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Abstract

Hydrilla is an invasive aquatic plant that has rapidly spread through many inland water bodies
across the globe by outcompeting native aquatic plants. The negative impacts of hydrilla inva-
sion have become a concern for water resource management authorities, power companies, and
environmental scientists. The early detection of hydrilla infestation is very important to reduce
the costs associated with control and removal efforts of this invasive species. Therefore, in this
study, we aimed to develop a tool for rapid, frequent, and large-scale monitoring and predicting
spatial extent of hydrilla habitat. This was achieved by integrating in situ and Landsat 8
Operational Land Imager satellite data for Lake J. Strom Thurmond, the largest US Army
Corps of Engineers lake east of the Mississippi River, located on the border of Georgia and
South Carolina border. The predictive model for presence of hydrilla incorporated radiometric
and physical measurements, including remote-sensing reflectance, Secchi disk depth (SDD),
light-attenuation coefficient (Kd), maximum depth of colonization (Zc), and percentage of light
available through the water column (PLW). The model-predicted ideal habitat for hydrilla fea-
tured high SDD, Zc, and PLW values, low values of Kd. Monthly analyses based on satellite
images showed that hydrilla starts growing in April, reaches peak coverage around October,
begins retreating in the following months, and disappears in February. Analysis of physical
and meteorological factors (i.e., water temperature, surface runoff, net inflow, precipitation)
revealed that these parameters are closely associated with hydrilla extent. Management agencies
can use these results not only to plan removal efforts but also to evaluate and adapt their current
mitigation efforts.

Introduction

Hydrilla is an invasive, non-native, aquatic plant that is becoming more concerning for many
government agencies and private industries in the United States, because it affects the drinking-
water supply, irrigation, power generation, and recreational activities. Hydrilla often outcom-
petes native plants by growing rapidly and forming a dense surface canopy that blocks light
passing through the water column (Langeland 1996). It intensifies stratification, creates anoxic
conditions in deeper areas, and changes the amount of many other important nutrients
(Langeland 1996). Hydrilla also affects the food chain, because aquatic wildlife can die after con-
suming this invasive plant, which is associated with toxic epiphytic cyanobacteria (Wilde et al.
2005). Hydrilla is on the federal noxious weed list and has been nicknamed “the perfect aquatic
weed,” because of its aggressive growth and adaptive morphological characteristics (Langeland
1996). Adaptation to a wide range of environmental conditions facilitated the spread of hydrilla
around the world, and it is now found on every continent except Antarctica (Jain and
Kalamdhad 2018; Sousa et al. 2009).

Hydrilla was brought to the United States in 1950 as an aquarium plant but was introduced
accidentally into freshwater ecosystems. It became established and spread throughout the
United States (McCann et al. 1996). According to the recent U.S. Geological Survey (USGS)
database, hydrilla appears to span the southern United States, up the east coast into New
England, and west into California and Washington (Figure 1) (US Geological Survey 2018a).
Primarily two biotypes of hydrilla exist within United States: The northern part is dominated
by a monoecious form, whereas southern regions are dominated by a dioecious form, and both
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can grow under wide range of water-chemistry conditions (Cook
and Lüönd 1982). They can tolerate a broad pH range (optimal
growth occurs at pH 7) and can grow in the water with a salinity
level of 7% or even higher (Haller et al. 1974; Steward 1991;
Steward and Van 1987). Throughout this article, the “hydrilla”will
be used for both biotypes for simplicity.

Addressing and understanding the magnitude of the spread of
hydrilla is currently a major challenge. To efficiently assess the
effects of hydrilla on water quality and overall lake function, the
spatial and temporal coverage of this invasive species must be
determined. Several different methods, including rake sampling,
hydroacoustic survey, mathematical models, and remote sensing,
have been applied in an attempt to track and monitor this aquatic
invasive plant (Madsen and Wersal 2017). The traditional rake-
sampling method is reasonably accurate in species differentiation,
but it is laborious, time consuming, and cannot display the full
extent of hydrilla distribution. Hydroacoustic surveys are expen-
sive and cannot be used to differentiate plant species (Madsen
and Wersal 2017). Mathematical models are useful for predicting
and estimating the current and future invasion of emergent and
submerged aquatic invasive plants but are limited in the spatial
domain. Therefore, to overcome the aforementioned limitations,
researchers have used satellite-based remote-sensing data in stud-
ies, which enable relatively less expensive, rapid, frequent, and
large-scale monitoring of emergent and submerged aquatic vegeta-
tion (SAV) (Ackleson and Klemas 1987; Cho et al. 2012; Cho et al.
2014; Luo et al. 2016; Malthus 2017; Rotta et al. 2016; Rotta et al.
2018). In addition, airborne images were also used for mapping
SAV in waterbodies (Hamabata and Kobayashi 2002; Hestir et al.
2008). However, compared with data from airborne images, satel-
lite data are widely used for mapping SAV, owing to a relatively
large swath that can be imaged, cost-effectiveness, and ease of data
acquisition and processing (Yadav et al. 2017).

