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Transitions to different kinds of turbulence in a
channel with soft walls
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The flow in a rectangular channel with walls made of polyacrylamide gel is
experimentally studied to examine the effect of soft walls on transition and turbulence.
The bottom wall is fixed to a substrate and the top wall is unrestrained. As the
Reynolds number increases, two different flow regimes are observed. The first is
the ‘soft-wall turbulence’ (Srinivas & Kumaran, J. Fluid Mech., vol. 780, 2015,
pp. 649–686). There is a large increase in the magnitudes of the velocity fluctuations
after transition and the fluid velocity fluctuations appear to be non-zero at the soft
walls, although higher resolution measurements are required to establish the nature
of the boundary dynamics. The fluid velocity fluctuations are symmetric about
the centreline of the channel, and they show relatively little downstream variation.
The wall displacement measurements indicate that there is no observable motion
perpendicular to the surface to within the experimental resolution, but displacement
fluctuations parallel to the surface are observed after transition. As the Reynolds
number is further increased, there is a second ‘wall-flutter’ transition, which involves
visible downstream travelling waves in the top (unrestrained) wall alone. Wall
displacement fluctuations of frequency less than approximately 500 rad s−1 are
observed both parallel and perpendicular to the wall. The mean velocity profiles and
turbulence intensities are asymmetric, with much larger turbulence intensities near the
top wall. The transitions are observed in sequence from a laminar flow at Reynolds
number less than 1000 for a channel of height 0.6 mm and from a turbulent flow at
a Reynolds number greater than 1000 for a channel of height 1.8 mm.

Key words: instability, transition to turbulence

1. Introduction
1.1. Internal flows in soft-walled channels/tubes

The effect of soft walls on the transition to turbulence in an internal flow at small
dimensions and Reynolds numbers was first studied by Lahav, Eliezer & Silberberg
(1973) and Krindel & Silberberg (1979). They found that the transition Reynolds
number for the laminar–turbulent transition is lower than the value of 2100 for the
rigid tube and that the transition Reynolds number decreases as the elasticity modulus
of the wall of the tube decreases. This motivated a series of theoretical linear stability
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analyses and experiments on the stability of internal flows in soft tubes and channels,
of interest in physiological and microfluidic applications (Kumaran 2000, 2003, 2015;
Shankar 2015). The transition Reynolds number is a function of the dimensionless
parameter Σ = (ρGR2/η2), which is the ratio of the elastic stresses in the solid and
the viscous stresses in the fluid, and which is independent of the flow velocity. Here,
R is the characteristic conduit dimension, G is the shear modulus of wall material, η
and ρ are the fluid viscosity and density respectively.

1.1.1. Stability analyses
The flow past a viscoelastic surface could become unstable even in the limit of

zero Reynolds number if the elasticity of the walls was made sufficiently small
(Kumaran, Fredrickson & Pincus 1994; Kumaran 1995; Gkanis & Kumar 2003, 2005;
Shankar & Kumar 2004; Chokshi & Kumaran 2008) when the dimensionless velocity
(Vη/GR) exceeds a threshold value. Here, V is the average flow velocity. At high
Reynolds number, different types of instability have been predicted. In the high
Reynolds number ‘inviscid’ instability (Kumaran 1996; Shankar & Kumaran 1999,
2000; Gaurav & Shankar 2009, 2010), viscous effects are important in an internal
critical layer of thickness Re−1/3 within the flow, and the transition Reynolds number
increases proportional to Σ1/2. In the wall mode instability at high Reynolds number,
viscous forces are comparable to inertial forces in a layer of thickness Re−1/3 at the
wall (Kumaran 1998; Shankar & Kumaran 2001, 2002; Chokshi & Kumaran 2009).
The transition Reynolds number scales as Σ3/4, and the mechanism of destabilisation
is the shear work done at the surface due to the coupling between the mean strain
rate and the surface displacement in the tangential velocity boundary condition at the
interface.

