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For a large class of functions f , we consider the nonlinear biharmonic eigenvalue
problem

∆2u(x) + f(x, u(x)) = λu(x) for x ∈ R
N , lim

|x|→∞
u(x) = 0, u �≡ 0.

We describe the behaviour of the branch of solutions emanating from an eigenvalue of
odd multiplicity below the essential spectrum of the linearized problem. The
discussion is based on the degree theory for C2 proper Fredholm maps developed by
Fitzpatrick, Pejsachowicz and Rabier.

1. Introduction

We consider a nonlinear biharmonic eigenvalue problem of the form

∆2u(x) + f(x, u(x)) = λu(x) for x ∈ R
N , lim

|x|→∞
u(x) = 0, u �≡ 0, (1.1)

where f : R
N × R → R is a mapping satisfying the following conditions:

(H1) f(·, 0) ≡ 0;

(H2) the function f satisfies the Carathéodory conditions;

(H3) f(x, ·) ∈ C2(R) for almost all x ∈ R
N and, for all compact K ⊂ R, the

functions {∂2
22f(x, ·) : K → R}, x ∈ R

N , are equi-continuous and ∂2
22f is

bounded on R
N × K;

(H4) ∂2f(·, 0) is bounded on R
N , the limit

α := lim
|x|→∞

∂2f(x, 0)
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exists, and there exist 0 � a(x), b(x) ∈ L∞(RN ) ∩ L2(RN ) such that

|αu − f(x, u)| � a(x)|u| + b(x)|u|σ+1

for some σ > 1 and α − ∂2f(x, 0) ∈ L2(RN ) ∩ L∞(RN ).

As an example, we consider a mapping f of the form

f(x, s) = (p(x) + q(x)r(s))s

with the following properties:

(i) p, q : R
N → R are measurable and r : R → R is continuous;

(ii) r(0) = 0, r(s)s is C1(R), |r(s)s| � C|s|σ+1, and r � 0;

(iii) α = lim|x|→∞ p(x) and (α−p(x)) ∈ L2(RN )∩L∞(RN ), q ∈ L2(RN )∩L∞(RN ).

It is easy to check that under the conditions (i)–(iii), the mapping f satisfies all
the hypotheses (H1)–(H4).

Remark 1.1. When we consider the mapping (x, s) �→ f(x, s)/s, we always bear
in mind the following mapping:

(x, s) �→

⎧
⎪⎨

⎪⎩

f(x, s)
s

if s �= 0,

∂2f(x, 0) if s = 0.

Remark 1.2. Note that condition (H3) is used to ensure that the Nemitsky oper-
ator N : X → Y associated with f is of class C2 between the appropriate function
spaces X and Y . This means that we can use the degree theory for proper C2

Fredholm maps (see [8]). However, by using the degree theorem for C1 Fredholm
maps developed by Pejsachowicz and Rabier [18], we can replace (H3) by

(H3)′ f(x, ·) ∈ C1(R) for almost all x ∈ R
N and, for every compact K ⊂ R, the

functions {∂2f(x, ·) : K → R | x ∈ R
N} are equi-continuous.

In fact, using the notation and arguments of § 3, hypotheses (H1), (H2), (H3)′

and (H4) are sufficient to ensure the following properties hold, for every compact
K ⊂ R:

(i) ∂2f is bounded on R
N × K;

(ii) there exists a constant C = C(K) such that for all (x, s1), (x, s2) ∈ R
N × K,

we have |f(x, s1) − f(x, s2)| � C|s1 − s2|;

(iii) for every u ∈ X, there exists a constant C = C(u) such that

|f(x, u(x))| � C|u(x)| a.e. on x ∈ R
N ;

(iv) lim|x|→∞{∂2f(x, u(x)) − ∂2f(x, 0)} = 0.

Furthermore, N ∈ C1(X, Y ).
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Then, using a degree for proper C1 Fredholm maps, theorem 1.3 remains true
with (H3) replaced by (H3)′.

For m ∈ N and p � 1, we adopt the standard notation [2] for the Sobolev space
Wm,p(RN ). Fixing a value p ∈ (N/4,∞) ∩ (1,∞) we set X := W 4,p(RN ), and we
recall that the condition lim|x|→∞ u(x) = 0 is satisfied for all u ∈ X for such p.

We are interested in pairs (λ, u) ∈ R×W 4,p(RN ), solutions for the problem (1.1).
Our aim is to show the existence of global branches (in the spirit of [23, 24]) of
solutions of (1.1) bifurcating from a trivial solution (λ0, 0) in R × X.

For second-order elliptic differential equations on bounded domains, this kind
of result goes back to the celebrated papers of Rabinowitz [24], Ambrosetti and
Gamez [1] and Crandall and Rabinowitz [3]. Recently, there has been a resurgence
of interest in the case of second-order elliptic partial differential equations such as

−∆u(x) + f(x, u(x)) = λu(x) for x ∈ R
N , lim

|x|→∞
u(x) = 0, u �≡ 0, (1.2)

under various assumptions on f (see, for example, [5, 13, 14, 23]). In [23] (under
appropriate conditions on f) the existence of global bifurcation for (1.2) was estab-
lished. Some results on global bifurcation of the positive solution coming from (Λ, 0),
where Λ is the lowest eigenvalue of the linearization at u = 0, were also obtained
there.

Let

Z := {(λ, u) ∈ (−∞, α) × X | (λ, u) is a solution to (1.1), u �= 0},

where α is defined in (H4). Consider on Z ∪ {(λ0, 0)} the topology inherited from
R × X and let Cλ0 be the connected component of Z ∪ {(λ0, 0)} containing (λ0, 0),
for λ0 ∈ (−∞, α).

Moreover, consider the linear biharmonic operator in L2(RN ) defined by

Su := ∆2u + ∂2f(·, 0)u for u ∈ D(S) := W 4,2(RN ). (1.3)

Using this notation, we prove, in § 8, the following theorem.

Theorem 1.3. Suppose that the hypotheses (H1)–(H4) hold, and there exists λ0 <
α such that dim Ker(S − λ0) is odd.

Then Cλ0 has at least one of the following properties:

(i) Cλ0 is unbounded in Z;

(ii) the closure of Cλ0 contains a point of the form (λ∗, 0) with λ∗ �= λ0;

(iii) sup(λ,u)∈Cλ0
λ = α.

It is much more complicated to deal with the bifurcation for biharmonic equa-
tions. Firstly, there is no maximum principle for the biharmonic problem. So we
cannot obtain asymptotic estimates of the solutions by the methods used to deal
with the second-order elliptic problem. Secondly, we know little about the prop-
erties of the eigenfunctions of the biharmonic operator in R

N . To overcome these
difficulties, we first introduce the fundamental solutions for the linear biharmonic
operator ∆2 − λ if λ < 0. By applying some properties of Hankel functions, which
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are the solutions of Bessel’s equation, we obtain the asymptotic representation of
the fundamental solution of ∆2 − λ at ∞ and 0. We then prove that, for p > 1,

∆2 − λ : W 4,p → Lp

is an isomorphism if λ < 0. Asymptotic estimates of the solutions of (1.1) can be
obtained from the properties of the fundamental solutions of ∆2 −λ. We also estab-
lish some Lp theory for the biharmonic problem, so that a bootstrap argument can
be used to deduce the regularity of the linear inhomogeneous biharmonic problem.

