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Motivated by the importance of stratified shear flows in geophysical and environmental
circumstances, we characterize their energetics, mixing and spectral behaviour through
a series of direct numerical simulations of turbulence generated by Holmboe wave
instability (HWI) under various initial conditions. We focus on circumstances where
the stratification is sufficiently ‘strong’ so that HWI is the dominant primary instability
of the flow. Our numerical findings demonstrate the emergence of self-organized
criticality (SOC) that is manifest as an adjustment of an appropriately defined
gradient Richardson number, Rig, associated with the horizontally averaged mean
flow, in such a way that it is continuously attracted towards a critical value of
Rig∼ 1/4. This self-organization occurs through a continuously reinforced localization
of the ‘scouring’ motions (i.e. ‘avalanches’) that are characteristic of the turbulence
induced by the breakdown of Holmboe wave instabilities and are developed on the
upper and lower flanks of the sharply localized density interface, embedded within
a much more diffuse shear layer. These localized ‘avalanches’ are also found to
exhibit the expected scale-invariant characteristics. From an energetics perspective,
the emergence of SOC is expressed in the form of a long-lived turbulent flow
that remains in a ‘quasi-equilibrium’ state for an extended period of time. Most
importantly, the irreversible mixing that results from such self-organized behaviour
appears to be characterized generically by a universal cumulative turbulent flux
coefficient of Γc ∼ 0.2 only for turbulent flows engendered by Holmboe wave
instability. The existence of this self-organized critical state corroborates the original
physical arguments associated with self-regulation of stratified turbulent flows as
involving a ‘kind of equilibrium’ as described by Turner (1973, Buoyancy Effects in
Fluids, Cambridge University Press).
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1. Introduction
Over a century of study of stratified shear flows, as pioneered by Taylor (1915),

has yet left a number of important questions unanswered regarding the mysterious
properties of such geophysically ubiquitous flows: from their mixing properties
(Linden 1979; Peltier & Caulfield 2003; Ivey, Winters & Koseff 2008; Gregg et al.
2018) to their anisotropic layered ‘pancake’ structures (Lilly 1983; Lindborg 2006).
In particular, the properties of stratified turbulence under the influence of strong
stratification are especially not well understood, though of course care must be taken
in the definition and appreciation of what precisely is meant by ‘strong’.

Under what he referred to as ‘very stable’ conditions, Turner (1973) has suggested
(based on the Monin–Obukhov similarity theory) that, in wall-bounded shear flows,
the wall distance becomes irrelevant and stratified layers characterized by a constant
flux are retained. Turner has further argued that the flow in this strong stratification
limit is in ‘a kind of equilibrium, self-regulated’ state, this being a state in which
flow quantities such as the gradient Richardson number, Rig, and the flux Richardson
number, Rif (an approximation to the mixing efficiency), are internally regulated.

The local strength of the stabilizing density stratification relative to the local
destabilizing influence of the velocity shear in stratified flows, whether or not they
are turbulent, may be formally characterized by the gradient Richardson number, Rig,
which may be defined as

Rig(z, t)=
N2

S2
=
(−g/ρr)∂ρ/∂z
(∂u/∂z)2

, (1.1)

where ρ(z, t) and u(z, t) denote respectively the horizontally averaged and (generally)
time-dependent vertical profiles of mean flow density and velocity, g is the
gravitational acceleration and ρr is a hydrostatic reference density. Usually Rig
exhibits significant variation with both large and small local values. Hence, it may
be argued that it is more appropriate to classify a particular flow as being ‘strongly’
stratified in terms of a ‘bulk’ Richardson number Rib, defined as

Rib =
gρ0d
ρrU2

0
, (1.2)

in which ρ0 and U0 represent characteristic density and velocity changes across a
characteristic length d whose precise definitions depend on the flow geometry. Note
that it is naturally possible that a flow with a high value of Rib still has non-trivial
regions of the flow where Rig(z, t) is close to zero for significant periods of time.

Either in a bulk-averaged sense or as a pointwise value, in the literature, there
are often connections drawn with the critical value of Ricrit

g = 1/4 based on the
inviscid linear theory of Miles and Howard (Miles 1961; Howard 1961) who first
demonstrated that the necessary condition for linear instability of a two-dimensional
inviscid and steady stably stratified non-turbulent parallel flow is that Rig < 1/4
somewhere within the flow. Indeed, such connections have been made, even when
the underlying assumptions of the Miles–Howard theoretical analyses categorically
do not apply. It is perhaps not surprising that, even in turbulent flows, relatively
‘small’ values (i.e. close to 1/4) of a Richardson number should emerge, as such
values can be loosely thought of as being characteristic of stratified flows where the
stratification has a weak but non-trivial effect on the flow’s evolution. For example,
a ‘stationary’ characteristic value of Rig ∼ 0.21 (largely independent of both time
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and the direction normal to the mean flow) has been reported on the basis of direct
numerical simulations (DNS) of the turbulence generated by stationary homogeneous
stratified shear flows (Rohr et al. 1988; Holt, Koseff & Ferziger 1992; Shih et al.
2000). More recently, a similar stationary value of Rig has also been found in
simulations of stratified plane Couette flow for sufficiently strong stratifications and
sufficiently high Reynolds numbers (Zhou, Taylor & Caulfield 2017). It is postulated
in Zhou et al. (2017) that such a characteristic value of Rig might be associated with
the existence of a turbulently balanced equilibrium state (according to the classic
Monin–Obukhov similarity theory), and that the proximity of this characteristic value
to the Miles–Howard criterion might be ‘fortuitous’. Furthermore, in the context of
oceanic observations, Rig ∼ 1/4 has been reported as a measured characteristic of
equatorial undercurrent turbulence and this has been attributed to the attraction of the
turbulence to a state of ‘marginal’ instability (Thorpe & Liu 2009; Smyth & Moum
2013). Similarly, bulk Richardson numbers Rib ' 0.3 have been observed throughout
the entire length of the Burlington Ship Canal connecting Hamilton Harbour and
Lake Ontario (see Lawrence et al. 2004).

The above-mentioned, largely physically based and qualitative arguments presented
by Turner (1973) pre-date but appear to be deeply connected to the more general
concept of self-organized criticality (SOC), originally proposed by Bak, Tang &
Wiesenfeld (1987) in the context of dynamical systems (see Aschwanden et al.
(2016) for a recent review and Pruessner (2012) for a more in-depth introduction
to the SOC literature). To set the stage for a discussion of the applicability of
SOC to the understanding of the turbulent flows that are of interest in the present
context, it is useful to briefly reprise the basic characteristics of the sandpile ‘thought
experiment’ in terms of which the basic idea is usually discussed. Consider a sandpile
that is formed by slowly dropping grains of sand onto a flat surface. The sandpile
slope gradually increases to a critical value at which point the system is ‘marginally
stable’ and beyond which further addition of sand grains will locally destabilize the
pile through the occurrence of local ‘avalanches’ until the critical marginal state is
restored. SOC has been observed in many slowly driven, non-equilibrium systems
which involve spatiotemporal complexity that evolves, without external tuning, into a
scale-invariant state (Pruessner 2012).

SOC has been shown to be characteristic of a wide range of physical systems,
although it remains relatively unexplored in the context of geophysical fluid turbulence.
One exception to this concerns the thermal turbulence produced in a variant of the
classical Bénard problem of thermal convection, which involves a highly unstable
layer of fluid that is heated from below and cooled from above and which also
undergoes an endothermic phase transition at a particular depth within the layer
(Solheim & Peltier 1994). The thermal turbulence in this flow is characterized by
episodic transitions between layered flow with strongly inhibited mass flux across
the phase transition interface and intense convective mixing throughout the domain.
During the layered condition, a strong internal thermal boundary layer is established
across the phase transition interface, which becomes increasingly well developed as
the layered flow evolves and eventually collapses through local convective instability
of this boundary layer. The analogy here to the critical angle of repose of the sandpile
is with the critical Rayleigh number associated with this internal boundary layer
instability. Indeed, it was established by Butler & Peltier (1997) that the avalanches
of mass across this internal interface continuously restore the system to its critical
state and that these avalanches exhibit self-similar scaling, a necessary characteristic
of SOC behaviour. A more recent example of an appeal to SOC and the sandpile
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Self-organized criticality in strongly stratified mixing layers 231

analogy to understand the observed characteristics of a turbulent geophysical fluid
flow has been that provided by Smyth & Moum (2013) and Smyth et al. (2013),
who described observations of equatorial undercurrent turbulence as being in an
apparent state of ‘marginal instability’. Their appeal to the SOC analogy was in the
context of density-stratified turbulent flows forced by vertical shear of the horizontal
undercurrent velocity. Our interest in the present paper is in investigating whether the
SOC concept can be applied to an unforced stratified shear flow, far from boundaries,
particularly when the stratification is ‘strong’, in a sense we will now make precise.

There is a particular class of ‘strongly stratified’ shear flows that we wish to
consider here. The stratification has two key characteristics of ‘strength’. First,
there must be significant variation in Rig(z, t), with the existence of a relatively
thin ‘interface’ of substantially enhanced density gradient (and hence ‘strong’ local
stratification neighboured by weaker stratification) embedded within a relatively
deeper shear layer. Second, the overall bulk stratification (quantified by Rib) must
be sufficiently high so that, in combination with the presence of significant vertical
variation in Rig, the flow is likely to become unstable due to a normal mode instability
known as the Holmboe wave instability (HWI) (Holmboe 1962). This instability can
be interpreted as arising due to a resonant interaction of a vorticity wave (or a
Rayleigh wave) localized at the edge of the shear layer, and an interfacial gravity
wave (see e.g. Baines & Mitsudera 1994; Caulfield 1994; Guha & Lawrence 2014),
localized where the density gradient is relatively large. HWI, therefore, is an instability
that relies inherently on the presence of (relatively strong) stratification in this very
specific sense. On the other hand, the classic Kelvin–Helmholtz instability (KHI),
arising (in the non-singular case of a finite-depth shear layer) due to a resonant
interaction between two vorticity waves localized at either edge of the shear layer,
is monotonically stabilized by increasing stratification, and indeed does not grow
under arbitrarily large levels of stratification, whereas, provided Rig varies in the
above-mentioned way, HWI is predicted to occur (for some range of wavenumbers)
for arbitrarily high values of Rib, and thus for ‘strongly’ stratified shear flows.