The earlier application of satellite remote sensing for SAV
mapping used commercial satellite products such as images from
IKONOS and Quickbird (Jakubauskas et al. 2002; Sawaya et al.
2003; Wolter et al. 2007). For example, Sawya et al. (2003) used
IKONOS and QuickBird data to map SAV in lakes of Minnesota.
In another study,Wolter et al. (2007) used QuickBird data for SAV

mapping in the Great Lakes. Though these commercial satellites
had higher spatial resolution, such as the 3.2-m multispectral
resolution of IKONOS and the 2.4-m multispectral resolution of
QuickBird, the data obtained from such satellites may be imprac-
tical for frequent monitoring purposes, because of the high cost
associated with their small swath coverage. The trend started shift-
ing from commercial satellites to open-source satellite products,
especially because Landsat products became freely available in
2008. Since then, several studies used Landsat series sensors,
including Thematic Mapper, Enhanced Thematic Mapper, and
Operational Land Imager (OLI) for SAV assessment (Brooks et al.
2015; Shuchman et al. 2013; Yadav et al. 2017). Not only the cost
but the large swath, improved calibration, and higher signal-
to-noise ratio of Landsat 8 OLI sensor make it suitable for SAV
assessment. There are also some limitations associated with OLI,
such as a longer revisit period (16 d) and availability of only few
spectral bands, which limits its application in differentiating
SAV species. However, there is always a trade-off when selecting
a sensor for remote sensing study and, because the scope of this
research was limited (e.g., limited funding, lack of Sentinel-2
satellite scene availability corresponding to field sampling period),
contemporary images from OLI sensor were the best available
option.

Previous satellite-based studies used vegetation indices such as
the Normalized Difference Vegetation Index and Floating Algal
Index for emergent vegetation mapping (Hu 2009; Sawaya et al.
2003).These indices are suitable for terrestrial, emergent, and float-
ing vegetation; however, SAV are difficult to detect, because of the
optical complexity of the water column (Silva et al. 2008), espe-
cially in case of hydrilla, which can survive in the water column
up to 10 m deep (Dennison et al. 1993; Rotta et al. 2016). One
of the major factors that affects detection of SAV when using
remote sensing is water clarity (Nelson et al. 2006). Therefore, past
studies used satellite data to estimate water transparency before
SAV mapping (Ma et al. 2008; Shuchman et al. 2013). However,
hydrilla can survive in low-light condition (Bowes et al. 1977;
Langeland 1996), and thus requires additional parameters for its
accurate detection. Therefore, in addition to water clarity, several
studies included depth of SAV colonization and percentage of light

Figure 1. Specimen observation data for 2018 for Hydrilla verticillata (L. f.) Royle from US Geological Survey nonindigenous aquatic species database (US Geological Survey
2018a).
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at maximum depth of colonization for accurate assessment of SAV
species (Canfield et al. 1985; Chambers and Kalff 1985; Dennison
1987; Duarte 1991; Duarte and Kalff 1987; Middleboe and
Markager 1997; Vant et al. 1986). However, these studies were
based on in situ data only, were limited in time and spatial domain,
and were not primarily focused on hydrilla. In the current study,
we aimed to integrate in situ and freely available satellite data to
develop a model that can aid frequent, rapid, accurate, and
synoptic monitoring of hydrilla.

Our overall objective for this study was to develop a model to
map the current extent of hydrilla and identify potential areas of
growth, using Landsat 8 OLI data and in situ data. A sequential
model incorporating in situ water transparency, depth, and light
available through the water column was integrated with satellite
data to determine the potential locations for submerged hydrilla,
following a previous in situ–based study by Kemp et al. (2004).
In the current study, we hypothesized that potential hydrilla loca-
tion would be low in turbidity and hence, possess sufficient light
through water column. We also present seasonal trends in hydrilla
extent, using OLI time-series spatial maps. The variability in
hydrilla distribution was further analyzed by incorporating physi-
cal and meteorological data sets, including water temperature
(WT), precipitation, surface runoff, and net inflow data.