For the early results on the existence and other properties of solutions associated
with biharmonic operators, please refer to [11,12,17,19,20] and references therein.

The organization of this paper is as follows. In § 2, we recall some notions about
the degree theory of proper C2 Fredholm mappings and, using this degree, we state
a quite general version of the Rabinowitz-type global bifurcation theorem for C2

proper Fredholm mappings proved by Pejsachowicz and Rabier in [8]. In § 3, we
develop a functional framework, which will permit us to use this bifurcation theo-
rem in order to handle the problem (1.1). Using hypotheses (H1)–(H3), we find a C2

mapping F : R × X → Lp(RN ), whose zeros are solutions of the problem (1.1) and
such that D2F(λ,u)(v) = ∆2v + {∂2f(·, u) − λ}v. In § 4, we introduce the fundamen-
tal solutions of ∆2 − λ for λ < 0 and establish some properties of the fundamental
solutions. In § 5, we show that the mapping ∆2 − λ : W 4,p → Lp is an isomorphism
for all p � 2 if λ < 0. Asymptotic estimates of the solutions of the problem (1.1) are
given in § 6. Using these estimates, we show that F is boundedly proper for λ < α.
In § 7, we establish the Lp theory for the biharmonic equations, and then we check
that the choice of p in the definition of the space X does not affect the linearization
spectrum. We conclude the discussion in this section by proving, using (H4), that
D2F(λ,u) is a linear Fredholm operator with index 0 for every λ < α. Finally, in § 8,
we complete the proof of theorem 1.3.

2. Degree of Fredholm mappings

In this section, we outline the construction (see [6, 8] for details) of the degree of
proper C2 Fredholm mappings, and then we state the general bifurcation theorem
used to prove our result.

Let X and Y be real Banach spaces. Denote by L(X, Y ) the space of bounded
linear operators from X to Y with the usual norm. An operator in L(X, Y ) is
called Fredholm with index 0 if its kernel has finite dimension and its image is
closed with the same finite codimension in Y . We denote by φ0(X, Y ) the subset
of L(X, Y ) consisting of those operators which are Fredholm with index 0 and by
GL(X, Y ) the subset of φ0(X, Y ) consisting of the invertible ones. If T ∈ GL(X)
is a compact perturbation of the identity, we let degLS(T ) be the Leray–Schauder
degree of T : U → X with respect to 0, where U is any neighbourhood of the
origin. For an interval I = [a, b] and a continuous path α : I → φ0(X, Y ) we call a
continuous path β : I → GL(Y, X) a parametrix for α if each β(λ)α(λ) is a compact
perturbation of the identity. Parametrices always exist [6]. If the ends of the path,
α(a) and α(b), are invertible, then the parity of α in I, σ(α, I), defined by

σ(α, I) = degLS(β(a)α(a)) degLS(β(b)α(b)),

is independent of the choice of parametrix [6].
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Note that the Leray–Schauder degree is used in [6] only with linear compact
perturbations of the identity, and, hence, σ(α, I) ∈ {−1, 1}. The parity is an inter-
section index which, generically, is a mod 2 count of the number of intersections
of α(I) with the set of singular operators. It is an additive homotopy invariant of
paths in φ0(X, Y ) with invertible endpoints. Moreover, the parity is 1 if and only
if the path is homotopic to a path of invertible operators.

With this in mind, we can describe briefly the construction of the degree, as
follows.

Let O be an open, simply connected subset of X and F : O → Y be a C2

Fredholm mapping with index 0 (i.e. such that DF(x) ∈ φ0(X, Y ) for x ∈ O). A
base point for the degree of F is any point x0 ∈ O at which DF(x0) is invertible.

Assume that there exists a base point p for F . Let Ω be a bounded open subset of
O and such that F can be extended by continuity as a proper mapping to the closure
Ω̄ of Ω; i.e. such that the pre-image F−1(K) ∩ Ω̄ of every compact set K in Y is
also compact. Then, if y �∈ F (∂Ω) and if DF(x) is invertible for all x ∈ F−1(y) ∩ Ω,
the degree of F on Ω with respect to y and relative to p is defined by

dp(F, Ω, y) =
∑

x∈F −1(y)∩Ω

σp(x),

where σp(x) = σ(DF ◦ γ, [0, 1]) is the parity of the derivative DF along any curve
γ : [0, 1] → O joining p to x. The fact that σp(x) does not depend on the choice of
γ follows immediately from the homotopy invariance of the parity and the simple
connectedness of O.

Using the general Sard–Smale theorem [21], the definition of degree is extended
by regular value approximation to the case when DF(x) is not necessarily invertible
for all x ∈ F−1(y) ∩ Ω.

This base point degree satisfies the usual additivity, excision and normalization
properties. Its most important property is the homotopy property [8].

Definition 2.1. Let X and Y be Banach spaces and I be an open interval of R.
We say that a mapping F : I × X → Y is boundedly proper if the restriction of
F to any closed bounded subset of [a, b] × X is proper for all a and b such that
inf I < a � b < sup I (i.e. for every compact subset K of Y and for every closed
bounded subset B of [a, b] × X, F−1(K) ∩ B is compact).

Definition 2.2. Let X, Y be Banach spaces and I an open interval of R. We say
that a mapping F : I × X → Y is Fredholm with index 0 if D2F(λ,u) exists and
D2F(λ,u) ∈ φ0(X, Y ) for all (λ, u) ∈ I × X.

Now we can recall the global bifurcation theorem for Fredholm mappings [8] as
follows. Let p1 : R × X → R denote the projection p1(λ, u) = λ for (λ, u) ∈ R × X.

Theorem 2.3 (Fitzpatrick et al . [8]). Let X and Y be real Banach spaces, I ⊆ R

be an open interval and F : I × X → Y be a C2 mapping with F (λ, 0) = 0 for all
λ ∈ R. Suppose that F is boundedly proper and Fredholm with index 0. Moreover,
assume that there exist λ0 ∈ I and ε > 0 such that 0 < |λ − λ0| � ε implies that

λ ∈ I, D2F(λ,0) ∈ GL(X, Y ), and σ(D2F(λ,0), [λ0 − ε, λ0 + ε]) = −1.
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Let Z = {(λ, u) ∈ I ×X | F (λ, u) = 0 and u �= 0}, and denote by Cλ0 the connected
component of Z ∪ {(λ0, 0)} containing (λ0, 0). Then Cλ0 has at least one of the
following properties:

(i) Cλ0 is unbounded;

(ii) the closure Cλ0 contains a point of the form (λ∗, 0) with λ∗ ∈ I \[λ0−ε, λ0+ε];

(iii) the closure of p1(Cλ0) intersects the boundary of I.

3. A functional framework

The aim of this section is to define a mapping F : R × X → Y whose zeros are
solutions of the problem (1.1) and which satisfies the hypotheses of theorem 2.3.

To do this we choose p ∈ ( 1
4N, ∞) ∩ (1,∞), and we set

X = W 4,p(RN ) and Y = Lp(RN ) (3.1)

with the usual norms,

‖u‖p =
{∫

RN

|u|p
}1/p

and ‖u‖X =
{

∑

0�|µ|�4

‖Dµu‖p
p

}1/p

,

where µ is a multi-index.
We recall the following properties of the space X (see [2, 9]).

