d∗ be such that rv(d∗ − a∞) = α∗. Then
rv (d∗ − ai) = α∗ + rv (a∞ − ai) and rv (d∗ − a′i ) = α∗ + rv (a∞ − a′i ) for all i ,

https://doi.org/10.1017/jsl.2019.56 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.56


1516 ARTEM CHERNIKOVAND PIERRE SIMON

assuming these sums are well defined (see Remark 2.1). But this implies that for any
α∗ realizing a row in the new array (hence all the sums above corresponding to this
row are well defined by the choice of φ̃, φ̃′), the corresponding d∗ realizes the same
row in the original array.

Subcase 5. � = � ′, val (ai − ai) = � and val
(
a′i − a′j

)
> � for all i < j.

Follows from Subcase 3 by symmetry.

Case B. Not Case A.

Claim 2.8. At least one of the sequences (ai)i∈Z
, (a′i )i∈Z

is not a fan.

Proof. Assume that both are, say val (ai − aj) = α and val
(
a′i − a′j

)
= α′ for

all i < j. It follows by mutual indiscernibility that val
(
ai − a′j

) ≤ min {α,α′}
for all i, j. But then val

(
ai − a′j

)
= val (a0 − a′0) for all i, j, thus putting us in

Case A. �
So we may assume that (ai)i∈Z

is a pseudo-convergent sequence (by Lemma 2.3,
possibly exchanging (ai) with (a′i ) and reverting the ordering of the sequence).
Subcase 1. Some (equivalently, every) a′i is a pseudo-limit of (ai)i∈Z

.

Then rv (d − a′i ) = rv (d − a∞) for all i (by Claim 2.7).
We define φ̃′ (x̃, b′i) = φ

′ (x̃, b′i ) ∧ valrv (x̃) < val (a∞ − a′∞).
By Lemma 2.4 it follows that there is some i∗ ∈ {−∞} ∪ Z ∪ {∞} such that
rv (d − ai) = rv (d − a∞) for i > i∗ and rv (d − ai) = rv (a∞ − ai) for i < i∗.
Again by Claim 2.7, i∗ ≤ 0. Let’s restrict (ai)i∈Z

to (ai)i∈� .
If val (d − a∞) < val (a∞ − a0) then rv (d − ai) = rv (d − a∞) for all i . If
val (d − a∞) = val (a∞ − a0) then rv (d − ai) = rv (d − a∞) for all i > 0 and
rv (d − a0) = rv (d − a∞) + rv (a∞ − a0). We thus define

φ̃
(
x̃, b̃i

)
= (val (ai − a∞) > valrv (x̃) ∧ φ (x̃, bi))∨(

val (ai − a∞) = valrv (x̃) ∧WD(x̃, rv (a∞ − ai)) ∧ φ (x̃ + rv (a∞ − ai) , bi))

with b̃i = biˆrv (ai − a∞). Then
(
b̃i

)
, (b′i) are mutually indiscernible sequences

in RV and rv (d − a∞) |= φ̃
(
x̃, b̃0

)
∧ φ̃′ (x̃, b′0). By inp-minimality of RV we

have that either there is some α∗ |=
{
φ̃′ (x̃, b′i )

}
i∈�
, in which case we can find

d∗ with rv (d∗ − a∞) = α∗ and thus d∗ |= {φ′ (rv (x − a′i ) , b′i )}i∈� , or that
α∗ |=

{
φ̃
(
x̃, b̃i

)}
i∈�
. Then it follows from the definition of φ̃ that there is d∗

satisfying rv (d∗ − a∞) = α∗ and such that that d∗ |= {φ (rv (x − ai) , bi)}i∈�—a
contradiction.

Subcase 2. Not Subcase 1.

Then we have the following observations.