The products from this study can be used to assess current
hydrilla invasion and facilitate adaptivemanagement bymeasuring
the efficacy of control efforts. To our knowledge, this study is the
first to use a comprehensive modeling approach by combining in
situ, physical, meteorological, and satellite data to map the extent
of submerged hydrilla in the southeastern United States.

Materials and Methods

Study site

Lake J. Strom Thurmond (hereafter, Lake Thurmond) is a large
reservoir (288 km2) that was created by the US Army Corps
of Engineers (USACE) in 1951 on the border of Georgia and
South Carolina (82°10’ W to 82°39’ W; 33°34’ N to 34°01’ N;

Figure 2). The lake is monomictic and has a mean depth of
11 m and a hydraulic retention time of approximately 144 d
(USACE 1990). The surface WT ranges from 8 to 30 °C, and ther-
mal and chemical stratification generally occurs in this lake from
April to September (Betsill and Van den Avyle 1994). The environ-
mental conditions of this lake (e.g., temperate climate; long, hot
summer; substrate type) make it susceptible to proliferation of
hydrilla. In 2013, natural resources managers with the USACE
and the Georgia and South Carolina Departments of Natural
Resources (DNRs) estimated hydrilla distribution spans approxi-
mately 11,000 acres of Lake Thurmond, which is about 15% of Lake
Thurmond’s total 71,000 acres of water (USACE 2014). Most
importantly, a disease called avian vacuolar myelinopathy, which
kills local bird species, has been positively identified in hydrilla of
Lake Thurmond, making it a high priority in terms of management
(Wilde et al. 2014). The USACE struggles to produce rapid and
accurate estimates of hydrilla density and coverage in Lake
Thurmond. Therefore, this study was designed to develop accurate
estimations that will allow the USACE to cut costs associated with
time-intensive manual surveying. Results of this work will also aid
assessing the effectiveness of management and control efforts at
Lake Thurmond and other inland water bodies.

The overall process and data involved in different stages of
this study are shown in Figure 3. The major components in the
process included collecting in situ data, downloading satellite data,
preprocessing for data extraction, model calibration and valida-
tion, and implementing the model to predict hydrilla extent and
the seasonal variability through a time-series analysis. Each com-
ponent is described concisely in the following sections.

Data acquisition

The following in situ data were collected from Lake Thurmond on
June 21, 2016: remote sensing reflectance (Rrs) was measured with
an HR-1024i spectroradiometer (wavelength range: 340 to 2500
nm with 1.5-nm spectral resolution; Spectra Vista Corp.,
Poughkeepsie, NY, USA), light transparency was measured in
meters as Secchi disk depth (SDD), and light available was

Figure 2. Study area map showing satellite imagery of Lake Thurmond derived from Landsat 8 Operational Land Imager (OLI) (band 6: SWIR 1; band 5: NIR; band 4: Red).
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measured through the water column (μmol s−1 m−2) with an
underwater quantum sensor LI-192 (LI-COR Inc., Lincoln, NE,
USA). The maximum depth of colonization (Zc) of submerged
hydrilla was measured using the frame on which the underwater
quantum sensor was mounted. Data from 15 different sampling
locations were included in the in situ data set, and coordinates were
acquired for each location using a Garmin eTrex® ×20 handheld
global positioning system. The spectroradiometer collected radi-
ance measurements for wavelengths between 350 and 2,500 nm.
The standard procedure was followed to collect SDD (Green et al.
2010). The underwater quantum sensor was used to measure
downwelling, photosynthetically active radiation (PAR) (μmol s
−1 m−2) at depth intervals of 0.5 m. Parallel to in situ data, satellite
data from the Landsat 8 OLI were acquired from the USGS Earth
Explorer website on the same date corresponding to the study area
and in situ data measurements. Atmospheric and lake conditions
were assumed to be the same for in situ and satellite remote-sens-
ing data because the two data sets were collected within 4 h and the
atmospheric condition was stable throughout the day (i.e., there
were no thunderstorms or scattered clouds). Table 1 includes
the description of the satellite and meteorological data used in this
study. Landsat 8 OLI scenes from October 2015 to June 2016 were
downloaded to examine the seasonal variability and hydrilla
extent. The seasonal variability in hydrilla extent was further ana-
lyzed by incorporating physical and meteorological data from the
North American Land Data Assimilation System (NLDAS),
including monthly surface runoff (NLDAS_NOAH0125_M
v002) (kg m−2) and precipitation (NLDAS_FORA0125_M v002)
(kg m−2) between June 2015 and July 2016, acquired from
NASA’s Giovanni website (NASA Giovanni 2017). The spatial res-
olution of both products is 0.125 ×0.125°. Monthly meanWT data
were collected near Plum Branch in Lake Thurmond for 2011 to
2017 from the USGS website (US Geological Survey 2018b). In

addition, 16 years of net inflow data for Lake Thurmond were
downloaded from the USACE Savannah Water District
Management website for assessing the impact of net inflow on sea-
sonal variability of hydrilla extent (USACE 2018).

