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Abstract. We introduce a generalization £(α)

d (X ) of the finite polylogarithms

£(0)

d (X ) = £d(X ) = ∑p−1
k=1 X k/kd , in characteristic p, which depends on a parameter α.

The special case £(α)
1 (X ) was previously investigated by the authors as the inverse, in an

appropriate sense, of a parametrized generalization of the truncated exponential which is
instrumental in a grading switching technique for nonassociative algebras. Here, we extend
such generalization to £(α)

d (X ) in a natural manner and study some properties satisfied by

those polynomials. In particular, we find how the polynomials £(α)

d (X ) are related to the

powers of £(α)
1 (X ) and derive some consequences.

2010 Mathematics Subject Classification. Primary: 33E50; Secondary: 11G55, 39B52,
33C45

1. Introduction. In current terminology and notation introduced in [4], the finite
polylogarithms are the polynomials £d(X ) = ∑p−1

k=1 X k/kd , where d is an integer, conve-
niently and most interestingly viewed in prime characteristic p. Although those polynomi-
als, which are truncated versions of the series defining the classical polylogarithms, were
already introduced by Mirimanoff [10] in his investigations on Fermat’s Last Theorem,
see [11, Lecture VIII], they have enjoyed renewed interest in recent years due to their
connections with algebraic K-theory.

In this paper, we introduce a parametrized generalization of the finite polylogarithms.
Our motivation stems from the occurrence of the special case d = 1 as an appropriate com-
positional inverse of generalized exponentials expressed by certain Laguerre polynomials.
Those particular Laguerre polynomials were investigated by the authors in [2] as they play
the role of generalized exponentials in a grading switching technique for modular, nonas-
sociative algebras, whose purpose is to produce a new grading of an algebra from a given
one. We limit ourselves here to giving the definition and exponential-like property of those
Laguerre polynomials, referring the interested reader to a sketch of their role in grading
switching in the Introduction of [3], and full details of that application in [2] and [1].

The Laguerre polynomials of interest here, regarded as having coefficients in the field
Fp with p elements, take the form
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L(α)
p−1(X ) = (1 − αp−1)

p−1∑
k=0

X k

(1 + α)(2 + α) · · · (k + α)
∈ Fp[α, X ],

which specializes to the truncated exponential E(X ) = ∑p−1
k=0 X k/k! when we set α = 0.

Note that despite the presence of denominators L(α)
p−1(X ) is indeed polynomial in α because

αp−1 − 1 = ∏p−1
k=1(α + k) in Fp[α]. The crucial property of those Laguerre polynomials for

the grading switching application is that they satisfy a congruence which is a weak ver-
sion of the fundamental functional equation exp(X ) exp(Y ) = exp(X + Y ) for the classical
exponential series exp(X ) = ∑∞

k=0 X k/k! in characteristic zero. Roughly speaking, the con-

gruence relates the product L(α)
p−1(X )L(β)

p−1(Y ) with L(α+β)

p−1 (X + Y ), the latter multiplied by
a polynomial in Fp(α, β)[X , Y ] whose most important feature in this context is that all
its terms have total degree multiple of p. We quote that result from [2] in Theorem 1 and
then supplement it with a more precise version, Theorem 2, where we provide explicit
expressions for the coefficients of that polynomial. In order to provide a solid motiva-
tion for the particular generalization of finite polylogarithms that we intend to study here,
which is inferred from the special case d = 1, we devote the remainder of Section 2 to
proving that the exponential-like property described by Theorem 1 essentially charac-
terizes the Laguerre polynomials under consideration. We formalize our conclusion in
Theorem 3.

Thinking of L(α)

p−1(X ) as an exponential-like polynomial suggests that an appropriate

compositional inverse £(α)
1 (X ) of L(α)

p−1(X ) may be interpreted as a logarithm-like polyno-

mial. Such inverse was investigated in the paper [3], where it was denoted by G(α)(X ).
However, to match the standard notation £1(X ) for the first finite polylogarithm, we set
here £(α)

1 (X ) = −G(α)(X ). The precise statement for £(α)
1 (X ) being (essentially) a left com-

positional inverse of L(α)
p−1(X ) then reads as £(α)

1 (X ) being the unique polynomial of degree
less than p in Fp(α)[X ] such that

−£(α)
1

(
L(α)

p−1(X )
) ≡ X (mod X p − (αp − α)).

Before we give, in the next paragraph, an explicit description of the coefficients
of £(α)

1 (X ), we wish to further stress that the above congruence is really what moti-
vates its definition as a logarithm-like polynomial, as (essentially) the left inverse of the
exponential-like polynomial L(α)

p−1(X ) (and also a right inverse with respect to an appro-

priate different modulus). In turn, the exponential-like property of L(α)

p−1(X ) determines
that polynomial uniquely up to natural variations, as we mentioned above. Finally, the
modulus of the above congruence is also natural and forced upon us by the applica-
tion to grading switching. Altogether, this constitutes a strong support for this particular
generalization of £1(X ) = £(0)

1 (X ) that we consider here. Setting α = 0 the above con-
gruence becomes −£1

(
E(X )

) ≡ X (mod X p), which according to the functional equation
£1(1 − X ) = £1(X ) (as polynomials in Fp[X ]) results from log

(
exp(X )

) = X upon viewing
it first modulo X p and then modulo p. The details of this deduction are explained in the
discussion following [3, Theorem 2].