1.1.2. Transition in experiments
This low Reynolds number instability has been observed in experiments (Kumaran

& Muralikrishnan 2000; Muralikrishnan & Kumaran 2002; Eggert & Kumar 2004;
Shrivastava, Cussler & Kumar 2008), and experimental results for the threshold value
of (Vη/GR) are in agreement with theoretical predictions. At high Reynolds number,
it has been observed in the experiments of Verma & Kumaran (2012, 2013) that the
transition Reynolds number could be lower than that for a rigid/channel tube if the
walls of the conduit are made sufficiently soft. In Verma & Kumaran (2012), the
transition Reynolds number for the fluid flow in a soft tube of diameter approximately
1 mm is as low as 500 if the wall is made sufficiently soft, in contrast to the value of
2100 for the flow in a rigid tube. Verma & Kumaran (2013) conducted experiments
in a micro-channel of height 100 µm with one soft wall, and observed a transition at
a Reynolds number as low as 200.

These observations were initially puzzling, because the transition Reynolds number
was an order of magnitude lower than that predicted by the linear stability analysis
for the fully developed parabolic flow in a channel with flat walls or a tube with
cylindrical walls. Subsequently, it was realised (Verma & Kumaran 2013, 2015) that
the discrepancy is because of the channel/tube deformation due to the applied pressure
gradient. If the deformation of the channel/tube, and the consequent modification of
the velocity profile and pressure gradient, is incorporated in the analysis, the transition
Reynolds number is quantitatively predicted.
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Transitions in a channel with soft walls 269

1.1.3. Turbulence
The flow after transition in a micro-channel of height approximately 200–300 µm

with one soft wall (Srinivas & Kumaran 2015) exhibits similarities and differences
when compared with the turbulence in a rigid channel. The transition Reynolds
number was found to be as low as 250. There is a sharp transition from a parabolic
mean velocity profile to a more plug-like profile at the transition Reynolds number.
The streamwise root mean square of the fluctuating velocity shows a sharp near-wall
maximum, but the maximum near the soft wall is at least two times as large as
that near the hard wall, suggesting that the soft wall does play a role in generating
turbulence. The Reynolds stress appeared to be non-zero at the soft wall, indicating
that there are velocity fluctuations in the wall material coupled to the fluid velocity
fluctuations. The energy production rate was found to be a maximum at the wall
itself, in contrast to the near-wall maximum due to turbulent bursting observed in a
rigid channel. There was no evidence of a viscous sublayer at the soft wall to within
the experimental resolution of (yv∗/ν) ≈ 2, where y is the distance from the wall,
v∗ is the friction velocity and ν is the kinematic viscosity. A logarithmic layer was
observed for 2 6 (yv∗/ν)6 30, but the von Kármán constants in the logarithmic law
were found to be very different from those for the flow past a rigid surface. Wall
motion was also detected by embedding beads in the wall (Verma & Kumaran 2013)
or by marking a spot on the wall using dye (Srinivas & Kumaran 2015), although the
frequency of the wall motion could not be determined because the Nyquist frequency
for the imaging procedure used was too low.

The magnitudes of the velocity moments in soft-wall turbulence in the Reynolds
number range of 250–400, when scaled by suitable powers of the mean velocity,
were found to be comparable to those in a rigid channel at much higher Reynolds
numbers, in the range 3000–20 000. Thus, the flow after transition in a soft-walled
micro-channel can be characterised as turbulence, but of a different kind than that
in a rigid channel, one in which wall motion plays a significant role in generating
turbulent fluctuations.