(1) X ↪→ C(RN ), continuously.

Moreover, the injection W 4,p(BR) ↪→ C(B̄R) is completely continuous for
every ball BR = {x ∈ R

N | |x| < R}.

(2) X ↪→ Lq(RN ), continuously, for every p � q � ∞.

(3) lim|x|→∞ u(x) = 0, for all u ∈ X.

Consider the mapping

F : R × X → Y, by (λ, u) �→ ∆2u + f(·, u) − λu. (3.2)

Here R × X is equipped with the norm

‖(λ, u)‖ = |λ| + ‖u‖X .

The first result shows that F : R × X → Y is a well-defined C2 mapping.

Lemma 3.1. Let f be a mapping which satisfies the hypotheses (H1)–(H3) and let
K be a compact subset of R. The following conclusions then hold:

(i) ∂2f is bounded on R
N × K;

(ii) there exists a constant C = C(K) such that, for all (x, s1), (x, s2) ∈ R
N × K,

we have

|f(x, s1) − f(x, s2)| � C|s1 − s2|,
|∂2f(x, s1) − ∂2f(x, s2)| � C|s1 − s2|;
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(iii) on letting u ∈ X, there exists a constant C = C(u) such that

|f(x, u(x))| � C|u(x)| a.e. on R
N .

Proof. (i) The conclusion is a consequence of (H3).

(ii) For all s1, s2 ∈ K, we have

|f(x, s1) − f(x, s2)| =
∣
∣
∣
∣

∫ 1

0

d
dt

{f(x, s2 + t(s1 − s2))} dt

∣
∣
∣
∣

� |s1 − s2|
∫ 1

0
|∂2f(x, s2 + t(s1 − s2))| dt

� C|s1 − s2|.

In the same way, we prove that

|∂2f(x, s1) − ∂2f(x, s2)| � C|s1 − s2|.

(iii) Use the injection X ↪→ L∞(RN ), the previous assertion of lemma 3.1(ii), and
(H1).

To study the differentiability of the mapping F , we consider the nonlinear Nemit-
sky operator

N : X → Y, u �→ f(·, u). (3.3)

Theorem 3.2. Let f be a mapping satisfying (H1)–(H4). The following conclusions
then hold:

(i) the operator N (see (3.3)) is well defined;

(ii) N is C2 and, for u ∈ X,

DN(u)(ξ) = ∂2f(·, u)ξ ∀ξ ∈ X,

D2N(u)(ξ1, ξ2) = ∂22f(·, u)ξ1ξ2 ∀ξ1, ξ2 ∈ X;

(iii) the mapping F (see (3.2)) is well defined and C2, and

D2F(λ,u) = ∆2 + (∂2f(·, u) − λ).

Proof. (i) The fact that the Nemitsky operator N is well defined is a consequence
of (H2), of [26, theorem 18.3, p. 152] (which ensures that N(u) is measurable for
every u ∈ X) and of lemma 3.1.

(ii) Let u ∈ X. For every ξ ∈ X, we have

‖N(u + ξ) − N(u) − ∂2f(·, u)ξ‖p �
∥
∥
∥
∥

∫ 1

0
{∂2f(·, u + tξ) − ∂2f(·, u)}ξ dt

∥
∥
∥
∥

p

� sup
x∈RN

sup
t∈[0,1]

{|∂2f(·, u + tξ) − ∂2f(·, u)|}‖ξ‖p

� sup
x∈RN

sup
t∈[0,1]

{|∂2f(·, u + tξ) − ∂2f(·, u)|}‖ξ‖X .
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Thus, it follows from lemma 3.1(ii) that

lim
‖ξ‖X→0

‖N(u + ξ) − N(u) − ∂2f(·, u)ξ‖p

‖ξ‖X
= 0.

Moreover, by lemma 3.1(i), we find that the following linear operator is well
defined and bounded:

X → Y, ξ �→ ∂2f(·, u)ξ.

Hence, N is Fréchet differentiable.
Let u ∈ X. For every ξ1, ξ2 ∈ X, we have

‖DN(u+ξ2)(ξ1) − DN(u)(ξ1) − ∂22f(·, u)ξ1ξ2‖p

�
∥
∥
∥
∥

∫ 1

0
{∂22f(·, u + tξ2) − ∂22f(·, u)}ξ1ξ2 dt

∥
∥
∥
∥

p

� sup
x∈RN

sup
t∈[0,1]

{|∂22f(·, u + tξ2) − ∂22f(·, u)|}‖ξ1ξ2‖p

� sup
x∈RN

sup
t∈[0,1]

{|∂22f(·, u + tξ2) − ∂22f(·, u)|}C‖ξ1‖X‖ξ2‖X .

Using hypothesis (H3), we see that DN is Fréchet differentiable.
With analogous arguments, we prove that D2N is continuous.

(iii) Using theorem 3.2(ii) and the fact that the mapping

R × X → Y, (λ, u) �→ ∆2u − λu

is C∞, we conclude that F is C2.

Remark 3.3. In § 6, we will prove that the mapping F defined by (3.2) is boundedly
proper for λ < α, and in § 7, we will prove that F is Fredholm with index 0.

4. Fundamental solutions for biharmonic operators

In this section, we deduce the fundamental solutions for the biharmonic operators
∆2 − λ. It will be shown that the fundamental solutions of biharmonic operators
can be expressed in terms of the fundamental solutions of the Helmholtz equation
in R

N with complex coefficient. The main results of this section were proved in [4].
A fundamental solution of the Helmholtz equation in R

N is a solution of

(−∆ − µ)gµ = δ,

where δ denotes the Dirac function. Of course, gµ is not uniquely determined; we
may add any solution of (∆ + µ)u = 0. Let us try to make gµ as simple as possible
and ask for spherically symmetric solutions.

For µ ∈ C (complex number set), we have to solve Bessel’s equation:

z′′(r) +
N − 1

r
z′(r) + µz(r) = 0, r > 0. (4.1)

Defining w(r) = z′(r)/r, we get

w′′(r) +
N + 1

r
w′(r) + µw(r) = 0.
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Thus, zN+2(r) = z′
N (r)/r, where zN (r) is the solution of (4.1), and we only need

to know z1 and z2. For N = 1, we obtain

gµ(x) =
i

2
√

µ
ei

√
µ|x|.

Of course there is a second linearly independent solution of (4.1), namely ḡµ.
But for µ ∈ C \ R

+, the latter is not square-integrable (since we always choose
Im

√
µ � 0). So we only use gµ.