Claim 2.9. For any i, j ∈ Z we have val(a∞ − ai) > val(a′j − ai).
Proof. Since a′j is not a pseudo-limit of the sequence (ai) (as we are not in
Subcase 1), we must have val(a′j − ai1 ) < val(ai2 − ai1 ) for some i2 > i1 ∈ Z. Then
the claim follows by mutual indiscernibility. �
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Claim 2.10. The sequence (a′i ) must be pseudo-convergent.
Proof. If (a′i ) was a fan, in view of Claim 2.9 we would have val(ai − a′j)
constant—a contradiction sincewe are not inCaseA.Hence it is pseudo-convergent,
after possibly reversing the order, by Lemma 2.3. �
These two claims imply that the only possibility is that (a′i ) is pseudo-convergent
and that any ai is a pseudo-limit of it. But then reversing the roles of the two
sequences we are back to Subcase 1, concluding the analysis of the special case.
Now we reduce the case of a general inp-pattern to the special case treated
above. Assume that there is an inp-pattern of depth 2. By Ramsey and compact-
ness we may assume that the rows are mutually indiscernible in the Lac-language.
Though in Fact 2.2 the formula defining D may depend on the formula defining
S, by indiscernibility, Ramsey and compactness we may assume that the formu-
las in our inp-pattern are in Fact of the form φ (rv (x − y1) , . . . , rv (x − yn) , z)
and φ′ (rv (x − y1) , . . . , rv (x − yn) , z′), for some n ∈ �, where φ and φ′ are
RV-formulas. Let d realize the first column of the inp-pattern.

Case 1. val (d − a0,0) < val (a0,n − a0,0). Then rv (d − a0,0) = rv (d − a0,n) and
we define

φ̃
(
x, ai b̃i

)
= φ (rv (x − ai,0) , . . . , rv (x − ai,n−1) , rv (x − ai,0) , bi)

∧ val (x − ai,0) < val (ai,n − ai,0)
with b̃i = biˆrv (ai,n − ai,0).
Case 2. val (d − a0,0) > val (a0,n − a0,0). Then rv (d − a0,n) = rv (a0,n − a0,0) and
we define

φ̃
(
x, ai b̃i

)
= φ (rv (x − ai,0) , . . . , rv (x − ai,n−1) , rv (ai,n − ai,0) , bi)

∧ val (x − ai,0) > val (ai,n − ai,0)

with b̃i = biˆrv (ai,n − ai,0).
Case 3. v (d − a0,n) < v (a0,n − a0,0) and Case 4. v (d − a0,n) > v (a0,n − a0,0)
are symmetric to Cases 1 and 2 respectively.

Case 5. v (d − a0,0) = v (d − a0,n) = v (a0,n − a0,0). Then rv (d − a0,0) =
rv (d − a0,n) + rv (a0,n − a0,0). We define φ̃

(
x, ai b̃i

)
to be the formula

φ (rv (x − ai,n) + rv (ai,n − ai,0) , . . . , rv (x − ai,n−1) , rv (x − ai,n) , bi)
∧ v (x − ai,n) = v (ai,n − ai,0) ∧WD(rv (x − ai,n) , rv (ai,n − ai,0)) ,

with b̃i = biˆrv (ai,n − ai,0).
In any of the cases, we still have that

(
b̃i

)
i∈Z

, (b′i )i∈Z
are mutually indiscernible,

that d |= φ̃
(
x, a0b̃0

)
∧φ′ (x, a′0b′0) and that

{
φ̃
(
x, ai b̃i

)}
i∈Z

is inconsistent. Thus

we get a new inp-pattern replacing {φ (x, aibi)} by
{
φ̃
(
x, ai b̃i

)}
, with φ̃ involving

one less term of the form rv (x − yi). Repeating the same operation n times for φ,
and then for φ′, we reduce the situation to the special case of formulas considered
before.
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§3. Relative quantifier elimination for RV. Now it will be more convenient to
consider a valued field K in a slightly weaker language LRV. Namely, we associate
with it a three-sorted structure K̄ = (K,RV,Γ, valrv) such that on RV we have the
multiplicative group structure ·, 1, a constant 0, a predicate for the residue field
k ⊆ RV along with addition +̃ on k, and a map valrv : RV→ Γ.
The partial addition relation ⊕ on RV is definable in LRV (using [11, Proposition
2.7]) as follows:

⊕(x, y, z) ⇐⇒ (
valrv(x) < valrv(y) ∧ z = x) ∨

(
valrv(y) < valrv(x) ∧ z = y)∨(

valrv(x) = valrv(y) ∧ �(x, y, z)) ,
where

�(x, y, z) =
((
x

y
+̃1 = 0 ∧ valrv(z) > valrv(x)

)
∨
((
x

y
+̃1

)
y = z ∧ z 
= 0

))
.