Model calibration

Atmospheric Correction of Landsat 8 OLI Imagery. Preprocessing
of satellite data was required before comparing them with in situ
data to correct for any atmospheric interference caused in the sig-
nal received by the sensor. Therefore, Landsat 8 OLI imagery was
corrected for Rayleigh, Fresnel, and aerosol noise contributions fol-
lowing the logic outlined by Mishra et al. (2005) and Dash et al.
(2012), modified for the OLI sensor. This algorithm systematically
converts the 16-bit top-of-atmosphere brightness values into Rrs

and outputs atmospherically corrected data of water pixels.
Data Extraction and Correlation Analysis. The atmospherically

corrected image was imported to NASA’s SeaDAS software
(https://seadas.gsfc.nasa.gov/), which extracted Rrs values from
pixels containing the 15 in situ data locations. To validate the accu-
racy of atmospheric correction, Landsat 8 OLI Rrs values from
band 1 (440 nm) through band 5 (865 nm) were compared with
in situ Rrs values at equal wavelengths. After accuracy assessment,
Rrs data from OLI were correlated with in situ SDDmeasurements
corresponding to all 15 sampling locations to reparameterize an
SDDmodel by Fuller et al. (2004). Fuller et al. (2004) tested various
band combinations of Landsat 5 Thematic Mapper and Landsat 7
Enhanced Thematic Mapper+ data to develop the SDD model.
Therefore, similar spectral bands from the OLI sensor (bands 2,
3, and 4) were used in this study to reparameterize the SDDmodel.

The SDD model was also useful to determine the other two
parameters, Kd and Zc, of submerged vegetation in several previous
studies (Chambers and Kalff 1985; Dennison 1987; Duarte 1991;

Figure 3. Overall methodology showing various processes involved in integrating in situ and satellite data to develop the hydrilla distribution predictive model. Kd, light-attenu-
ation coefficient; PLW, percentage of light available through the water column; Rrs, remote sensing reflectance; SDD, Secchi disk depth; Zc, maximum depth of hydrilla
colonization.
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Duarte and Kalff 1987; Middleboe and Markager 1997; Rotta et al.
2016; Vant et al. 1986). These two parameters (Kd and Zc) were
necessary for developing the hydrilla distribution model.
Therefore, we examined the relationship between SDD and these
two parameters.

First, the Kd derived from PAR measurements [Kd (PAR)],
derived from the LI-COR sensor, was correlated with SDD.
Similarly, the Zc of hydrilla was correlated with SDD at 15 sam-
pling sites. The goal for establishing a relationship among these
three parameters was to determine the PLW following the meth-
odology described by Kemp et al. (2004) (Figure 4). Kemp et al.
(2004) presented two approaches for calculating the PLW and per-
centage of light at leaf level (PLL) (Figure 4; Equations 1 and 2).
However, epiphyte data were not available for this study; therefore,
only the PLW approach was used for creating the hydrilla distri-
bution model, as follows:

PLW ¼ 100� exp �Kd � Zð Þ½ � [1]

PLL ¼ 100� exp �Kd � Zð Þ½ � � exp �Ke � Beð Þ½ � [2]

where Ke is epiphyte attenuation, Be is epiphyte biomass, and Z is
depth. Equations 1 and 2 were developed on the basis of SAV spe-
cies other than hydrilla. But because hydrilla can grow longer in
lower-light environments, several threshold values were experi-
mented for PLW during the model development to capture the full
extent of submerged hydrilla in Lake Thurmond.

Qualitative validation and seasonal variability in hydrilla
extent

The USACE carried out time and labor-intensive field surveys over
multiple days during September and October 2015 to create a map
showing known locations of hydrilla distribution in Lake
Thurmond. This field survey was accomplished with the help of
two environmental agencies (i.e., Georgia Department of Natural
Resources and South Carolina Department of Natural Resources)

Table 1. Summary of the satellite, physical, and meteorological data used in this study.