For general N , with ν = 1
2 (N − 2) (see [15] or [16]), we obtain

g(N)
µ (x) =

icµ
N

|x|ν H(1)
ν (

√
µ|x|), (4.2)

where H
(1)
ν = Jν + iYν is the first Hankel function and

cµ
N =

πµν/2

2(2π)N/2

has to be adjusted so that g
(N)
µ (x) behaves like g

(N)
0 (x) for |x| → 0. For N = 2, 3

we get

g(2)
µ = 1

4 iH(1)
0 (

√
µ|x|), g(3)

µ (x) =
1

4π|x|e
i
√

µ|x|, (4.3)

and generally

g(N+2)
µ (r) = − (g(N)

µ (r))′

2πr
, r = |x|. (4.4)

Now, with these preliminaries, we proceed to deduce the fundamental solutions
for biharmonic operators in R

N . A fundamental solution of the biharmonic operator
∆2 − λ in R

N is a solution of

(∆2 − λ)u = δ. (4.5)

Lemma 4.1. The fundamental solution of (4.5) is

G
(N)
λ =

1
2
√

λ
(g(N)√

λ
− g

(N)
−

√
λ
), (4.6)

where g
(N)
µ (x) is the fundamental solution of the Helmholtz equation in R

N , which
is given by (4.2).

Proof. Let G
(N)
λ be a fundamental solution of (4.5). We then have

(∆2 − λ)G(N)
λ = δ. (4.7)

Taking Fourier transforms on both sides of (4.7), we obtain

(|ζ|4 − λ)Ĝ(N)
λ (ζ) =

(
1
2π

)N/2

.

Thus,

Ĝ
(N)
λ (ζ) =

(
1
2π

)N/2 −1
2
√

λ

(
1

|ζ|2 +
√

λ
− 1

|ζ|2 −
√

λ

)

. (4.8)
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Because g
(N)
µ is a fundamental solution of (4.1), we have

(|ζ|2 + µ)ĝ(N)
µ (ζ) = −

(
1
2π

)N/2

,

and, hence,

ĝ(N)
µ (ζ) = −

(
1
2π

)N/2 1
|ζ|2 + µ

.

Substituting into (4.8) with µ = ±
√

λ, we obtain

Ĝ
(N)
λ (ζ) =

1
2
√

λ
(ĝ(N)√

λ
(ζ) − ĝ

(N)
−

√
λ
(ζ)). (4.9)

Thus, we are led to

G
(N)
λ (x) =

1
2
√

λ
(g(N)√

λ
(ζ) − g

(N)
−

√
λ
(ζ)).

We are interested in the case when λ < 0. For convenience, we write λ = −k2 with
k > 0. Using this notation, the fundamental solution of the biharmonic operator
can be rewritten as

G
(N)
k (x) =

1
2ik

(g(N)
ik − g

(N)
−ik ).

By using (4.4) we can easily deduce that

GN+2
k (r) = − 1

2π|x| (G
(N)
k (r))′, r = |x|. (4.10)

We also can deduce from (4.7) that

G
(N)
k (x) =

1
2ik

(g(N)
ik − g

(N)
ik ), (4.11)

where g
(N)
ik is the conjugate of g

(N)
ik .

For example, when N = 3,

g
(3)
ik (x) =

1
4π|x| exp{i

√
ik|x|} =

1
4π|x| exp

{

−
√

k√
2
|x|

}(

cos

√
k√
2
|x| + i sin

√
k√
2
|x|

)

,

so we have
G

(3)
k (x) =

1
4πk|x| exp

{
−

√
1
2k|x|

}
sin

√
1
2k|x|. (4.12)

By (4.10), we obtain

G
(5)
k (x)

=
1

8kπ2|x|2

[√
k√
2

sin
√

1
2k|x|+ 1

|x| sin
√

1
2k|x|−

√
1
2k cos

√
1
2k|x|

]

exp
{

−
√

1
2k|x|

}
.

(4.13)

The asymptotic behaviour and some properties of G
(N)
k (x) were given in [4]. For

general ν = 1
2 (N − 2), we have the following lemma.
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Lemma 4.2.

(i)
G

(N)
k (x) ∈ C∞(RN \ {0})

and
∆2G

(N)
k (x) + k2G

(N)
k (x) = 0 for x �= 0. (4.14)

(ii) As |x| → ∞,

exp
{√

k√
2
|x|

}

G
(N)
k (x) → 0 and exp

{√
k√
2
|x|

}

|∇G
(N)
k (x)| → 0. (4.15)

(iii) As |x| → 0, with r = |x|,

G
(N)
k (r) =

2ν−2Γ (ν − 1)
2(2π)N/2 r2−2ν + O(r4−2ν)

if ν = 1
2 (N − 2) > 1 and ν /∈ N;

G
(N)
k (r) =

2ν−2Γ (ν − 1)
2(2π)N/2 r2−2ν + O(r4−2ν + ln r)

if ν = 1
2 (N − 2) � 2 and ν ∈ N;

G
(N)
k (r) ≈ O(ln r) if N = 4, ν = 1

2 (N − 2) = 1,

G
(N)
k = O(1) if N = 2, 3 ν = 0, 1

2 .

(iv) |G(N)
k (r)| � Cg

(N)
−δ (r) for some positive constants C and 0 < δ <

√
k/

√
2.

It follows from properties (ii) and (iii) that

G
(N)
k (x) ∈ Lp(RN ) for 1 � p < +∞, if N = 2, 3, 4;

G
(N)
k (x) ∈ Lp(RN ) for 1 � p <

N

N − 4
, if N � 5;

|∇G
(N)
k (x)| ∈ Lp for 1 � p <

N

N − 3
, if N > 3;

|∇G
(N)
k (x)| ∈ Lp for 1 � p < +∞, if N = 3;

|∇G
(N)
k (x)| ∈ Lp for 1 � p � +∞, if N = 2;

|∆G
(N)
k (x)| ∈ Lp for 1 � p <

N

N − 2
, if N � 3;

|∆G
(N)
k (x)| ∈ Lp for 1 � p < +∞, if N = 2.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.16)

Using this information about G
(N)
k (x), we can express the solution of an inhomo-

geneous biharmonic equation as the convolution of the fundamental solution with
the inhomogeneous term.

The following theorem comes from [4].
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Theorem 4.3.

(i) Let f ∈ L2(RN ) ∩ L∞(RN ) and

u =
∫

RN

f(z)G(N)
k (x − z) dz.

Then
∆2u + k2u = f(x).

(ii) Let u be a distribution such that

∆2u + k2u = f

and f ∈ L2(RN ) ∩ L∞(RN ). Then

u =
∫

RN

f(z)G(N)
k (x − z) dz. (4.17)

(iii) There is no non-trivial distribution such that

∆2u + k2u = 0, u ∈ W 2,2(RN ). (4.18)

5. Isomorphism

In this section, we prove that the biharmonic operator

∆2 − λ : W 4,p ↪→ Lp

is an isomorphism for all p ∈ [2, +∞) if λ < 0. To this end, we need the following
theorem on Young’s inequality [25].

Theorem 5.1. Let f ∈ Lp and g ∈ Lq with 1/p + 1/q � 1. Then
∫

RN

f(x − z)g(z) dz

converges for almost all x ∈ R
N and defines an element of Ls(RN ), where

1
s

=
1
p

+
1
q

− 1
(

with s = +∞ when
1
p

+
1
q

= 1
)

.

Denoting this element by f ∗ g, we also find that f ∗ g = g ∗ f and

‖f ∗ g‖s � ‖f‖p‖g‖q.

From the properties (see (4.16)) of the fundamental solution G
(N)
k for k >

0, Young’s inequality shows that the convolution f ∗ G
(N)
k defines an element of

Ls(RN ) whenever f ∈ Lp(RN ), subject to the restrictions

p �

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

s � +∞ if p > 1
4N,

s < +∞ if p = 1
4N,

s <
Np

N − 4p
if 1 � p < 1

4N.

