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Abstract

In a collisionless shock, there are no binary collisions to isotropize the flow. It is therefore rea-
sonable to ask to which extent the magnetohydrodynamics (MHD) jump conditions apply.
Following up on recent works which found a significant departure from MHD in the case
of parallel collisionless shocks, we here present a model allowing to compute the density
jump for collisionless shocks. Because the departure from MHD eventually stems from a sus-
tained downstream anisotropy that the Vlasov equation alone cannot specify, we hypothesize
a kinetic history for the plasma, as it crosses the shock front. For simplicity, we deal with non-
relativistic pair plasmas. We treat the cases of parallel and perpendicular shocks. Non-MHD
behavior is more pronounced for the parallel case where, according to MHD, the field should
not affect the shock at all.

Introduction

Collisionless shocks are shockwaves that can be sustained in diluted plasmas through collective
plasma phenomena (Sagdeev, 1966). As a result, their front can be several orders of magnitude
shorter than the mean free path for close binary collisions. A good example is the bow shock of
the earth magnetosphere in the solar wind in which front is about 100 km thick, while the
proton mean free path at the same location is of the order of the Sun–Earth distance (Bale
et al., 2003; Schwartz et al., 2011). In the absence of collisions to isotropize the flow, it is rea-
sonable to ask to which extent magnetohydrodynamics (MHD) jump conditions still apply to
collisionless shocks.

In a series of recent works on collisionless shocks in pair plasmas, it was found that a flow-
aligned field can precisely hinder the isotropization of the downstream so that the density
jump becomes a function of the field (Bret, 2016; Bret et al., 2017a, 2017b; Bret and
Narayan, 2018). This stands in contrast with the MHD result where a parallel shock is inde-
pendent of the field (Lichnerowicz, 1976).

The goal of the present paper is to devise a theory of the density jump in the collisionless
case, accounting for a field parallel or perpendicular to the front. The departure from the
MHD jump is eventually related to pressure anisotropy. In this respect, it is well known
that ions and electrons exhibit different temperatures in electron/ion shocks (Tidman, 1967;
Zel’dovich and Raizer, 2002; Guo et al., 2017, 2018; Miceli et al., 2019). This is why we
chose pair plasmas for a start, where each species has the same temperatures. Dealing with
the anisotropy can then be achieved, considering two temperature parameters instead of four.

Although the simulations performed in Bret et al. (2017b) showing the departure from
MHD behavior were relativistic, we here study the non-relativistic regime for simplicity.

Some authors already derived the MHD equations in the presence of a pressure anisotropy
(Karimabadi et al., 1995; Vogl et al., 2001; Gerbig and Schlickeiser, 2011). Yet, the degree of
anisotropy is treated as a free parameter in these references. Here, we compute it for the case of
an isotropic upstream.

Since the departure from MHD prescriptions can be traced back to a downstream anisot-
ropy, a first thought could be to compute it from the Vlasov equation. Yet, it is well known that
a Vlasov plasma in the presence of an external magnetic field offers a range of stable anisot-
ropies (Gary, 1993). This has been nicely confirmed by the in situ analysis of the solar wind
(Bale et al., 2009; Maruca et al., 2011; Schlickeiser et al., 2011). The problem of the determi-
nation of the downstream state is therefore underdetermined. This is why we resort to a
hypothesis on the kinetic history of the plasma as it crosses the front.

As pictured in Figure 1, we assume that the upstream of the shock is isotropic and then
comes the main assumption of this work as it crosses the front, the temperature T⊥ perpen-
dicular to the flow, here Ty, is conserved. This can be justified in the strong-field regime
(Larmor radius ≪ other dimensions) through the “double adiabatic” approximation (Chew
et al., 1956). As we shall see, this assumption, coupled with the conservation equations, suffices
to determine all downstream quantities.
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This stage where the downstream plasma T2y inherits its
upstream value is called “Stage 1. It can be stable or unstable. If
the field is too weak, “Stage 1” will generally be unstable. The
plasma will then move to “Stage 2”, on the nearest stability thresh-
old (not the same, depending on the orientation of the field). Here
again, imposing a threshold condition, together with the conser-
vation equations, allows for a full determination of this “Stage 2”.

We eventually come up with a full determination of the down-
stream anisotropy in terms of the field. At low magnetization, it
will be given by Stage 2 because Stage 1 is unstable. Then, for
high enough a field, Stage 1 is stable and determines the state
of the downstream.