Data sourcea Product
Temporal
resolution Spatial resolution

No. of bands or
unit of measure Data source(website link)

Satellite
Satellite sensor
Landsat 8 OLI 16 d 30 m 11 USGS Earth Explorer (https://earthexplorer.usgs.

gov/)
Physical and

meteorological
Precipitation NLDAS_FORA0125_M v002 Monthly mean 0.125° ×0.125° kg m−2 NASA Giovanni (https://giovanni.gsfc.nasa.gov/

giovanni/)
Surface runoff NLDAS_NOAH0125_M v002 Monthly mean 0.125° ×0.125° kg m−2 NASA Giovanni (https://giovanni.gsfc.nasa.gov/

giovanni/)
Water temperature Data from fixed site Monthly mean – C USGS (https://waterdata.usgs.gov/nwis/uv?

02193900)
Net inflow Historic project data Monthly mean – CFS USACE (http://water.sas.usace.army.mil/gmap/

historicData.cfm)

aAbbreviations: –, no data; NLDAS, North American Land Data Assimilation System; OLI, Operational Land Imager.

Figure 4. The process involved in calculating percentage of light through water (PLW) and percentage of light at leaf (PLL) [re-created from the study by Kemp et al. (2004)].
Kd, light-attenuation coefficient; SAV, submerged aquatic vegetation; Z, depth.
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and University of Georgia’s Warnell School of Forestry and
Natural Resources (USACE 2016). During this survey, the entire
lake was divided into nine separate survey routes and sample
points were established along the lake’s shoreline. These sampling
points were surveyed for the presence or absence of hydrilla, using
a two-sided metal garden rake with a rope.

After the field survey, the hydrilla locations were mapped in
ArcView software (Esri, Redlands, CA). This map produced by
the USACE was used as a reference to qualitatively validate the sat-
ellite-based hydrilla distribution map produced using the predic-
tive model that used same-month Landsat 8 OLI data from
2015. After the qualitative validation was completed, additional
Landsat imagery from different months was used to observe spa-
tiotemporal distribution of hydrilla and its seasonal trend. In addi-
tion, spatial maps with four input parameters (i.e., SDD, Kd, Zc, and
PLW) were analyzed in parallel and used to create final hydrilla
presence and absence maps. Furthermore, data on seasonal vari-
ability in meteorological and physical factors corresponding to
Lake Thurmond were analyzed to determine the factors’ possible
impact on hydrilla distribution.

Results and Discussion

Model calibration

Landsat 8 OLI–derived Rrs spectra corresponding to 15 sampling
locations are shown in Figure 5a. Variability in Rrs spectra was

attributed to differences in water transparency level at different
sampling locations and was used in reparameterizing the SDD
model developed by Fuller et al. (2004). The reparameterized
SDD model (Equation 3) showed significant correlation
(r = 0.78; P < 0.01) between OLI visible bands (i.e., bands 2, 3,
and 4) and in situ SDD measurements:

ln SDDð Þ ¼ �95:534� band2ð Þ þ 171:4069� band3ð Þ
� 212:118� band4ð Þ þ 0:841359 [3]

LI-COR–derived light attenuation in water column is shown in
Figure 5b. The light-attenuation equations for each sampling loca-
tion (S-01 to S-15) are presented in Table 2 and were used for
deriving Kd (PAR) for each location. A significant difference in
light level at the surface for sampling location S-01 was observed
as a result of cloud cover during measurement (Figure 5b; Table 2).
A significant inverse correlation (r = 0.82; P < 0.001) was observed
between Kd (PAR) derived from LI-CORmeasurements and in situ
SDD (Figure 5c; Equation 4):

Kd PARð Þ ¼ 1:592� SDDð Þ�0:975 [4]

The inverse correlation between Kd and SDD confirmed that
light attenuation was higher for the sampling locations with lower
water transparency. Previous studies also showed an inverse rela-
tionship between Kd and SDD (Table 3).

Figure 5. (a) Landsat 8 (LS8) Operational Land Imager (OLI) derived remote sensing reflectance (Rrs) spectra corresponding to various sampling locations. (b) LI-COR meter–
derived light attenuation with respect to water column depth. (c) Correlation between light-attenuation coefficient (Kd) derived from photosynthetically active radiation (PAR)
measurements [Kd (PAR)] derived from LI-COR data and in situ Secchi disk depth (SDD). (d) Correlation between maximum depth of hydrilla colonization (Zc) and SDD.
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The next stage in the hydrilla predictivemodel was to establish a
relationship between SDD and Zc. A significant positive correla-
tion (r = 0.78; P < 0.001) was observed between SDD and Zc

(Figure 5d; Equation 5), which suggested that hydrilla can colonize
deeper if the transparency level in water column remains high.