The conclusion is that in particular if (RV,Γ, valrv) is inp-minimal as an LRV-
structure, then (RV, ·,⊕) is inp-minimal as an LRV+-structure. In the next section
we are going to demonstrate the former under the assumptions of themain theorem,
but in order to do that we prove a relative quantifier elimination result for (a certain
expansion of) the LRV language.
Assumptions

• G is an abelian group such that G/nG is finite for all n < �.
• K ⊆ G is a subgroup, with quotient H = G/K . Let 
 : G → H denote the
projection map.

• M is the two-sorted structure with sortsG andH , and the following language.
– On G : we have the group structure +,−, 0, a predicate K (x) for the sub-
groupK , predicates (Pn (x) : n < �) interpreted as Pn (x)↔ ∃y ny = x,
and constants naming a countable subgroupG0 containing representatives
of each class of G/nG , for each n < � (such that moreover all classes of
elements from K are represented by elements from G0 ∩K).
– On H : we have some language LH (containing the induced group
structure) andwe assume that the structure (H,LH ) eliminates quantifiers.
– OnK : we have some languageLK such that (K,LK) eliminates quantifiers
and contains the language induced from G (via the group structure and
predicates Pn).
– We have the projection group homomorphism 
 : G → H .

• Moreover, we assume that the language contains no other function symbols
apart from 
 and the group structures on G andH .

• Finally, H is torsion-free.
Proposition 3.1. M has quantifier elimination.
Proof. We prove it by back-and-forth. So assume thatM is ℵ1-saturated and we
have two substructuresA and B fromM and a partial isomorphism f : A→ B. So
A,B ⊇ G0 contain elements from both G and H , both are closed under the group
operations, inverse and 
.
Let α ∈ M be arbitrary, and we want to extend f to be defined on A1 = A (α),
the substructure generated by αA. We assume that α /∈ A.
Step 1. If α ∈ H , then we can extend f.
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As f|A∩H is LH -elementary by quantifier elimination in (H,LH ), there is 	 ∈ H
and a partial LH -automorphism g extending f|A∩H and sending A (α) ∩ H to
B(	) ∩ H . Then we extend f to F defined on A (α) by taking F = f ∪ g (note
that, as there are no functions fromH to G in the language, A (α) ∩ G = A ∩G).
So by iterating Step 1 we may assume that α ∈ G and that 
 (a + nα) ∈ A for all
a ∈ A and n ∈ Z.

Step 2. Assume that α ∈ K . Then we can extend f.
As f|A∩K is LK -elementary by quantifier elimination, we can find 	 ∈ K and a

partialLK -automorphism g extending it and sendingA (α)∩K toB (	)∩K . Then
we define F on A (α) by setting F (a + nα) = f (a) + g (nα) = f (a) + ng (α) for
all a ∈ A, n ∈ Z (note that nα ∈ A (α) ∩ K for all n ∈ Z by the assumption) and
F acts like f on A(α) ∩H = A ∩H .
• F is well defined: Assume that a + nα = a′+ n′α, so A � a − a′ = (n′ − n)α,
and thus f (a) − f (a′) = f (a − a′) = f ((n′ − n)α) = . . . as (n′ − n)α ∈
K ∩ A and g|A∩K = f|A∩K . . . = g ((n′ − n)α) = ng (α) − n′g (α). Then we
have F (a + nα)− F (a′ + n′α) = f (a) + g (nα)− f (a′)− g (n′α) = 0.

• F extends f: immediate from the definition.
• Note thatF |A(α)∩K = g, as given a+nα ∈ A (α)∩K it follows that a ∈ A∩K ,
and as f|A∩K = g|A∩K we have F (a + nα) = f (a) + g (nα) = g (a) +
g (nα) = g (a + nα).

• F |G is a group homomorphism:
F
(
a + nα + a′ + n′α

)
= F

((
a + a′

)
+

(
n + n′

)
α
)
= f

(
a + a′

)
+ g

((
n + n′

)
α
)

= f (a) + f
(
a′
)
+ g (nα) + g

(
n′α

)
= F (a + nα) + F

(
a′ + n′α

)
.

• F is onto B(	): every element of B (	) is of the form b + n	 , so
F
(
f−1 (b) + nα

)
= b + n	.

• F preserves 
: On one hand 
 (F (a + nα)) = 
 (f (a) + ng (α)) =

 (f (a)) + n
 (g (α)) = . . . as g (α) ∈ K . . . = 
 (f (a)) + 0 = f (
 (a)) =
F (
 (a)) (recall that 
 (a) ∈ A). On the other hand we have F (
 (a + nα)) =
F (
 (a) + n
 (α)) = F (
 (a) + 0) = F (
 (a)).