1.2. Comparison with external flows
The pioneering experiments of Hansen & Hunston (1974), Hansen & Hunston (1983)
and Gad-el Hak, Blackwelder & Riley (1985) on external flows past soft surfaces
have reported the ‘static divergence’ instability, a hydroelastic instability due to the
coupling between the fluid flow and a compliant surface in different experimental
geometries. Hansen & Hunston (1974) considered a rotating disk geometry, where a
disk coated with a compliant surface was rotated in a tank, while Hansen & Hunston
(1983) examined the boundary-layer flow over a flat plate coated with a compliant
material. In the case of Gad-el Hak et al. (1985), a flat plate partially coated with a
compliant surface was towed in a tank of water. Many of the important observations in
these experiments are similar, although there are some differences. All studies report
the appearance of waves on the compliant surface, when the dimensionless parameter
V(ρ/G)1/2 exceeds a critical value, where V is the free stream velocity relative to the
solid surface, G is the shear modulus of the compliant surface, ρ is the density and
(G/ρ)1/2 is the propagation velocity of shear waves in the solid. Hansen & Hunston
(1983) reported the onset of waves on the surface both for turbulent and laminar flows.
Gad-el Hak et al. (1985) observed an instability only for turbulent boundary-layer
flows; the instability was not observed for laminar flows even when the free stream
velocity was twice the shear wave velocity.
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Linear stability studies of the external flows past model flexible surfaces, usually
considered as spring-backed plates, have found different modes of instability.
Benjamin (1960, 1963), Landahl (1962) classified these into three types – the class
A modes which are the rigid-wall Tollmien–Schlichting instabilities modified by
surface flexibility, the class B modes which have wave speed close to the surface
waves on the medium and the class C or travelling wave flutter which is similar
to the Kelvin–Helmholtz instability. Subsequently, Carpenter & Garrad (1985) and
Carpenter & Garrad (1986) modified the classification to include the class B and
class C modes into a category called flow-induced surface instabilities, which are
qualitatively different from the Tollmien–Schlichting modes.

The characteristic features of the soft-wall instability (internal flows) and the
hydroelastic instability (external flows) appear to be very different. The wall motion
is primarily tangential to the surface in the internal flows and the destabilisation
of the flow is due to the coupling between the mean flow and fluctuations through
the tangential velocity boundary conditions at the interface. In contrast, there is
the formation of surface waves and measurable normal motion in the hydroelastic
instability. While viscous effects are necessary for destabilising the flow in the
soft-wall instability (due to the presence of a viscous wall layer at the wall), the
transition velocity for static divergence is expressed entirely in terms of the shear
wave speed of the compliant wall (G/ρ)1/2, which is independent of fluid viscosity.
In this sense, the static divergence instability is similar to the high Reynolds number
inviscid instability theoretically predicted in the analysis of internal flows, but which
does not seem to have been observed so far.

1.3. Motivations
Based on the above summary, the motivations for the present study are as follows.

(i) To examine whether the soft-wall transition can be observed in turbulent flows.
The pretransitional flows have always been laminar in studies carried out so far
and linear stability analyses also use the laminar flow as the base state.

(ii) To examine whether the static divergence reported for external flows (Hansen &
Hunston 1974, 1983; Gad-el Hak et al. 1985) is of relevance in internal flows,
since this has not been reported so far.

(iii) To examine the relationship between the soft-wall instability for internal flows
and the hydroelastic instability for external flows. Specifically, whether the static
divergence is a continuation of the soft-wall instability at high Reynolds numbers
or whether the two are distinct.

(iv) To directly measure the profiles of the mean and fluctuating velocities after the
hydroelastic instability in an internal flow, and compare these with characteristics
observed after the soft-wall instability.

1.4. Outline
In order to attain Reynolds numbers of the order of a few thousands at relatively
low velocities, we have used channels of higher dimensions than Verma & Kumaran
(2013) and Srinivas & Kumaran (2015), with heights of approximately 0.6 mm and
1.8 mm. In order to decrease the value of the parameter Σ , polyacrylamide gel is
used, since this has a shear modulus that is an order of magnitude lower than the
polydimethylsiloxane (PDMS) that was used in Verma & Kumaran (2013) and Srinivas
& Kumaran (2015).
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(a) (b) (c)
13 cm

1.25
cm

14 cm

Channel
Channel Channel

I II III IV

3 cm 4 cm 4 cm 7 mm7 mm 13 mm

7 mm

7 mm

Acrylamide gel Acrylamide gel
Development section Test section

Hard gel Soft gel

FIGURE 1. The schematic (not to scale) of the top view (a), the cross-section of the
undeformed channel (b) and the channel deformed due to a pressure gradient (c).

The experimental methods are discussed in the next section, augmented by a
description of the channel fabrication and gel characterisation in appendix A. The
velocity measurement techniques are validated for laminar and turbulent flows in
appendix B. An important issue in flow through soft channels is the effect of wall
deformation. This is discussed in appendix C, where it is shown that the maximum
slope of the wall is numerically small at the Reynolds numbers where transitions
are observed. Due to this, the velocity profile for the laminar flow is close to the
parabolic profile even in the deformed channel. The results for the transition from a
laminar flow (for the gel with undeformed height 0.6 mm) and turbulent flow (for the
gel with undeformed height 1.8 mm) are provided in §§ 3 and 4. Section 5 contains
the important conclusions. The present results are placed in the context of previous
studies, and the important open issues are discussed in § 6.

