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This paper is concerned with the existence results for generalized transition waves of
space periodic and time heterogeneous lattice Fisher-KPP equations. By
constructing appropriate subsolutions and supersolutions, we show that there is a
critical wave speed such that a transition wave solution exists as soon as the least
mean of wave speed is above this critical speed. Moreover, the critical speed we
construct is proved to be minimal in some particular cases, such as space-time
periodic or space independent.
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1. Introduction

The current paper is to explore transition wave solutions of the space-time
heterogeneous lattice differential equation

uz(t) = di+1ui+1(t) — (di+1 + dz)uz(t) + diui_l(t) + fi(t’lh‘(t)), (i,t) € Z x R,

(1.1)
where d; is a positive constant and f(t,s) := {fi(¢,s)}icz is of Fisher-KPP type
satisfying f;(¢,0) = 0 and f;(¢,1) = 0 for all (i,t) € Z x R.

Equation (1.1) comes directly from many biological models in patchy environ-
ments [39,40], which describes the growth of population or biological invasion
process. Chen and Guo [10,11] and Zinner et al. [43] established the existence of
travelling waves for (1.1) in homogeneous media, that is,

ﬂi(t) = duH_l(t) — 2duz(t) + dui_l(t) + f(ui(t)), (i,t) € Z x R. (12)
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In this case, an entire solution u(t) = {u;(t) }iez of (1.2) is called a travelling wave
solution (connecting 0 and 1) if w;(¢) € (0,1) for all ¢t € R and i € Z, and there are
a constant ¢ and a function ®(z) such that

ui(t) =@ —ct), (i,t) €EZxR
and

lim ®(z)=1 and lim P(z) =0,
Z——00 z— 400
where ¢ and ®(-) are called the wave speed and wave profile of the travelling wave
solution, respectively. For equation (1.1) in space periodic environments, namely,

Ui(t) = dipruipa (t) — (di + digr)ui(t) + dicaui—1 (6) + fi(ui(t)), (i,t) € Z X Rv)
(1.3

where d; = d;—n and f;(-) = fi_n(:) for all i € Z, N is a positive integer, Guo and
Hamel [16] gave the notion of pulsating waves of (1.3) and proved the existence
of pulsating waves. Here a pulsating wave of (1.3) connecting 0 and 1, which is a
generalization of the notion of travelling wave solutions to space periodic environ-
ments, is an entire solution u(t) = {u;(t)}iez of (1.3) such that u;(¢) € (0,1) for all
t € R and ¢ € Z, and there are a constant ¢ such that

N
Ui <t+C) =wu;_n(t), (i,t)€EZxR

and
u;(t) = lasi— —oo, wu;(t) — 0asi— +oo, locallyinteR.

For more results on travelling wave solutions of lattice differential equations, we
refer to [9,12,13,17,20] and the references therein. In particular, there were many
works focussing on lattice differential equations with delay, see [14,22, 25,41] and
the references therein.

However, the environment may be not homogeneous, even not periodic. For
equation (1.1) in a general heterogeneous environment, the notions of travelling
wave solutions and pulsating waves above are no longer suitable. To investigate
the front propagating dynamics for lattice differential equations in general hetero-
geneous media, Cao and Shen [7,8] gave the following notion of transition waves
for (1.1) recently, which is a discrete version of the notion of transition waves given
by Shen [36] for reaction-diffusion equations in continuous media.

DEFINITION 1.1 Cao and Shen [7,8]. An entire solution u(t) = {u;(t)}iez of (1.1)
is called a transition wave (connecting 0 and 1) if u;(t) € (0,1) for allt € R and
i € Z, and there exists J : R — Z such that

lim w; g (t) =1 and  Hm w4 (t) =0

71— —00 1——+00

uniformly in t € R.
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Under such a notion of transition waves, Cao and Shen [7] established the exis-
tence of transition waves for the following lattice Fisher-KPP equations in time
heterogeneous media

di(t) = ui+1(t) — Zui(t) + ui_l(t) + ui(t)f(t,ui(t)), (i,t) e 7 x R. (14)

Furthermore, Cao and Shen [8] developed a method to test the stability and unique-
ness of the transition waves established in [7]. Clearly, equation (1.4) studied by [7]
does not involve the space heterogeneity of environment. Thus, it is worthwhile to
further explore this topic for (1.1) in general space-time heterogeneous media, and
this constitutes the purpose of this paper.

Here we would like to point out that, in contrast to those done for equation (1.1)
in patch environment, the front propagating dynamics for reaction-diffusion equa-
tions in continuous media has been widely studied, see [1-3,6,15,23,24, 27—
29,32, 33, 38, 42] for the studies of travelling wave solutions and pulsating waves
in homogeneous media and periodic media, respectively. In fact, equation (1.1)
can be regarded as the spatially discrete version of the following reaction-diffusion
equation:

u = (d(x)ua)e + f(t, 2, u). (1.5)

To describe the front propagating dynamics of reaction-diffusion equations in gen-
eral heterogeneous media, the concept of generalized transition waves of (1.5) has
been introduced by Berestycki and Hamel [4, 5]:

DEFINITION 1.2. A positive time-global solution w of (1.5) is called a generalized
transition wave (connecting 0 and 1) if u(t,x) € (0,1) for all (t,z) € R xR and
there exists a function ¢ € L*°(R) such that

t t
lim « (ac —|—/ c(s) ds,t) =1, lirll u (:r —|—/ c(s) ds,t) =0,

uniformly with respect to t € R. The function c is called the speed of the generalized
transition wave u.

From now on, there is a great progress on the study of generalized transition waves of
reaction-diffusion equations in general heterogeneous media, see [18,28-31]. Shen
[36] also gave a definition of generalized transition waves for general time-dependent
equations and there were many important developments on the front propagating
dynamics of reaction-diffusion equations, see [21,34, 35,37, 38|.

As mentioned before, in this paper, we investigate the front propagating dynamics
of (1.1). In this paper, we do not directly use the definition of transition waves
of (1.1) given by Cao and Shen [7,8]. Here we give a more precise definition in a
similar way to definition 1.2, in which the front location function J(t) is defined by
the wave speed function c(t).

DEFINITION 1.3. A positive time-global solution U (t) :

={Ui() }i.yezxr of (1.1)
is called a transition wave (connecting 0 and 1) if U;(t) € (0

,1) for allt € R and
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i € Z, and there exists a function ¢ € L™ (R) satisfying

lim Ui+<f0t (s) ds) (t)=1 and lim Ui+<f0t o(s) ds>(t) =0

71— —00 i——+00

uniformly with respect to t € R. The function c is called the speed of the transition
wave U(t), and denote the integer-valued function J :R — Z, t — <f(f c(s) d5> as

the associated front location function, where the function (-) : R — Z is the integral
function.

It is clear that if the function U(t) is a transition wave of (1.1) according to
definition 1.3, then it must be a transition wave of (1.1) according to definition 1.1.
However, the inverse may not hold. In fact, for a transition wave of (1.1) according
to definition 1.1, the speed function may not be bounded (but the speed function
of equation (1.4) studied by Cao and Shen [7] is bounded). Notice, if {(t) is a
bounded integer-valued function, then J(t) + ¢(¢) is also a front location function.
Thus, the front location function is not unique. On the other hand, it is easy to
check that if .J(t) is another front location function, then J(t) — J(t) is a bounded
integer-valued function. Hence, front location functions are unique up to addition
by bounded integer-valued functions. The front location function J(t) tells the posi-
tion of the transition front U(t) as time ¢ elapses, while the uniform-in-¢ limits show
the bounded interface width, that is,

V0 <e <e, supdiam{i € Z|e; < U;(t) < €2} < o0.
teR
This paper is organized as follows. In § 2, we introduce some important definitions
and state our main results. Section 3 is devoted to investigating the existence of
transition waves of (1.1) with spatially periodic and temporal heterogeneous media.
In § 4, we start with checking if the ¢, in theorem 2.2 coincides with the minimal
speed known to exist in some particular cases.