• In particular, F preserves K (x) = {x ∈ G : 
 (x) = 0}.
• F preserves Pk : Pk (F (a + nα)) ⇔ Pk (f (a) + ng (α)) ⇔ Pk (a + ng (α))
(as f (a) = a mod kG) ⇔ Pk (a + nα) (as g (α) = α mod kG because
all representatives of classes of α ∈ K are in G0 ∩ K ⊆ A ∩ K , Pk ∩ K is
LK -definable and g|A(α)∩K is LK -elementary).

• F preserves every φ(x1, . . . , xk) ∈ LK : As F |A(α)∩K = g and g is an LK -
elementary map.

• F preserves every � ∈ LH : As 
 (a + nα) = 
 (a) + n
 (α) ∈ A ∩ H (as

 (α) ∈ A by the assumption), and F |A∩H = f|A∩H is LH -elementary.

So F is a partial isomorphism as wanted.
By iterating Step 2 we may assume that a + nα ∈ K ⇒ a + nα ∈ A for all a ∈ A
and n ∈ �.
Step 3. Assume thatmα ∈ A for some m ≥ 1. Then we can extend f.
Let m be minimal with this property.
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Claim 3.2. There is 	 ∈ G satisfying m	 = f(mα) and 	 = α mod kG for all
k ∈ �.
Proof. By �-saturation it suffices to shows this one k at a time. By assumption
there is some g ∈ G0 such that Pk (α − g), then

Pk (α − g)⇒ Pmk (mα −mg)⇒ Pmk (f (mα)−mg)
(as mα,mg ∈ A, f (mg) = mf (g) = mg and f preserves Pl for all l < �) ⇒
∃� ∈ G such that mk� = f (mα) −mg. Let 	 = k� + g. Then m	 = f (mα) and
	 = g = α mod kG , and the claim is proved. �
We define F on A (α) ∩ G by setting F (a + nα) = f (a) + n	 and F |A(α)∩H =
f|A(α)∩H as A (α) ∩H = A ∩H .
• F is well defined: If a + nα = a′ + n′α with a, a′ ∈ A, then (n − n′)α =
a′ − a ∈ A. It follows that m divides (n − n′) by minimality (assume
that n − n′ = km + m1, |m1| < m, then m1α = a′ − a − kmα ∈ A,
contradiction), say (n − n′) = km. Thus f (a′) − f (a) = f (a′ − a) =
f ((n − n′)α) = f (kmα) = kf (mα) = km	 = (n − n′)	 . But then
F (a + nα)− F (a′ + n′α) = f (a) + n	 − f (a′)− n′	 = 0.

• F extends f is obvious from the definition.
• F is a group homomorphism from A (α) to B (	):
F
(
(a + nα) +

(
a′ + n′α

))
= F

((
a + a′

)
+

(
n + n′

)
α
)
= f

(
a + a′

)
+

(
n + n′

)
	

= (f (a) + n	) +
(
f
(
a′
)
+ n′	

)
= F (a + nα) + F

(
a′ + n′α

)
.

• F preserves 
: First observe that 
 (m	) = 
 (f (mα)), so m
 (	) =


 (f (mα))
as mα∈A= f (
 (mα)) = f (m
 (α)) = mf (
 (α)), and as H is

torsion free this implies that 
 (	) = f (
 (α)). But then F (
 (a + nα)) =
f (
 (a + nα)) = f (
 (a) + n
 (α)) = f (
 (a)) + nf (
 (α)) = 
 (f (a)) +
n
 (	) = 
 (f (a) + n	) = 
 (F (a + nα)).

• In particular, F preserves K (x) = {x ∈ G : 
 (x) = 0}.
• F preserves Pk (x): By the choice of 	 we have α = 	 mod kG for all k,
and for any a ∈ A we have f (a) = a mod kG for all k (as G0 ⊆ A and f
preserves Pk), hence Pk (F (a + nα))⇔ Pk (f (a) + n	)⇔ Pk (a + nα).

• F preserves LK -formulas: As a + nα ∈ K ⇒ a + nα ∈ A by the assumption
andF |A∩K = f|A∩K isLK -elementary by elimination of quantifiers in (K,LK ).