The naming convention used here is as follows. The transition in the flow through
a rigid channel at a Reynolds number of approximately 1000 is called the ‘hard-wall
transition’, and the flow after transition is called ‘hard-wall turbulence’. The transition
and turbulence of the type observed by Verma & Kumaran (2013) and Srinivas &
Kumaran (2015) are referred to as the ‘soft-wall transition’ and ‘soft-wall turbulence’.
There is a second transition, referred to as ‘wall flutter’, which shares some of the
characteristics of the hydroelastic instability of Hansen & Hunston (1974, 1983) or
the static divergence of Gad-el Hak et al. (1985). This should not be confused with
the ‘aerodynamic flutter’ or ‘travelling wave flutter’ (Carpenter & Garrad 1985, 1986).

2. Experimental methods
2.1. Channel fabrication and characterisation

The channel was fabricated using polyacrylamide gel, as explained in appendix A.
Three different compositions were used, resulting in gels with shear moduli 0.75 kPa,
2.19 kPa and 15.89 kPa. The gel with shear modulus 15.89 kPa is used as the
hard-walled channel, since the shear modulus is sufficiently large that the soft-wall
transition Reynolds number is higher than the maximum of approximately 3500 in
the experiments.

The channels are fabricated as a rectangular bore in a block of polyacrylamide
gel with dimensions shown in figure 1. The channels consist of an upstream hard
(development) section of length approximately 13 cm, made with gel of shear
modulus 15.89 kPa, to damp out disturbances at the inlet. This is followed by a
downstream soft section of length approximately 14 cm, where the gel has a lower
elasticity modulus due to lower cross-linker concentration. The width of the channel
is approximately 1.3 cm, while channels with two different heights, about 0.6 mm
and 1.8 mm are fabricated. When there is a pressure difference applied across the
channel, the walls deform in the test section, as shown in figure 1(c). The channel
deformation is discussed in detail in appendix C.
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and needle valve
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FIGURE 2. The configuration and coordinate system used for the particle image
velocimetry measurements and the normal wall displacements (a) and the tangential wall
displacements (b). Panel (a) also shows the symmetric configuration with a top glass plate,
and panel (b) also shows the asymmetric configuration with an unrestrained top wall.

2.2. Experimental configuration
The configuration and coordinate system used for analysing the flow are shown in
figure 2. The channel is mounted on an optical breadboard with translation stages
along the x (flow) and z (spanwise) directions, and goniometers with axes along the
x and z axes. The inlet to the development section is connected to a pressurised tank
through a needle valve for controlling the flow rate. The velocity profiles are measured
using particle image velocimetry at the entrance to the test section, and it has been
verified that the profiles are parabolic, as shown in appendix B.

The Reynolds number is defined based on the flow rate and the channel width,

Re=
ρQ
Wη

, (2.1)

where ρ and η are the fluid density and viscosity, Q is the flow rate and W is the
channel width. For a channel of rectangular cross-section the above definition reduces
to that based on the average velocity and channel height. However, the definition
in (2.1) is advantageous because it is independent of height, and it does not change
even when there is a downstream variation in height caused by the applied pressure.

Two different configurations, shown in figure 2, are used in the experiments. In the
‘symmetric’ configuration (figure 2a), both the top and bottom walls of the channel
are fixed to glass plates. In the ‘asymmetric’ configuration (figure 2b), the bottom
wall is fixed to a glass substrate, while the top wall is unrestrained. In both cases, the
soft-wall transition is observed at the same Reynolds number, to within experimental
resolution. However, the ‘wall-flutter’ transition is not observed for the symmetric
configuration where both walls are restrained; it is only observed for the asymmetric
configuration where the top wall is unrestrained. Therefore, we report results only for
the asymmetric configuration.

2.3. Fluid velocity measurements
The configuration shown in figure 2(a) is used to make particle image velocimetry
(PIV) measurements using an IDT PIV system with a framing rate of 15 Hz. The
laser sheet is directed along the centreline of the channel in the spanwise z direction
(vertical line in the cross-section figure 1c). Glass beads with diameters in the range
8–14 µm were used for seeding the flow.