Considering idealized symmetric two-layer configurations with a relatively ‘sharp’
density interface embedded at the midpoint of the shear layer, Rig becomes less
than 1/4 above and below the interface (thus not violating the Miles–Howard
criterion), leading to the emergence of HWI, manifest at finite amplitude as two
counter-propagating cusped waves on the interface, induced by counter-propagating
vortices above and below the interface (see, for example, the early experimental
observations of Macagno & Rouse (1961) and Thorpe (1968), and the early
numerical observations of Smyth, Klaassen & Peltier (1988), and for a more detailed
historical discussion see Lefauve et al. (2018)). Provided that the Reynolds number
is sufficiently large, HWI is itself subject to a host of secondary instabilities which
mediate the transition to a fully turbulent state that supports a −5/3 power-law
kinetic energy spectrum for horizontal scales in excess of the Ozmidov scale (as
defined below) (Salehipour, Caulfield & Peltier 2016). Although many flows, both in
nature and in the laboratory, exhibit some asymmetry, with the sharp density interface
offset from the midpoint of the shear layer, leading to the favouring of one or other
of the cusped waves (as theoretically predicted by Lawrence, Browand & Redekopp
(1991) and experimentally observed by, among others, Zhu & Lawrence (2001)), we
consider symmetric flows here for simplicity. The ensuing turbulence above and below
the initial density interface associated with the breakdown of the primary instabilities
appears to be largely decoupled from the turbulence on the other side of the interface,
and so it is natural to consider a symmetric flow to obtain as much turbulence data
as possible.
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In Salehipour et al. (2016), we compared the longevity of the turbulence induced
by KHI and HWI and found that the turbulence induced by HWI is noticeably longer-
lived than that induced by KHI: in some sense the KHI ‘flares’, then rapidly dies,
while HWI ‘burns’, decaying more slowly. The difference in their respective life spans
of turbulence can be attributed to the mechanics and localization of mixing that is
specific to each primary instability mechanism. While mixing occurs most prominently
in KHI due to a vigorous ‘overturning’ of the relatively weak density interface by the
primary KH ‘billows’, HWI-induced mixing is localized at the flanks of the relatively
strong or sharp interface and is characterized by ‘scouring’ motions, associated with
the turbulence arising from the breakdown of the primary counter-propagating vortices.
Figure 1 illustrates these two key qualitative differences (of localization and duration
of turbulence) using the results associated with two DNS that will be further analysed
in what follows. The temporal evolution of vertical profiles of horizontally averaged
turbulent dissipation ε ′(z, t) is illustrated in figure 1, where ε ′(z, t) is defined as

ε ′(z, t)= 2νs′ijs
′
ij, (1.3)

in which ν is the kinematic viscosity, s′ij = (∂u′i/∂xj + ∂u′j/∂xi)/2 is the disturbance
strain-rate tensor and u′ = (u′, v′, w′) represents the perturbation (away from the
horizontally averaged mean) velocity field. The relatively slow evolution of HWI,
driven by localized scouring motions, that leads to a long-lived turbulent state might
be contrasted with the relatively sudden burst of KHI into turbulence. This key
characteristic of HWI is in accord with that required for a complex system to be
self-organized towards a critical point, and thus we may conjecture a priori that
flows unstable to HWI, rather than to KHI, are conceivably candidate flows that
might support SOC.

The goal of the present paper is to investigate the validity of this conjecture
especially in connection to the earlier ideas for ‘strongly stratified’ flows envisioned
by Turner (1973). A related fundamental question is whether the proximity of the
mean turbulent flow characteristics to a critical value of Rig∼ 1/4 in both observations
and numerical simulations, as discussed above, is fortuitous (as postulated by Zhou
et al. (2017)) or perhaps speaks to a more universal behaviour that is inherently
connected to internal regulation of the flow dynamics. A key concept is that the
classification of a flow as being ‘strongly stratified’ must be done with great care.
As described above, we refer to a shear flow as being ‘strongly stratified’ in a very
particular sense corresponding to when the initial velocity and density distributions
are such that there is an interfacial region of locally high Rig, and also the overall
value of Rib is sufficiently high (and indeed maybe greater than 1/4) so that the flow
is susceptible to primary HWI. We find that such flows with relatively large values of
Rib can still have Rig ∼ 1/4 over much of the shear layer while the flow is turbulent.
Therefore, while globally the flow might be thought to be strongly stratified, locally
the stratification is not sufficiently strong to suppress vigorous turbulence, and indeed,
as we will demonstrate, the flow locally self-organizes to a critical stratification such
that Rig ∼ 1/4.

Thus, we seek herein to investigate quantitatively whether SOC emerges under
strongly stratified conditions (in the above sense) following the turbulent breakdown
of HWI. For this purpose we study a series of turbulent flows induced by HWI and
aim to understand and characterize (i) the development of a ‘kind of equilibrium’ (as
proposed by Turner (1973)) in these flows, (ii) the self-regulation of Rig throughout
the flow evolution, (iii) the self-regulation of turbulence energetics and in particular
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FIGURE 1. The variation with time of the vertical structure of the horizontally averaged
turbulent dissipation ε ′(z, t) (as defined in (1.3)) due to (a) KHI and (b) HWI. Vertical
scales are non-dimensionalized with d, the initial shear layer half-depth, while time is
non-dimensionalized with the advective time scale d/U0, where U0 = 1U/2 is half the
velocity difference across the shear layer (see (2.1)). Only times subsequent to t2d (the
time when the spanwise-averaged perturbation is maximized) are plotted (see Salehipour,
Peltier & Mashayek (2015) for further details).

self-regulation of a key (and controversial) measure of the ‘efficiency’ of mixing, and
finally (iv) the emergence of scale invariance. To explore these issues, the remainder
of this paper is organized as follows. In § 2, we briefly describe a series of DNS of
HWI and introduce the quantities required for characterization of the mean flow and
energetics of the stratified turbulence produced by flow transition. We discuss our
results in § 3, while in § 4 we summarize our conclusions.

2. Methodology
We consider the canonical choice of hyperbolic tangent initial velocity and density

distributions,

u(z, 0)=U0 tanh
( z

d

)
, ρ(z, 0)= ρ0

[
1− tanh

( z
δ

)]
, (2.1a,b)

in the Boussinesq approximation (with a linear equation of state) such that ρ0� ρr
(note that here density represents departures from a hydrostatic state associated with
ρr). In (2.1) U0 = 1U/2 denotes half the total velocity difference across the shear
layer thickness of total depth 2d. Similarly ρ0 = 1ρ/2 is half the total density
difference across the density layer thickness of total depth 2δ. Besides the bulk
Richardson number, Rib (as defined previously in (1.2), sometimes also denoted as
J), there are three additional important non-dimensional parameters that govern the
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non-dimensional Boussinesq equations: the (initial) Reynolds number Re0, the Prandtl
number Pr, and the initial scale ratio R, defined altogether as

Rib =
gρ0d
ρrU2

0
, Re0 =

U0d
ν
, Pr=

ν

κ
, R=

d
δ
, (2.2a−d)

where κ is the value of molecular thermal diffusivity. For comparison with other
numerical, experimental and observational analyses, it is important to note that Re0

is defined using half the total shear layer depth and half the total velocity difference
across the shear layer. In particular, it is important to appreciate that the relatively
long-lived turbulent state considered here for flows primarily susceptible to HWI
relies critically on the Reynolds number of the flow. As discussed in more detail in
Salehipour et al. (2016), the behaviour of flows at Re= 500 is qualitatively different
from the truly turbulent flows that develop for Re0 > 4000. In this paper, we choose
Re0= 6000, and so the inherently turbulent flows are qualitatively different from those
of previous studies such as Smyth & Winters (2003), where the Reynolds number is
20 times smaller, namely Re0 = 300 (using our convention), and so the flow is much
more strongly affected by viscosity.

For our choice of density and velocity profiles defined in (2.1), the initial value
of the gradient Richardson number at the midpoint of the shear layer where z = 0,
Rig(0, 0) (denoted by Rig(0) for brevity), is related to Rib and R through

Rig(0)= RibR. (2.3)

Crucially, as noted by Smyth et al. (1988), for sufficiently ‘sharp’ density interfaces
with R > 2, Rig(0) is the maximum value of Rig(z, 0) across all values of z, and
therefore flows with high R can be susceptible to HWI for arbitrarily large values of
Rib, while conversely for flows with O(1) values of R, the primary KHI is suppressed
when Rig(0)∼ Rib > 1/4.

We employ DNS of the three-dimensional governing equations under the Boussinesq
approximation using the spectral element solver, Nek5000 (Fischer 1997). The flow is
assumed to be periodic in the horizontal plane while the top and bottom boundaries
are free-slip and impermeable for the velocity fields and insulating for the density field.
For details of the numerical methodology, boundary conditions and simulation set-up,
the interested reader is referred to Salehipour et al. (2015, 2016).