• F preserves LH -formulas: As F |A(α)∩H = f|A(α)∩H=A∩H by definition, and f
is LH -elementary.

So we may assume that:

1. A ∩H is a relatively divisible subgroup ofH (iterating Step 1);
2. A ∩G is a relatively divisible subgroup of A(α) ∩ G (iterating Step 3);
3. 
 (a + nα) ∈ A for all a ∈ A, n ∈ Z (iterating Step 1);
4. a + nα /∈ K for all a ∈ A, n ∈ Z \ {0} (as a + nα ∈ K ⇒ a + nα ∈ A by Step
2, so nα ∈ A, so α ∈ A by divisibility of A—contradicting the assumption).

Step 4. General case.

Claim 3.3. There is some 	 ∈ G such that 
(	) = f(
(α)) and α = 	 mod kG
for all k ∈ �.
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Proof. By �-saturation we only need to consider one value of k at a time. Let
g ∈ G0 be such that Pk (g + α) holds, then 
 (g + α) is k-divisible as well. As
g ∈ A ⇒ g + α ∈ A (α) ⇒ 
 (g + α) ∈ A ∩ H and f|A∩H is LH -elementary,
it follows that f (
 (g + α)) is k-divisible as well. Take 	 to be k	 ′ − g where

 (	 ′) = f(
(g+α))

k (recall that H is torsion free). Now we have Pk (g + 	) and

 (	) = k
 (	 ′)− 
 (g) = f (
 (g + α))− 
 (g) = f (
 (g)) +f (
 (α))− 
 (g) =
f (
 (α)) as f (
 (g)) = 
 (f (g)) and f (g) = g, so the claim is proved. �
We define F (a + nα) = f (a) + n	 and F |A(α)∩H=A∩H = f|A∩H .
• F is well defined: If a + nα = a′ + n′α, then (a − a′) + (n − n′)α = 0 ∈ A,
which implies by the assumption that n = n′ and a = a′.

• F is a homomorphism: clear from definition and as f is a homomorphism
on A.

• F preserves 
 (so in particular K):

 (F (a + nα)) = 
 (f (a) + n	) = 
 (f (a)) + n
 (	) = f (
 (a))

+ nf (
 (α)) = f (
 (a) + n
 (α)) = f (
 (a + nα)) = F (
 (a + nα)) .

• F preserves Pk : Pk (F (a + nα)) ⇔ Pk (f (a) + n	) ⇔ Pk (a + n	) (as
f (a) = a mod kG because we have all the representatives in G0) ⇔
Pk (a + nα) (as α = 	 mod kG by the choice of 	).

• F preserves LK -formulas and LH -formulas: as in Step 3. �

Corollary 3.4. H and K are fully stably embedded, i.e., any subset of H (resp.
K) definable with external parameters is already definable with internal parameters in
LH (resp., LK)—this follows directly from the elimination of quantifiers.

§4. Reduction from RV to k and Γ.
Proposition 4.1. Let M = (G,K,H ) be a structure satisfying the assumptions
from the previous section. Assume moreover that:
1. K (viewed as an LK structure) and H (viewed as an LH structure) are both
inp-minimal;

2. for every n, there are only finitely many x ∈ G for which nx = 0 (since H is
torsion-free, such elements are in Fact in K).

ThenM is inp-minimal.
Proof. We are working in a saturated extension of M . Assume that the con-
clusion fails, then we have an inp-pattern φ (x, y) , φ′ (x, y′) , ā = (ai) , ā′ = (a′i )
witnessing this, with ā and ā′mutually indiscernible. In particular they aremutually
indiscernible overG0 ⊆ acl (∅) which contains representatives of each class ofG/nG
and all torsion of G , and rows are k∗-inconsistent. Let b |= φ (x, a0) ∧ φ′ (x, a′0).
It follows from quantifier elimination that φ (x, ai) is equivalent to a disjunction of
conjuncts of the form �(ti,0(x), . . . , ti,l−1(x), αi )∧� (
 (x) , bi)∧� (x, ci)∧
 (x, ei )
where:

• the ti,j are terms with parameters in G , αi ∈ K and � is an LK -formula;
• � is an LH -formula and bi ∈ H ;
• � (x, ci) is of the form

∧
j<k njx + ci,j = 0 ∧

∧
j<k mjx + di,j 
= 0 with ci =

(ci,j)j<kˆ(di,j)j<k from G ;
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• 
 (x, ei) is of the form∧
j<k

Pm′
j

(
n′jx + e

′
i,j

) ∧ ∧
j<k

¬Pm′′
j

(
n′′j x + e

′′
i,j

)

with ei =
(
e′i,j

)
j<k
ˆ
(
e′′i,j

)
j<k
.