It turns out that the coefficients of £(α)

1 (X ) can be explicitly described as follows. For
integers 0 < k < p and 0 < a < p, we let pe(k,a) be the highest power of p which divides
the product of binomial coefficients

∏k
s=1

(sa
a

)
, and set gk(α) = ∏

0<a<p(1 + α/a)−e(k,a),

viewed as a rational function in Fp(α). Then £(α)
1 (X ) = ∑p−1

k=1 gk(α) X k/k. This description

of the coefficients gk(α) of £(α)

1 (X ) is more compact than the original one we gave in [3,
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Subsection 2.2]. Most of the work to bring that description to the fully factorized and
arguably more useful form given here was actually done in [3, Section 4], with a short
supplementary argument which we provide in Subsection 3.2 of this paper.

To extend this generalization of £1(X ) to higher finite polylogarithms, we note that the
various finite polylogarithms are connected one another by an application of the differen-
tial operator X d/dX . If this rule is to be preserved in the generalization, it is natural to
set £(α)

d (X ) = ∑p−1
k=1 gk(α) X k/kd for any integer d. Of course £(α)

d+p−1(X ) = £(α)

d (X ). These

polynomials in Fp(α)[X ], which generalize £d(X ) = £(0)

d (X ), are the objects of interest in
the remainder of the paper.

Functional equations for finite polylogarithms are of considerable interest, and we
review some in Subsection 3.1. Some of them relate to a congruence which connects finite
polylogarithms £d(X ) with powers of £1(X ), namely,

£1(X )d ≡ (−1)d−1d! £d(1 − X ) (mod X p),

for 0 < d < p − 1, which is Equation 8 below. Our main result here is Theorem 5, which
gives an extension of this congruence to our generalized finite polylogarithms £(α)

d (X ). In
the generalized version of the congruence (which in our formulation rather extends the
above after X is substituted with 1 − X ), the right-hand side does not involve just £(α)

d (X )

but is a linear combination of that and each lower one down to £(α)
1 (X ). Finally, we deduce

a couple of consequences from Theorem 5, whose relevance we explain in Subsection 3.3.
In particular, our final result, Theorem 7, gives an equation which expresses the finite
polylogarithm £d(X ) as a linear combination of certain evaluations of all generalized finite
polylogarithms £(rα)

d as r varies from 1 to p − 1. We collect all substantial proofs of our
results on the generalized finite polylogarithms in the final Section 4.

2. A generalized truncated exponential. The classical (generalized) Laguerre
polynomial of degree n ≥ 0 is defined as

L(α)
n (X ) =

n∑
k=0

(
α + n

n − k

)
(−X )k

k! ,

where α is a parameter, usually taken in the complex numbers. However, we may also view
L(α)

n (X ) as a polynomial with rational coefficients in the two indeterminates α and X , hence
in the polynomial ring Q[α, X ].

Having fixed a prime p, we are only interested in Laguerre polynomials of degree
n = p − 1, whose coefficients are p-integral and can be viewed modulo p. Throughout the
paper, we work directly in characteristic p rather than over the rationals, thus regarding
L(α)

p−1(X ) as a polynomial in Fp[α, X ]. The explicit form for L(α)

p−1(X ) mentioned in the
introduction easily follows from the classical definition taking into account the identities
k!(p − 1 − k)! = (−1)k−1 for 0 ≤ k < p and αp−1 − 1 = ∏p−1

k=1(α + k) in Fp[α]. We quote
from [2] a congruence which we will use later

X
d

dX
L(α)

p−1(X ) ≡ (X − α) · L(α)

p−1(X ) (mod X p − (αp − α)), (1)

and that may be thought of as an analogue of the differential equation exp′(X ) = exp(X )

for the classical exponential series. The differential equation for the polynomials L(α)
p−1(X )

stated in Equation 1 was used in [2] to prove the following analogue of the functional
equation exp(X ) exp(Y ) = exp(X + Y ).
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THEOREM 1 ([2, Proposition 2]). Let α, β, X , Y be indeterminates over Fp. There exist
rational expressions ci(α, β) ∈ Fp(α, β) such that

L(α)
p−1(X ) · L(β)

p−1(Y ) ≡ L(α+β)

p−1 (X + Y ) ·
(

c0(α, β) +
p−1∑
i=1

ci(α, β)X iY p−i

)

in Fp(α, β)[X , Y ], modulo the ideal generated by X p − (αp − α) and Y p − (βp − β).

The actual statement of Proposition 2 in [2] is stronger and more involved than
Theorem 1, as it had to provide a sharper control over the rational expressions ci(α, β),
which was required for an application to grading switching. The expressions ci(α, β) are
actually uniquely determined and are given by c0(α, β) = −(α − 1)p−1(β − 1)p−1/(α +
β − 1)p−1, and ci(α, β) = −(α − 1)p−1−i(β − 1)i−1/(α + β − 1)p−1 for 0 < i < p. Here,
we are using the standard notation (γ )k = γ (γ − 1) · · · (γ − k + 1) for the falling factori-
als, for k a nonnegative integer, with the natural convention that (γ )0 = 1. These explicit
formulas were omitted from [2] as their available proof was awkward, but they will now
follow from Theorem 2 below.

A simplification in those formulas and their proof results from a natural normalization
of our Laguerre polynomials to turn their constant term into 1:

E (α)(X ) := L(α)

p−1(X )

1 − αp−1
=

p−1∑
k=0

X k

(1 + α)(2 + α) · · · (k + α)
∈ Fp(α)[X ].

While L(α)

p−1(X ) has the advantage of having polynomial coefficients in α, which was a mild

simplification in its application to grading switching in [2], the polynomial E (α)(X ) seems
a more natural analogue of the exponential function. We now prove a more precise version
of Theorem 1 in terms of E (α)(X ), where the coefficients are given explicitly.