Table 1 lists the initial conditions for various cases of HWI as well as a single case
of KHI that will be discussed in this paper. Note that, except for the KHI simulation
in table 1, which has been reported previously (Salehipour & Peltier 2015), the
remaining DNS analyses associated with HWI have not been described previously
in the literature. Note also that the KHI simulation employed differs from case
R3-J016 only in terms of the initial thickness ratio of the shear and stratified regions
(i.e. R = 1 for KHI and R =

√
8 for HWI). Furthermore, in our discussion below,

three characteristic times during the flow evolution will be employed. The time t2d

represents the time associated with the maximum amplitude of the spanwise-averaged
perturbation, while t3d denotes the characteristic time of the maximum amplitude of
the inherently three-dimensional deviation from this perturbation (as defined precisely
in Salehipour et al. (2015)). This time may also be thought of as an identifier of
the onset of a fully turbulent stage in the flow evolution. Finally, the time trl marks
the onset of a relaminarization stage, defined here as the time when the buoyancy
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Sim. Rib R Rig(0) σr λ t2d t3d trl Nx Ny Nz Nc
z

KHI 0.16 1 0.16 0.078 14.27 92 128 206 127 25 116 88
R3-J016 0.16 2.83 0.45 0.027 16.15 164 222 318 145 26 116 88
R5-J016 0.16 5 0.8 0.078 9.67 70 130 238 87 26 116 88
R10-J016 0.16 10 1.6 0.102 7.85 58 110 210 71 26 116 88
R25-J016 0.16 25 4 0.104 7.76 76 124 212 107 39 164 132
R5-J008 0.08 5 0.4 0.074 11.64 74 104 418 105 26 116 88
R10-J008 0.08 10 0.8 0.103 4.69 56 110 364 64 26 116 88
R5-J032 0.32 5 1.6 0.071 7.14 72 134 166 85 26 116 88
R10-J032 0.32 10 3.2 0.083 5.93 64 130 172 54 26 116 88

TABLE 1. Details of the three-dimensional DNS in which the total grid points are
approximately p3NxNyNz, where p = 10 is the order of Lagrange polynomial interpolants
and Nx, Ny and Nz denote the number of spectral elements within the horizontal (Lx),
spanwise (Ly) and vertical (Lz) extents of the computational domain. The final column
Nc

z represents the number of elements within a central region of the domain with height
Lc

z =10. Outside of Lc
z , the adjacent elements of the grid are gradually stretched by a factor

of 1.25 %. In all these simulations, the initial Reynolds number Re0 =U0d/ν = 6000 and
Pr= ν/κ = 8, Lx = λ, Ly = 3 and Lz = 30. In column 5, σr is the real part of the growth
rate of the primary instability with a wavelength λ. The times t2d, t3d and trl have been
defined in the text.

Reynolds number (also sometimes referred to as the turbulence intensity parameter)
decreases to Reb 6 7. Here Reb is defined as

Reb =
〈ε̄ ′〉

ν〈N2〉
, (2.4)

using the buoyancy frequency as defined in (1.1). This numerical value is consistent
with the value proposed by Ivey et al. (2008) for stratified turbulence being in the
‘molecular’ regime. Note that everywhere in this paper 〈·〉 and ·̄ denote respectively
vertical and horizontal averaging over the entire computational domain.

These characteristic times are also reported in table 1 for all the DNS cases studied
herein. For all the simulations we choose Re0= 6000 and Pr= 8. As demonstrated in
Salehipour et al. (2016), the character of the ‘turbulence’ is qualitatively different at
smaller Re0. Also Pr= 8 is approximately characteristic of thermally stratified water,
and R >

√
8 is sufficiently large that such flows are generically unstable to HWI

(Smyth et al. 1988).
We may also define two non-dimensionalized integral length scales associated with

the time-evolving shear and density layers, `u and `ρ , as (Salehipour et al. 2016)

`u(t)=
∫

z
(1− u2) dz, `ρ(t)=

∫
z
[1− (ρ − 1)2] dz, (2.5a,b)

where u and ρ represent non-dimensional, time-dependent velocity and density profiles
of the background mean flow. Note that, at t = 0, `u(0)/`ρ(0) = d/δ = R because
u(z, 0) and ρ(z, 0) are initially defined in terms of hyperbolic tangents, as in (2.1).
Now, Reb (as defined in (2.4)) can also be interpreted as a ratio of two key physical
length scales: the above-mentioned Ozmidov scale `O, the largest vertical turbulent
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scale essentially unaffected by stratification, and `K , the classical Kolmogorov length
scale, as

Reb =

(
`O

`K

)4/3

, `O = α

(
〈ε̄ ′〉

[〈N2〉]3/2

)1/2

, `K = α

(
ν3

〈ε̄ ′〉

)1/4

, (2.6a−c)

where the scale factor α = (`u/Lz)
1/4 has been introduced to remove the scale

dependence of the vertical averaging on computational domain size. As discussed
in more detail in Salehipour et al. (2016), both the regions where the dissipation
rate and the buoyancy frequency are substantially different from zero are typically
concentrated in [−`u/2, `u/2], whereas the volume average is over the whole vertical
domain [−Lz/2, Lz/2], the extent of which is chosen precisely so that the far-field
regions are quiescent, with no boundary effects.

In general, the mean flow may be distinguished from the perturbation component by
employing (as mentioned above) horizontal averaging indicated by an overbar, which
yields

u(z, t)= u(x, y, z, t), u′(x, y, z, t) = u(x, y, z, t)− u(z, t), (2.7a,b)

ρ(z, t)= ρ(x, y, z, t), ρ ′(x, y, z, t)= ρ(x, y, z, t)− ρ(z, t). (2.8a,b)

In the remainder of this section, we will drop the explicit representation of temporal
and spatial dependence for brevity.

An equilibrium state of stratified turbulence may be achieved when dEST/dt ∼ 0,
where EST is the total energy budget of the stratified turbulence. Unlike homogeneous
unstratified turbulence, EST comprises both the turbulent kinetic energy K′ and the
available potential energy PA, i.e.

EST =K′ +PA. (2.9)

The (volume-averaged) perturbation kinetic energy (associated with both two- and
three-dimensional perturbations) may be defined as

K′ = 0.5〈u′ · u′〉. (2.10)

The (volume-averaged) available potential energy PA may be identified as the
difference between the total potential energy, P , and a reference background potential
energy, PB, associated with a notional state that is statically stable and obtained
by a continuous adiabatic rearrangement of the instantaneous density field, ρ∗(z)
(Winters et al. 1995; Caulfield & Peltier 2000). Potential energy PA is available to
be converted back into either K′ or PB. These various (volume-averaged) components
are defined by

PA =P −PB = Rib〈(ρ − ρ∗) z〉. (2.11)

The required ‘sorting’ procedure to find ρ∗(z) has been implemented in parallel
as described in Salehipour et al. (2015) for application on distributed-memory
high-performance computing clusters. All the simulations to be reported herein
have been performed on a Blue Gene/Q system.
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To investigate dEST/dt, we require the evolution equations for both K′ and PA. For
our closed, horizontally periodic system, these equations may be written as (Salehipour
& Peltier 2015)

d
dt

EST = P−M−D, (2.12)

d
dt
K′ =−B+ P−D,

d
dt
PA =B−M, (2.13a,b)

where the shear production due to the interaction of mean shear with Reynolds
stresses, P, the buoyancy flux, B, the turbulent viscous dissipation, D, and irreversible
mixing, M, are defined as (Salehipour & Peltier 2015)

P=−
〈
∂u
∂z

u′w′
〉
, B=

g
ρr
〈 ρ ′w′ 〉, D= 〈 ε ′ 〉 = 2ν〈 s′ijs′ij 〉, M=

dPB

dt
−Dp,

(2.14a−d)

in which u′ = (u′, v′,w′). Also Dp = κ〈N2
〉 represents the diffusive rate of increase in

PB in the absence of macroscopic motions.
Based on (2.12), we may now define a quantitative measure for the approach

of stratified turbulence towards equilibrium, i.e. when dEST/dt ∼ 0, by defining the
parameter F as

F =
P−M

D
. (2.15)

(See also Holt et al. (1992) and Strang & Fernando (2001) for similar definitions.) In
terms of this parameter, turbulence approaches equilibrium when F ∼ 1, while the
turbulence may be considered to be growing or decaying when F > 1 or F < 1
respectively. The numerator of this parameter captures the residual turbulent kinetic
energy production after irreversible conversion into potential energy through mixing,
while the denominator is the viscous dissipation rate. Therefore, when this quantity is
close to one, the flow is in equilibrium with viscous dissipation doing ‘just enough’
to ensure EST neither grows nor decays.

3. Results
After a visual characterization of the DNS results in what follows, we will further

analyse the induced turbulent flow in order to characterize the emergence of SOC
and to discuss the implications of SOC for turbulence energetics and mixing within
stratified shear flows.

3.1. Evolution of Holmboe wave instability
The growth and collapse of HWI for three of the simulations listed in table 1 are
illustrated in figure 2. Cross-sections of the density distribution at the spanwise
midplane of these three-dimensional flows are plotted at three different times. It
is evident from figure 2(a,d,g) (near t = t2d, see table 1) that increasing both
Rib and R has noticeable and complicated effects on the form and shape of the
saturated primary HWI. The observed ‘braid’ and ‘billow’ structure in figure 2(a)
is somewhat reminiscent of KHI. Therefore, perhaps unsurprisingly, it appears that
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t = 76(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

t = 72

t = 72

t = 90

t = 90

t = 74

t = 104

t = 130

t = 126

2.0
®

1.5

1.0

0.5

0

FIGURE 2. Contour plots of density evolution at the indicated non-dimensional times
for simulations R5-J008 (a–c), R5-J032 (d–f ) and R10-J032 (g–i) on the x–z plane at
the spanwise midpoint of the computational domain. The vertical extent in each panel
is limited to −2.5d 6 z 6 2.5d (Lz = 30d). The horizontal extents in (a–c) illustrate
their corresponding Lx while x-periodicity is invoked in other panels to result in identical
horizontal extent (and hence aspect ratio) for all the panels. Refer to table 1 for the
characteristic times associated with each simulation.

HWI at Rib = 0.08 is close to the transition between KHI and HWI (see Smyth &
Peltier (1989) and Hogg & Ivey (2003) for further discussion), while at Rib = 0.32
the interface remains close to horizontal (in particular there is no ‘braid’ between
adjacent ‘billows’), with the interface being perturbed by ‘wisps’, ejected from
interfacial cusp-shaped counter-propagating waves, apparently induced by vortices
above and below the interface. Increasing R through sharpening the density interface
(equivalent to reducing `ρ(0) in (2.5)) appears to enhance the characteristic ‘wisping’
further, with more complex near-interface structure developing. Indeed, these stronger
‘wisps’ tend to destabilize the flow further such that the induced turbulence after
the full breakdown of the primary instabilities is more vigorous at higher R (cf.
figure 2f,i). On the other hand, if the bulk stratification is increased (higher Rib) for a
given initial thickness ratio R, the ensuing turbulence is less vigorous (cf. figure 2c, f ).