2. Preliminaries and main results

In this section, we introduce the standing definitions and state the main results of
this paper. Let

X :=1%(7) = {u = {uitiez

sup Ju;| < oo}
€L

equipped with norm || - [|oo, Where [uljoc = sup;cy |u;|. For given u',u® € X, we
write u! < u? if ull < uf for alli € Z, u' < u? if u! < u? but u' # u?, and u! < u?
if u! <wu? for all i € Z. In order to derive the existence result, we first make some
assumptions as follows:

(HO) d; = d;_n > 0 and fi(t,s) = fi_n(t,s) where i € Z, (t,s) € R? and N is a
positive integer.

(H1) f(t,s) e CL(R xR, X) with f(t,s) and Osf(t,s) being bounded uni-
formly in (t,s) € R?%; and u(t) := {pi(t) }iez = {0sfi(t,0)}icz is uniformly Holder
continuous in ¢ € R and satisfies 0 < inf(; )ezxr pi(t) < sup( pyezxr 1i(t) < +oo.
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(H2) For any (i,t) € Z x R, fi(¢,0) = fi(t,1) = 0; fi(t,s) > 0 for all (i,t) € Z x
R and s € (0,1); for each i € Z and (¢,s) € R x (0, +00), fi(t,s) < pi(t)s; and
3C >0, 6,v € (0,1], V(i,t) € Zx R, 5 € (0,6), fi(t,s) = pi(t)s — Cs't”.

By (H1), for any given u’ € X and t; € R, (1.1) has a unique (global) solu-
tion, denoted by u(t;tg,u’) with wu(te;to,u’) = u°. In the following, we give the
definitions of the least mean (respectively the upper mean) of a function.

DEFINITION 2.1 Nadin and Rossi [29]. The least mean (respectively the upper mean)
over R of a function g € L>°(R) is given by

1 T 1 [T
lg] := lim inf —/ g(s)ds <resp. [¢] := lim supf/ 9(s) ds).
t t

T—+ooteR T T—+00 teR

As shown in proposition 3.1 of [29], the definitions of |g] and [¢] do not change if
one replaces

1 [T 1 [T
TEI:I‘,}OO tlgﬂg A g(s)ds and Tlirfm igﬂg A g(s)ds
with
1 [T 1 T
21;% tHel]}fQ T/, g(s)ds and %I;f;) ilelﬂg T /t g(s)ds

respectively in the above expressions. This shows that|g| and [g] are well defined
for any g € L>°(R). In the following, we state our main results. The next theorem
consists of a sufficient condition for the existence of generalized transition waves,
expressed in terms of their speeds.

THEOREM 2.2. Assume that (HO)—(H2) hold. Then there exists c. € R such that for
every vy > ¢4, (1.1) has a transition wave with a speed ¢ € L (R) such that |c| = 7.

REMARK 2.3. If N =1, then (1.1) can be represented in the form
’U,,L(t) = uiJrl(t) — 2Ul(t) + ’U,Z',l(t) + f(t, Ui(t))7 (Z,t) e Z x R. (21)

When the reaction term f(t,s) of (2.1) is replaced by sf(t, s), that is, equation (2.1)
can be written as (1.4), the critical speed c. has been characterized by Cao and Shen
[7], in which they need an extra assumption on f:

of
s
and the condition inf; yyezxr pi(t) > 0 (= infier f(t,0) > 0) given in (H1), which

will be needed in lemma 3.7 below, could be relaxed by

1
lim inf
t—s—oot — 8

(t,s) <0 fors>0,teR

/tf(T,O)dT > 0.

In this paper, we adopt a different approach to obtain the existence of transition
waves of (1.1), which contain the result of Cao and Shen in [7] [see (E3) below].
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A natural question is to determine whether the ¢, in theorem 2.2 is the minimal
speed or not; that is, do transition waves with speed ¢ such that |¢] < ¢, exist?
In § 4, we turn out that the c, coincides with the minimal speed of transition
waves for some particular cases, such as the coeflicients are space-time periodic or
space-independent. The answer in the general media is only partial.

3. Existence of transition waves

Throughout this section, we assume that (H0)—(H2) hold. To show the existence
of transition waves, we present some important lemmas. The first lemma is to
establish the comparison principle, in which the following assumption on integer-
valued functions is needed.

(A) Let J(t) be an integer-valued function on ¢ € [tg, T). For any ¢’ € [to,T), J(*)
satisfies either J(t) = J(t') for all t € (¢/,T), or there exists t; € (t',T) such
that |J(t1) — J(to)| = 1 and either J(t) = J(¢') for t € (¢',t1) or J(t) = J(t1)
for t € (t/,1).

LEMMA 3.1. (1) Let either J1(t) be an integer-valued functions on t € [to,T) sat-
isfying the assumption (A) or Ji(t) = —oco on t € [ty,T). Let either Jo(t) be an
integer-valued functions ont € [to,T) satisfying the assumption (A) or Ja(t) = 400
ont € [tg,T), too. Suppose further that Ja(t) — Ji(t) =2 ont € [to,T). Let v'(t) :=
{wr(#)} and v3(t) :== {v2(t)} be defined in the set

Q= {(Z,t) €7 x [t(),T)|J2(t) > > Jl(t),t S [t(),T)} .

Assume that v*(t) :== {v}(t)} and v? () {v

Q and continuous in t. Suppose that v!(t) :
type in t and satisfy

O (t) = dig1v, () + (di 4 diga)v; (t) — div}_y (8) — fi(t, v} (1))
> 07 (t) — dig1v]y (1) + (di + diga)v; () — div] 1 (t) — filt, v} (1))

(t )} are bounded between 0 and 1 on
v;

2
% ()} and v(t) := {vZ(t)} are of C*

r (i,t) € Q, where Q:={(i,t) € Z X [to,T)|J2(t) > i > Ji(t),t € [to,T)}. Then
vi(t) = v2(t) for t € [to,T) and Jo(t) > i > Ji(t) provided that v}(ty) = vi(to) for
1 = Ji(to) and there holds one of the following four conditions:

(a) v}h(t)( =X 1(lt)( ) and v}]z(t)( ) = ’UJ t)( ) for any t € [to,T) if both Ji(t)
and Jo(t) are the integer-valued functions on t € [to,T) satisfying the
assumption (A);

(b) U}Q(t)(t) > vi(t)(t) for any t € [to,T) and liminf; . (v}(t) —v2(t)) =0
uniformly on t € [to,t'] for any t' € (to,T) if Ji(t)=—00 on t € [to,T)
and Jo(t) is an integer-valued function on t € [to,T) satisfying the
assumption (A);

(c) ”31@)( ) > vJ 1 (t) for any te€ [to,T) and liminf; (v} (t) —v2(t)) =0
uniformly on t € [to,t'] for any t' € (to,T) if J2(t) =4oc0 on t € [to,T)
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and Ji(t) is an integer-valued function on t € [ty,T) satisfying the assump-
tion (A);

(d) liminf;, (v} (t) —vZ(t)) = 0 and liminf, o (v} (t) — vZ(t)) = 0 uniformly

ont € [to,t] for anyt’ € (to,T) if J1(t) = —oc0 anle2(t) =+4oo ont € [ty,T).