THEOREM 2. Let α, β, X , Y be indeterminates over Fp. Then

E (α)(X ) · E (β)(Y ) ≡ E (α+β)(X + Y ) ·
(

1 +
p−1∑
i=1

X iY p−i

(α + i)i (β + p − i)p−i

)

in Fp(α, β)[X , Y ], modulo the ideal generated by X p − (αp − α) and Y p − (βp − β).

Proof. We know from Theorem 1 that there exist rational expressions si(α, β) ∈
Fp(α, β) such that

E (α)(X ) · E (β)(Y ) ≡ E (α+β)(X + Y ) ·
(

s0(α, β) +
p−1∑
i=1

si(α, β)X iY p−i

)

in Fp(α, β)[X , Y ], modulo the ideal generated by X p − (αp − α) and Y p − (βp − β).
It will turn out that the expressions si(α, β) are actually uniquely determined and we

will compute them by comparing coefficients of certain monomials in both sides of the
above congruence, after reduction by the moduli. First, the only term in the product at
the right-hand side of the congruence in which both exponents of X and Y are multiples
of p is s0(α, β), hence comparing constant terms in both sides of the congruence we find
s0(α, β) = 1.

Now compare the coefficients of X k in both sides of the congruence for 0 < k < p. In
the left-hand side, the coefficient equals 1/(α + k)k . In the right-hand side, after reducing
modulo Y p − (βp − β), the coefficient of X k equals
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1

(α + β + k)k
+ βp − β

(α + β + k)k

k∑
i=1

(
k

i

)
si(α, β).

Consequently, we find

(βp − β)

k∑
i=1

(
k

i

)
si(α, β) = (α + β + k)k

(α + k)k
− 1 = 1

(α + k)k

k∑
i=1

(
k

i

)
(α + k)k−i(β)i,

where we have applied the binomial theorem for falling factorials, and hence

k∑
i=1

(
k

i

)
si(α, β) =

k∑
i=1

(
k

i

)
1

(α + i)i(β + p − i)p−i
.

This yields

si(α, β) = 1

(α + i)i(β + p − i)p−i

for 0 < i < p, as desired.

The special case of Theorem 2 where α = β = 0 concerns the truncated exponential
E (0)(X ) = E(X ) and is [1, Proposition 1], noting that (i)i (p − i)p−i = i!(p − i)! ≡ (−1)ii
(mod p).

As we mentioned in Section 1, the existence of a congruence as in Theorem 1, for some
unspecified rational expressions ci(α, β), suffices to characterize the polynomials L(α)

p−1(X )

among the polynomials in Fp[α][X ], up to some natural variations. For convenience, we
rather state and prove an essentially equivalent characterization of their scalar multiples
E (α)(X ), among the polynomials in Fp(α)[X ], again up to some natural variations.

THEOREM 3. Let α, β, X , Y be indeterminates over Fp and let P(α)(X ) be a nonzero
polynomial in Fp(α)[X ], of degree less than p. Suppose that there exist rational expressions
si(α, β) ∈ Fp(α, β) such that

P(α)(X ) · P(β)(Y ) ≡ P(α+β)(X + Y ) ·
(

1 +
p−1∑
i=1

si(α, β)X iY p−i
)

(2)

in Fp(α, β)[X , Y ] modulo the ideal generated by X p − (αp − α) and Y p − (βp − β).
Assume that none of the denominators of the expressions si(α, β) has β as a factor, so

si(α, 0) are defined. Assume also that 0 is not a pole of sp−1(α, 0), nor of any coefficient of
P(α)(X ), so sp−1(0, 0) and P(0)(X ) are defined.

Then P(α)(X ) = E (cα)(cX ) for some c ∈ Fp.

To avoid obscuring the argument of the proof, we have placed various assumptions
in Theorem 3 on the denominators of the expressions si(α, β) and also of the coefficients
of P(α)(X ). In another version of this result one may take P(α)(X ) ∈ Fp[α][X ], hence with
polynomial coefficients, rather than P(α)(X ) ∈ Fp(α)[X ], provided that one allows a further
rational expression s0(α, β) in place of the term 1 in the right-hand side of the congruence.
Then quite similar arguments as in the proof of Theorem 3 show that P(α)(X ) = d(α) ·
L(cα)

p−1(cX ), for some polynomial d(α) ∈ Fp[α], and some c ∈ Fp.
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Proof. The polynomial P(α)(X ) must have a nonzero constant term P(α)(0). In fact,
upon setting Y = 0 and β = 0, which is allowed according to our assumptions on the ratio-
nal expressions si(α, β) and on P(α)(X ), Equation (2) yields P(α)(X ) · P(0)(0) ≡ P(α)(X )

modulo X p − (αp − α), whence P(0)(0) = 1.
Because the only term in the product at the right-hand side of Equation (2) in which

both exponents of X and Y are multiples of p is the constant term P(α+β)(0), we have
P(α)(0) · P(β)(0) = P(α+β)(0). Setting β = kα we find P(α)(0) · P(kα)(0) = P((k+1)α)(0), and
working inductively we find P(α)(0)p = P(pα)(0) = P(0)(0) = 1, whence P(α)(0) = 1.