Smyth, Carpenter & Lawrence (2007), who have also investigated the effect of
varying Rib (at a fixed R), observed that at Rib = 1/3 (and R = 3) the flow ‘never
becomes turbulent’. The difference between their results and ours (as shown for
example in figure 2f ) may be explained by noting that their initial Reynolds number is
approximately 20 times smaller than Re= 6000 and, as discussed in Salehipour et al.
(2016), increasing Re has profound impacts not only on the transition to turbulence
itself but also on the mixing and spectral properties of the ensuing turbulent flow.
Therefore, based on the discussions of Salehipour et al. (2016), we expect that, if
Re were further increased beyond Re = 6000, the flow would become increasingly
more energetically turbulent because the growth rate of three-dimensional secondary
instabilities would be expected to approach their asymptotic ‘inviscid’ rates.

3.2. HWI-induced turbulence at quasi-equilibrium
The slowly evolving and long-lived nature of the turbulence engendered by HWI (as
discussed on the basis of figure 1) might suggest the existence of a ‘quasi-equilibrium’
state. It is tempting to argue that this state corroborates ‘a kind of equilibrium’ as
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−1.0

−0.5
HWI
KHI

0F

0.5

1.0

0 20 40 60 80 100
t-t3d

120 140 160 180

FIGURE 3. The variation with time of F after the onset of fully three-dimensional flow
(i.e. t > t3d). The relaminarized phase beginning at trl is indicated by dashed lines.

postulated by Turner (1973) for ‘strongly stratified’ flows. It must be mentioned,
however, that the flows studied in this paper are examples of freely evolving
dissipative systems, unlike a gravity current on a relatively steep slope (see figure 4.19
of Turner (1973)), or the equatorial undercurrent (Smyth & Moum 2013), which are
examples of forced-dissipative systems. A statistically stationary equilibrium state with
F (t)∼ 1 (see (2.15)) would only be expected in such forced-dissipative circumstances.

Figure 3 illustrates the time variations of F for t > t3d associated with both HWI
(case R3-J016) and KHI. The fully turbulent and relaminarized stages are indicated
respectively by solid and dashed curves. As discussed in Salehipour et al. (2016), the
HWI-induced turbulence achieves its longevity by the localization of mixing due to
scouring motions on the flanks of the density interface. In other words, HWI ‘self-
organizes’ the location of scouring motions in such a way as to survive for as long as
possible by remaining in a state of quasi-equilibrium (that is perhaps close to marginal
instability, in some sense) with relatively constant F . On the other hand, the KHI
involves a relatively more sudden mixing event that is localized around the interface
by overturning motions leading to a decreasing trend for F . As a result, turbulence
is relatively short-lived in the latter case.

The quasi-equilibrium behaviour of HWI-induced turbulence appears to be a robust
characteristic property of stratified sheared turbulence arising from such relatively
sharp density interfaces embedded in relatively deep shear layers, since all our HWI
cases (regardless of their initial conditions, such as the initial values chosen for Rib

or R, provided of course that the flow is susceptible to a primary HWI) deliver
relatively constant values of F . This behaviour is categorically different from that
characteristic of KHI. (The variation of F (t) for all HWI cases is not presented here
for brevity.) In summary, it appears that quasi-equilibrium conditions are generically
achieved and sustained by the collapse of HWI into turbulence, even for arbitrarily
large values of stratification.

3.3. HWI-induced turbulence and self-organized criticality
Here we investigate the mean and turbulent characteristics of the flow induced by HWI
in order to describe the basis on which these characteristics might be understood in
terms of the SOC ansatz.
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−50 0 50 100 150 200 250 300 350 400 450
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1.0

t-t2d

FIGURE 4. The variation with time t and vertical coordinate z of Rig(z, t) for case R5-
J032. For reference, the upper and lower extents of the integral length scales `u (dashed
lines) and `ρ (solid lines) are also plotted.

3.3.1. Self-organization towards a critical gradient Richardson number
First, we analyse the local (in space and time) values of the gradient Richardson

number, Rig(z, t), as defined in (1.1). Figure 4 illustrates the temporal evolution of the
vertical profile of Rig(z, t) for the case R5-J032. For reference, figure 4 also illustrates
the upper and lower extents of the integral length scales `u (dashed) and `ρ (solid).
The probability density functions (p.d.f.s) of such local values of Rig(z, t), combined
for all times t > t3d and for all cases susceptible to HWI, are plotted in figure 5,
presented both individually for each case (in figure 5a) and aggregated together for
all cases (in figure 5b). In both these panels, spurious large values of Rig (as a result
of a close-to-undetermined 0/0 condition, i.e. if Rig > 100) as well as zero Rig values
associated with unstratified, non-turbulent regions (with negligible turbulent dissipation
rates ε ′(z) < Pr Dp, where Dp is the molecular dissipation rate) have been excluded
from our analysis, thus virtually completely eliminating a trivial peak in the p.d.f. at
Rig = 0, associated with unstratified, non-turbulent regions.

As shown in figure 4, Rig(z, t) has a complex spatiotemporal structure, and hence
it is unclear whether the interfacial value of Rig (i.e. Rig(0, t)), which initially
represents the maximum (for all z) of Rig(z, t = 0) for flows susceptible to HWI,
is an adequate diagnostic parameter to characterize the induced turbulent mixing.
In particular, classifying the stratification as being ‘strong’ or not based only on
this specific value seems potentially misleading. However, the p.d.f. of Rig(z, t)
(for all z, and for sufficiently large t > t3d so that the flow may be characterized
as being turbulent) in figure 5 demonstrates a striking characteristic distribution in
which the vast majority of local Rig values lie in the proximity of Rig ∼ 0.2–0.25,
implying that a large proportion of these turbulent flows share similar mean flow
characteristics. Indeed, this observed characteristic feature appears to be a robust
property of HWI-induced turbulence irrespective of the initial density and shear layer
depths or the bulk stratification and is at least somewhat reminiscent of oceanic
observations in the Pacific equatorial undercurrent (see, for example, figure 2 of
Smyth & Moum (2013)).

This characteristic distribution of Rig for flows susceptible to primary HWI leads us
to conjecture that Rig' 1/4 is a critical state that acts as an ‘attractor’ towards which
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R3-J016
R5-J016
R10-J016
R25-J016
R5-J008

R5-J032
R10-J008
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FIGURE 5. (a) The probability density function of Rig(z, t) for t > t3d for each HWI case,
plotted with different line types as listed in the legend. (b) The probability density function
of Rig(z, t) for t > t3d, aggregated from all HWI cases combined.

the flow tends to self-organize without any external tuning. To test this conjecture
further, in figure 6 we plot the time dependence of the two-dimensional histograms
associated with the occurrences of Rig, for times t> t2d. Note that the Rig bins used to
construct the p.d.f.s shown in figure 5 aggregate data for all times t> t3d, leading to a
one-dimensional histogram underlying the (normalized) p.d.f. of Rig, whereas figure 6
includes two-dimensional histograms in which both Rig and time (subsequent to t2d)
are appropriately binned. For reference, figure 6(a,c,e) also plots Rig(z= 0, t), Rig(z=
`ρ/2, t) and Rig(z= `u/2, t) marked by ‘•’ with respectively increasing symbol sizes
(i.e. locations farther away from the interface correspond to larger symbols), which
highlight the corresponding values of Rig at these characteristic vertical locations.

Figure 6 shows the eventual concentration of Rig near to the value of 1/4 (Rig =

1/4 is indicated by a horizontal dashed line), either by a gradual increase of the Rig
distribution from lower values for flows with smaller values of Rib (i.e. figure 6a,b) or
by merging of a bimodal distribution with peaks above and below 1/4 into a unimodal
distribution with a peak near 1/4 for flows with larger values of Rib (most apparent
in figure 6d, f ). Essentially, the flow self-organizes to reach the critical state associated
with ‘marginal instability’ with Rig ∼ 1/4.

Again, recall that, for our chosen initial velocity and density hyperbolic tangent
profiles (2.1) with sufficiently large R=

√
8 such that the flow is susceptible to primary

HWI, the initial profile of Rig is maximum at the interface (i.e. z= 0) and decreases
towards the ‘flanks’ of the density and shear layer (i.e. z = ±`ρ/2 and z = ±`u/2).
Hence, for flows susceptible to primary HWI, Rig(±`u/2, 0)�Rig(±`ρ/2, 0)<Rig(0),
and the difference between these different values becomes larger as Rib or R increases.
As shown in figure 6(a,c,e), by the time t= t2d, Rig(0, t2d) has decreased from its initial
value due to the pre-turbulent mixing that reduces the density gradient at the interface
(see also figure 2). This is especially noticeable in the relatively weakly stratified
DNS cases with Rib = 0.08 in which Rig(0, t2d) � 1/4 (see e.g. figure 6a) due to
the non-trivial perturbation of the density interface, as shown in figure 2(b). As the
flow evolves towards t= t3d (marked by the first vertical dashed line in figure 6), this
interfacial value of Rig also evolves towards 1/4 either from below (figure 6a,b at
Rib = 0.08) or from above (figure 6c,d at Rib = 0.16). If the turbulence is sufficiently
strong (as it is for the simulations with Rib = 0.08 and Rib = 0.16), the interfacial
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FIGURE 6. Two-dimensional histograms of Rig(z, t) as a function of time for t > t2d, for
six DNS cases for flows susceptible to HWI (as listed in table 1) with R= 5 in (a,c,e)
and R= 10 in (b,d, f ); Rib = 0.08 in (a,b), Rib = 0.16 in (c,d) and Rib = 0.32 in (e, f ). In
(a,c,e), the variations with time of Rig(z= 0, t), Rig(z= `ρ/2, t) and Rig(z= `u/2, t) are
also plotted by increasingly larger sizes of ‘•’. The first vertical dashed line in each panel
marks the time t3d. The second vertical dashed line (if present) marks the time trl. The
horizontal dashed line denotes Rig = 0.25.

value of Rig as well as those within the shear layer (i.e. for |z|6 `u/2) and the density
interface (i.e. for |z|6 `ρ/2) are attracted towards the critical state with Rig = 1/4.