Forgetting all but one disjunct satisfied by b, we may assume that φ(x, ai) is equal
to such a conjunction.
Any term ti,j is of the form ni,jx − gi,j and the formula makes sense only when
ni,jx−gi,j ∈ K , that is when 
(x) = 
(gi,j)/ni,j . Choose some hi such that 
(hi) =

(gi,j)/ni,j for some/all j. We can then replace ni,jx−gi,j with n(x−hi)+h′i,j with
h′i,j ∈ K . Adding h′i,j to αi and changing the formula �, we replace � by a formula
� ′(x − hi , α′i ), � ′ ∈ LK .
Recalling thatG/nG is finite for every n < �, 
 (x, ei ) is equivalent to some finite
disjunction of the form

∨
i<N Pki (x − gi) where gi ∈ G0 (so for example to express

¬Pk (nx + e) we have to say that x belongs to one of the finitely many classes
mod kG satisfying this, and to express Pk (nx + e) ∧ Pl (n′x + e′) we have to say
that x belongs to a certain subset of the classes mod klG).
Note that � (x, c0) is infinite as � (x, c0) ∧ φ′ (x, ai) is consistent for every i ∈ �,
while {φ′ (x, ai )}i∈� is k∗-inconsistent. Thus � (x, ci) can only be of the form∧
j<k njx + ci,j 
= 0 (as every equation of the form nx + c = 0 has only finitely
many solutions by assumption (2)).
Thus we may assume that φ(x, ai) = �(x − hi , αi) ∧ � (
 (x) , bi) ∧ � (x, ci) ∧
Pl (x − g) where:
• αi ∈ K and � is an LK -formula,
• � is an LH -formula and bi ∈ Γ,
• � (x, ci) =

(∧
j<k njx + ci,j 
= 0

)
,

• l ∈ �, g ∈ G0.
Similarly, we may assume that φ′(x, a′i ) = �

′(x − h′i , α′i ) ∧ �′ (
 (x) , b′i) ∧
�′ (x, c′i ) ∧ Pl ′ (x − g ′) with the same properties.
Case 1. b ∈ H . Then by full stable embeddedness ofH we can replace our array by
φ̃ (x, ãi) and φ̃′ (x, ã′i ) where φ̃, φ̃

′ ∈ LH and ãi , ã′i ∈ H are such that φ̃ (x, ãi ) ∩
H (x) = φ (x, ai)∩H (x), and similarly for φ̃′. But this contradicts inp-minimality
of (H,LH ).

Case 2. b ∈ K . Similarly, by full stable embeddedness of K we can replace our
array by φ̃ (x, ãi) and φ̃′ (x, ã′i ) where φ̃, φ̃

′ ∈ LK and ãi , ã′i ∈ K are such that
φ̃ (x, ãi) ∩ K (x) = φ (x, ai) ∩ K (x), and similarly for φ̃′. But this contradicts
inp-minimality of (K,LK ).

Case 3. b /∈ K ∪H .
Subcase 3.1. Neither � occurs in φ nor � ′ occurs in φ′ (i.e., φ is equivalent to the
formula obtained from it by omitting �).
Then we have φ(x, ai) = � (
 (x) , bi) ∧ � (x, ci) ∧ Pl (x − g) and φ′(x, a′i ) =
�′ (
 (x) , b′i ) ∧ �′ (x, c′i ) ∧ Pl ′ (x − g ′).
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Consider �̃(x′, bi) := �(x′, bi)∧ “x′ − 
 (g) is l -divisible” and �̃′(x′, b′i ) :=
�(x′, b′i)∧ “x′ − 
 (g ′) is l ′-divisible”—this is an array in the structure induced on
H . Note that 
 (b) |= �̃ (x′, b0) ∧ �̃′ (x′, b′0).
Subcase 3.1(a). K is infinite.
As H is inp-minimal, it follows without loss of generality that the set

{�̃ (x′, bi) : i < �}
has a solution h in H .
Say h − 
 (g) = l�. Take 	 ∈ G such that 
 (	) = �. As K is infinite, there is
an infinite sequence (	i)i∈� in K such that all the differences 	i − 	j are pairwise
different. Let e′i = 	 + 	i . Then we still have that e