Following a standard approach to functional equations such as Equation (2), we apply
the differential operator d/dY to both sides. This is allowed for the congruence because
d/dY annihilates both X p − (αp − α) and Y p − (βp − β), and hence leaves invariant the
ideal of Fp(α, β)[X , Y ] which they generate. Multiplying the resulting congruence by X
and specializing Y = 0 and β = 0, we find

X P(α)(X ) · c ≡ X
dP(α)(X )

dX
+ sp−1(α, 0)P(α)(X )X p (mod X p − (αp − α)),

where c ∈ Fp is the value of dP(0)(X )/dX at X = 0. After reducing by the modulus and
rearranging terms this becomes

X
dP(α)(X )

dX
≡ (

cX − r(α)
)
P(α)(X ) (mod X p − (αp − α)),

where we have used the shorthand r(α) = (αp − α)sp−1(α, 0). Note that α = 0 is a zero of
r(α), otherwise it would be a pole of sp−1(α, 0) = r(α)/(αp − α), contrary to one of our
assumptions. In particular, r(α) cannot be a nonzero constant.

If c = 0, then both sides of the congruence are polynomials of degree less than p,
hence the congruence is actually an equality, and because X dX k/dX = kX k it follows that
r(α) = 0 and P(α)(X ) = 1 = E (0α)(0X ).

Now assume that c 	= 0 and write P(α)(X ) = ∑p−1
k=0 ck(α)X k , hence with c0(α) = 1, and

c1(0) = c. After expanding the right-hand side and replacing the term cX · cp−1(α)X p−1

with c · cp−1(α) · (αp − α), the congruence becomes an equality as both sides have now
degree less than p. Equating term by term, we find⎧⎨

⎩
r(α) = c · cp−1(α) · (αp − α), and
(
r(α) + k

) · ck(α) = c · ck−1(α) for 1 ≤ k ≤ p − 1.

Because r(α) is not a nonzero constant, r(α) + k is never zero, and consequently none of
the ck(α) are zero.

As a preliminary step in solving this system for the rational expressions ck(α), we note
that the product of all p equations reads

(
r(α)p − r(α)

) p−1∏
k=1

ck(α) = (αp − α)cp
p−1∏
k=1

ck(α).

Because cp = c this implies
(
r(α) − cα

)p = r(α) − cα, whence r(α) − cα ∈ Fp. Because
r(0) = 0 we deduce r(α) = cα. Solving⎧⎨

⎩
α = cp−1(α) · (αp − α), and
(
cα + k

) · ck(α) = c · ck−1(α) for 1 ≤ k ≤ p − 1,
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we conclude that ck(α) = ck/(cα + k)k for 0 ≤ k < p, whence P(α)(X ) = E (cα)(cX ) as
desired.

We should mention that an earlier special version of the grading switching achieved
in [2] through the Laguerre polynomials L(α)

p−1(X ) was devised in [6] using the Artin-Hasse

exponential series Ep(X ) = ∏∞
i=0 exp(X pi

/pi). The coefficients of Ep(X ) are p-integral
rational numbers and can therefore be viewed modulo p, so one may regard Ep(X ) ∈
Fp[[X ]] for the sake of its application to grading switching. The connection of the earlier
theory based on the power series Ep(X ) with the more general one based on the polynomials

L(α)
p−1(X ) is explained in [1, Proposition 6], but here we stress that the success of the former

crucially depended on a property of Ep(X ) analogous to the property of L(α)
p−1(X ) described

in Theorem 1: each term of the power series Ep(X )Ep(Y )/Ep(X + Y ) ∈ Fp[[X , Y ]] has
total degree a multiple of p. It was then shown in [7] that this weak functional equation
actually characterizes Ep(X ) in the power series ring Fp[[X ]] up to certain natural varia-

tions. Theorem 3 matches that result for the Laguerre polynomials L(α)

p−1(X ), or their scalar

multiples E (α)(X ).

3. Parametric versions of finite polylogarithms. The finite polylogarithms
£d(X ) = ∑p−1

k=1 X k/kd are polynomial versions of the power series representations of the
ordinary polylogarithms Lid(X ) = ∑∞

k=1 X k/kd , truncated as to make sense over a field of
prime characteristic p. In this section, we extend the definition of finite polylogarithms to
include a parameter α, motivated by the case d = 1 which we extensively investigated in [3].

3.1. Some properties of finite polylogarithms. Before introducing our generaliza-
tion £(α)

d (X ), we discuss some of the remarkable properties of the finite polylogarithms
£d(X ), including some which we aim to extend to our parametrized versions. Like their
ordinary counterparts Lid(X ), finite polylogarithms satisfy a number of functional equa-
tions, which are more abundant for small positive values of d. In particular, £1(X ), which
is a truncated version of the power series for −log(1 − X ) satisfies £1(X ) = −X p · £1(1/X )

and

£1(X ) = £1(1 − X ). (3)

Alternate application of these two equations yields six different equivalent representations
for £1(X ), see [3, Subsection 2.4] or [9, Section 6] for broader discussions. Those equations
for £1(X ) do not appear to directly relate to any properties of the logarithmic function
(or series), but there is a two-variable functional equation which does, namely the 4-term
relation

£1(X ) − £1(Y ) + X p£1

(
Y

X

)
+ (1 − X )p£1

(
1 − Y

1 − X

)
= 0, (4)

to be viewed as an identity in the polynomial ring Fp[X , Y ]. In fact, it is possible to
view this equation as an analogue of the classical equation log(xy) = log(x) + log(y), in
its equivalent form −log(1 − X ) − log(1 − Y ) = log((1 − Y )/(1 − X )) in the power series
ring Fp[[X , Y ]], and actually derive it from that. See [3, Subsection 2.4] for a sketch of
an argument and [9, Section 6] for two different full proofs of Equation (4) following this
route.