However, at Rib = 0.32 (see e.g. case R5-J032 as plotted in figure 6e), the overall
turbulence intensity is not as strong and hence turbulent mixing remains relatively
more localized at the flanks of the shear layer than at the density interface, largely
because turbulent motions are not able to penetrate sufficiently close to that density
interface. This is the physical reason why Rig(0, t) increases again during the
relaminarization stage, as shown in figure 6(e). (The onset of relaminarization, at
trl, is marked, when appropriate, by the second vertical dashed line in figure 6.)
Nonetheless, even for the flow with Rib = 0.32, the flow self-organizes, as in the
other cases in figure 6, such that a sharply peaked distribution of Rig is achieved in
the near vicinity of Rig ∼ 1/4, consistently with all the other cases that there is an
attractor associated with a critical marginal state with Rig ' 1/4.

We further investigate the inferred self-organization mechanism by considering
various quantities associated with the horizontally averaged turbulent dissipation
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FIGURE 7. Two-dimensional histograms of horizontally averaged turbulent dissipation
ε ′(z, t) (as defined in (1.3)) as a function of time for t > t2d, for six DNS cases for flows
susceptible to HWI (as listed in table 1) with R= 5 in (a,c,e) and R= 10 in (b,d, f ); with
Rib = 0.08 in (a,b), Rib = 0.16 in (c,d) and Rib = 0.32 in (e, f ). In (a,c,e), the variations
with time of ε ′(z= 0, t), ε ′(z= `ρ/2, t) and ε ′(z= `u/2, t) are also plotted by increasingly
larger sizes of ‘•’. The first vertical dashed line in each panel marks the time t3d. The
second vertical dashed line (if present) marks the time trl.

ε ′(z, t) (as defined in (1.3)). Similarly to figure 6, in figure 7 we plot the time
dependence of the two-dimensional histograms associated with the occurrence of
binned values of ε ′(z, t). Once again, the corresponding values of ε ′(0, t), ε ′(`ρ/2, t)
and ε ′(`u/2, t) are also overlaid in figure 7(a,c,e). At Rib = 0.08, the ‘avalanches’
(inevitably associated with locally enhanced dissipation) of the sandpile model of the
SOC process are mostly concentrated in the vicinity of the density interface (whose
equilibrium location is at z = 0), where the turbulent dissipation is also (globally
across the whole mixing layer) maximum.

Upon doubling the bulk stratification to Rib= 0.16, the turbulent ‘avalanches’ follow
a different path to regulate the horizontally averaged flow towards Rig ∼ 1/4. The
avalanches become mostly concentrated between `ρ < z<`u, although their associated
dissipation is smaller than that at the interface. However, by the time the flow
relaminarizes and reaches the turbulent analogue of the critical ‘angle of repose’ of
the ‘sandpile’ associated with Rig = 1/4 (marked by the second vertical dashed line),
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dissipation becomes distributed differently such that ε ′(`u/2, t) > ε ′(`ρ/2, t) > ε ′(0, t),
which is required to accommodate the maintenance of the critical state.

Further doubling the bulk stratification to Rib = 0.32 provides a slightly different
path to self-regularization. Similar to the previous case, at this value of Rib the peak
value of the histogram of the horizontally averaged turbulent dissipation rate occurs
between `ρ < z < `u. Nevertheless, and in contrast to the previous case with lower
Rib, this location of peak probability also corresponds to the maximum turbulent
dissipation. This self-regulated localization of turbulent dissipation appears to be
a key factor in arriving at a mean flow that is characterized by a critical state
with Rig ∼ 1/4. The localization of dissipation and mixing at the upper and lower
‘flanks’ of the interface is mediated by ‘scouring’ motions, evident in figure 2 and
characteristic of HWI-induced turbulence as discussed in Salehipour et al. (2016) and
reviewed in § 1.

The attractor associated with the marginal state of Rig ∼ 1/4 appears to be
a robust characteristic of HWI-induced turbulence regardless of the initial bulk
stratification. In fact, scouring motions evidently re-emerge in the case R5-J032
during 300< t− t2d < 350 when a temporary rise in ε ′(`ρ/2, t) (see figure 7e) occurs.
Nonetheless, Rig(`ρ/2, t) becomes re-attracted towards the critical state with Rig∼ 1/4
after a secondary transition period of self-regulation. To use the sandpile analogy,
further ‘sand’ is added by depositing more kinetic energy into the flow, thereby
causing deviations from the critical state and thus re-emergence of ‘avalanches’ (here
in the actual form of scouring mixing events) which relatively rapidly reorganizes the
mean flow towards the critical state. Clearly, this process requires no external tuning
for self-organization.

3.3.2. Self-organization of energetics and mixing
Considering the entire life cycle of a flow susceptible to a primary instability (i.e.

beginning and ending with a laminar state, denoted here as occurring at t=0 and t= τ
respectively), there must be no net gain in the total energy of the stratified turbulence,
defined in (2.9), i.e. 1EST = 0. This also implies that there must be no net gain in the
turbulent kinetic energy and available potential energy, defined in (2.13), i.e. 1K′= 0,
1PA = 0. Equivalently, integrating (2.12) and (2.13) over the entire life cycle yields

P̃ = M̃+ D̃, (3.1)

P̃ = B̃+ D̃, (3.2)

B̃ = M̃, (3.3)

in which the life-cycle-averaged quantities are denoted by a tilde, e.g. M̃ =

(1/τ)
∫ τ

0 M(t) dt indicates the life-cycle average of the irreversible mixing rate. More
generally, we may employ the following definitions for cumulative time-dependent
quantities:

Mc(t)=
1
t

∫ t

0
M dt, Bc(t)=

1
t

∫ t

0
B dt, Dc(t)=

1
t

∫ t

0
D dt, Pc(t)=

1
t

∫ t

0
P dt.

(3.4a−d)

It is important to note that, based on (3.3), only M̃ = B̃ (=Mc(τ ) = Bc(τ )) and
in general Mc(t) 6= Bc(t) as captured by the variability of PA(t) due to the transient
reversible processes associated with the buoyancy flux, B.
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Equation (3.1) implies that the total shear production of turbulent kinetic energy
due to the interaction of perturbation Reynolds stresses with the mean flow ultimately
either contributes to the cumulative irreversible mixing, or is lost due to turbulent
viscous dissipation. Most critical in the above balance equations is the partitioning
of these processes, since over the entire period both

1=
M̃
P̃
+

D̃
P̃

(3.5)

and

1=
B̃
P̃
+

D̃
P̃
. (3.6)

The first term on the right-hand side of (3.5) is the life-cycle-averaged mixing
efficiency, Ẽ , defined as

Ẽ =
M̃

M̃+ D̃
=

B̃
B̃+ D̃

= R̃if , (3.7)

in which the life-cycle-averaged flux Richardson number, R̃if , is the first term on the
right-hand side of (3.6) and its equality to Ẽ follows from (3.3).

In general, we can define a cumulative mixing efficiency Ec(t) for all t ∈ [0, τ ] as

Ec(t)=
Mc(t)

Mc(t)+Dc(t)
, (3.8)

following Caulfield & Peltier (2000). Obviously, Ec(τ )= Ẽ . One may also equivalently
define Γc(t) as the cumulative turbulent flux coefficient,

Γc(t)=
Mc(t)
Dc(t)

=
Ec(t)

1− Ec(t)
. (3.9)

Figure 8 plots the time evolution of Ec(t) and Γc(t) for all the cases with HWI-
induced turbulence (solid curves) and the single case with KHI-induced turbulence
(dashed curve) as listed in table 1. For comparison, the canonical values of mixing
efficiency and flux coefficient commonly employed by oceanographers and proposed
as an upper bound by Osborn (1980), i.e. Ec = 1/6 or Γc = 0.2, are also shown by
dashed lines in figure 8(a,b).

It is quite startling to observe that for all HWI-induced turbulence cases, irrespective
of the initial conditions of scale ratio R and bulk Richardson number Rib, the
cumulative mixing efficiency approaches a life-cycle-averaged value of Ec(τ ) ∼ 1/6,
implying that the turbulent flux coefficient tends to the upper bound value Γc(τ )∼ 0.2
proposed by Osborn (1980). This generic behaviour of HWI-induced turbulence must
be contrasted with that of KHI-induced turbulence, which for the case investigated
here approaches the much larger limit Ec(τ ) ∼ 0.35 (and equivalently Γc(τ ) ∼ 0.5),
values that are known to be case-dependent and hence very sensitive to the specified
initial conditions.

For example, this relatively high mixing efficiency associated with KHI is known
to vary non-monotonically with the initial bulk Richardson number Rib (Mashayek,
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FIGURE 8. Variation with time of the cumulative quantities associated with the
partitioning of stratified turbulence energy as defined in (3.4): (a) cumulative mixing
efficiency Ec(t), as defined in (3.8); and (b) cumulative turbulent flux coefficient Γc(t), as
defined in (3.9), for the eight cases associated with HWI-induced turbulence (solid lines)
and the case associated with KHI-induced turbulence (dashed line) as listed in table 1.
Horizontal dashed lines correspond to the upper bound proposed by Osborn (1980) such
that Γc = 0.2, and hence Ec = 1/6.

Caulfield & Peltier 2013; Salehipour & Peltier 2015) and to decrease with the
molecular Prandtl number Pr (Salehipour et al. 2015). Such sensitivity to the ‘external
tuning parameters’ follows from the inherently transient and highly delicate nature of
the overturning of the primary Kelvin–Helmholtz billow, significantly modulated by
the emergence of three-dimensional secondary instabilities, which are in turn highly
dependent on the external parameters (Mashayek & Peltier 2013; Salehipour et al.
2015). The overturning process is absent from the HWI-induced turbulence, and
we believe that this fundamental difference explains many of its robustly universal
characteristics.