′
i − e′j are all pairwise different,

and that 
 (e′i ) = 
 (	) + 
 (	i) = �. Note that as by assumption there are only
finitely many l -torsion elements in G , we may assume that e′i − e′j is not l -torsion,
for any i 
= j.
Finally, define ei = le′i + g. We have:
• all ei ’s are pairwise different (as ei = ej ⇒

(
e′i − e′j

)
is l -torsion, contradicting

the choice of the elements b′i).
• 
 (ei) = l
 (e′i ) + 
 (g) = l� + 
 (g) = h.
• Pl (ei − g) holds as ei − g = le′i .
As the set

∨
i<k∗+1

(∨
j<k njx + ci,j = 0

)
is finite, then one of the ei ’s realizes the

first k∗ elements of the first row—a contradiction.
Subcase 3.1(b). K is finite.
It follows that all of the fibers of 
 are finite.

Claim 4.2. One of the partial types {�̃(x′, bi) : i ∈ �} or {�̃′(x′, b′i) : i ∈ �}
has infinitely many solutions in H .
Proof. By inp-minimality of H we find some e′0 ∈ H a solution to one of the
rows {�̃(x′, bi) : i ∈ �} or {�̃′(x′, b′i ) : i ∈ �}. By Ramsey, mutual indiscernibility
and compactness we can find some e0 ∈ H which is still a solution to the same row,
and moreover b̄, b̄′ are mutually indiscernible over e0, so we can add it to the base.
Let �̃1 (x′, bi) := �̃ (x′, bi) ∧ x′ 
= e0, and the same for �̃′

1.
As by assumption andmutual indiscernibility� (
 (x) , b0)∧Pl (x − g)∧φ′(x, ai)
is consistent for each i ∈ �, and {φ′ (x, ai)}i∈� is k∗-inconsistent, it follows that
for infinitely many i ∈ �, we can find pairwise different fi |= � (
 (x) , b0) ∧
Pl (x − g) ∧ φ′(x, ai). As all fibers of 
 are finite, this implies that in Fact in H for
infinitely many i ’s we can find pairwise different f′

i |= �̃(x′, b0) ∧ �̃′(x′, b′i ). Thus
�̃1 (x′, b0) ∧ �̃′

1 (x
′, b′i) is consistent for some i , and so �̃1 (x

′, b0) ∧ �̃′
1 (x

′, b′0) is
consistent by mutual indiscernibility over e0. Repeating this argument, by induction
on s ∈ � we can choose es ∈ H such that each es+1 satisfies one of the rows of
the array {�̃s+1(x′, bi) : i ∈ �}, {�̃′

s+1(x
′, b′i ) : i ∈ �}, with �̃s+1(x′, bi) :=

�̃s(x′, bi)∧x′ 
= es and �̃′
s+1(x

′, b′i ) := �̃
′
s(x

′, b′i)∧x′ 
= es . In particular, all es are
pairwise distinct, and by pigeonhole infinitely many of them realize the same row,
so in particular the same row of the original array. �
So let now (ei : i ∈ �) be an infinite list of pairwise different solutions of

{�̃(x′, bi) : i ∈ �} in H . In particular ei − 
(g) = l�i for some �i ∈ H with
(�i : i ∈ �) pairwise different. Let 	i ∈ G be arbitrary such that 
(	i) = �i . As all
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fibers of 
 are finite, we may assume that all of 	i ’s are pairwise different as well.
Finally, let fi := l	i + g. We have:

• (fi : i ∈ �) are pairwise different,
• Pl (fi − g) holds for all i ∈ �, as fi − g = l	i ,
• 
(fi) = l
(	i) + 
(g) = l�i + 
(g) = ei .
As the set