A deeper connection between finite and ordinary polylogarithms was established by
Elbaz-Vincent and Gangl in [4], stimulated by questions raised by Kontsevich [5], who
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had first exhibited a version of Equation (4) dubbing it the generalized fundamental equa-
tion of information theory. According to [4], many known functional equations for £d(X )

are closely related to functional equations for the ordinary polylogarithms Lid+1(X ) (with
index raised by one) and can be derived from the latter though a sort of differential or
infinitesimal process. In particular, Equations (3) and (4) originate from functional equa-
tions for the dilogarithm Li2(X ), see [4, Proposition 5.9]. The same connection works
for the functional equations which we are about to discuss, namely the only functional
equations which exist for arbitrary d.

One functional equation valid for every £d(X ) is the simple inversion relation [4,
Proposition 5.7(1)],

£d(X ) = (−1)dX p · £d(1/X ) (5)

in Fp[X ], whose special case d = 1 we have already mentioned. This is an immediate con-
sequence of Wilson’s theorem, (p − 1)! ≡ −1 in Fp and says that the polynomials £d(X )

are essentially self-reciprocal. The only other functional equation for £d(X ) which exists
for arbitrary d is the distribution relation [4, Proposition 5.7(2)],

£d(X
h) = hd−1

|h|−1∑
j=0

1 − X ph

1 − ωpjX p
£d(ω

jX ), (6)

where ω is a a primitive hth root of unity. This formulation of the distribution relation
restricts the integer h not to be a multiple of p, and Equation (6) formally takes place in
Fq[X ] for some finite field extension Fq containing such a root of unity, or in fact in its
quotient field Fq(X ) when h is negative. (This restriction could be avoided by viewing the
distribution relation as a congruence over a suitable number field rather than an equation
over Fp.) As pointed out in [4], Equation (5) may be viewed as the special case h = −1 of
Equation (6).

When we view the distribution relation modulo X p − 1, all summands vanish except
for that with j = 0, and we find

£d(X
h) ≡ hd£d(X ) (mod X p − 1) (7)

in Fp[X ], again for h not a multiple of p. Replacing X with 1 − X , we can rewrite this
in the equivalent form £d

(
(1 − X )h

) ≡ hd£d(1 − X ) (mod X p). In the special case, where
d = 1, this can be viewed as a congruence version of the property log(xh) = h log(x) of the
logarithm.

Equation (7) can also be lifted from its special case d = 1 by means of a congruence
relating finite polylogarithms £d(X ) to powers of £1(X ), namely,

£1(X )d ≡ (−1)d−1d! £d(1 − X ) (mod X p), (8)

for 0 < d < p − 1. This congruence, as well as much of the material on finite polyloga-
rithms reviewed here, traces back to Mirimanoff [10], who developed it in his investigations
on Fermat’s Last Theorem, see [11, Lecture VIII, Equation (1,.27)]. A modern proof
of a slightly sharper version modulo X p+1 of Equation (8), which involves a Bernoulli
number, can be found in [8, Lemma 3.2]. When d = 1 Equation (8) is a consequence
of Equation (3), and when d = 2 or 3 it can be strengthened to exact functional equa-
tions (meaning equalities, not just congruences) by adding suitable extra terms, see [8,
Equations (14) and (15)], also already known to Mirimanoff. A way of deriving those
functional equations for d = 2, 3 from Equation (8) by the sole use of symmetries is given
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in [8, Section 3]. However, no such refinement is known (or likely even exists) for larger
values of d.

3.2. Generalized finite polylogarithms. We recall our generalization £(α)

d (X ) of
finite polylogarithms which we anticipated in Section 1. For integers 0 < k < p and 0 <

a < p, we let pe(k,a) be the highest power of p which divides the product of binomial coef-
ficients

∏k
s=1

(sa
a

)
and set gk(α) = ∏

0<a<p(1 + α/a)−e(k,a), viewed as a rational function in
Fp(α). Then for any integer d, we set

£(α)

d (X ) =
p−1∑
k=1

gk(α) X k/kd.

This definition has its roots in the special case d = 1, where £(α)

1 (X ) is a left compositional
inverse of L(α)

p−1(X ) in the context of the previous section, namely it satisfies

−£(α)
1

(
L(α)

p−1(X )
) ≡ X (mod X p − (αp − α)).

Thus, £(α)

1 (X ) serves a generalization of the truncated logarithm £1(X ) = £(0)

1 (X ) match-
ing the way L(α)

p−1(X ) generalizes the truncated exponential. This definition of £(α)
1 (X )

extends naturally to £(α)

d (X ) by imposing that they have no constant term and they satisfy

(X d/dX )£(α)

d (X ) = £(α)

d−1(X ) for all integers d, which is the way ordinary truncated poly-

logarithms £d(X ) are related. Because £(α)

d+p−1(X ) = £(α)

d (X ), we can assume 0 ≤ d < p − 1

in the sequel. Also, the case of p = 2 is uninteresting as then £(α)

d (X ) = X for all d, and so
we assume p odd throughout this section.

The coefficients gk(α) originally arose in [3] as gk(α) = 1/
∏k−1

s=1 b1,s(α), with the
polynomials b1,s(α) ∈ Fp[α] defined as

b1,s(α) =
p−1∑
k=0

(−1/s)k

(
α − 1

p − 1 − k

)(
sα − 1

k

)
,

for 0 < s < p − 1. As explained there they can be viewed as special values of certain Jacobi
polynomials, but what matters here are their full factorizations in Fp[α], which were found
in [3]. According to [3, Lemma 11], those polynomials satisfy

b1,s(α)b1,s(−α) = 1 − αp−1, (9)

whence each has degree (p − 1)/2, which was not obvious from their definition as sums.
Furthermore, the equation implies that b1,s(α) factorizes into products of distinct linear
factors in Fp[α], and exactly one of each pair of opposite nonzero elements of Fp is a root.
A simple characterization of which elements of Fp are roots of b1,s(α) was given in [3,
Theorem 12], and for completeness we now show how that leads to the definition of the
rational functions gk(α) which we gave above.