(5.1)
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Moreover, setting Tkf = f ∗ G
(N)
k , we see that

Tk : Lp → Ls

is a bounded linear operator under the restrictions (5.1).
Referring again to (4.16), for i = 1, 2, . . . , N , the convolution f ∗ ∂iG

(N)
k defines

an element of Ls(RN ) whenever f ∈ Lp(RN ) subject to the restrictions

p �

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

s � +∞ if p > 1
3N,

s < ∞ if p = 1
3N,

s <
N · p

N − 3p
if 1 � p < 1

3N ;

(5.2)

and, setting
Si

kf = f ∗ ∂iG
(N)
k for i = 1, 2, . . . , N,

we see that
Si

k : Lp → Ls

is a bounded linear operator under the restrictions (5.2).
Also from (4.16), the convolution f ∗ ∆G

(N)
k defines an element of Ls(RN ) when-

ever f ∈ Lp(RN ) subject to the restrictions

p �

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

s � +∞ if p > 1
2N,

s < +∞ if p = 1
2N,

s <
Np

N − 2p
if 1 � p < 1

2N ;

(5.2)′

and, setting
S∆

k f = f ∗ ∆G
(N)
k ,

we see that
S∆

k : Lp → Ls

is a bounded linear operator under the restrictions (5.2)′.
So we have obtained the following theorem.

Theorem 5.2. Let λ = −k2 < 0. Then ∆2 − λ is a bounded linear operator from
W 4,p into Lp. Furthermore, ∆2 − λ : W 4,2(RN ) ↪→ L2(RN ) is a self-adjoint opera-
tor.

Define
Sp : W 4,p(RN ) → Lp(RN ), u �→ ∆2u − λu. (5.3)

We then have the following lemma and theorem.

Lemma 5.3. Let λ = −k2 < 0. Then

S2 : W 4,2(RN ) ↪→ L2(RN )

is an isomorphism.
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Proof. Because L2(RN ) is a Hilbert space and S2 is a self-adjoint operator which
is positive, it follows from [25, lemma 3.2] that S2 : W 4,2(RN ) ↪→ L2(RN ) is an
isomorphism.

Theorem 5.4. Let λ = −k2 < 0. Then the bounded linear operator

Sp : W 4,p(RN ) → Lp(RN )

defined by (5.3) is an isomorphism, provided that p ∈ [2, +∞).

Proof. For any fixed p ∈ [2, +∞), by theorem 5.2,

Sp = ∆2 − λ : W 4,p → Lp

is a bounded linear operator, and we shall show that

(i) KerSp = {0},

(ii) RangeSp = Lp(RN ).

Proof of theorem 5.4(i). Suppose that u ∈ W 4,p(RN ) and Spu = 0. This means
that u is a solution of

∆2u − λu = 0, u ∈ W 4,p(RN ). (5.4)

Rewrite (5.4) in the form

−∆(−∆u) = λu, u ∈ W 4,p(RN ), −∆u ∈ W 2,p(RN ).

By a bootstrap argument, it follows that

u ∈ C4(RN ) ∩ Lp(RN ), ∆u ∈ C2(RN ) ∩ Lp(RN ),

and lim|x|→∞ u(x) = 0, lim|x|→∞ ∆u(x) = 0. Define

u1 = (∆ −
√

λ)u and u2 = (∆ +
√

λ)u.

Then
(∆ +

√
λ)u1 = 0, (∆ −

√
λ)u2 = 0, (5.5)

and

u =
1

2
√

λ
(u2 − u1),

lim
|x|→∞

u1(x) = 0, lim
|x|→∞

u2(x) = 0.

For λ < 0, the solution of (5.5) can be expressed in terms of Hankel functions
(see (4.2)). From the asymptotic behaviour of the Hankel functions [4]

H(1)
ν (r) =

(
1
πr

)1/2

exp
[

i
(

r − νπ

2
− π

4

)]

+ O

(
1

r3/2 exp
(

i
(

r − νπ

2
− π

4

)))

as r → ∞, we can deduce that

exp{Im(λ)1/4|x|}ui(x) → 0, i = 1, 2, as |x| → ∞.
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Thus, we have
eIm(λ)1/4|x|u(x) → 0 as |x| → ∞. (5.6)

It follows from (5.6) that u ∈ Lr(RN ) for all r ∈ [2, +∞). In particular, u ∈ L2(RN )
and, hence, u ∈ W 4,2(RN ). Lemma 5.3 gives us u ≡ 0.

Proof of theorem 5.4(ii). Let f ∈ Lp(RN ). We must show that there exists an ele-
ment u ∈ W 4,p(RN ) such that Spu = f . For this we consider a sequence {fn} ⊂
C∞

0 (RN ) such that ‖fn − f‖p → 0 as n → ∞. Since fn ∈ L2(RN ), it follows from
lemma 5.3 that there exists a unique element un ∈ W 4,2(RN ) such that

(∆2 − λ)un = fn.

We now show that

(a) un ∈ W 4,p(RN ),

(b) {un} is a Cauchy sequence in W 4,p(RN ).

From theorem 4.3 and lemma 5.3, the inverse of the operator S2 : W 4,2 → L2 is
known to be an integral operator, which we write as

Tkfn =
∫

RN

G
(N)
k (x − z)fn(z) dz

with the kernel G
(N)
k . Furthermore, the estimates on G

(N)
k imply that this integral

operator acts as a bounded linear operator

Tks : Ls(RN ) → Ls(RN )

for s ∈ (1, +∞) (see theorem 5.2). Since

un(x) =
∫

RN

G
(N)
k (x − z)fn(z) dz

and fn ∈ C∞
0 (RN ), we can conclude that un ∈ Ls(RN ) for all s ∈ [1, +∞]. In par-

ticular, un ∈ L∞(RN ).
On the other hand, from lemma 5.3, fn ∈ L2(RN ) implies that un is the unique

solution of
∆2un − λun = fn, un ∈ W 4,2(RN ). (5.7)

Rewrite (5.7) in the form

−∆(−∆un) = fn + λun, un ∈ W 4,2(RN ), ∆un ∈ W 2,2(RN ). (5.7)′

From un ∈ W 4,2(RN ) and Sobolev embedding, we deduce that

un ∈

⎧
⎪⎨

⎪⎩

L2N/(N−8)(RN ), if N > 8,

Ls(RN ) for s ∈ (1, +∞), if N = 8,

Ls(RN ) for s ∈ (1, +∞], if N < 8.

(5.8)

For N > 8, we have fn + λun ∈ L2N/(N−8)(RN ) and ∆un ∈ W 2,2(RN ). Using
Lp-estimates for ∆un, we have

∆un ∈ W 2,2N/(N−8)(RN ),
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and hence

un ∈ W 4,2N/(N−8)(RN ).

Defining q1 = 2N/(N − 8), and again using Sobolev’s embedding, we deduce that

un ∈ Lq1N/(N−4q1)(RN ),

and, hence,
fn + λun ∈ Lq1N/(N−4q1)(RN ).