∨
i<k∗+1

(∨
j<k njx + ci,j = 0

)
is finite, then one of the fi ’s realizes at

least k∗ elements of the first row—a contradiction.
Subcase 3.2. � occurs in φ and � ′ occurs in φ′. I.e. φ (respectively, φ′) is not
equivalent to the formula obtained from it by omitting � (respectively, � ′).
Syntactically, this is only possible if b − g0 ∈ K, b − g ′0 ∈ K , hence both 
(b) ∈
dcl(g0) and 
(b) ∈ dcl(g ′0). By mutual indiscernibility of the rows it follows that
ā, ā′ are mutually indiscernible over 
(b) and we can add it to the base.
Then by mutual indiscernibility of ā, ā′ over 
(b), Ramsey, compactness and
applying an automorphism, we can find some f ∈ G such that 
(f) = 
(b) and
ā, ā′ are mutually indiscernible over f. So we can add f to the base as well.
Taking c := b − f we have c ∈ K . Translating by f, we can consider a new
array φ̃ (x, ãi) , φ̃′ (x, ã′i ) where φ̃(x, ai ) = �(x + f − hi , αi ) ∧ � (
 (x + f) , bi) ∧
� (x + f, ci) ∧ Pl (x + f − g), and analogously for φ̃′. Note that the first column
is realized by c ∈ K . By Case 2, we can find some c′ realizing, say, the first row of
the new array. But then taking b′ := c′ + f clearly b′ realizes the first row of the
old array.

Subcase 3.3. � occurs in φ, but � ′ does not occur in φ′ (and the symmetric case by
permuting the rows).
By assumption φ′(x, a′i ) = �

′ (
 (x) , b′i ) ∧ �′ (x, c′i ) ∧ Pl ′ (x − g ′). As in Sub-
case 3.1, it follows that 
(b) ∈ dcl(a0), say 
(b) = f(a0) for some ∅-definable
function f. We have b |= φ′(x, a′0). In particular, |= �′(f(a0), b′0) ∧ “f(a0) −

(g′) is l ′-divisible”. By mutual indiscernibility of ā, ā′ it follows that

|= �′(f(ai), b′j) ∧ “f(ai)− 
(g ′) is l ′-divisible”
for all i, j ∈ �.
We may also assume that all of {f(ai) : i ∈ �} are pairwise different. Otherwise,
if f(ai) = f(aj) for some i < j, by indiscernibility 
(b) = f(a0) = f(a∞), and
so ā, ā′ are mutually indiscernible over 
(b)—and we can conclude as in Subcase
3.2. It follows that the partial type {�′(x′, b′j) ∧ “x′ − 
(g ′) is l ′-divisible”} has
infinitely many solutions inH , witnessed by {f(ai) : i ∈ �}. Now this implies that
the second row of the original array {φ′(x, a′i ) : i ∈ �} is consistent. Namely, if K
is infinite, then we conclude as in Case 3.1(a) using one of the solutions, and if K is
finite we conclude as in Case 3.1(b). �
Proof of Theorem 1.4. Given a valued field K̄ satisfying the assumption of The-
orem 1.4, via the reductions in Sections 2 and 3 it is enough to demonstrate that
(RV, k,Γ) is inp-minimal. For this it is enough to show that the assumptions of
Proposition 4.1 are satisfied for G = RV, K a Morleyzation of k and H a Mor-
leyzation of Γ. BothK andH are inp-minimal asMorleyzation obviously preserves
inp-minimality, H is torsion-free since Γ is an ordered abelian group.
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As Γ is an inp-minimal ordered group, it follows from [18, Lemma 3.2] that Γ/nΓ
is finite for all n ∈ �. Besides, we have that k×/(k×)p is finite for all prime p
by assumption. Therefore also RV /nRV is finite for all n. Finally, k× has finite
n-torsion for all n. �

4.1. Remarks and questions. We do not know if the assumption that k×/(k×)p

is finite for all p is in Fact necessary. It follows from the proof of [7, Corollary 4.6]
that if k is an inp-minimal field, then there can be at most one prime p for which
k×/(k×)p is infinite.

Problem 4.3. Let k be an inp-minimal field. Is it true that k×/(k×)p is finite for
all prime p? Or at least, can we omit this extra assumption from Theorem 1.4?

The answer is positive for a dp-minimal field by the results of Johnson [14] (so
under the assumptions of Theorem 1.4, we have that K̄ is dp-minimal if and only if
both k andΓare dp-minimal), but the proof relies on the construction of a valuation
which doesn’t seem to be available in the general inp-minimal case.
Another natural direction is to generalize Theorem 1.4 from the case of burden 1
to a general burden calculation.

Problem 4.4. Let K̄ = (K,RV, rv) be a Henselian valued field of equichar-
acteristic 0, viewed as a structure in the RV-language. Is it true that bdn(K̄) =
max{bdn(k),bdn(Γ)}?1
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