(2) Let Ji(t) and Jo(t) be as in (1). Let Q@ and Q be defined in (1). Suppose

wh(t) :={w}(t)} and w?(t) := {w?(t)} be defined in (i,t) € Q and be continuous

in t. Suppose that w'(t) := {w}(t)} and w*(t) = {w?(t)} are of C' type in t and
satisfy

W} (1) = digrwi (8) + (di + dipr)w; () — diw (t) — i (t)w; (1)
> i} (t) — digrwi () + (di + dipr)w] (t) — diwi () — pa(t)wy (t)

for (i,t) € Q. Then w}(t) = w2(t) fort € [to,T) and Ja(t) > i > J1(t) provided that
w}(to) = w?(to) for all Ja(te) =i = Ji(to) and one of the conditions (a), (b), (c)
and (d) in (1) holds.

Proof. We prove (1). Here we only consider the case that the condition (a) holds.
In this case, we have that both Ji(t) and Jy(¢) satisfy (A) respectively. Without
loss of generality, we assume that there exists ¢1 € (f9,T') such that Jy(t) = Ji(to)
and Jo(t) = Jo(tg) for any t € (tg,t1), and

|J1(t1)7<]1(t0)| =1 or |J2(t1)7<]2(t0)| =1. (31)

Let 9;(t) = e (v}(t) — v2(t)), where Ja(tg) =i > Ji(to), t € [to,t1) and c is a

1
constant to be determined later. Then

Di(t) = ce (v} (t) — v (1) + e (0] (t) — 97 (t))
2 dit19i41(t) + didi—1(t) + (ai(t) — (di + div1) + )Vi(t) (3.2)

for Jo(to) > i > Ji(to) and a.e. ¢ € [tg,t1), where

1

afi .

a;(t) :/ aj; (t, 7ol (t) + (1 — T)o2(t))dr  for Jo(te) > i > Ji(to), t € [to,t1)-
0

Let p;(t) = a;(t) — (d; + di11) + c. By the boundedness of v!(¢) and v?(¢) and the

periodicity of d;, then there is a ¢ > 0 such that

Jz(to)>i>]1(to),te[to,tl)p ( )

In the following, one claims that 9;(t) > 0 for Ja(tg) > i > Ji(to) and t € [to, t1).
Denote po = SUD 1, (1)) > Jy (to) t€[to,t1) Pi(t) and dmax := maxez d;. It is sufficient

to prove the claim for J(t) > i > Ji(to) and t € [to, to + Tp) with Ty = 2 min{t; —

to, 1/(po + 2dmax) }- Assume, towards contradiction, that there exists Ja(tg) > i>
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J1 (to) and ?6 [to,to + To] such that ?9;(1?) < 0. Thus

Wint = inf 191(75) < 0.
Ja(to)>i>J1(to),tE[to,to+To]

Hence, we can find some sequences Ja(to) > i, > Ji(to) and t,, € [to, to + To] such
that

¥, (tn) — Oing  as n — oo.

By virtue of the condition (a), (3.2) and the fundamental theorem of calculus for
Lebesgue integrals, we get

tn
Vi, (tn) — Vi, (to) = / (di,, 194, 41(t) + di, i, 1 (t) + pi, ()04, (t)] dt
to

WV

tn
/ [2dmax19inf + Di,, (t)ﬁinf] dt

to

2 TO (zdmax +p0)19inf fOI‘ n 2 1.
Recall that ¢;, (to) = 0, then
D, (tn) = To(2dmax + Po)Ving  for n > 1.

It follows that
1
ﬁinf 2 TO(2dmax +p0)19inf > §Q9inf as n — o0,

which is a contradiction due to ¥i,¢ < 0. Thus, v} (t) = v?(t) for Jo(to) =i = Ji(to)
and t € [to,to + To]. Repeating the above procedure on [tg + To,to + 270], [to +
2Ty, to + 3Tp), . .., we can get vi(t) = v2(t) for Jo(tg) =i = Ji(to) and t € [to,t1].
Further using (3.1) and the continuous of v} (¢) and vZ(t) on t =t; for any given
Jg(tl) 2 ) 2 Jl(tl), we get

vi(ty) = v2(ty) for all Jo(ty) =i > J(t).
Therefore, repeating the above method, we have
vi(t) = vi(t) for Jo(t) =i > Ji(t) and t€ [to,T).
We can prove (2) by the similar arguments as above. The lemma is thus proved. [

REMARK 3.2. Inlemma 3.1(1), if there further exists Jy(to) > ig > J1(to) such that
v} (to) > 07 (to), then one can easily get that v} (t) > v(t) for any t € (to,T) and
Ja(t) > 1> Ji(t). Similarly, in lemma 3.1(2), if there further exists Ja(to) > ig >
Ji(to) such that w} (to) > wi (to), then one can easily get that wi(t) > w?(t) for
any t € (to,T) and Jo(t) > i > Ji(t).

Here we would like to mention that, compared with the existing results on the
comparison principle of the lattice differential equations, our theorem (lemma 3.1)
is more general. In fact, the comparison principle for the lattice differential equa-
tions was usually established for the infinite lattices (J1(t) = —oo and J2(t) = +00)
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(see [8, lemma 2.1]) or finite lattices (J1(t) =0 and Jo(t) = N) (see [22, 26]).
Therefore, lemma 3.1 is of independent interest due to possible applications in
future.

Consider the following linearized equation of (1.1)around 0 :
u,(t) = di+1ui+1(t) — (di+1 + dz)ul(t) + diui_l(t) + ui(t)ui(t), (i, t) € Z x R.
(3.3)

Since equation (3.3) is spatially periodic, we expect to look for the time global
solution u(t) := {u;(t)};ez of this equation under the form

ui(t) = e Mnna(t), (i,t) € Z x R, (3.4)
where A > 0 is the spatial exponential decay rate and
Mi(t) = Mi—n(t) >0, (i,t) € ZxR. (3.5)
Substituting (3.4) into (3.3), it reduces that {nx,i(t)} @ )ezxr must satisfy
ixi(8) = dir e i (1) = (dier + di) ()
+die i1 (t) + pi(Onaa(t), (i) € Z x R. (3.6)

The following lemma shows some properties of the solution of equation (3.6) and
is the key point where the spatial periodicity hypothesis (HO) is used.

LEMMA 3.3. For all A > 0, there exists a time-global solution nx(t) = {nr.:(t) }iez
of (3.6) with the form (3.5), which is unique up to a mulliplicative constant and
satisfies

t+T
LE+T) < (¢ d;(e +e ™ MT / J(s)ds|, (3.7
it +T) Hileagm,()eXp [rgleazx (et +e )T+ t rglea%u(S) s (3.7)

Mt +T) = Cy max M. (t) exp lmi%l(di+1 e N d; et — dit1 —d;)T
1€ S

t+7T
+/t min () dS] : (3.8)

where (i,t) € Z xR, T > 0, and the constant Cy > 0 depends on A.