Because q1N/(N − 4q1) > q1, a bootstrap argument can be used to deduce that
un ∈ W 4,r(RN ) for all 2 � r < +∞. This implies that un ∈ W 4,p(RN ) for all
p ∈ [2, +∞) after finitely many bootstrap iterations, and completes the proof of (a).

As for (b), we proceed as follows. By (a), we can now write fn = Spun. Since

[un − um](x) =
∫

RN

G
(N)
k (x − z)[fn − fm](z) dz,

the boundedness of the operator Tkp : Lp → Lp implies that

‖um − un‖p � K(p)‖fm − fn‖p

and

(∆2−λ)(un−um) = fn−fm, (un−um) ∈ W 4,p(RN ), ∆(un−um) ∈ W 2,p(RN ).

Thus,

−∆(−∆(un − um)) = (fn − fm) + λ(un − um), −∆(un − um) ∈ W 2,p(RN ).

Lp-estimates yield that

‖∆(un − um)‖W 2,p(RN ) � C(p){‖un − um‖p + ‖fn − fm‖p},

and thus
‖un − um‖W 4,p(RN ) � C(p){(K(p) + 1)‖fn − fm‖p}.

So {un} is indeed a Cauchy sequence in W 4,p(RN ). There is an element u ∈
W 4,p(RN ) such that ‖un − u‖W 4,p → 0 and so, by the continuity of Sp : W 4,p → Lp,
this implies that Spu = f .

6. Bounded properness

In this section, we show that the mapping F defined by (3.2) is boundedly proper
for λ < α. This will be derived from the following theorem.

Theorem 6.1. Let f be a mapping satisfying the hypotheses (H1)–(H4), and con-
sider

F : R × W 4,p → Lp,

(λ, u) �→ ∆2u + f(·, u) − λu.

Then the restriction of F to (−∞, α) × W 4,p is boundedly proper (see definition
2.1).
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Proof. Let [a, b] ⊂ (−∞, α), and let B be a bounded closed subset of [a, b] × W 4,p

and K a compact subset of Y .
We must prove that every sequence {(λn, un)} of F−1(K) ∩ B has a convergent

subsequence. We set
F (λn, un) = wn. (6.1)

Without loss of generality we suppose that

λn → λ ∈ [a, b],

un ⇀ u weakly in W 4,p,

wn → w strongly in Lp with w ∈ K.

We can choose the subsequence such that

wn → w a.e. on R
N .

From (6.1), we have

∆2un − (λ − α)un = αun − f(x, un) + wn.

Since λ < α, we will write λ − α = −k2 < 0 (k > 0) and, thus,

un(x) =
∫

RN

G
(N)
k (x − z)[αun(z) − f(z, un(z))] dz

+
∫

RN

G
(N)
k (x − z)wn(z) dz. (6.2)

Since p > 1
4N , by Sobolev’s embedding we deduce that

‖un(x)‖L∞ � ‖un(x)‖W 4,p(RN ) � C

for all n � 1. By applying (H4) and lemma 4.2, we have, for some fixed δ ∈
(0,

√
k/

√
2) (see lemma 4.2(iv)),

∣
∣
∣
∣

∫

RN

G
(N)
k (x − z)[αun(z) − f(z, un(z))] dz

∣
∣
∣
∣

� C

∫

RN

g
(N)
−δ (x − z)[a(z)|un(z)| + b(z)|un(z)|σ+1] dz

� C max{‖u‖L∞ , ‖u‖σ+1
L∞ }

∫

RN

g
(N)
−δ (x − z)[a(z) + b(z)] dz

� C1

∫

RN

g
(N)
−δ (x − z)[a(z) + b(z)] dz

and
∣
∣
∣
∣

∫

RN

G
(N)
k (x − z)wn(z) dz

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

RN

G(N)(x − z)(wn(z) − w(z) + w(z)) dz

∣
∣
∣
∣

� C

∫

RN

g
(N)
−δ (x − z)|wn(z) − w(z)| dz

+ C

∫

RN

g
(N)
−δ (x − z)|w(z)| dz.
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Substituting into (6.2), we have

|un(x)| � C1

∫

RN

g
(N)
−δ (x − z)[a(z) + b(z)] dz

+ C

∫

RN

g
(N)
−δ (x − z)|wn(z) − w(z)| dz

+ C

∫

RN

g
(N)
−δ (x − z)|w(z)| dz,

where g
(N)
−δ (x) is the fundamental solution of −∆ + δ with 0 < δ <

√
k/

√
2, and

a(x), b(x) are given by (H4). Now, for R > 0 we have

‖un − u‖p
Lp =

∫

|x|�R

|un − u|p dx +
∫

|x|�R

|un − u|p dx

�
∫

|x|�R

|un − u|p dx +
∫

|x|�R

|un|p dx +
∫

|x|�R

|u|p dx

�
∫

|x|�R

|un − u|p dx +
∫

|x|�R

|u|p dx

+ C1

∫

|x|�R

[∫

RN

g
(N)
−δ (x − z)[a(z) + b(z)] dz

]p

dx

+ C

∫

|x|�R

[∫

RN

g
(N)
−δ (x − z)|wn(z) − w(z)| dz

]p

dx

+ C

∫

|x|�R

[∫

RN

g
(N)
−δ (x − z)|w(z)| dz

]p

dx.

The proof may now be completed using the following facts.

(i)

lim
R→∞

∫

|x|�R

|u|p dx = 0

because u ∈ Lp(RN ).

(ii)

lim
R→∞

∫

|x|�R

[∫

RN

g
(N)
−δ (x − z)[a(z) + b(z)] dz

]p

dx = 0

and

lim
R→∞

∫

|x|�R

[∫

RN

g
(N)
−δ (x − z)|w(z)| dz

]p

dx = 0

because −∆ + δ is an isomorphism from W 2,p(RN ) to Lp(RN ).

(iii)

lim
n→∞

∫

|x|�R

[∫

RN

g
(N)
−δ (x − z)|wn(z) − w(z)| dz

]p

dx = 0
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because −∆ + δ is an isomorphism from W 2,p(RN ) to Lp(RN ) and wn → w
strongly in Lp(RN ).

(iv)

lim
n→∞

∫

|x|�R

|un − u|p dx = 0

by the compact embedding theorem for bounded domains.

By the second assertion of lemma 3.1, there exists a constant C > 0 such that

|f(x, u(x)) − f(x, un(x))| � C|u(x) − un(x)|

for all x ∈ R
N and n ∈ N. Thus,

‖f(·, un) − f(·, u)‖Lp � C‖un − u‖Lp → 0 as n → ∞.

Now, consider the expression

(∆2 + 1)un = ∆2un − λun + f(x, un) − f(x, un) + λun + un

= F (λn, un) − f(x, un) + (λ + 1)un → w − f(x, w) + (λ + 1)u
strongly in Lp as n → ∞.

The operator ∆2 + 1 is an isomorphism of W 4,p onto Lp (see theorem 5.4). So
it follows that {un}∞

n=1 converges in W 4,p(RN ), which completes the proof of the
theorem.

7. The spectrum of the linear problem

In this section, we show that the features of the spectrum of the linearized problem
that are important for our bifurcation results do not depend on the value of p used
in the choice of the space W 4,p(RN ) and Lp(RN ) for p � 2.