Since we deal with Vlasov plasmas, the temperatures in the
directions perpendicular to the field must be equal (see Landau
and Lifshitz, 1981, §53). Hence,

• For the parallel case, T2y = T1 implies also T2z = T1 since the
field is along the x-axis.

• For the perpendicular case, we have T2x = T2z since the field is
along the y-axis.

Dimensionless parameters
Measuring the field: In the collisionless shocks literature, especially
the one devoted to the particle-in-cell simulation of such shocks
(Sironi and Spitkovsky, 2009; Niemiec et al., 2012; Plotnikov
et al., 2018), the field is frequently measured by the σ parameter,

s = B2
1/4p
n1V2

1
, (1)

measuring the ratio of the upstream magnetic energy to the
upstream kinetic energy. Yet, in the kinetic instabilities literature
(Gary, 1993), the field is rather measured in terms of the b‖ param-
eter, b‖ = nT‖/B2/8p, where ∥ refers to the direction parallel to
the field. Since the stability issue here is related to the downstream
plasma, we define

b2‖ =
n2T2‖
B2
2/8p

. (2)

When dealing with the parallel shock case, we shall set T2‖ = T2x .
And when dealing with the perpendicular shock case, we shall set
T2‖ = T2y.

Mach number In shock physics, it is usual to define an
upstream Mach number as M2

1 = n1V2
1/gP1, where γ is the adi-

abatic index of the fluid. Yet, the present model constrains the
degrees of freedom of the plasma when “freezing” some temper-
atures at the front crossing. It is therefore preferable to define the
following pseudo-Mach number, which allows for a unified
description of all the cases treated in the sequel,

x21 =
V2
1

P1/n1
. (3)

Finally, we define the density jump parameter r as

r = n2
n1

(4)

and the downstream anisotropy parameter A2 as

A2 = T2⊥
T2‖

, (5)

where again ∥ and ⊥ are with respect to the field. When dealing
with the parallel shock case, we shall set A2 = T2y,z/T2x. And when
dealing with the perpendicular shock case, we shall set A2 = T2x,z/T2y.

Parallel case

This setup is especially relevant to study departures from MHD
behavior since for a parallel shock, the MHD conclusion is that
the fluid and the field are disconnected. In other words, the
shock does not depend on the field. Therefore, any departure
from the field-free jump must be related to a departure from
MHD. The jump equations for the present case are (Kulsrud, 2005)

n1V1 = n2V2, (6)

n1V
2
1 + P1 = n2V

2
2 + P2x , (7)

V2
1

2
+ P1

n1
+ U1 = V2

2

2
+ U2 + P2x

n2
, (8)

where the external magnetic field does not appear and Ui is the
internal energy. Note that the pressure component for the aniso-
tropic downstream is P2x, the one along the x-axis, since this is
the direction where the fluid is pushed (Feynman et al., 1963,
§40–3). We shall now solve this system imposing T⊥ conservation,
that is Stage 1. We shall then assess the stability of this stage before
computing the properties of Stage 2, in case Stage 1 is unstable.

Stage 1 density jump and anisotropy

The constraint T1⊥ = T1 is introduced through the expression of
the internal energy U2. In an isotropic fluid, we would have
U = (

∑
Pi)/2n = 3

2 nP (for an adiabatic index γ = 5/3). In the
present case, we write U2 = (P2x + P2y + P2z)/2n2 = (P2x + 2P2y)/
2n2. We then write P2y = n2kBT2y and use our assumption of the

Fig. 1. System considered. The plasma goes from right, subscripts “1”, to left, sub-
scripts “2”. For the parallel case, the field is the same on both sides of the front.
For the perpendicular case, there is a jump in the field. In both cases, we assume
that the downstream plasma goes through a stage with T2y = T1.
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conservation of T⊥, that is, Ty, to write P2y = n2kBT1. We finally
obtain

U2 = 1
2n2

(P2x + 2n2kBT1) = P2x
2n2

+ P1
n1

. (9)

From there, the system (6)–(8) can be solved as follows: we first
use Eq. (6) to eliminate V2 from the other equations. Then, we
replace U2 in (8) by its expression above and eliminate P2x
between (7) and (8) to obtain an equation for n2. The result is

n2
n1

= r = 2x21
3+ x21

. (10)

The jump so defined goes to unity for x1 =
��
3

√
so that smaller

values are unphysical. Also, it goes to 2 in the strong shock
limit χ1≫ 1, which is the jump for a non-relativistic 1D gas.