Proof. Note that the equation (3.6) can be regarded as an ordinary differen-
tial system in RY due to the spatial periodicity of its coefficients. Denote m =
inf(; yyezxr pi(t) > 0. We know from [16, lemma 2.1] that for each A > 0, there
exists a unique element &, = {f;i}iez of Kper with max;ez €y ; = 1 such that

di+1 e_Ag):H»l — (di+1 + dl)g):z +d; eA&;i71 + mf):z = q)()\)g):ﬂ xS Z,

where Kpe, := {* = {} ez € X, € >0 and & y =& forall i€Z} and
®(A) > 0 is the principal eigenvalue of the N x N matrix Ay := [ay;;,;| defined
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arii = —(dig1 +d;) +m, ie{l,--- N},

axiit1 = dit1e" %, ief{l,--- ,N—1},

axiit1,i = dip1e?, ie{l,---,N—1},

axa,n = dy e,

axn,g =die ™,

axij =0, li —j| = 2 and (i,5) ¢ {(1, N), (N, 1)}

Then the function vy (t) := {uy,;(t) }iez = {e*MES  Yiez solves

’Lbl(t) = di+1 e_)‘qu(t) — (di+1 + dz)uz(t) + dl e)‘ui,l(t) + muz(t), (’L, t) eZ xR

and it is a subsolution of (3.6). Similarly, there also exists a positive constant W(\)
and a positive vector & = {ﬁ;ti}iez € Ko, with max;ey, 5;& = 1 such that

dit1 67/\5;%1 — (diy1 + )&, + ds e’\f,ti_l + M, =Y(NEY,, i€k,
where M = sup; y)ezxr pi(t). Clearly, Dx(t) := {Ux;i(t) }iez = {e‘I’(A)tf)ti}iez solves
i (1) = dip1 e a1 (t) — (digr + di)ui(t) + ds e a1 (1) + Mui(t), (i,t) €Z xR
and it is a supersolution of (3.6). For each n € N, let n}(t; k) = {n},;(t; k) }iezt>—n

be the solution of (3.6) with initial datum 7% (—n;k) = k&, , where k € [0, k/,] and
k! :=e~®M" By the comparison principle [see lemma 3.1(2)], we have

n5(0:k7) = v5(0) = &5,
which implies that
= n N = 7, < n N / .
0 = max73(0;0) < 1= max&y; < maxny(0; k)

Then by the continuous dependence of the solutions on initial values, there exists
k, € (0, k] such that

max 3 (05 kn) = 1.

In fact, due to m = inf(; yezxr pi(t) > 0, we further have max;ez 0¥, (¢; ky) < 1 for
all t € [-n,0]. By the comparison principle, we also have 0¥, (¢; k,,) < k"9(t) for all
t > 0, where the positive constant k" satisfies k”f;i > 1 for all 1+ € Z. Thus, we can
find a positive, N-periodic in i solution nx(t) = {nx.:(t) }iez of (3.6), which is the
limit of the sequence (up to extracting a subsequence) n}(t) locally uniformly in
(1,t) € Zx R as n — oo.
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Let us show that ny(t) satisfies (3.7) and (3.8). For given t; € R, the function
A () := {7x;i(t) yiez 121, with

t
Milt) = max N (to) exp {T?eai( di(e* +e7)(t — to) + /to max wi(s) ds}

is a supersolution of (3.6) on ¢ > ¢o. Then by lemma 3.1, we have nx;(t) < 7y,,(t)
for any ¢ € Z and t > ty, which further reduces to

T+to
M (T + to) < maxny,;(to) exp [max di(e* + e MT + / max /1;($) ds] (3.9)
i€l i€l to icl

for any i € Z and T > 0 by letting ¢t =T + to. By the arbitrariness of ty € R, we
can derive the inequality (3.7) by replacing to with ¢ in (3.9).

Next, we show that (3.8) holds. We claim that there is C' > 0 depending on A
such that

Mni (1) < Cnrsig g (t+1) for (i,t) €ZxR and J € Z. (3.10)

Fix Jy € Z and let (ig,t9) € Z x R be given. Applying lemma 3.1 to problem (3.6),
one immediately has that

Msio+Jo (to + 1) = vig4 5, (to + 1), (3.11)

where {v;(t) }iez satisfies (3.6) for t > to with v, (to) = x4, (to) and v;(tp) = 0 for
all i # ig. For all i € Z, call now v; 1= 2;, ; (1), where {2}(t)};ez satisfies (3.6) for
t > 0 with z;(0) = 1 and 2(0) = 0 for all j # i. One has z}(t) > 0 for all (j,¢) € Z x
(0, +00), whence v; > 0. If y; = 0, then (2, ; )'(1) = 2;, ; (1) =0and z;, ; (1) =
Zit jo+1(1) = 0. By induction, 2}(1) = 0 for all j € Z. But

(25)'(t) = —2 max diz;(t)

for all j € Z. In particular,
Z;(l) 2 672 max;cz, dlzl(o) — 672 max;ez d; > O,

(3

which gives a contradiction. As a consequence, each ~y; is positive. On the other
hand, 7; = v;—n for all i € Z, due to the periodicity of (3.6). Therefore, T, :=
min;ez y; > 0. Eventually, one has

Vig+Jo (to + 1) = YigMnsio (o)
Putting the last formula into (3.11) yields

Mxsio+Jo (fo + 1) = Tynnsig (to)-

This together with the arbitrariness of iy and ¢y implies that

Mt do (E+1) = Tyomai(t)
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for all (i,t) € Z x R. Let C= 1/(minjeqq,.. vy T'y). Thus we get

i) < Cpigg(t+1), (i,t) EZxR and J € Z.
Note that for given ¢ € R, the function n, (t) := {ﬂ/\;i(t)}iGZ,t>to with
n,,(t) = min i (to)
¢
X exp {min(diﬂ e M djet —dipq — d;)(t —to) + / min z4;(s) ds}
i€Z to €L

is a subsolution of (3.6) on t > to. Using again lemma 3.1, we have nx;(t) > n, ,(t)
for any ¢ € Z and t > tg, which also reduces to

Mi(T 4 to) = minny,(to)
i€Z

T—Hto
X exp | min(d;41 e M+ d; et — div1 —d;)T + min z;(s) ds
i€Z ‘o i€z

(3.12)

for any ¢ € Z and T > 0 by letting ¢t = T + to. Due to the arbitrariness of ¢; € R,
by replacing ¢y with ¢ in (3.12), we have

it +T) > min Nx:i(t)

t+T
X exp lmin(diﬂ e M djer —diyq — )T + / min /1; () ds]
1€Z t 1€Z
for any ¢ € Z, T > 0 and ¢t € R. Combining this inequality with (3.10), we derive

it +T) > 7 maxy(t — 1)
1€

t+T
X exp [min(diH e N d; et — div1 —d;)T + / min z;(s) ds]
i€Z " i€Z

(3.13)
for any i € Z, T > 0 and ¢t € R. Using (3.7), we get

max;ez N (t)

max i (t —1) >
! exp [maxz‘ez di (e* +e™) 4+ sup(; ) ez xr Mi (t)}

for ¢ € R. This together with (3.13) implies that (3.8) holds and
Cv—l
exp {maxiez di (e* +e7*) 4+ sup(; yezxr ui(t)]

C)\ =

It remains to prove the uniqueness result. Assume that n'(t) and 7%(t) are two
positive, N-periodic in ¢ solutions to (3.6) satisfying (3.7) and (3.8). We first claim

https://doi.org/10.1017/prm.2020.31 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2020.31

Transition waves for lattice Fisher-KPP equations

that there exists K > 1 such that
K2t < nl(t) < Kn2(t), VteR, icZ.
Let h > 0 be such that
ni(0) < hn?(0), Vi€ Z.
Applying lemma 3.1(2), we have
ni(t) <hni(t), VieZ, t=0.
In fact, there also holds

inn!(t) < 2 <0.
min; (¢) < hmax; (), V& <0

585

(3.14)

(3.15)

(3.16)

(3.17)