The PIV measurements are carried out at four different downstream locations, I, II,
III and IV, shown in figure 1(a). There is very little variation in the velocity statistics
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between downstream locations III and IV. The PIV measurements for both laminar
and turbulent flows are validated in appendix B.

For each channel configuration (wall shear modulus and height) and at each
Reynolds number, two independent sequences of 2000 pairs of images each are
recorded. These are separated into eight subsequences of 500 image pairs each. The
mean value of a velocity moment is the average over the entire 4000 pairs of images.
Eight averages over subsequences of 500 image pairs each are determined, and the
standard deviation is calculated for these eight measurements. The error bars in the
experimental results show one standard deviation above and below the mean value.

It is important to note that due to the size of the particles, it is not possible to
determine the velocity within a distance of approximately 15 µm from the wall.
Therefore, in most of the profiles for the fluctuating velocities and Reynolds stress,
the results are not shown within a distance of approximately 20 µm from the wall.
In cases such as the mean velocity profile, where the results are shown at the wall,
these results are extrapolated.

The particle size is approximately 3 % of the channel height for the smaller channel
and approximately 1 % of the channel height for the larger channel. The uncertainties
in the fluid velocity measurements due to the finite size of the particles can be
estimated as follows.

(i) The particle size, approximately 10 µm, is much smaller than the two channel
heights of 0.6 mm and 1.8 mm considered here. However, the smallest scales
in a turbulent flow could be much smaller than the channel height. If we
consider the Kolmogorov estimate for the smallest length scale as Re−3/4h, the
smallest scale in a channel of height 0.6 mm at a maximum Reynolds number
of approximately 900 is approximately 3.6 µm, and for a channel of height
1.8 mm at a maximum Reynolds number of 2500 is approximately 5.1 µm.
(The Kolmogorov estimate is an underestimate for the low Reynolds numbers
used here.) Thus, the particle diameter is 2–3 times larger than the smallest
scales. Although the particle trajectories may not accurately capture the smallest
scales, they most certainly capture the large-scale structures in the flow.

(ii) The effect of fluid inertia on the particle trajectories can be estimated from
the particle Reynolds number based on the fluid fluctuating velocity, (ρdpv

′/η)

where dp is the particle diameter and v′ is the fluid fluctuating velocity. (Here,
the fluctuating velocity has been used as the basis for calculating inertial
effects, because the particle mean velocity relaxes to the local fluid mean
velocity within a time period estimated in the item (iii).) For the channel with
height about 0.6 mm, the maximum of the streamwise fluctuating velocity are
about 0.07 m s−1 at the soft-wall transition and 0.3 m s−1 at the wall-flutter
transition, and the corresponding Reynolds numbers are 0.7 and 3 respectively.
For the channel with height approximately 1.8 mm, the maximum of the
streamwise fluctuating velocity is approximately 0.06 at the soft-wall transition
and approximately 0.15 at the wall-flutter transition, and the corresponding
Reynolds numbers are approximately 0.6 and 1.5 for 10 µm particles. When
the particle Reynolds number is less than 3, there is no separation or formation
of closed streamlines at the rear of the sphere, and the drag force exceeds the
Stokes drag law by approximately 20 %.