Zc ¼ 1:021� SDDð Þ þ 0:378 [5]

Similar positive correlations between SDD and Zc were reported
in previous studies (Table 3).

With Kd (PAR) and Zc values available, the next step was to esti-
mate PLW following the logic of Kemp et al. (2004) (Equation 1).
However, PLW estimates alone were not enough to capture the full
extent of submerged hydrilla accurately. Therefore, a minimum
threshold limit of 10 m for both PLW and depth was implemented
to mask out the hydrilla location. A 10-m threshold was chosen
because hydrilla typically is not found beyond that depth in
Lake Thurmond, according to the USACE. Past studies reported
different threshold values of minimum light requirement for
SAV species, depending on the types of body of water, such as tidal
fresh, oligohaline, mesohaline, and polyhaline (Batiuk et al. 1992;
Dennison et al. 1993; Kemp et al. 2004) (Table 4). In this study,
after experimenting with various threshold values, 13% PLW
was used as the minimum light-requirement threshold to predict

hydrilla location. The 13% PLW threshold was also found suitable
in another study for SAV species in tidal freshwater with a growing
season phenology fromApril toOctober (Kemp et al. 2004) (Table 4).
Lake Thurmond also falls under the freshwater category and has a
similar growing season for hydrilla; hence, the predictivemodel using
a similar threshold developed in this study captured the full extent of
hydrilla distribution and its seasonal variability.

Qualitative validation and seasonal variability in hydrilla
extent

Qualitative comparison between the hydrilla distribution map
created by the USACE and the Landsat 8–derived predictive
map revealed a similar distribution extent for October 2015,
which is the peak growing season for hydrilla in Lake Thurmond
(Figure 6). One exception was the highly turbid region of the Little
River branch, highlighted in Figure 6b, where the PLW model
showed minimum hydrilla presence. This could be because the
model result was derived from one particular date (i.e., October
18, 2015, whereas the USACE hydrilla distribution map corre-
sponds to the extensive field survey conducted in September
and October 2015. The one-time hydrilla map produced by the
USACE involved significant manpower [people from three agen-
cies were involved in the field survey (USACE 2016)], time, and
money. In contrast, the model developed in this study is a one-time
investment (the entire project cost was approximately $10,000)
that can produce hydrilla distribution maps frequently and within
hours once the satellite data become available—without any
additional cost.

After qualitative validation for the month of October, Landsat 8
OLI data from subsequent months were analyzed to determine
hydrilla extent. The qualitative analysis of results corresponding
to SDD and respective true-color Landsat images suggested that
areas with high turbidity (indicated by a brownish color in true-
color images) have low SDD and areas with clear water (dark blue
in true-color images) have high SDD values (Figure 7). These
results validated the SDD model.

The second parameter in the hydrilla predictive model, Kd

(PAR), had an inverse relationship with SDD; hence, the turbid
areas had higher Kd (PAR) values compared with clear water,
for which Kd (PAR) values were lower. Spatiotemporal Zc maps
showed a similar pattern to SDD, validating the linear calibration
result found between SDD and Zc (Figures 5d and 7).

The SDD and Zc spatiotemporal maps captured the dominant
locations of hydrilla (Figure 7, pink represents water with high
SDD and Zc values) but not the full extent of hydrilla distribution.
However, the PLW spatiotemporal maps [which take into account

Table 2. Summary of LI-COR meter reading, Kd (PAR), derived from the light-
attenuation equation, Zc, and SDD measurement recorded at each sampling
location.

Sampling location I0a Kd (PAR) Zc SDD

μmol s−1 m−2 m−1
———m——

S-01 627.22 0.873 2.46 2
S-02 1493.6 1.334 1.76 1.5
S-03 1135.7 1.041 2.31 1.5
S-04 1594.7 1.354 2.25 1.25
S-05 1372.9 1.159 1.25 1.25
S-06 1506.8 0.923 1.98 1.6
S-07 1547.2 0.978 2 1.7
S-08 1650 0.759 2.5 1.75
S-09 1682.5 0.805 2.65 1.9
S-10 1732 1.353 1.3 1.3
S-11 1989 1.122 1.76 1.5
S-12 2049.1 0.966 2.46 2.1
S-13 2077.4 0.674 2 1.85
S-14 1915.5 0.706 2.5 2.1
S-15 2027.5 0.702 2.83 2.5

aAbbreviations: Kd (PAR), light-attenuation coefficient derived from photosynthetically active
radiation measurements; I0, light measured at water surface; PAR, photosynthetically active
radiation; SDD, Secchi disk depth; Zc, maximum depth of hydrilla colonization.