We find that, based on the SOC ansatz, the HWI-induced turbulence is self-
organized such that an apparently universal energetics partitioning emerges, surprisingly
consistent with the upper bound proposed by Osborn (1980). In contrast with the
more commonly considered KHI-induced turbulence, it appears that the underlying
assumption of stationarity of Osborn is more closely approximated by the quasi-
equilibrium of HWI-induced turbulence. For such flows, regardless of the initial
conditions (i.e. without external tuning), the energy of stratified turbulence, EST , is
partitioned such that a critical cumulative turbulent flux coefficient of Γc ∼ 0.2 is
reached, consistently with the upper bound partitioning postulated by Osborn (1980).

It is very important to appreciate that this value of Γc (in this class of flows at
least) is associated with the flow self-organizing towards a critical mean state with
Rig(z, t) ∼ 1/4 throughout much of the flow, whereas the arguments presented in
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Osborn (1980) relied at least partially on the semi-empirical predictions of Ellison
(1957), which are not apparently consistent with these flows. In particular, Ellison
argued, through consideration of the turbulent energy equations, that the turbulent
Prandtl number, PrT , diverges to infinity as Rif → 0.15. This is significant, as PrT
and Rif can be directly related through an appropriately defined Richardson number,
and if, as Ellison assumed, ‘turbulence can be maintained at large values’ of this
Richardson number, then the picture is self-consistent, and such ‘strongly stratified’
turbulence would be expected to exhibit this particular value of the flux Richardson
number. Of course, the key question is how the various quantities, in particular the
turbulent Prandtl number and the Richardson number, are actually defined, as the
gradient Richardson number Rig(z, t) is inevitably a function of space and time.

To investigate this issue further, we define a cumulative turbulent Prandtl number,
Prc

T =Kc
m/K

c
ρ based on the cumulative (and crucially irreversible) diapycnal diffusivity

of mass (i.e. Kc
ρ) and momentum (i.e. Kc

m), which are defined as

Kc
ρ(t)=

Mc(t)
N2

c (t)
, Kc

m(t)=
Mc(t)+Dc(t)

S2
c(t)

, (3.10a,b)

following Salehipour & Peltier (2015). In these definitions, the denominators are
defined as appropriately time-averaged and vertically averaged squares of the buoyancy
frequency and shear,

N2
c (t)=

1
t

∫ t

0
〈N2
〉 dt, S2

c =
1
t

∫ t

0
〈S2
〉 dt, (3.11a,b)

in which N2(z, t) and S2(z, t) are defined in (1.1). Hence the cumulative turbulent
Prandtl number Prc

T can be related to the cumulative mixing efficiency and an
appropriate ‘cumulative averaged gradient’ Richardson number Ric

g,a(t) as

Prc
T(t)=

Kc
m(t)

Kc
ρ(t)
=

Ric
g,a(t)

Ec(t)
, Ric

g,a(t)=
N2

c (t)
S2

c(t)
. (3.12a,b)

When averaged over the entire life cycle of a turbulent event, equation (3.12)
converges to

P̃rT =
R̃ig,a

R̃if

. (3.13)

Expressed in this way, it is now clear what must be meant in this context for
‘turbulence to be maintained’ at strong stratification. Since R̃if < 1 by construction,
P̃rT→∞ requires turbulence to remain at large values of R̃ig,a.

Figure 9 illustrates Prc
T(t) and Ric

g,a(t) for all DNS analyses of HWI investigated
herein. The corresponding life-cycle-averaged quantities, i.e. P̃rT and R̃ig,a, should
be realized in these plots as the ultimate values of Prc

T(t) and Ric
g,a(t) as t → τ .

Obviously for the investigated range of the initial bulk Richardson numbers, P̃rT does
not demonstrate a single universal number, in the sense of that observed for Γ̃ in
figure 8(b), but nevertheless P̃rT remains of O(1) while Ẽ = R̃if ∼ 1/6 in apparent
contradiction with the semi-empirical expression derived by Ellison (1957).
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FIGURE 9. Variation with time of (a) the cumulative turbulent Prandtl number, Prc
T , and

(b) the cumulative averaged gradient Richardson number, Ric
g,a, as defined in (3.12a,b).

Furthermore, it is apparent in figure 9(b) that Ric
g,a(t) is typically larger than

the bulk Richardson number Rib (as defined in (1.2)) for any particular flow, and
furthermore Ric

g,a(t) increases with increasing Rib. Once again there is no evidence
of ‘universal’ behaviour for this vertically averaged cumulative quantity, unlike the
behaviour of the (inherently local and time-dependent) gradient Richardson number
Rig(z, t). Since, as shown in figure 8(a), Ec(t)→ 1/6 quite rapidly, this observation
also implies (consistently with the data shown in figure 9a) that P̃rT increases with
Rib. Since there is predicted to be a range of wavenumbers susceptible to primary
HWI as Rib increases to arbitrarily large values (albeit this range narrows as Rib

increases), it is thus possible that P̃rT→∞ as Rib and hence R̃ig,a tends to very large
values, with HWI-induced turbulence still occurring, although we have not been able
to investigate such truly ‘large’ values of Rib.

However, it is very important to appreciate that, even if this behaviour occurs, our
observations are not consistent with Ellison’s model, since within his model the flux
Richardson number approaching 0.15 implies that the turbulent Prandtl number tends
to infinity, whereas we find that R̃if ' 0.16 while P̃rT ∼ O(1). Crucially, where the
flow is turbulent, the appropriate measure of the stratification Rig(z, t) self-organizes
to a critical value close to 1/4 irrespective of the external parameters, suggesting
that strongly stratified local values are not accessible to such unforced shear layers.
This observation calls into question whether it is ever appropriate to consider such
flows as being ‘strongly stratified’, even when the bulk Richardson number Rib has
a relatively large value, except perhaps in the sense that flows susceptible to primary
HWI are characterized by high values of the gradient Richardson number initially in
the immediate vicinity of the density interface.

3.4. HWI-induced turbulence and scale invariance
The concept of self-organized criticality was originally proposed to explain ubiquitous
observations of scale invariance as characterized by power laws of the form 1/f β with
β ∼ 1 (Bak et al. 1987). Such power laws are often observed for the size, strength,
duration or number of the ‘avalanches’ in slowly driven complex systems, as in
the problem of turbulent thermal convection with an endothermic phase transition
within the layer mentioned previously. Nonetheless, as noted by Pruessner (2012),
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the scale-invariant state has often been misconstrued as being synonymous with SOC
although scale invariance is actually a consequence of SOC.

This issue becomes relevant to our discussion in the current paper because, as
we have previously shown (Salehipour et al. 2016), the streamwise kinetic energy
associated with both KHI- and HWI-induced turbulence exhibits a −5/3 power law
for a range of scales sufficiently larger than the dissipative subrange, and specifically
above the Ozmidov scale (as defined in (2.4)) whereas, as discussed in this paper,
only the turbulence induced by slowly evolving HWI is self-organized into a critical
state.

To illustrate this issue further, we investigate the power spectral density of
streamwise and vertical perturbation velocities as captured respectively by the
streamwise spectra of streamwise and vertical perturbation kinetic energy defined
as

K̂′x(m, t) =
π

Ly

∑
n

〈û′û′
∗

〉, (3.14)

K̂′z(m, t) =
π

Ly

∑
n

〈 ŵ′ ŵ′
∗

〉, (3.15)

in which û′ = (û′, v̂′, ŵ′) represents the horizontal two-dimensional Fourier transform
(denoted by a hat) of the perturbation velocity field u′ defined in (2.7). The asterisks
denote complex conjugation and, as usual, 〈·〉 denotes vertical averaging and (m, n)
are the streamwise and spanwise wavenumbers.

We plot K̂′x(m, t) (figure 10c,d) and K̂′z(m, t) (figure 10e, f ) in compensated forms
at five different times during the flow evolution of a specific case of HWI-induced
turbulence (case R3-J016, figure 10a,c,e) and the flow with KHI-induced turbulence
(figure 10b,d, f ). It is important to remember that these two cases differ only in terms
of their initial values of R (see table 1). These five times are indicated on the two-
dimensional histograms of Rig(z, t) plotted in figure 10(a,b), and are associated with
t1 = t3d, t2 = t3d + 40, t3 = trl, t4 = trl + 40 and t5 = trl + 80. The corresponding spectra
at each of these times is distinguished by a distinct line style as labelled.

For both KHI- and HWI-induced turbulence, the streamwise spectra of K̂′x and
K̂′z exhibit m−5/3 and m−1 power laws for scales that are sufficiently larger than the
Ozmidov length scale (`O, indicated on the spectra by a circle). This indicates that the
horizontal component of the motion decays more rapidly with wavenumber than does
the vertical component, which in turn implies oblate flattened structures (as expected
in vertically stratified flows) that are self-similar across a range of wavenumbers and
hence are scale-invariant. Such observed scale invariance appears to hold at all the
investigated characteristic times. As a result, despite the inherent difference between
KHI- and HWI-induced turbulence in terms of the self-regulation of the HWI-induced
turbulence towards a critical state, they are both characterized by a scale invariance
in their inertial subrange. This implies again that scale invariance is a necessary but
not a sufficient condition for the emergence of SOC.