Assume by contradiction that there exists to <0 such that min;ezni(tg) >
hmax;cz n?(to). Applying lemma 3.1(2) again, we get n}(0) = hn?(0) for all i € Z
which contradicts with (3.15). Using (3.8) with 7' = 0 to both n!(t) and n?(t), we

can find two positive constants C} and C3 satisfying

€L

for all ¢t € R. This together with (3.17) implies that
M) < i), i€z, t<0,
(3 C}l\c/Q\ K3
whence by (3.16), we obtain

h .
ni(t) < max{h,cic)%}ng(t), VieZ, teR.

minp; (t) > Cymaxn; (t) and - minm?(t) > CF max?(t)

Thus, using symmetry, there is a possibly larger K such that (3.14) holds. Now,

denote

1
(T
k := lim sup max 7722( )
t——oo i€Z N3 (t)

By (3.14), one gets k € [K !, K]. Let t,, € R satisfy

1 (tn)
lim ¢, = —oo and lim max =k.
n—oo n—o0 i€Z 1); (tn)

For n € N, consider the functions p™(t) := {pu?(t) biez = {ui(t + tn) }icz and

nl (t + tn)

1
m t
leazxm( n)

RORS A

1€Z

Applying (H1) and the Arzela—Ascoli theorem, we can get that (u™(t))nen con-
verges (up to subsequences) to fi(t) := {f1;(t) }sez locally uniformly in (7,¢) € Z x R.
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By (3.7) and (3.8), we have

C exp [néi%l(diﬂ e M rdier —diyg — di)t}

it +tn)

= 1
t
%gm(w

< exp [(max di(e® +e )+ sup ui(t)) t] ,
i€z (i,t)EZXR
which implies that for each i € Z, the sequences (nf’l(t))neN are locally uniformly
bounded in ¢ € R and the derivatives (77/""(t))nen are then also locally uniformly
bounded in ¢ € R. By (3.14), the same matter holds true for (1?%(t)),en. Therefore,
by the Arzela-Ascoli theorem again, (7™ (t)),en converges (up to subsequences)
to some functions 7/ (t) := {7 () }iez locally uniformly in (i,t) € Z x R, satisfying

il (t) = divr e Ml () — (di + digr )7 (8) + dy 7 (8) + s (8)77] (2),

where j = 1,2 and (i,t) € Z x R. Moreover,

=1
7 (0) - - .
max 72(0) =k and 7} (t) <kiZ(t), V(i,t) €Z xR,

Then, there is ig € Z such that 7}, (0) = k7, (0) and

iy (0) = ki, (0) = digs1 €7 (15 +1(0) = ki 41(0)) + iy € (775, -1 (0) — i, —1(0))
=0

holds. Since each coefficient d; is positive, one infers that
Tig11(0) = ki, 11 (0) = i, _1 (0) — kZ, 1 (0) = 0.

Repeating the above procedure, we have 7} (0) — k7j2(0) = 0 for any i € Z. By the
classical theory for ordinary differential equations in Banach spaces [19], we have
7 (t) = ki?(t) for all t € R. As a consequence, for any ¢ > 0, we can find n. € N
such that

(k=) (0) < n}"'(0) < (k+€)n;"*(0), i€Z
for all n > n.. Combining this with lemma 3.1, one has
(k—en? ) <n'(t) < (k+en>(t), YieZ t>0
for all n > n., which implies that
(k—e)n?(t) <ni(t) < (k+emit), VieZ t>t,

for all n > n.. Letting n — oo and € — 0, we eventually obtain n'(t) = kn?(t) for
all t € R. Lemma 3.3 thus follows. O
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REMARK 3.4. In the particular case T = 0, the inequality (3.8) expresses

inny(t) > C L), VteR. 3.18
min ), (t) A WAX 1), () € (3.18)

Notice that, in contrast with (3.10), the two sides are evaluated at the same time.
This particular instance of inequality (3.8) will be sometimes used in the following.

LEMMA 3.5. For all A > 0, there is a uniformly Lipschitz-continuous function Sy :
R — R and a constant By > 0 satisfying that

1
Sa(t) — X In (rgleazxn,\;i(t)ﬂ < B, VteR. (3.19)

Proof. Applying inequalities (3.7) and (3.8) yields

InC\ + Han (di+1 e N + d; et — di—i—l — dl) T

<In (nlgeazx it + T)) —In (maZX 77/\;i(t))

i€

T,
(i,t)€EZXR

< di (et +e™? il
[r?eazx (e +e )+ sup  pi(t)

where t € R, T > 0 and C)\ > 0 is a constant given by lemma 3.3 associated with

A. Denote
BA ‘= max { ‘riréiél (di+1 e N rdiet — diy1 — di) ,
maxd; (X +e )+ sup  pi(t) p.
i€z ( ) (i,t)EZXR
Thus we get

In (mazxm;i(t + T)) —In <mazxm;i(t)> ’ < BT + [ InCy|
1€ S

forallt € R and T' > 0. For any n € N, define Sy on [n,n + 1] as the affine function
satisfying

1 1
Sx(n) = X In <maxnk;i(n)) , San+1) = X In (I?eazxnk;i(n + 1)) .

€L

Then we have

roy = | L . 1 .
[S\ ()] = ‘)\ In r?eai(m;z(n—l— 1) 3 In _eazxm\ﬂ(n)

K2

< BA‘F“HC}J)
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which implies that S is uniformly Lipschitz-continuous over R. Furthermore, for
t € [n,n + 1], we have

1
Sa(t) — X In <rzr_1€azx77>\;i(t))‘

€L

< ISx(t) — Sa(n)] + ‘im (maxn,\;i(t)> — S\(n)

= 153(0) = 53001+ |5 10 (magena()) = 310 (et )

i€Z i€
< 25>\ + |1nC>\\'
A
Thus, we confirm that ¢ — Sx(¢) — 1/A In(max;ez 7. (¢)) is uniformly bounded over
R. The lemma is thus proved. O

Now define a function
ea(t) == S\(t), ae. teR. (3.20)

It is clear that cx(-) € L*°(R). In the following, we construct the transition wave
of (1.1) by using cx(t) as a possible speed.

Firstly, we show some properties of the least and upper means of the (cx)x>o.
Owing to (3.19), we have

1 i G(t+T
o] = & lim inf L ezt £ T) (3.21)
A T—+ooteR T maXx;cz nA;i(t)
and
1 1 i G(E+T
[ea]l = = lim sup=1In maxiez fx:i(f + T)
A T—+ootep T maxiecz, 77/\;i(t)

By (3.7) and (3.8), we get

1 1 t+T
T InC)y + I,%iél(d”_l e A +d; et — diy1 — dl) + T /t Izl'.lelél Mi(s) ds

4T
max it +T)

< —=1In

Nl

max 1 (t)
1 [T
< r?eazxdi(eA +e M+ T[ r?eazxui(s) ds, VteR, T>0and \ >0,

which further implies

1 . _ 1 .
X rgél%l(di+1 e M tdiet—d; — dit1) + X {rirél%l ui(t)J
1 N
< < = : — . .
< lea] < 3 I?EaZXdl(e +e M)+ X {%azxuz(t)J , YA>0 (3.22)
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and
L. —A A 1 .
3 I}élél(diﬂ et +diet —di —dip1) + T [ min pi(t)
<fea] < %rlneazx di(e* +e ) + % {rlneazx pi(t)-‘ , YA>0. (3.23)

LEMMA 3.6. The functions X\ — A|cx] and X — Aen| are locally uniformly Lips-
chitz continuous on (0,+00). So naturally, the functions X — |cx| and X — [e)]
are continuous on (0, +00).