The anisotropy A2 can now be computed from

A2 = T2⊥
T2‖

= T2y,z

T2x
= T1

T2x
= P1/n1

P2x/n2
. (11)

Inserting the expression (10) for n2 in one of the two equations
previously derived for P2x, the equation above allows to derive
the anisotropy. The result is

A2 = 4x21
x41 + 2x21 − 3

. (12)

This quantity is smaller than 1 for x1 .
��
3

√
. Therefore, within the

physical limits of the present model, A2 < 1.

Stage 1 stability

The conservation of T⊥ at the front crossing leads therefore to the
jump (10) with the anisotropy (12). In electron/ion plasmas, the
main instabilities are the firehose and the mirror instabilities.
They are retrieved in pair plasmas, with the same stability thresh-
olds (Gary and Karimabadi, 2009).

The stability diagram formed by these instabilities is pictured
in Figure 2 in the (b2‖, T2⊥/T2‖ = A2) phase space. For A2 < 1,
the plasma can be firehose unstable, with a threshold found for

T2⊥
T2‖

= 1− 1
b2‖

. (13)

For A2 > 1, the plasma can be mirror unstable, with a threshold
found for

T2⊥
T2‖

= 1+ 1
b2‖

. (14)

We deal here with the parallel case and just checked from Eq. (12)
that A2 < 1. Stage 1 may therefore be firehose unstable if
A2 , 1− 1/b2‖. The parameter b2‖ can be expressed in terms
of the ones already calculated through b2‖ = 2r/(sA2x

2
1). Some

algebra then allows to determine that Stage 1 is firehose unstable, if

s , 1− 4
x21 + 3

− 1
x21

. (15)

As expected, Stage 1 is unstable at low magnetization, for the field
is not strong enough to stabilize the anisotropy. In such a case, the
plasma will move to the firehose threshold. We now compute the
corresponding density jump.

Stage 2 density jump

In order to compute the jump when the downstream plasma has
to move to the firehose threshold, we need to impose the stability
condition (13) into the jump equations (6)–(8). We thus come
back to U2 = (P2x + 2n2kBT2y)/2n2, still valid since it relies on
the necessary equality of temperatures perpendicular to the field
in a Vlasov plasma. Then, T2y is expressed in terms of the field
by imposing the stability condition (13). The result for the inter-
nal energy U2 is

U2 = 2P2x − 2B2
1/8p

2n2
. (16)

Note that the field entering this expression is simply B1 since it
does not change at the front. We can then implement the algo-
rithm used to compute the jump (10). We now find a second-
order equation for r,

r2 1+ 5
x21

( )
− r 5+ 5

x21
− s

( )
+ 4 = 0, (17)

with solutions,

r+ =
5+ x21 5− s+

��
D

√( )
2(5+ x21)

, (18)

D = 25
x41

− 10(s+ 3)
x21

+ (s− 9)(s− 1). (19)

The physical branch must make the junction with the unmagne-
tized shock jump for σ = 0. It is easily checked that this is r+. Yet,
beyond a certain σ, r+ becomes imaginary because of the square
root. But, the solution remains real at least until Stage 1 is
found stable.

Figure 6(left) pictures the density jump derived in this section.
At low σ, Stage 1 is unstable and the jump is the Stage 2 jump,

Fig. 2. The stability diagram formed by the mirror and the firehose instabilities. The
plasma is stable in the gray region.
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given by Eq. (18). As σ increases, it reaches a point where it can
stabilize Stage 1, although Stage 2 keeps offering physical solu-
tions (this is quite clear for the case x1 =

��
3

√
). In such a case,

the physical solution of our model is Stage 1, Eq. (10), since it
is the first stage of the plasma kinetic history, and that it is stable.
This is why part of the jump curves for Stage 2, i.e. low σ, are in
the short-dashed line within these σ-windows and then comes a σ
region where Stage 1 is stable, while Stage 2 no longer offers phys-
ical solutions. Obviously in that case, the jump is the one of Stage 1.

The horizonal dashed lines in Figure 6 show the MHD pre-
scriptions. We witness a striking departure from MHD.