Table 3. Previous studies that found a relationship among Kd, SDD, and Zc,
using in situ data.

Formula for Kda Formula for Zc Reference

Kd=1.96/SDD Zc=2.214 × SDD Vant et al. 1986
Kd = 1.7/SDD Zc=1.094 × SDD Duarte 1991
Kd = 1.7/SDD Zc=0.95 × SDD Dennison 1987
Kd = 1.47/SDD Zc=0.63 × SDD + 1.9 Duarte and Kalff 1987
Kd = 1.46/SDD Zc0.5=1.14 × log(SDD) + 1.32 Chambers and Kalff 1985
Kd = 2.02/SDD Zc=0.95 × SDD + 0.37 Middleboe and Markager 1997

aAbbreviation: Kd, light-attenuation coefficient; SDD, Secchi disk depth; Zc, maximumdepth of
hydrilla colonization.

Table 4. The growing season of SAV and recommended water-column light
requirements for different types of water.a

Salinity regime SAV growing seasonb
Water-column light

requirement

month %
Tidal fresh April–October >13
Oligohaline April–October >13
Mesohaline April–October >22
Polyhaline March–May;

September–November
<22

aKemp et al. 2004.
bAbbreviation: SAV, submerged aquatic vegetation.
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Kd (PAR) and Zc, derived from SDD values] were more suitable to
show the full extent of hydrilla distribution. The spatiotemporal
PLW maps at Zc showed higher values for transparent regions
and lower values for turbid parts of the lake. In this process, deeper
parts of the lake also had high PLW values because of high trans-
parency. This caused the model to predict hydrilla in deeper waters
than it can inhabit. Therefore, a 10-m depthmask was applied after
the 13% threshold value of PLW at Zc to produce final hydrilla dis-
tribution maps. The final maps displayed the spatiotemporal dis-
tribution of hydrilla at full extent (Figure 7).

From analysis of the final hydrilla distribution maps, it was
observed that hydrilla typically starts growing during April in
the northernmost waters of the lake, then spreads southward in
May and June. Hydrilla reached peak distribution during
October, began retreating in the following months, and disap-
peared completely in February. These results suggested that turbid-
ity could be a limiting factor for hydrilla survival, because the
lowest light levels were observed during February, due to high tur-
bidity. Therefore, physical and meteorological factors, including
surface runoff, precipitation, and net water-inflow data were
included in additional analysis; these factors are known to affect
turbidity level of the lake and subsequently light availability in
the water column.WT data were also included in additional analy-
sis because it could be another major factor controlling the season-
ality of hydrilla.

Seasonal analysis of precipitation and surface runoff for
Lake Thurmond between July 2015 and June 2016 revealed
that December 2015 was associated with the highest level of pre-
cipitation (257.51 kg m−2), which brought heavy surface runoff
during this month (99.46 kg m−2) and January (surface runoff,

120.01 kg m−2) (Figure 8a). The surface runoff was negligible
during summer months (June to September), because of the dry
surface coupled with low precipitation; hence, the turbidity level in
Lake Thurmond was observed to be lowest in the following month,
October 2015 (Figure 7), allowing sufficient light to be available in
the water column for proliferation of hydrilla. However, surface
runoff started increasing in November 2015, after the precipita-
tion; thus, the turbidity level also started increasing and reached
its highest level during January and February 2016. With limited
light conditions in the water column for turbid regions of the lake,
and the extent of hydrilla began diminishing after October and
reached its lowest level in February 2016 (Figure 7).

Another parameter corresponding to the Lake Thurmond,
monthly net inflow (2001 to 2016), was analyzed (Figure 8).
Again, the lowest mean net inflow (3,821.29 CFS) occurred in
October, compared to other months (Figure 8b). In addition, a sea-
sonal trend in mean monthly net inflow increased from November
through March and then decreased from April to October
(Figure 8b). This was in contrast to the seasonal trend found for
hydrilla distribution in Lake Thurmond, where hydrilla extent
started decreasing from November through March and then
started to grow again in April and reached peak level in
October. Therefore, apart from light availability in the water col-
umn, net inflow can also affect the proliferation of hydrilla in Lake
Thurmond. Furthermore, analysis of WT data revealed July as the
warmest month (mean WT, 30.91 C) and January as the coldest
(meanWT, 10.29 C) (Figure 8b). It has been suggested in previous
studies thatWT range should be between 20 and 27 C for optimum
growth of hydrilla, and the maximum temperature hydrilla can
withstand is 30 C (Jain and Kalamdhad 2018; Steward and Van