We present the results for any operator of the form ∆2u + V u, where V ∈
L∞(RN ). The linearization of (1.1) is obtained by setting V = ∂2f(·, 0).

For each 1 < q < +∞, we consider the family (Aq,λ)λ∈R of bounded linear
operators defined by

Aq,λ : W 4,q(RN ) → Lq(RN ), u �→ ∆2u + (V − λ)u,

and we set

Σq = {λ ∈ R | Aq,λ : W 4,q(RN ) → Lq(RN ) is not an isomorphism}.

Remark 7.1. The mapping (x, s) ↪→ V (x)s satisfies the properties (H1)–(H3) and
we assume that

α = lim
|x|→∞

V (x) ∈ R.

Remark 7.2. Σq = σ(Sq), where Sq is the operator in Lq(RN ) defined by Squ =
∆2u + V u for u ∈ D(Sq) = W 4,q(RN ) and σ(Sq) is the spectrum of Sq in the usual
sense.
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In the following, the self-adjoint operator S2 will be denoted by S.
The results below show that, for q ∈ (1, +∞) and λ < α:

(i) Aq,λ is a Fredholm operator of index zero;

(ii) dim KerAq,λ is independent of q;

(iii) Lq(RN ) = KerAq,λ ⊕ Range Aq,λ.

In other words, the essential spectrum of Sq is contained in [α,+∞), and for eigen-
values in (−∞, α) the algebraic and geometric multiplicities are equal and indepen-
dent of q.

Lemma 7.3. Let V ∈ L∞(RN ), q > 1, lim|x|→∞ V (x) = 0. The multiplication oper-
ator defined by

W 4,q(RN ) → Lq(RN ), u �→ V u,

is then compact.

Proof. Let

χρ =

{
1 for |x| � ρ,

0 for |x| � ρ.

By the compactness of the Sobolev embedding on bounded domains, it follows that
the operator

W 4,q(RN ) → Lq(RN ), u �→ χρV u,

is compact. But, for u ∈ W 4,q(RN ),

‖V u − χρV u‖q
q =

∫

|x|>ρ

|V |q|u|q dx

� sup
|x|>ρ

{|V (x)|q}‖u‖q
q

� sup
|x|>ρ

{|V (x)|q}‖u‖q
W 4,q .

Since limρ→∞{sup|x|>ρ |V (x)|q} = 0, it follows that u �→ V u can be approximated
by compact operators and so is itself compact.

Lemma 7.4. Let V ∈ L∞(RN ) and q > 1, lim|x|→∞ V (x) = α. Then, for λ < α,
the operator Aq,λ defined by

Aq,λ : W 2,q(RN ) → Lq(RN ), u �→ ∆2u − λu + V (x)u,

is Fredholm with index zero.

Proof. We write
Aq,λ = ∆2 + (α − λ) + (V (x) − α).

From theorem 5.4 we have that

W 4,q(RN ) → Lq(RN ), u �→ ∆2u + (α − λ)u,
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is an isomorphism for all λ < α, and so is a Fredholm operator with index 0.
Moreover, we have limx→∞(V (x) − α) = 0. It follows from lemma 7.3 that the
multiplication operator

W 4,p(RN ) → Lq(RN ), u �→ (V − α)u,

is a compact operator.
Recall that if T : X → Y is a bounded linear Fredholm operator and K : X → Y

is a compact operator, then T + K is Fredholm and index(T ) = index(T + K)
(see, for example, [10, theorem 4.2, p. 189]). Thus, the operator Aq,λ is a Fredholm
operator with index 0 for all λ < α.

Lemma 7.5 (Rabier and Stuart [22]). Let h ∈ Lp(RN ) for some p ∈ [1, +∞]. Con-
sider the equation

−∆u + u = h (7.1)

in the sense of distributions.

(i) There is a unique tempered distribution u = Γ (h) satisfying (7.1).

(ii) If h ∈ Lp for some p ∈ (1, +∞), then Γ (h) ∈ W 2,p(RN ) and there exists a
constant C(N, p) such that

‖Γ (h)‖W 2,p � C(N, p)‖h‖Lp (7.2)

for all h ∈ Lp(RN ).

(iii) For p ∈ (1, +∞), −∆ + 1 : W 2,p(RN ) → Lp(RN ) is an isomorphism.

By applying this lemma, we can obtain Lp-estimates for the biharmonic equation.

Lemma 7.6. Let v, w ∈ Lp(RN ) for some p ∈ (1, +∞) be such that
∫

RN

v∆z dx =
∫

RN

wz dx for all z ∈ C∞
0 (RN ). (7.3)

Then v ∈ W 2,p(RN ) and ∆v = w.

Proof. From (7.3) it follows that v is a distribution solution of

∆v = w (7.4)

and thus
(−∆ + 1)v = v − w ∈ Lp(RN ).

By lemma 7.5(iii), −∆ + 1 : W 2,p(RN ) → Lp(RN ) is an isomorphism. So there
exists u ∈ W 2,p(RN ) such that

(−∆ + 1)u = v − w,

i.e.

−
∫

RN

u∆z dx +
∫

RN

uz dx =
∫

RN

vz dx −
∫

RN

wz dx
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for all z ∈ C∞
0 (RN ). From (7.3) we have
∫

RN

(u − v)∆z dx =
∫

RN

(u − v)z dx for all z ∈ C∞
0 (RN ),

and, hence,
∫

RN

(u − v)(−∆z + z) dx = 0 for all z ∈ C∞
0 (RN ). (7.5)

Consider the equation

−∆z + z = |u − v|p−2(u − v). (7.6)

Because |u − v|p−2(u − v) ∈ Lp′
(RN ) with 1/p+1/p′ = 1, it follows from lemma 7.5

that there exists z ∈ W 2,p′
(RN ) such that (7.6) is satisfied. Since C∞

0 (RN ) is dense
in W 2,p′

(RN ), we can take a sequence {zn} ⊂ C∞
0 (RN ) such that zn → z in

W 2,p′
(RN ) as n → ∞. From (7.5) and (7.6) we have

0 =
∫

RN

(u − v)(−∆zn + zn) dx →
∫

RN

(u − v)(−∆z + z) dx =
∫

RN

|u − v|p dx,

which implies that u − v ≡ 0 and, hence, v ∈ W 2,p(RN ).

Lemma 7.7. Let w ∈ Lp(RN ) and u ∈ W 2,p(RN ) for some p ∈ (1, +∞) such that
∫

RN

∆u∆z dx =
∫

RN

wz dx for all z ∈ C∞
0 (RN ).

Then u ∈ W 4,p(RN ) and u is a solution of

∆2u = w.

Proof. Taking v = ∆u in lemma 7.6, we obtain our lemma.

Lemma 7.8. Let lim|x|→∞ V (x) = α and

α − V (x) ∈ L2(RN ) ∩ L∞(RN ). (7.7)

Consider λ < α, h ∈
⋂

r�2 Lr(RN ) and g ∈ W 2,q(RN ) with q � 2, such that

∆2g + (V − λ)g = h. (7.8)

Then g ∈
⋂

r�2 W 4,r(RN ).