The energy-containing scale, `en, that might reasonably be associated with the
smallest occurring ‘avalanches’ may be defined as

`en = α
2

(
Q3

D

)
, (3.16)
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FIGURE 10. (a,b) Two-dimensional histograms of Rig(z, t) as a function of time for
t > t2d; (c,d) streamwise spectra of K̂x(m, t) (as defined in (3.14)) compensated with m5/3;
(e, f ) streamwise spectra of K̂z(m, t) (as defined (3.15)) compensated with m; for the case
R3-J016 with HWI-induced turbulence (a,c,e) and the case with KHI-induced turbulence
(b,d, f ). The spectra are calculated at times t1 = t3d, t2 = t3d + 40, t3 = trl, t4 = trl + 40
and t5 = trl + 80. These times are indicated by vertical dashed lines in (a,b) whose
corresponding spectra are appropriately distinguished by a specific line style as labelled in
(d, f ). Also on these spectra, at each time and for each simulation, the wavenumber scales
corresponding to energy-containing length scales `en (see (3.16)) as well as the Ozmidov
(`O) and Kolmogorov (`K) length scales (see (2.4)) are marked respectively by ∗,E and
@ and are computed as 1/`.

in which Q2
= (2/3)K′, and where once again the scale factor α= (`u/Lz)

1/4 has been
introduced to remove the scale dependence of the vertical averaging on computational
domain size.

Figure 11 illustrates the evolution of `en for the same two DNS cases analysed in
figure 10. As also demonstrated in figure 11 by ∗, the energy-containing scale `en,
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FIGURE 11. The variation with time of `en after the onset of fully three-dimensional flow
(i.e. t > t3d) associated with the HWI-induced turbulence (case R3-J016, shown by thicker
lines) and the KHI-induced turbulence (shown by thinner lines). The relaminarized phase
beginning at trl is indicated by dashed lines.

noticeably goes to higher wavenumber (smaller scale) for the KHI-induced turbulence,
while it remains much closer to constant in the flow characterized by HWI-induced
turbulence. This time invariance of `en also appears to be a characteristic behaviour
of HWI-induced turbulence, giving further support to the argument that HWI-induced
turbulence is in ‘some kind of equilibrium’ (cf. figure 3).

As observed in figure 10, the energy-containing length scales that are &O(`en)
appear to represent the scale-invariant ‘avalanches’. Nevertheless, it is not immediately
obvious what the most appropriate way is to measure the respective size of such
individual ‘avalanches’ that are widespread and localized in these turbulent flows. We
may alternatively demonstrate the scale invariance of such ‘avalanches’ in physical
space by introducing a pointwise measure of the energy-containing length scale,
Len(x, t), as

Len(x, t)=
q3(x, t)
ε ′(x, t)

, (3.17)

in which, similar to their volume-averaged counterparts employed in (3.16), q2
=

(2/3)k′(x, t) where k′(x, t)= 0.5(u′ · u′) is the pointwise turbulent kinetic energy (i.e.
K′ = 〈k′〉).

Figure 12 illustrates the p.d.f.s of the estimated local energy-containing scales,
p.d.f.(Len), for the HWI-induced turbulence (case R3-J016) at the same five
characteristic times discussed in figure 10. To eliminate unstratified, non-turbulent
regions from our analysis, the p.d.f.s are associated with a confined three-dimensional
box with its non-dimensional height limited to −2.5 6 z 6 2.5. The roll-off at small
scales in these p.d.f.s is associated with the finite resolution of the DNS analysis.

A striking power-law distribution of the form ∼ L−2
en is evident for all the

times investigated in figure 12, which suggests an interesting self-similar and
scale-invariant relationship between the local turbulent kinetic energy (k′) and the
local turbulent dissipation rate (ε ′). In other words, the localized distributions of
k′ and ε ′ are self-organized (consistent with our previous discussions concerning
figure 7) in such a way that the implied localized energy-containing length scale,
Len, follows a power-law distribution. Note that, relevant to our discussion here is
only the distribution of Len (i.e. p.d.f.(Len), not Len), which demonstrates a scale-free
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FIGURE 12. The p.d.f. of Len(x, t) as defined in (3.17) at five characteristic times (as
denoted in the legend) for case R3-J016. The binning has been conducted for data within
a three-dimensional box with the same horizontal extent as the computational domain but
limited vertically to −2.5 6 z 6 2.5. Also bins with less than five members have been
discarded.

relationship between k′ and ε ′. In fact, the characteristic length scales of turbulence
are only meaningful in a statistical ‘bulk’ sense after a spatial or temporal filtering
or averaging operator is employed to identify a characteristic time scale and a
characteristic velocity scale. Therefore, it is inappropriate to make any quantitative
comparison between specific values of `K , `O and `en as presented in figure 10
and those associated with the pointwise values of Len, which are indeed orders of
magnitude larger.

4. Conclusions
Classic arguments of Turner (1973) based on the Monin–Obukhov similarity

theory for wall-bounded shear flows suggest a ‘self-regulated’ state under ‘very
stable’ conditions which leads to constant values for the gradient Richardson number
and mixing efficiency. In a different branch of science, in the context of highly
interacting complex dynamical systems, the notion of ‘self-organized criticality’
(SOC) has been identified as the underlying mechanism of many non-equilibrium
slowly driven systems that reveal a scale-invariant state. In addition, there has been
accumulating evidence based on oceanic observations of turbulent flows for the
ubiquitous measurement of a gradient Richardson number Rig ∼ 1/4 that is curiously
close to its critical value based on inviscid linear stability theory (Smyth & Moum
2013; Holleman, Geyer & Ralston 2016).

Motivated by these ideas, we have investigated the various characteristic properties
of the turbulent states of (relatively) strongly stratified freely evolving shear flows.
We have employed direct numerical simulations (DNS) to study Holmboe wave
instability (HWI). Crucially, HWI is a type of shear instability that, unlike its
better-known relative, the Kelvin–Helmholtz instability (KHI), occurs for arbitrarily
large values of the gradient Richardson number at the interface (i.e. Rig(0)) and
arbitrarily large values of the bulk Richardson number Rib, provided that the density
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layer is significantly sharper than the shear layer. Unlike KHI, which is suppressed for
shear layer midpoint gradient Richardson numbers Rig(0) > 1/4, under such strongly
stratified conditions (in the sense here of both high values of gradient Richardson
number in the vicinity of the density interface and sufficiently high values of Rib)
HWI not only emerges but can also induce highly turbulent flows at sufficiently high
Reynolds numbers.

A key distinguishing characteristic between flows susceptible to primary KHI and
flows susceptible to primary HWI relates to the longevity of the associated induced
turbulence. The localization of ‘scouring’ motions near the interface for HWI-induced
turbulence manifests itself energetically by inducing turbulent flows that evolve
towards a state of ‘quasi-equilibrium’. In this state, the decay rate of total available
turbulent energy, consisting of turbulent kinetic energy and available potential energy,
is only weakly time-dependent and therefore the turbulence is sustained and long-lived.
In fact, this ‘quasi-equilibrium’ state is achieved independently of the initial conditions
for HWI. In particular, the quasi-equilibrium state is independent of the strength of
the initial bulk stratification. The KHI-induced turbulence, on the other hand, can
be grossly out of equilibrium and hence short-lived, owing to the strong imprint or
memory of large-scale KHI overturns, which substantially stir the fluid, leading to
a rapid rise in its available potential energy. For these short-lived turbulent flows
induced by KHI, the critical state of marginal instability therefore appears to be
irrelevant. Again, to invoke the sandpile analogy, a sandpile is unlikely to be formed
if sand is loaded onto the pile suddenly, while conversely a slow addition of sand
grains does indeed lead to maintenance of the critical slope through the continual
occurrence of avalanches.

Furthermore, we have demonstrated that HWI-induced turbulence organizes itself,
prior to relaminarization, towards a critical state that is characterized by a horizontally
averaged mean flow with a probability density function (p.d.f.) strongly concentrated
in the near vicinity of Rig ∼ 1/4. This so-called self-organized criticality appears to
be independent of the initial conditions and hence requires no external tuning. Thus
universal behaviour is expected for strongly stratified turbulent shear flows induced by
HWI.

While, for HWI-induced turbulence, Rig(z, t) is attracted towards the critical value
of Rig ∼ 1/4, for KHI-induced turbulence, the p.d.f.s of Rig(z, t) point towards (in
general) either subcritical or supercritical states for the most likely or ‘peak’ value
of Rig, which we define as the peak value of the p.d.f. being either smaller than
or greater than 1/4 respectively. This important qualitative difference is plotted in
figure 13 (cf. figure 5). There is a unique initial choice of Rib for flows susceptible
to KHI to reach the critical state, and so flows susceptible to primary KHI require
external tuning (through changing the initial conditions of the bulk stratification
to just the right value) to reach the critical state, while flows susceptible to HWI
robustly self-organize towards this critical state largely independently of the chosen
initial conditions.

Perhaps most interestingly, we have demonstrated a characteristic and apparently
universal cumulative partitioning of energy over the entire life cycle of flows
susceptible to primary HWI, with the total cumulative irreversible mixing appearing to
be always approximately 20 % of the cumulative turbulent kinetic energy dissipation
due to molecular viscosity. This implies that an ‘Osborn-like’ turbulent flux coefficient
of Γc ∼ 0.2 can be associated with turbulent flows in a generic self-organized critical
state characterized by local values of Rig ' 1/4, arising from the breakdown of
Holmboe wave instabilities at sufficiently high Re in stratified shear flows with
relatively sharp initial density interfaces.
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FIGURE 13. P.d.f.s for Rig for a typical ‘critical’ case of HWI-induced turbulence (case
R10-J016); for a supercritical case of KHI-induced turbulence (the flow susceptible to KHI
listed in table 1); and for a subcritical case of KHI-induced turbulence, corresponding to
a flow with Rib = 0.04 and the same other parameters as the other two cases, previously
described in Salehipour & Peltier (2015) (see their table 1).

Acknowledgements

H.S. acknowledges the SOSCIP TalentEdge post-doctoral fellowship and is grateful
to the David Crighton Fellowship from DAMTP, University of Cambridge. All
the computations were performed on the BG/Q supercomputer at the University
of Toronto, which is operated by SciNet for the Southern Ontario Smart Computing
Innovation Platform. SciNet is funded by: the Canada Foundation for Innovation under
the auspices of Compute Canada; the Government of Ontario; Ontario Research Fund
– Research Excellence; and the University of Toronto. The research of W.R.P. at the
University of Toronto is sponsored by NSERC Discovery Grant A9627. The research
activity of C.P.C. is supported by EPSRC Programme Grant EP/K034529/1 entitled
‘Mathematical Underpinning of Stratified Turbulence’. All codes and initial conditions
used to generate the data used in this paper, in particular to construct the figures, are
available at https://github.com/hsalehipour/mixing_analysis.