Figure 6. (a) Map of Lake Thurmond created by the US Army Corps of Engineers showing known locations of hydrilla along the shoreline. (b) Landsat 8 Operational Land Imager
(OLI)-derived map showing predicted hydrilla locations.
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1987). Optimum growth of hydrilla in Lake Thurmond was
observed during October, when temperature range was within
the 20–27 C range (mean WT, 22.99 C). The WT dropped sharply
after October resulting in significant reduction in hydrilla spatial
extent. These results show WT is a major controlling factor asso-
ciated with seasonality of hydrilla distribution in Lake Thurmond.

Overall, themethodology developed in this study was successful
in accurately mapping hydrilla, projecting its seasonal extent, and,
therefore, predicting potential areas of growth. The model predicts
ideal habitat for hydrilla in waters featuring high SDD, low values
of Kd (PAR), and, consequently, both high Zc and PLW. However,
due to limited spectral bands, Landsat 8 OLI is unable to isolate
hydrilla from other species of aquatic vegetation. Therefore, the
models developed in this study will be most useful in bodies of
water where hydrilla is known to be the most prevalent species
of aquatic vegetation. Future work could use hyperspectral satel-
lites to measure hydrilla at the wavelengths where it is most easily
identified: 725 and 818 nm (Blanco et al. 2012). The use of a hyper-
spectral sensor could potentially differentiate hydrilla from other
submerged vegetation, which would be useful in lakes where
hydrilla is not the dominant aquatic vegetation species. Another
limitation with Landsat 8 OLI data is the satellite’s poor revisit time
of 16 days. The European Space Agency’s Sentinel 2-MSI satellite
sensor has similar band characteristics as Landsat 8 OLI but with
higher temporal (5-day revisit period) and spatial (up to 10 m)
resolution (Page et al. 2018). In future studies, Sentinel-2 data

could be used to further validate the results observed in this
research until space-borne hyperspectral data become available.
Although the predictive model developed in this study can be used
to accurately map and predict hydrilla distribution, it could be
refined further by incorporating more data. For example, nutrient
and epiphyte biomass data for the study area could be used to
derive PLL, which would provide a more accurate estimation of
hydrilla distribution, because this species can grow in low-light
conditions (Kemp et al. 2004). Additional improvements could
be made by incorporating benthic substrate and soil-type data.

Mapping of hydrilla spatial extent at regular intervals could be
highly useful for lake management. The annual maintenance cost
for invasive aquatic weeds within the United States has been
estimated to be approximately $110 million (Pimentel et al. 2005).
For hydrilla management alone, Florida state agencies have spent
approximately $250 million over the past 30 years in Florida waters
(Madsen and Wersal 2017). A significant proportion of the money
can be saved by implementing effective monitoring techniques
such as the one developed in this study, which can help identify
the potential locations of hydrilla as early as possible and be used
to evaluate the success or failure of past biological control projects.
The model developed in this study was a one-time investment of
approximately $10,000 that can save time and money in routine
monitoring of hydrilla as soon as satellite imagery becomes available.
In the past, it took more than a month to produce a one-time
hydrilla distribution map for Lake Thurmond with the help of

Figure 7. Spatiotemporal variability in Landsat 8 Operational Land Imager–derived true-color images, Secchi disk depth (SDD), light-attenuation coefficient (Kd) derived from
photosynthetically active radiation, maximum depth of hydrilla colonization (Zc), percentage of light through water (PLW) at Zc, and hydrilla distribution (presence/absence)
maps. RGB, red, green, blue.
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multiple environmental agencies performing labor intensive and
expensive field work. Freely available satellite data now can be proc-
essed in hours with open-access image-processing tools to prepare
such maps. Currently, the USACE has the geographic information
system expertise to run the hydrilla model developed in this study
with simple instruction, and this has already been communicated
personally with theUSACE at the Lake Thurmond office. Themodel
can be integrated into an open-access, cloud-based interface
(i.e., Google Earth Engine tool) so anyone can use and share it with
others. Although the results presented in this study were specific to
Lake Thurmond, the methodology can be replicated to other inland
water bodies. For smaller waterbodies, Sentinel 2-MSI (10 m),
RapidEye (5 m), PlanetScope (3 m), or WorldView-3 (1.24 m) data
can also be used. Management agencies can use the satellite-derived
products not only to plan future removal efforts of hydrilla but
also to evaluate and adaptively change their current mitigation
efforts.
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