Perpendicular case

MHD results

We now turn to the case where the field is perpendicular to the
flow. In contrast with the parallel case, there is now a strong influ-
ence of the field at the MHD level. Let us then start reminding the
MHD results. The MHD jump equations read (Kulsrud, 2005)

n1V1 = n2V2, (20)

V1B1 = V2B2, (21)

n1V
2
1 + P1 + B2

1

8p
= n2V

2
2 + P2 + B2

2

8p
, (22)

V2
1

2
+ P1

n1
+ U1 + B2

1

4pn1
= V2

2

2
+ U2 + P2

n2
+ B2

2

4pn2
, (23)

They can be solved for n2 following a method similar to the para-
llel case. We first eliminate V2 and B2 thanks to Eqs. (20) and (21).
We then express P2 from Eqs. (22) and (22), and equate the two
expressions to find a third-degree polynomial in n2. Once factored
by (r− 1), the positive root of the remaining second-order equa-
tion reads

r = gM2
1 +M2

A1(2+ (g− 1)M2
1)−

��
D

√

2(g− 2)M2
1

,

D = 4(g− g2 + 2)M4
1M2

A1 + [gM2
1 +M2

A1(2+ (g− 1)M2
1)]

2,

(24)

where M2
1 = n1V2

1/gP1 and MA1 = V1/VA, with V2
A1 =

n1V2
1/B

2
1/4p, the upstream Alfvén speed.

We have r > 1, for

M2
1 .

M2
A1����������

M2
A1 − 1

√ . (25)

For the present study, it is useful to express the limit above in
terms of the parameters (σ, χ1) defined by Eqs. (1) and (3).
The correspondence with the Mach numbers is

s = 1

M2
A1

, x21 = gM2
1. (26)

The result is

r . 1 ⇔ s ,
x21 − g

x21
. (27)

In contrast with the MHD parallel case, a perpendicular field deeply
influences the MHD density jump and can even quench the shock.
Figure 3 plots the density jump (24) over the domain defined by
(27). We now turn to the characterization of Stages 1 and 2.

Stage 1 density jump and anisotropy

Stage 1 for the present perpendicular case is analyzed similarly to
the parallel case replacing P2 by P2x in the jump equations (20)–
(23). The jump found that imposing conservation of T⊥ is now

r = 3x21
4+ x21(1+ 2s)

. (28)

It is lower than 1 for

s .
x21 − 2
x21

or x21 ,
2

1− s
, (29)

so that the model makes physical sense only for x1 .
��
2

√
. The

anisotropy, computed like in the parallel case, is now,

A2 = 1
r
+ x21

2r2
[r(s+ 2)− sr3 − 2]. (30)

Plotting A2 (not shown) in terms of (χ1, σ) shows that A2 > 1 as long
as r > 1. Here, the downstream can therefore be mirror unstable.

Stage 1 stability

The stability threshold for the mirror instability is A2 = 1+ 1/b2‖
[see Eq. (14)] with now

A2 = T2⊥
T2‖

= T2x,z

T2y
and b2‖ =

n2T2‖
B2
2/8p

= n2T2y

B2
2/8p

. (31)

Following the method used for the parallel case, we find the
threshold for mirror stability of Stage 1 is defined by

a0 + a1s+ a2s
2 + a3s

3 = 0, (32)

Fig. 3. MHD density jump in terms of (σ, χ1) for the perpendicular case over the
domain r > 1 defined by Eq. (27). In contrast with the MHD parallel case, the field
has a strong effect on the shock. We set γ = 5/3.
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with

a0 = 4(x21 − 2)(x21 + 1)(x21 + 4),

a1 = −3x21(13x
4
1 − 4x21 + 16),

a2 = 12x41(x
2
1 − 2),

a3 = −4x61.

(33)

This third-degree polynomial can be analyzed numerically. The
result is displayed on Figure 4. Stage 1 is stable inside the green
region. The upper red region pictures Eq. (29) beyond which
the density jump is lower than unity. Here again, we find that
strong enough a field can stabilize Stage 1.

Stage 2 density jump

In case the field is too weak, the point representing the system in
Figure 4 may lie in the lower orange region, with the consequence
that it will move to the mirror threshold. We therefore impose
A2 = 1+ 1/b2‖ in the jump equations and solve them for n2. The
method is the same than that used for Stage 2 in the parallel case.