Proof. Fix 0 <e <A <+o00 and € < A\g < A. Let A\; € [¢,A] be such that [A; —
Aol = Agg. For j=0,1, the function vy, (t) := {vx,:(t)}icz = {e‘Aiin,\j;i(t)}iez
satisfies (3.3). Rewriting vy, (t) = {vx,;;i(t) }icz = {e¥*+(M}, ;. we have that

Wy, i(t) = dig et (=g (1) 4 g ewagsic () =wa ;i)
= (dip1 +di) + pi(t), (i,t) €ZxR.

For 7€ (0,1), the function w(t) := {w;(t)}iez = {(1 — T)wxry:i () + Twr, i (t) biez
satisfies

0i(t) = i [(1 = 7)e®oer1 @02 4 a9 (0]

+ d; [(1 — 7)eWroim1 (=g () 4 rewM:H“)—“’M:i(”] — (dig1 + di) + pa(t)
>diy (=) [wrgsit1 () =wxg;i (O 7[wa i1 () —wxy 4 (8]
+ d; eI D1 O =wxgss O+ Twa i O —wnisi O] (g, 4 dy) + pa(t)
= dip eV O=wD) g OO (g L d) 4 w(t), (iyf) € Z X R,
which implies that e®(®) := {1V}, is a supersolution of (3.3). Since
ewi(t) = e_((l_T))‘°+T)‘1)in§\;z(t)ngl;i(t), (i,t) € Z x R,

-
i

the function ni\;T(t)nL (t) = {n}\; (t)n3,.:(t) }iez is a supersolution of (3.6) with

A=A =1 —=7) o+ 7T\
Note that for given t¢ € R, the function {nx_.;(t + to)/max;ez nx..i(to) biez.i>0 is a
solution of (3.6) with A = . and initial datum {n_.;(to)/max;ez nx,.i(to) }icz < 1.
Applying lemma 3.1 and the arbitrariness of g, we can get
max; lfT(t—l—T) 7 ..+T)
maxiez 1, ;i(t + 1) i€Z  Mhosi s
max;ez N, ;i(t) min;cy, {ni;:(t)nil;i(t)}

< (maxieZ Mo:i(t +T) ) T (maXiEZ it +T) ) !
min;ez Mg (1) mingez N, ;i(t)
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for all t € R and T > 0. Hence, using the inequality (3.18) for n,,(t) and ny, (), we
get

maxiez N,;i(t + 1)
max;ez M, (t)

17
< or-10- [ MaXiez Maosi(t+T)\ "
T T Th max;ez May;i(t)

" <maxiez Mgzt +T)> 7 (3.24)
max;ez N, ;i (t)

where the constant Cy, > 0 and Cy, > 0 be given by lemma 3.3 associated with Ag

and A; respectively.
Defined by F(\) := Alcy| for A > 0. Following from (3.21) and (3.24), we obtain

1 ((1 ) n AXiez Mot + 1) 4 7o PEXicz M (t + T))

F(A) < lim inf —
(A7) < T4 o0 tER max;ez Mx,.i(t) max;ez 1, (t)

Consequently, we have
F(\) — F(xo) <7(Mfea ] — Xolen]), ¥ e(0,1).
This together with (3.22) and (3.23) implies that

F\;)—F(\) <7 (clmax(e’\1 +e M)+ [r?eazx ui(t)—‘
— I}g%l(di_s_lei)\o + dl e)‘(’ — dz — di+1) — \f;[élél ‘LLZ(t)J)

<7 <2dmax eA |)\1 - >\O| + 2dmax (eA + e_e) + 2dmax

N hleazxm(t)—‘ _ hgiél#i(ﬂJ)
< K7 (A — Aol +1)

A—c¢
=K 1

where dpax = maZx d; and
i€

_ A A —e . _ . .
K = max {Qdmax ™, 2dmax (e +e ) + 2dmax + [I?ea% 1 (t)-‘ {I}Q% uz(t)J } )

This proves the Lipschitz continuity of F' on [g, A] due to |A; — Xg| = 7(A —¢)/2.
By the similar way as above, we can get the function A[ey] is locally uniformly
Lipschitz continuous in A € (0, +00). It then follows that the functions A — |cy |
and A — [c¢y] are continuous on (0, 4+00). This completes the proof. O

In order to define the critical speed c,, we introduce the following set:

ki={A>0:3k >0, VO<k<Fk, |cx—crik] >0} (3.25)
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LEMMA 3.7. There exists Ay > 0 such that k = (0, \). Moreover, the function A\ —
lex] is decreasing on k.

Proof. Tt can be proved by the similar arguments in [30, lemma 3.4]. For the
completeness, we provide a proof in the following.
Fix Ao, A1 > 0. For 7 € (0,1), we set A, := (1 — 7)o + 7A1. By calculating (3.24),
we get
(1-7)n max;ez May;i(t + 1) 4 i AXiez Mt +T) 1 TAXiez Mt +T)
maxX;ez, Mxg;i () max;ez 1, ;i (t) maxiez N, ;i (1)

>1In (Cy7C3,)-

This together with (3.19) and (3.20) implies that

T
/t [(1 = 7)Aoer, + TA1CA, — Arey,]ds > In (Ci;TCL)

—2[(1—=7)Bxr, +70x, +5r.]-

It follows that

t+T t+T
)\T/ (cxg —Cr,)ds = T)\l/ (cag — Cr,)ds+1In (Ci;TC’Xl)
t t
—2[(1 =7)Bxr, + 70, + O]

Dividing both sides by T, taking the infimum over ¢t € R and then taking the limit
as T — 400, we get

lex, — e, ] = T% lex, —en, ], V7 e(0,1). (3.26)

Similarly, dividing both sides by —T', we obtain

lex, — e < T% lea, —exo), VT e (0,1). (3.27)

Furthermore, considering the upper mean, we analogously have

A

|—C)\0 - CAT—‘ 2 TYI |—C)\0 - C)\1-|7 VT € (Oa 1)
and
A1
|_C)\_,_ — C)\O~| < TT I_C)\1 - C)\O.|, VT € (0, ].) (328)

In the following, we show the properties of x by using these inequalities and choosing
suitable Ao, A1 and 7.
Step 1. k #+ @.
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By (3.22) and (H1), we have

i oy > Ji L)~ e = 20

Then there exists 0 < X <1 satisfying |[cy —c1] > 0. Applying (3.26) with
Ao =X and A\ = 1, we get that |cx —cayr] > 0forall 0 < k <1 — N. Therefore,
N € k.

Step 2. k is bounded from above.

It follows from (3.22) that

i BENES — i = .
i e — o) < o) - lim o) = —oc
Then there exists A’ > 1 such that [¢; —¢y] <0 for any A > \'. Then, for any
k>0, using (3.27) with Ao = A+ k, Ay =1and 7 =k/k+ X — 1, we get

k
lex — eagr] < qu — etk <0,

which implies A ¢ k. Thus « is bounded from above by \'.
Step 3. If A € &, then (0, A] C k.
Let 0 < X < X and k > 0. By using (3.26) and (3.27), we get

k A+ k A4k A
lex —envqr] > (k—l—)\— 1> <X+k> lex — eaqr) = <X+k> yLC/\ — Catk]-

Thus, if A € k, then \ € &.

Step 4. If supk ¢ k.

Let A* :=supk and k > 0. It follows from the definition of k and A* that for each
n € N, there exists k,, € (0,1/n) such that

lex +1/n = Cx*41/ntkn] < O.