LEMMA 4. For 0 < k < p, we have gk(α) = 1/
∏k−1

s=1 b1,s(α).

Proof. Each polynomial b1,s(α) has constant term b1,s(0) = ∑p−1
k=0(−1)k(1/s)k = 1,

hence its factorization in Fp[α] is completely described by its roots. According to [3,
Theorem 12], in its alternate formulation given in [3, Remark 13], an integer 0 < a < p is
a root of b1,s(α) (when interpreted as its image in Fp) precisely when p does not divide the
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binomial coefficient
(a+sa

a

)
. Equivalently, −a is a root of b1,s(α) precisely when p divides

the binomial coefficient
(a+sa

a

)
. Now note that p2 cannot divide

(a+sa
a

)
and the conclusion

follows.

3.3. Congruential functional equations for £(α)
d (X). The main goal of the remain-

der of this paper is to provide analogues for our generalized finite polylogarithms £(α)

d (X )

of some of the known relations among finite polylogarithms defined for generic d, which
we summarized in Subsection 3.1. Thus, besides the easy Equation (5) we will generalize
Equation (8), and then use that to generalize Equation (7). We will state our results here
and prove them in the next section.

We assign a name to a polynomial which will occur repeatedly, namely,

T(X ) := L(X p)

p−1 (X p − X ) =
p−1∏
i=1

(1 + X/i)i, (10)

where the explicit factorization given was proved in [2, Lemma 1]. This polynomial will
occur in the modulus X p − T(α) of various congruences involving £(α)

d (X ), but also, for

example, in an expression for the highest coefficient of £(α)

d (X ), because gp−1(α) = (1 −
αp−1)/T(α). This was proved in [3, Corollary 16], but can also be easily shown directly
from our definition of gp−1(α), as we explain now as an example of such evaluations.

According to Lucas’ theorem on binomial coefficients modulo a prime, p divides the
factor

(sa
a

)
in our definition of gk(α) precisely when the (least nonnegative) remainder of

dividing (s − 1)a by p is not less than p − a. In the case of gp−1(α) the remainders of
dividing (s − 1)a by p, for a given a as s ranges over 0 < s < p, will take all values from
0 to p − 1 with the exception of p − a, hence precisely a − 1 of them will exceed p − a.
Therefore, we find gp−1(α) = ∏p−1

a=1(1 − α/a)−a+1 as desired.
Another relation among the coefficients gk(α) amounts to the symmetry relation

b1,s(α) = b1,p−1−s(α) of [3, Corollary 14], for 0 < s < p − 1. Taken together, in terms of
the polynomials gk(α), those equations are equivalent to

gk(α) · gp−k(α) = gp−1(α), for 0 < k < p. (11)

As a consequence of this symmetry together with Equation (9), one has

T(α) · £(α)

d (X ) = (−1)dX p · £(−α)

d

(
1 − αp−1

X

)
,

a generalization of Equation (5) which can be proved in the same way as its special case
d = 1 in [3, Theorem 6].

Our main result on generalized polylogarithms is a generalization of Equation (8).
This generalized version does not relate £(α)

1 (X )d to £(α)

d (X ) alone, but also involves lower
polylogarithms. Denoting by

[n
k

]
the (unsigned) Stirling number of the first kind, which for

0 < k ≤ n may be characterized by the polynomial identities (X + n − 1)n = ∑n
k=1

[n
k

]
X k

in Z[X ], we have the following result.

THEOREM 5. For any 0 < d < p − 1, we have

£(α)
1 (X )d

d
≡ (−1)d−1

d−1∑
r=0

[
d

r + 1

]
αr£(α)

d−r(X ) (mod X p − T(α))

in the polynomial ring Fp(α)[X ].
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In its specialization at α = 0, because
[d

1

] = (d − 1)! Theorem 5 reads £1(X )d ≡
(−1)d−1d! £d(X ) (mod X p − 1). We recover Equation (8) by replacing X with 1 − X and
taking equation £1(X ) = £1(1 − X ) into account.

The congruence of Theorem 5 can be extended to d = p − 1 but requires an extra term
1 − αp−1 at the right-hand side in that case. Because

[p−1
k

] ≡ 1 (mod p) for 0 < k < p, the
congruence for d = p − 1 reads

£(α)
1 (X )p−1 ≡ 1 − αp−1 +

p−2∑
r=0

αr£(α)
p−1−r(X ) (mod X p − T(α)).

Our next result generalizes Equation (7). Its special case where d = 1 is [3,
Theorem 8], and we use Theorem 5 to extend that to higher values of d.

THEOREM 6. For 0 < h < p and 0 < d < p − 1, we have

£(hα)

d

(
gh(α)X h

) ≡ hd£(α)

d (X ) (mod X p − T(α))

in the polynomial ring Fp(α)[X ].
Our final result combines evaluations of all generalized finite polylogarithms £(rα)

d as
r varies from 1 to p − 1 and relates them to the standard finite polylogarithm £d(X ). To
avoid having to extend the ground field with α1/p, we conveniently replace α with αp in the
statement.