The expression for U2 to be inserted into these equations is now

U2 = 1
2

kBT2x − B2
2/8p
n2

+ 2kBT2x

( )
= 1

2n2
3P2x − B2

2

8p

( )
. (34)

The density jump r is then given by the solution of

2x21˜r3+ 10
s
+2x21

s
−4x21

( )˜r2− 10
s
+10x21

s
+5x21

( )
r+8x21

s

=0. (35)

This polynomial has one negative root and two positive ones. Out if
these two positive ones, only the largest is physical, as it merges with
the MHD jump for σ= 0. For some combinations of (χ1, σ), these
two positive roots become imaginary: there, Stage 2 does not offer
physical solutions.

Numerical resolution allows to draw Figure 5 where Stage 2
has solutions. Stage 1 is mirror stable between the two blue
lines, whereas Stage 2 offers solutions in the orange region. As
was the case for the parallel shock, there is a parameter range

Fig. 6. Density jump for the parallel (left) and the perpendicular cases (right). The long-dashed lines show the MHD predictions. The short-dashed lines show the
jump given by Stage 2 when Stage 1 is stable. In such cases, the physical solution is Stage 1 since this is the first stage of the kinetic history of the downstream.

Fig. 4. Numerical analysis of the stability condition (32). Stage 1 is stable inside the
green region.

Fig. 5. Stage 2 offers solutions in the orange region. Stage 1 is mirror stable between
the two blue lines. If Stage 2 has solutions, while Stage 1 is stable, the downstream
settles in Stage 1 since it is the first stage of its kinetic history.
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where Stage 1 is stable, while Stage 2 has solutions. In such cases,
the system will settle in Stage 1, as it is the first stage of its kinetic
history.

Solving Eq. (35) allows to derive the density jump when Stage
2 has solutions, that is, for weak field. The result is plotted in
Figure 6(right). The departure from MHD is less pronounced
than in the parallel case, because the MHD jump already goes
to 0 with increasing fields.

Conclusion

We studied the departure from MHD jump conditions for mag-
netized collisionless shocks in non-relativistic pair plasmas. The
parallel and perpendicular cases have been assessed. The depar-
ture from MHD comes from a downstream anisotropy that can
be stably sustained by a magnetic field in a Vlasov plasma.
Computing the jump is therefore tantamount to computing the
anisotropy. Since the Vlasov equation does not pinpoint any spe-
cific anisotropy, but only provides a stable anisotropy window
instead, we resort to a hypothesis on the kinetic history of the
plasma at the front crossing. We make the partial use of the dou-
ble adiabatic approximation (Chew et al., 1956) to assume that the
temperature T⊥ perpendicular to the motion is conserved from
the upstream to the downstream. The excess entropy generated
is supposed to go in the directions that are not locked to T⊥ by
the field. This stage, called “Stage 1”, can be stable or unstable.
If stable, then this is the end stage of the downstream. If unstable,
it migrates to “Stage 2” on the nearest instability threshold.

At the low field, Stage 1 is always unstable, as the field is too
weak to stabilize the corresponding anisotropy. In the parallel
case, it is firehose unstable. In the perpendicular case, it is mirror
unstable. In such a case, the downstream moves to the firehose
threshold in the parallel case and to the mirror threshold in the
perpendicular case. At any rate, the conservation equations fully
determine the state of the plasma, so that there is no need to
study the pathway to these thresholds. With increasing field
amplitude, Stage 1 is eventually stabilized.

Our model makes physical sense only for x1 .
��
3

√
in the par-

allel case, and x1 .
��
2

√
in the perpendicular one. If a Mach num-

ber is defined like M2
1n1V

2
1/gP1, then the present model is

physical for M1 .
����
3/g

√
in the parallel case and M1 .

����
2/g

√
in the perpendicular one (1.34 and 1.1, respectively, for γ = 5/3 ).

The model exhibits a departure from MHD far stronger for the
parallel case than for the perpendicular one. This can be related to
the ability of a parallel field to guide the particles in the down-
stream during and after shock formation (Bret et al., 2013a,
2013b; Bret et al., 2014; Stockem Novo et al., 2015; Bret et al.,
2016), preventing isotropization, while there is no influence of
the field in MHD. In the perpendicular case, even the MHD for-
malism gives a prominent role to the field so that departure is far
less pronounced.

What about oblique shocks? Their analyses are far more
involved, as there can be up to three kinds of MHD shocks in
this case. This will be the topic of future works.
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