For n large enough, there holds 1/n + k,, < k. Using (3.26), we have

kn N+ k
02> [Crxg1/n — Ot 1/nth,] = <k: — 1/n) <)\* Ty kn> lexs41/m — Crax k]

for n large enough. Consequently, we have
leas = exeqr] < leasqi/m — exrar) + leaxs —exeqaym] < Jeas — easqi/ml|
for n large enough. Using (3.28), we get

1/n 1/n
[CA* - CA*+1/n1 < /\*—152/71(0»/2 - C)\*—i-l/n—l < /\*—|—/2/n([c>‘*/ﬂ - LC)\*+1/7LJ);

which tends to 0 as n — oo by lemma 3.6. Thus we eventually have [cx+ — ca=4x] <
0, which implies A* ¢ &.

Now we show that A — |c, | is decreasing on k. On the contrary, we suppose that
there are 0 < A; < A2 < A* such that [cy, | < [ca,]. Since the function A — |cy] is
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continuous, it attains its minimum on [A1, A2] at some X. Due to |cy, | < [ca, ], we
can assume that A’ € [A;, A2). It follows from the definition of x that there exists
X' e (N, A2) such that [exr — ey | > 0. Then, we have

Lear] < lex] + [exr —ex] = en] = [exv —enr] <lex],
which contradicts with the definition of A’. This completes the proof. O

Now we can define the critical speed
ey = |en, |, (3.29)

where A, is given in lemma 3.7.

In the following, we construct some suitable subsolutions and supersolutions
of (1.1) to prove theorem 2.2. Let us first introduce a family of functions (¢x)a>o-
For A >0, let 1\, be the function given by lemma 3.3. We normalize it by

[113(0)lloc = 1. Define px(¢) := {px:i(t) }icz by
oxi(t) = e AWy i), (i,t) € Z x R.
Using (3.19), we have

TIN;i (t)

VA i (1)
max;ez Nx;i(t)’

< e*)\SA(t)n)\_. 1) < eMPr
maxiez i (t) i) <

where (i,t) € Z x R and 3\ > 0 is the constant given by lemma 3.5. Combining this
inequality with (3.18), we get

M)\ = C)\ei)\ﬁ)\ < @A;i(t) < e/\ﬁAa (th) €Z X Ra (330)
where C\ > 0 is the constant given by lemma 3.3.

Proof of theorem 2.2. Fix v > c¢.. Since the function A — [c)| is continuous by
lemma 3.6 and goes to +o00 as A — 07 by (3.22), and x = (0, \,) by lemma 3.6,
there exists A € k such that |cy| = ~. The function o(t) := {v;(t) }iez defined by

Ti(t) := min{e " Mnyai(t), 1}, (i,t) €Z xR

is acting as a supersolution of (1.1).
In the following, we construct a subsolution of (1.1). Recall the constant v in (H2)
and the definition of x, there exists X' € (X, (1 + v)A) such that [cx — x| > 0. Set
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P(t) == {¢i(t) }iez with

Yit) = e ONEH OOy 1), (6,1) €Z xR,
where o € WH°(R) will be determined later. Clearly, there holds

hi(t) = dig1ig (t) + (digr + di)i(t) — diyi—1 () — ()i (t)
= (o' (t) + N (ea(t) — ex (0)ei(t), (i,t) € Z x R.
Here we recall a key property of least mean (see [29, lemma 3.2]):

Vge L®(R), |g]= sup inf(o’ + g)(t). (3.31)
ceWb = (R) teR

Since [N (ex —ex)] = N|ex — ex] > 0, by (3.31) we can choose o € W1 (IR) such
that

K = inf (o' (t) + X (ex(t) = ex (1)) > 0.

Thus, we get
Gi(t) = dizathipr (t) + (digr + di) s (t) — dinhi—1 (¢)
> (i () + K)i(t), (i,t) € Z xR,
Now we define v(t) := {vi(t)}@i,nezxr by
vi(t) = e M (t) — mapi(t), (i) €Z xR,
where m is a positive constant to be chosen. A direct computation gives

V(t) = e Ninni(t) — mapi(t) = e M= (B) (@M(t) — M (t) eo(t)—(A’—A)(i—sm)))

(3.32)
for all (i,t) € Z x R. Since p,(t) and @y () satisfy (3.30) and o € L>®(R), we can
choose m large enough so that if i — Sy (¢) <0, then v;(t) < 0, and that v;(¢) < J
for all (i,t) € Z x R, where 0 € (0,1] is defined in (H2). If v;(t) > 0 and therefore
i — Sx\(t) > 0, we see that

0i(t) = diz1vip1(t) + (dig1 + di)vi(t) — divi—1(t) — pi(t)vi(t)
< —mKpi(t)
I

(t)
< - » i
< TR )

- _vailJrV(t)‘pﬁ%ii(t) o7 (=N =(14+2)0) (i=5x (1))
@A;iu(t)

< —mEKv] T (t) My e~ (1728 ianQ (9,
sE

where we have used (3.30) and the fact that ' < (14 v)A. As a consequence, by
hypothesis (H2), for m sufficiently large, v(¢) can be regarded as a subsolution
of (1.1) in the set where it is positive.
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Define a integer-valued function

J(t) = (Sx(8)) = </O c,\(s)ds>, Vi € R.
Using again (3.30), one has

Vi) (t)

R (ORENO)) (

Oxnsia(t) (£) — moarip ) (t) eg(t)7(X7>‘)(i+‘](t)75*(t)))

> e (M)\ _ memwnanx—(A'—A)(z‘—l)) .
Taking Ny € Z large enough, one has
2H£UN0+J(t) (t) > e Mo (M,\ - me’\/ﬁ*'+”UH°°_(/\/_/\)(N°_1)) =:w € (0,9).
€

In fact, when 7 > J(t) + Ny, one has 0 < v;(¢) < 0. Now by the definition of v;(t),
there exists an integer-valued function J_(¢), satisfying (A) and J(t) < J_(t) <
J(t) + Noont € R, such that v; () < 0and vi(t) > 0foralli > J_(t) and t € R.
Furthermore, by the definition of w, there exists another integer-valued function
Jy(t), satisfying (A) and J_(t) < Jo(t) < J(t) + No on t € R, such that v, ) (t) >
w and v;(t) < w for all J_(t) < i< J4(t) — 1 and ¢t € R. Consequently, defined the
function v(t) = {v;(t)} (i,¢)ezxr by

() it i > T (1),
i(t):= {w if < Ji(t),

and it will serve as a subsolution of (1.1). Moreover, since v;(t) < T;(t) for (i,t)
Z x R and U4y (t) = e oMy > wifi < Ny and t € R, one sees that 0 < v,(t)
7;(t) < 1 for all (i,t) € Z x R.

For each n € N, let u"(t) := {ul'(t)}iez.1>—n solve

{u?(t) =dipruiy (1) = (digr + di)ui (t) + diui o () + fi(t,ui(t), i€Z, t>-n
ug!

€
<

(—Tl) = Qi(_n)a 1€ 7.
Now we show
0<y(t) <ul(t)<wi(t) <1, VYneN,VieZ Vt > —n. (3.33)

Firstly, we show
v;(=n) <uj(t) <
400 yields

ull(t) <7(t) <1 for all neN, i€ Z and ¢t > —n. Since 0 <
v; ( n) < 1, applying lemma 3.1(1) with J; () = —oo and Ja(t) =

0<ul(t)<1, i€Z, t>—n.