THEOREM 7. For any integer d, we have

p−1∑
r=1

£(rαp)

d

(
T(rα) X

) = (αp−1 − 1)£d(X )

in the polynomial ring Fp(α)[X ].
Note that Theorem 7 states an identity, not just a congruence. Because £(0)

d (X ) = £d(X )

and T(0) = 1 that can also be written as

p−1∑
r=0

£(rαp)

d

(
T(rα) X

) = αp−1£d(X ).

In a sense, the special case d = 1 of Theorem 7 gives a rather trivial answer to Question 7
in [3], which asked for a generalization of the functional equation £1(1 − X ) = £1(X ) for
the polynomials £(α)

1 (X ), possibly involving various values of α: when d = 1 the left-hand
side of the equation of Theorem 7 is invariant under the substitution X 
→ 1 − X , because
the right-hand side is. A subtler answer appears now unlikely.

4. Proofs of Theorem 5, Theorem 6, and Theorem 7 . Our proof of Theorem 5 will
proceed by applying the differential operator X d/dX to the desired congruence, whence
the left-hand side will give £(α)

0 (X ) · £(α)

1 (X )d−1. Working inductively, a crucial step will be

expressing the product of £(α)
0 (X ) and £(α)

1 (X ) as a linear combination of them, which is
what the next congruence achieves.

LEMMA 8. The product £(α)
0 (X ) · £(α)

1 (X ) satisfies the congruence

£(α)
0 (X ) · £(α)

1 (X ) ≡ −£(α)
1 (X ) − α£(α)

0 (X ) (mod X p − T(α))

in the polynomial ring Fp(α)[X ].
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Proof. We apply the differential operator d/dX to both sides of the congruence

− £(α)

1 (L(α)

p−1(X )) ≡ X (mod X p − (αp − α)), (12)

using Equations (1) and (X d/dX )£(α)

d (X ) = £(α)

d−1(X ). Noting that both X and L(α)

p−1(X ) are
coprime with the modulus, the latter because of Equation (10), and hence are invertible in
the quotient ring Fp(α)[X ]/(X p − (αp − α)

)
, we find

− 1

L(α)

p−1(X )
£(α)

0

(
L(α)

p−1(X )
) · X − α

X
L(α)

p−1(X ) ≡ 1 (mod X p − (αp − α)).

After cancellation and multiplication by X , we obtain

−£(α)

0

(
L(α)

p−1(X )
) · (X − α) ≡ X (mod X p − (αp − α)).

Now we would like to regard L(α)
p−1(X ) as a new variable, but this will require a foray

into a power series ring in a similar fashion as in the proofs of Corollary 3 and Theorem 8
in [3]. Thus, we extend the ground field to Fp(α

1/p), where X p − (αp − α) becomes a pth
power, and after setting X = x + α − α1/p the congruence we have found reads

− £(α)
0

(
L(α)

p−1(x + α − α1/p)
) · (x − α1/p) ≡ x + α − α1/p (mod xp), (13)

in the polynomial ring Fp(α
1/p)[x]. In the same way, Equation (12) is equivalent to the

congruence

− £(α)

1

(
L(α)

p−1(x + α − α1/p)
) − (α − α1/p) ≡ x (mod xp) (14)

in the polynomial ring Fp(α
1/p)[x]. However, both congruences can and will now be

interpreted in the power series ring Fp(α
1/p)[[x]].

Set δ = T(α1/p) and

X = −L(α)
p−1(x + α − α1/p) + δ, (15)

where we are reusing the symbol X with a different meaning from earlier in the proof.
Because the polynomial X ∈ Fp(α

1/p)[x] has no constant term and a nonzero term of degree
one, when viewed as a power series in Fp(α

1/p)[[x]] it generates its maximal ideal (x).
In particular, X has a compositional inverse as a series in Fp(α

1/p)[[x]], meaning that
Equation (15) can be inverted to express x as a power series in X and we may view
Fp(α

1/p)[[x]] as the power series ring Fp(α
1/p)[[X ]]. According to Equation (14), such

inverse satisfies

x ≡ −£(α)
1 (δ − X ) − (α − α1/p) (mod X p),

where we have taken advantage of (X p) = (xp). Substituting this into Equation (13), we
find

−£(α)
0 (δ − X ) · (−£(α)

1 (δ − X ) − α
) ≡ −£(α)

1 (δ − X ) (mod X p).

Because this congruence involves only polynomials, it actually takes place in the polyno-
mial ring Fp(α

1/p)[X ]. Replacing X with δ − X , we have

£(α)
0 (X )

(
£(α)

1 (X ) + α
) ≡ −£(α)

1 (X ) (mod X p − T(α)),

which is equivalent to the desired conclusion.
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We are now ready to present a proof of Theorem 5.

Proof of Theorem 5. We will omit the modulus from all congruences in this proof,
which will invariably be X p − T(α). We proceed by induction on d, the case d = 1 being
trivial, hence assume d > 1. Because

d−1∑
r=0

[
d

r + 1

]
(kα)r = (kα + d − 1)d/(kα) = (kα + d − 1)d−1,

the desired conclusion can be written as

£(α)
1 (X )d/d ≡ (−1)d−1

p−1∑
k=1

(kα + d − 1)d−1 gk(α)X k/kd.

To prove this congruence, write

£(α)
1 (X )d/d ≡

p−1∑
k=0

ck(α)X k,

as certainly holds for certain rational expressions ck(α) ∈ Fp(α) to be determined. Applying
the differential operator X d/dX to both sides of the congruence, we find

£(α)
0 (X ) · £(α)

1 (X )d−1 ≡
p−1∑
k=1

kck(α)X k .