Proof. Since

∆2g = h + (λ − V )g and g ∈ W 4,q(RN ), h ∈
⋂

r�2

Lr(RN ),

it follows from lemma 7.7 and a bootstrap argument that g ∈ W 4,r(RN ) for all
r � q. In particular, g ∈ L∞(RN ) ∩ Lq(RN ).

Now we prove that g ∈ Lr(RN ) for r ∈ [2, q). To this end, we rewrite equa-
tion (7.8) in the form

(∆2 + (α − λ))g = h + (α − V (x))g. (7.9)
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Since λ < α, we have

g(x) =
∫

RN

G
(N)
k (x − z)[h(z) + (α − V (z))g(z)] dz,

where
k2 = α − λ with k > 0

and G
(N)
k is the fundamental solution of ∆2 + k2.

By applying the properties of G
(N)
k (x), we have

|g(x)| �
∫

RN

|G(N)
k (x − z)||h(z) + (α − V (z))g(z)| dz

� C

∫

RN

g
(N)
−δ (x − z)|h(z)| dz

+ C

∫

RN

g
(N)
−δ (x − z)|α − V (z)||g(z)| dz

� C

∫

RN

g
(N)
−δ (x − z)|h(z)| dz

+ C

∫

RN

g
(N)
−δ (x − z)|α − V (z)| dz · ‖g(z)‖L∞ ,

where g
(N)
−δ (x) is the fundamental solution of −∆ + δ with 0 < δ <

√
k/

√
2.

Since −∆ + δ is an isomorphism from W 2,r(RN ) → Lr(RN ) for all r > 1 and
h ∈

⋂
r�2 Lr(RN ), α − V (x) ∈ L2(RN ) ∩ L∞(RN ), we have

∫

RN

g
(N)
−δ (x − z)|h(z)| dz ∈

⋂

r�2

Lr(RN ),

∫

RN

g
(N)
−δ (x − z)|α − V (z)| dz ∈

⋂

r�2

Lr(RN ).

Thus, g(x) ∈
⋂

r�2 Lr(RN ). From (7.8) and lemma 7.7 we deduce that

g ∈
⋂

r�2

W 4,r(RN ).

As a particular case of the previous lemma we have the following corollary.

Corollary 7.9. Let lim|x|→∞ V (x) = α and

α − V (x) ∈ L2(RN ) ∩ L∞(RN ).

Consider λ < α and g ∈ W 4,q(RN ) such that

∆2g + (V − λ)g = 0.

Then g ∈
⋂

r�2 W 4,r(RN ). In particular,

Ker(Aq,λ) = Ker(A2,λ) for all q ∈ [2,∞).
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Lemma 7.10. Let lim|x|→∞ V (x) = α and

α − V (x) ∈ L2(RN ) ∩ L∞(RN ).

Then for all λ ∈ Σq ∩ (−∞, α), q � 2, we have

Lq(RN ) = Ker(Aq,λ) ⊕ Range(Aq,λ).

Proof. Let λ ∈ Σq ∩ (−∞, α), and consider h ∈ Ker(Aq,λ) ∩ Range(Aq,λ). Thus, on
the one hand we have, by corollary 7.9, that h ∈

⋂
r�2 W 4,r(RN ) and on the other

hand there exists g ∈ W 2,q(RN ) such that h = Aq,λ(g), and from lemma 7.8 we
have g ∈

⋂
r�2 W 4,r(RN ). Hence,

h ∈ Ker(A2,λ) ∩ Range(A2,λ).

Since A2,λ is a self-adjoint operator, the above intersection is reduced to {0} and,
hence, h = 0. Moreover, since Aq,λ is Fredholm with index 0 (see lemma 7.4), we
deduce that

Ker(Aq,λ) ⊕ Range(Aq,λ) = Lq(RN )

for λ < α.

8. Proof of theorem 1.3

Throughout this section, we consider a mapping f satisfying hypotheses (H1)–(H4).

Lemma 8.1. Consider the mapping F defined by (3.2). Then the restriction of F
to (−∞, α) × W 4,p(RN ) is Fredholm with index 0.

Proof. Let u ∈ W 4,p(RN ). We have, by theorem 3.2, that

D2F(λ,u) = ∆2 + ∂2f(·, u) − λ.

Since lim|x|→∞ u(x) = 0, it follows from lemma 3.1 that

lim
|x|→∞

{∂2f(x, u(x)) − ∂2f(x, 0)} = 0.

Hence,
lim

|x|→∞
∂2f(x, u(x)) = lim

|x|→∞
∂2f(x, 0) = α.

The conclusion now follows from lemma 7.4.

Remark 8.2. Let λ ∈ Σq ∩ (−∞, α). From lemma 7.10 we know that [7, condi-
tion (6.17)] is satisfied and, from [7, theorem 6.18], that λ is an isolated point
in Σq.

Referring to lemma 8.1, we consider the smooth mapping

A : (−∞, α) → φ0(W 4,p, Lp), λ → Aλ := D2F(λ,0),

where φ0(W 4,p, Lp) has been defined in § 2 and

D2F(λ,0)(u) = ∆2u + ∂2f(·, 0)u − λu.
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Notation. We set Σ = {λ ∈ R | D2F(λ,0) is not an isomorphism}. We have verified
in § 7 that this set is independent of the choice of p in the spaces W 4,p(RN ) and
Lp(RN ) (see remarks 7.1 and 7.2).

Let λ ∈ Σ ∩ (−∞, α). We have noted in remark 8.2 that λ is an isolated point
in Σ. Therefore, there exists a closed interval J ⊂ (−∞, α) such that J ∩ Σ = {λ}
and λ ∈ J0. The parity of the restriction of A to J will be denoted by σ(A, λ).

From lemmas 7.4 and 7.10, we see that the hypotheses of [7, theorem 6.18] are
satisfied, and thus we consider that, for every λ ∈ Σ ∩ (−∞, α),

σ(A, λ) = −1 ⇐⇒ dim Ker(Aλ) is odd.

From corollary 7.9, we have Ker(Aλ) = Ker(S − λ), and then, for every λ ∈
Σ ∩ (−∞, α),

σ(A, λ) = −1 ⇐⇒ dim Ker(S − λ) is odd.

We are now able to prove theorem 1.3, which was stated in § 1.

Proof of theorem 1.3. To prove this theorem, we verify the hypotheses of theo-
rem 2.3.

By (H1), F (λ, 0) ≡ 0.
From theorem 3.2 we see that F is a C2 mapping.
From theorem 5.4, the restriction of F to (−∞, α) × W 4,p is boundedly proper.
From lemma 7.3, we may now deduce that the restriction of F to (−∞, α) ×

W 4,p(RN ) is Fredholm with index 0.
Moreover, since λ0 < α, from the previous considerations we deduce that

σ(A, λ0) = −1.

Hence, all the hypotheses of theorem 2.3 are fulfilled.
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the Département de Mathématiques, EPFL, Switzerland and the Department of
Mathematics, University of Iowa, USA. Y.D. thanks Professor C. A. Stuart at
EPFL for his kind support and useful discussion during his visit from October to
December 2001, when the work on this paper was first started. Y.D. also thanks
the Department of Mathematics, University of Iowa for their kind support and the
hospitality during his visit from January to May 2003, when the rest of the paper
was completed. Both authors thank the anonymous referee for reading this paper
carefully and suggesting many useful comments.

References
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