By fi(t,ul(t)) < pi(t)ul(t) for all i € Z, t> —n, applying lemma 3.1(2) with
J1(t) = —o0 and Ja(t) = 400 yields

ul(t) < e Mnn(t), €L, t>—

K3

Thus, we get ul'(t) < v;(t) for ¢ € Z and t > —n. Next, we show u}(t) > v,(t) for
all neN, i€Z and t > —n. Since ul'(t) >0 for all i € Z and ¢t > —n, we have
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uly () Z vy )(t) for all t>—n. Applying lemma 3.1(1) with Jy(t) = J_(?)
and Jy(t) = +o0, we get ul(t) = v;(t) for all i > J_(t) and ¢t > —n. It follows
that uw?(¢) > v;(t) for all ¢ > J4(t) and ¢t > —n. Since u’j+(t)(t) > vy, (1)(t) = w for
t > —n, again applying lemma 3.1(1) with Jy(t) = —oco and Ja(t) = J4(t) yields
that u'(t) > w for i < J(¢) and t > —n. Thus, we have showed that u}(t) > v,(t)
for i € Z and t > —n. Thus, (3.33) holds.

Following from (3.33), one has that u(—n+ 1) > v,(—n+1) = u}" ' (—n + 1)
for all n € N* and i € Z. Tt resorts from lemma 3.1 that u?(¢) = u}' ' (t) for all
n €Nt i€ Zandt > —n+ 1. Foreach (i,t) € Z x R, the sequence (ul"(t))nent>—n
is nondecreasing and bounded; call U;(t) its limit as n — 400. On the other hand,
for each i € Z, the functions (u]'(t))nen,t>—n are uniformly bounded between 0 and
1, and the derivatives (4} (t))nen,t>—n are then also uniformly bounded. Therefore,
the convergence u?(t) — U;(t) as n — +oo holds at least locally uniformly in ¢ for
each i € Z. For each n, we can integrate equation (1.1) in any given interval of
time, and then pass to the limit as n — +oo. It follows that the functions U;(t) are
of class C'! and solve (1.5) for all (i,t) € Z x R. Furthermore, the above estimates
imply that

V(i,t) € Z xR, 0<y,;(t) <U(t) <7,(t) < 1.
One further sees that

—A(i+J(t))

lim Uy y)(t) < ¢E+moo@“(“(t) < lim e Mxira () ()

i——+00 i——+00

A(i+SA(

< lim e” t))77>\;i+J(t)(t) =0

1— 400
uniformly with respect to ¢ € R. It remains to prove that

i——00
holds uniformly with respect to t € R. Set

¢ := lim inf Ui+J(t) (t)

r——00 i<, teER

Our aim is to show that ¥ = 1. We know that 9 > w > 0, because U;(t) > v, (t) > w
ifi < J(t) + M. Let iy, € Z and t,, € R satisfy

lim i, = —oo, lim U; 4 jq,)(tn) = 7.

n—oo

For neN, let k, € NZ satisty y, =i, + J(t,) —kn, € {1,--- ,N} and define

w"(t) = {w} (t)}i,0yezxr = {Uisk, (t +tn) }i1)ezxr. The functions (w"(t))nen are
solutions of

W' (t) = diy1wi'yq (t) — (dipr + di)wi () + diw]_ (t)
+ filt + tp,wir(t)), (i,t) € ZxR.

Clearly, (w™(t))nen are uniformly bounded between 0 and 1, and the derivatives
(W"™(t))nen are then also uniformly bounded. Therefore, by the Arzela—Ascoli
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theorem, (w™(t))neny converges (up to subsequences) to some function w(t) :=
{wi(t)}(i,1)ezxr locally uniformly in (i,t) € Z x R, satisfying

Wi (t) = diprwi1(t) + (dip1 + di)wi(t) — dyw; 1 (1)
= filt +tn,wi(t)), (i,t) € ZxR.

Furthermore, letting y be the limit of a converging subsequence of (Y )nen, we find

Y= lim U; 40, (tn) = lim w, (0) = wy(0)

n— o0 "

and
wl(t) = lim U’H-k?n (t + tn) = lim Ui+in+J(tn)7yn (t + tn) 2 19, \V/(Z, t) € Z x R.

By (H2) and d; > 0 for all i € Z, one infers that w,41(0) = w,_1(0) = ¥. By induc-
tion, we have w(0) =9 and f;(¢,9) =0 for all (i,¢) € Z x R. This together with
(H2) implies that either ¥ = 0 or ¥ = 1. In virtue of ¥ > w > 0, we eventually get
¥ = 1. Theorem 2.2 thus follows. U

4. Application to particular cases

In this subsection, we give further applications of the results of § 3 to some particular
classes of heterogeneities already investigated in the literature.

(E1): If the terms f(¢,s):={fi(t,s)}icz are also periodic in t with period
T > 0, the class of admissible speeds has been characterized by Cao and Shen
[8], Fang, Yu and Zhao [15], Liang and Zhao [24], and Weinberger [42]. Following
the method described above, we see that an entire solution of (3.3) in the form (3.4)
given by ny(t) = eMMNtp, (1), where M(X) and py(t) := {oxi(t)}pezxr With
OxnitnN () = oai(t+T) = pai(t), is the corresponding principal eigenvalue and
principal eigenfunction of the problem

Exii(t) = dig1e M oni1(t) = (dig1 + di)pxi(t)
+ di e oni—1(t) + ps(H)oxi(t) — M(N)pr(t)

for all (i,t) € Z x R. Thus, Sy := M (X)/At satisfies (3.19), whence the speed of
wave for the linearized equation with decaying rate cy = M(A)/A. Since the ¢, is a
constant, we can get

M) MO+ k)

[ex =il = lex —enn] = —— - — "y
By (3.22), we have
M) . : .
_ — > ; .
i S5 = ol MO) =l 2en > | migt)] >0

This together with the strict convexity of M (A) with respect to A (see [24] and
[42]) implies that A, given by lemma 3.7 is the unique minimizer of A — M (X)/\.
Therefore, the threshold A\, we obtain for the decaying rates coincides with the
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minimum point of A — M (X\)/\. We eventually derive the existence of a generalized
transition wave for any speed larger than c, := r/\nilgM (A)/A, which is exactly the
>

sharp critical speed for travelling fronts obtained in [8,15,24,42]. To sum up, the
¢, we constructed in theorem 2.2 is the minimal speed in the space-time periodic
monotone systems. It should be mentioned that the solutions we obtain in this
paper must be transition waves, but not necessarily be pulsating waves.

(E2): Under the assumptions made by Guo and Hamel in [16], that is, f does not
depend on ¢, the speed ¢, derived in the present paper and that in [16] coincide, and
thus it is minimal in the sense that there do not exist any generalized transitions
wave with a lower speed.

(E3): Consider the case investigated by Cao and Shen in [7], namely, d; = 1 and
f only depend on (¢, u) and is replaced by sf(t, s). One can easily check that ny(t) =
exp [fot f(5,0)ds 4 (e + e — 2)t]. We can take a Lipschitz continuous function

t
Sy(t) := %/0 f(s,0)ds + % (e +er—2)t,

which implies that

e A4 er =24 f(t,0)

ex(t) = \

is a speed of a wave with decaying rate A. By [7, lemma 5.1], we have that the
threshold A, given by lemma 3.7 of this paper satisfies
e et — 24 | f(t,0)] e e =24 | f(t,0)]
.= = : = inf L=
= Lea (8)] " inf y

Thus, in this paper, we get the same critical speed ¢, as in [7], which was not proved
to be minimal since the nonexistence of transition waves with lower speed was not
investigated. Of course, if f(t,()) is unique ergodic, then the speed c, is minimal
(see [7, remark 1.1]).
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