Note that this kills the coefficient c0(α), so we will deal with that separately later.
According to Lemma 8, the above congruence is equivalent to

−£(α)
1 (X )d−1 − α£(α)

0 (X )£(α)
1 (X )d−2 ≡

p−1∑
k=1

kck(α)X k .

Now by the inductive hypothesis, we have

£(α)
1 (X )d−1 ≡ (−1)d(d − 1)

p−1∑
k=1

(kα + d − 2)d−2 gk(α)X k/kd−1,

and because £(α)
0 (X )£(α)

1 (X )d−2 results from applying the differential operator X d/dX to

£(α)
1 (X )d−1/(d − 1), we obtain

£(α)
0 (X )£(α)

1 (X )d−2 ≡ (−1)d
p−1∑
k=1

(kα + d − 2)d−2 gk(α)X k/kd−2.

In conclusion, we find

k ck(α) = (−1)d−1(kα + d − 2)d−2(d − 1 + kα) gk(α)/kd−1

= (−1)d−1(kα + d − 1)d−1 gk(α)/kd−1,

for 1 ≤ k ≤ p − 1.
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In order to complete the proof, it remains to show that c0(α) vanishes. Using the
inductive hypothesis, it suffices to show that

£(α)
1 (X ) ·

p−1∑
k=1

(kα + d − 2)d−2 gk(α)X k/kd−1

has no term of degree p, as that is the only term which would contribute to c0(α) after
reduction modulo X p − T(α). In fact, the coefficient of X p in the above product equals

p−1∑
k=1

gp−k(α)

p − k
· gk(α)(kα + d − 2)d−2

kd−1
= gp−1(α)

p−1∑
k=1

(kα + d − 2)d−2

kd
,

where we have used Equation (11). The latter sum vanishes because
∑p−1

k=1 1/kr vanishes
in Fp for 0 < r < p − 1 and (kα + d − 2)d−2 has degree less than p − 1 as polynomial
in k.

When d = p − 1, a supplementary case which we mentioned after Theorem 5, the
inductive step extends in the above proof providing expressions for the coefficients
ck(α) for 0 < k < p, but the separate final argument for the vanishing of c0(α) needs
modifications, and yields c0(α) = αp−1 − 1 instead.

The following proof of Theorem 6 relies on the special case where d = 1, which is [3,
Theorem 8], and uses Theorem 5 to extend it to higher values of d.

Proof of Theorem 6. We proceed by induction on d, the case d = 1 being [3,
Theorem 8]. Hence, assume 1 < d < p − 1 and consider the right-hand side of the desired
congruence multiplied by d! to avoid introducing denominators. According to Theorem 5,

d! hd£(α)

d (X ) ≡ (−1)d−1(h£(α)
1 (X ))d − d

d−1∑
r=1

[
d

r + 1

]
(hα)rhd−r£(α)

d−r(X )

modulo X p − T(α). By induction, we have

hd−r£(α)

d−r(X ) ≡ £(hα)

d−r

(
gh(α)X h

)
(mod X p − T(α))

for 0 < r < d, and hence d! hd£(α)

d (X ) is congruent to

(−1)d−1
(

£(hα)

1

(
gh(α)X h

))d − d
d−1∑
r=1

[
d

r + 1

]
(hα)r£(hα)

d−r

(
gh(α)X h

)

modulo X p − T(α). According to Theorem 5, with X replaced by gh(α)X h and α replaced
by hα, the above expression is congruent to the desired d! £(hα)

d

(
gh(α)X h

)
, but mod-

ulo
(
gh(α)X h

)p − T(hα). However, this polynomial is a multiple of the desired modulus
X p − T(α) because T(hα) = gh(α)p T(α)h. This can be seen by setting X = α − α1/p in
the congruence

gh(α)
(
L(α)

p−1(X )
)h ≡ L(hα)

p−1(hX ) (mod X p − (αp − α)),

which is [3, Equation 6], and then taking pth powers of both sides.

We conclude the paper with a proof of Theorem 7, which also uses Lemma 8.
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Proof of Theorem 7. Expanding the left-hand side of the claimed equation, we find

p−1∑
r=1

£(rαp)

d

(
T(rα) X

) =
p−1∑
k=1

(p−1∑
r=1

gk(rα
p) T(rα)k

)
X k/kd.

As mentioned in the proof of Theorem 6, we have T(hα) = gh(α
p) T(α)h for 0 < h < p,

whence gk(rαp) T(rα)k = T(krα) = gr(kαp) T(kα)r. Consequently, we have

p−1∑
r=1

gk(rα
p) T(rα)k =

p−1∑
r=1

gr(kαp) T(kα)r = £(kαp)
0

(
T(kα)

)
.

Computing this reduces to computing £(αp)

1

(
T(α)

)
by means of Lemma 8. In fact, after

taking pth powers of both sides the congruence of Lemma 8 yields

£(αp)

0 (X p) · £(αp)

1 (X p) ≡ −£(αp)

1 (X p) − αp£(αp)

0 (X p) (mod X p − T(α)),

whence

£(αp)

0

(
T(α)

) · £(αp)

1

(
T(α)

) = −£(αp)

1

(
T(α)

) − αp£(αp)

0

(
T(α)

)

in Fp[α]. Now taking pth powers of both sides of the congruence −£(α)
1

(
L(α)

p−1(X )
) ≡ X

(mod X p − (αp − α)) and then replacing X p with αp − α, we find £(αp)
1

(
T(α)

) = α −
αp. Consequently, we find £(αp)

0

(
T(α)

) = αp−1 − 1, whence £(kαp)

0

(
T(kα)

) = αp−1 − 1, as
desired.
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