REFERENCES

ASCHWANDEN, M. J. et al. 2016 25 years of self-organized criticality: solar and astrophysics. Space
Sci. Rev. 198 (1–4), 47–166.

BAINES, P. G. & MITSUDERA, H. 1994 On the mechanism of shear flow instabilities. J. Fluid Mech.
276, 327–342.

BAK, P., TANG, C. & WIESENFELD, K. 1987 Self-organized criticality: an explanation of the 1/f
noise. Phys. Rev. Lett. 59 (4), 381–384.

BUTLER, S. & PELTIER, W. R. 1997 Internal thermal boundary layer stability in phase transition
modulated convection. J. Geophys. Res. 102 (B2), 2731–2749.

CAULFIELD, C. P. 1994 Multiple linear instability of a layered stratified shear flow. J. Fluid Mech.
258, 155–285.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

69
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://github.com/hsalehipour/mixing_analysis
https://doi.org/10.1017/jfm.2018.695


Self-organized criticality in strongly stratified mixing layers 255

CAULFIELD, C. P. & PELTIER, W. R. 2000 The anatomy of the mixing transition in homogeneous
and stratified free shear layers. J. Fluid Mech. 413, 1–47.

ELLISON, T. H. 1957 Turbulent transport of heat and momentum from an infinite rough plane.
J. Fluid Mech. 2 (05), 456–466.

FISCHER, P. F. 1997 An overlapping Schwarz method for spectral element solution of the
incompressible Navier–Stokes equations. J. Comput. Phys. 133 (1), 84–101.

GREGG, M. C., D’ASARO, E. A., RILEY, J. J. & KUNZE, E. 2018 Mixing efficiency in the ocean.
Annu. Rev. Marine Sci. 10, 443–473.

GUHA, A. & LAWRENCE, G. A. 2014 A wave interaction approach to studying non-modal
homogeneous and stratified shear instabilities. J. Fluid Mech. 755, 336–364.

HOGG, A. MCC. & IVEY, G. N. 2003 The Kelvin–Helmholtz to Holmboe instability transition in
stratified exchange flows. J. Fluid Mech. 477, 339–362.

HOLLEMAN, R. C., GEYER, W. R. & RALSTON, D. K. 2016 Stratified turbulence and mixing
efficiency in a salt wedge estuary. J. Phys. Oceanogr. 46 (6), 1769–1783.

HOLMBOE, J. 1962 On the behaviour of symmetric waves in stratified shear layers. Geofys. Publ.
Oslo 24, 67–113.

HOLT, S. E., KOSEFF, J. R. & FERZIGER, J. H. 1992 A numerical study of the evolution and
structure of homogeneous stably stratified sheared turbulence. J. Fluid Mech. 237, 499–539.

HOWARD, L. N. 1961 Note on a paper of John W. Miles. J. Fluid Mech. 10, 509–512.
IVEY, G. N., WINTERS, K. B. & KOSEFF, J. R. 2008 Density stratification, turbulence, but how

much mixing? Annu. Rev. Fluid Mech. 40 (1), 169–184.
LAWRENCE, G., PIETERS, R., ZAREMBA, L., TEDFORD, T., GU, L., GRECO, S. & HAMBLIN, P.

2004 Summer exchange between Hamilton Harbour and Lake Ontario. Deep-Sea Res. II 51
(4–5), 475–487.

LAWRENCE, G. A., BROWAND, F. K. & REDEKOPP, L. G. 1991 The stability of a sheared density
interface. Phys. Fluids A 3 (10), 2360–2370.

LEFAUVE, A., PARTRIDGE, J. L., ZHOU, Q., DALZIEL, S. B., CAULFIELD, C. P. & LINDEN, P. F.
2018 The structure and origin of confined Holmboe waves. J. Fluid Mech. 848, 508–544.

LILLY, D. K. 1983 Stratified turbulence and the mesoscale variability of the atmosphere. J. Atmos.
Sci. 40 (3), 749–761.

LINDBORG, E. 2006 The energy cascade in a strongly stratified fluid. J. Fluid Mech. 550, 207–242.
LINDEN, P. F. 1979 Mixing in stratified fluids. Geophys. Astrophys. Fluid Dyn. 13, 3–23.
MACAGNO, E. O. & ROUSE, H. 1961 Interfacial mixing in stratified flow. J. Engng Mechanics

Division. Proc. Am. Soc. Civil Engineers 87 (EM5), 55–81.
MASHAYEK, A., CAULFIELD, C. P. & PELTIER, W. R. 2013 Time-dependent, non-monotonic mixing

in stratified turbulent shear flows: implications for oceanographic estimates of buoyancy flux.
J. Fluid Mech. 736, 570–593.

MASHAYEK, A. & PELTIER, W. R. 2013 Shear induced mixing in geophysical flows: does the route
to turbulence matter to its efficiency? J. Fluid Mech. 725, 216–261.

MILES, J. W. 1961 On the stability of heterogeneous shear flows. J. Fluid Mech. 10, 496–508.
OSBORN, T. R. 1980 Estimates of the local rate of vertical diffusion from dissipation measurements.

J. Phys. Oceanogr. 10, 83–89.
PELTIER, W. R. & CAULFIELD, C. P. 2003 Mixing efficiency in stratified shear flows. Annu. Rev.

Fluid Mech. 35, 135–167.
PRUESSNER, G. 2012 Self-Organised Criticality: Theory, Models and Characterisation. Cambridge

University Press.
ROHR, J. J., ITSWEIRE, E. C., HELLAND, K. N. & VAN ATTA, C. W. 1988 Growth and decay of

turbulence in a stably stratified shear flow. J. Fluid Mech. 195, 77–111.
SALEHIPOUR, H., CAULFIELD, C. P. & PELTIER, W. R. 2016 Turbulent mixing due to the Holmboe

wave instability at high Reynolds number. J. Fluid Mech. 803, 591–621.
SALEHIPOUR, H. & PELTIER, W. R. 2015 Diapycnal diffusivity, turbulent Prandtl number and mixing

efficiency in Boussinesq stratified turbulence. J. Fluid Mech. 775, 464–500.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

69
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.695


256 H. Salehipour, W. R. Peltier and C. P. Caulfield

SALEHIPOUR, H., PELTIER, W. R. & MASHAYEK, A. 2015 Turbulent diapycnal mixing in stratified
shear flows: the influence of Prandtl number on mixing efficiency and transition at high
Reynolds number. J. Fluid Mech. 773, 178–223.

SHIH, L. H., KOSEFF, J. R., FERZIGER, J. H. & REHMANN, C. R. 2000 Scaling and parameterization
of stratified homogeneous turbulent shear flow. J. Fluid Mech. 412, 1–20.

SMYTH, W. D., CARPENTER, J. R. & LAWRENCE, G. A. 2007 Mixing in symmetric Holmboe
waves. J. Phys. Oceanogr. 37, 1566–1583.

SMYTH, W. D. & MOUM, J. N. 2013 Marginal instability and deep cycle turbulence in the eastern
equatorial Pacific Ocean. Geophys. Res. Lett. 40 (23), 6181–6185.

SMYTH, W. D., MOUM, J. N., LI, L. & THORPE, S. A. 2013 Diurnal shear instability, the descent
of the surface shear layer, and the deep cycle of equatorial turbulence. J. Phys. Oceanogr.
43 (11), 2432–2455.

SMYTH, W. D. & PELTIER, W. R. 1989 The transition between Kelvin–Helmholtz and Holmboe
instability: an investigation of the overreflection hypothesis. J. Atmos. Sci. 46 (24), 3698–3720.

SMYTH, W. D. & WINTERS, K. B. 2003 Turbulence and mixing in Holmboe waves. J. Phys.
Oceanogr. 33, 694–711.

SMYTH, W. D., KLAASSEN, G. P. & PELTIER, W. R. 1988 Finite amplitude Holmboe waves.
Geophys. Astrophys. Fluid Dyn. 43 (2), 181–222.

SOLHEIM, L. P. & PELTIER, W. R. 1994 Avalanche effects in phase transition modulated thermal
convection: a model of earth’s mantle. J. Geophys. Res. 99 (B4), 6997–7018.

STRANG, E. J. & FERNANDO, H. J. S. 2001 Entrainment and mixing in stratified shear flows.
J. Fluid Mech. 428, 349–386.

TAYLOR, G. I. 1915 Eddy motion in the atmosphere. Phil. Trans. R. Soc. A 215, 1–26.
THORPE, S. A. & LIU, Z. 2009 Marginal instability? J. Phys. Oceanogr. 39 (9), 2373–2381.
THORPE, S. A. 1968 A method of producing a shear flow in a stratified fluid. J. Fluid Mech. 32,

693–704.
TURNER, J. S. 1973 Buoyancy Effects in Fluids. Cambridge University Press.
WINTERS, K. B., LOMBARD, P. N., RILEY, J. J. & D’ASARO, E. A. 1995 Available potential

energy and mixing in density-stratified fluids. J. Fluid Mech. 289, 115–128.
ZHOU, Q., TAYLOR, J. R. & CAULFIELD, C. P. 2017 Self-similar mixing in stratified plane Couette

flow for varying Prandtl number. J. Fluid Mech. 820, 86–120.
ZHU, D. Z. & LAWRENCE, G. A. 2001 Holmboe’s instability in exchange flows. J. Fluid Mech.

429, 391–409.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

69
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.695

	Self-organized criticality of turbulence in strongly stratified mixing layers
	Introduction
	Methodology
	Results
	Evolution of Holmboe wave instability
	HWI-induced turbulence at quasi-equilibrium
	HWI-induced turbulence and self-organized criticality
	Self-organization towards a critical gradient Richardson number
	Self-organization of energetics and mixing

	HWI-induced turbulence and scale invariance

	Conclusions
	Acknowledgements
	References