(iii) The fidelity with which the particles follow streamlines depends on the particle
Stokes number, which is the ratio of the viscous relaxation time of the particle
and the fluid integral time scale. Based on Stokes drag law, the viscous relaxation
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time of the particle, τv = (m/3πµdp), is 4.3 × 10−5 s for glass spheres with
density 2500 kg m−3 and diameter 10 µm. The fluid integral time scales as the
inverse of the macroscopic strain rate, (h/v̄x), where h is the channel height and
v̄x is the mean velocity. Based on the maximum velocity of 2 m s−1 for the
channel of height 0.6 mm and 1.4 m s−1 for the channel of height 1.8 mm, the
fluid time scales for the largest eddies are τI = 3 × 10−4 s (approximately 7τp)
for the smaller channel and 1.3 × 10−3 s (approximately 30τp) for the larger
channel. Both of these are much larger than the particle relaxation time. The
turnover times for the smallest eddies in the flow are, of course, much smaller
than those for the large-scale structures. If we use the Kolmogorov estimate, the
time scales for the smallest eddies are Re−1/2 smaller than the large-scale flow.
(The Kolmogorov time scale underpredicts the smallest relaxation time for low
Reynolds numbers up to approximately 2500 used here.) For a the channels of
height 0.6 mm, the maximum Reynolds number is approximately 900, and so the
smallest eddy turnover time is about 30 times smaller than that for the largest
eddies, which is about 0.25τp. For the larger channels of height 1.8 mm, the
maximum Reynolds number is approximately 2500, and so the smallest eddy
turnover time is about 50 times smaller than that for the largest eddies, which
is about 0.6τp. Thus, the particle relaxation time is somewhat larger than the
Kolmogorov estimate of the smallest eddy turnover time by a factor of 2–4, but
is certainly much smaller than the turnover time of the largest eddies.

(iv) Close to the wall, a lift force could be generated due to the particle rotation
and the particle motion relative to the wall. The Magnus lift force on the
particles scales as CL((π/8)ρvp(v̄xd2

p)), where vp is the particle velocity relative
to the fluid, v̄xd2

p is a measure of the circulation of the fluid around the
particle due to the mean flow and CL is the lift coefficient. If we consider
the fluid fluctuating velocity v′ as the characteristic particle velocity, the lift
force is CL((π/8)ρv̄xv

′d2
p). The ratio of the lift and the drag force 3πµdpv

′ is,
(CLρv̄xd2

p/24µh) ∼ (CLRe(dp/h)2/24), where Re is the Reynolds number based
on the mean velocity. Zang, Balachandar & Fisher (2005) report that CL is in the
range 0.1–1.1 when the distance of the particle centre from the wall is 0.75dp to
dp, and when the particle Reynolds number is less than 10. For the channel with
height 0.6 mm and a maximum Reynolds number of approximately 900, this
ratio of the lift and drag forces is approximately 0.01, while for the channel with
height approximately 1.8 mm at a maximum Reynolds number of approximately
2500, this ratio is approximately 0.003. Thus, the lift force is likely to be much
smaller than the correction to the drag force due to inertial effects.

2.4. Wall displacement measurements
The normal and tangential wall displacement in the soft wall were also measured by
embedding glass beads of diameter 8–14 µm within the wall during the fabrication
process. The glass beads were mixed into the prepolymer before gelation, and they
were rigidly fixed in the solid due to the formation of cross-links in the polymer after
gelation. A camera connected to a zoom tube was used to record the displacement of a
bead close to the surface. The displacement was determined from the correlation peak
in the Fourier transform of the grey scale intensity matrix, as discussed in Srinivas
& Kumaran (2015). In order to determine the tangential displacement of the wall
in the x and z directions, the configuration in figure 2(b) was used, and images of
the beads at both the top and bottom surfaces were captured. Due to the clear line
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of view from above, relatively high magnification was achieved for the tangential
displacement of the surface – an area of dimension 0.375 mm × 0.222 mm was
imaged with a resolution of 804×484 pixels, resulting in each pixel occupying a linear
dimension of approximately 0.466 µm. For the normal wall displacement in the y
direction, the configuration in figure 2(a) was used, where images of an embedded
bead is captured from the side. In this case, the magnification achieved was relatively
less due to the relatively large depth of view required, as indicated in the cross-section
in figure 1(b,c). An area of 7 mm × 4.24 mm was imaged with a resolution of 804
× 484 pixel, resulting in each pixel occupying a linear dimension of approximately
8.7 µm.

The spectra of the displacement fields were determined by taking the Fourier
transform of the time series of the displacement data,

?̃(ω)=
1
T

∫ T

0
dt exp (ıωt) ? (t), (2.2)

where ?(t) is the time series of the relevant component of the displacement of a bead
embedded in the wall. In our experiments, the maximum framing rate is 1000 Hz,
and consequently the Nyquist frequency is 500 Hz. Since oversampling by a factor of
5–10 is required for accurately capturing the spectra, the maximum frequency reported
here is approximately 500 rad s−1. The time period T used was usually 1 s, although
longer sequences of up to 15 s were used to verify that there are no systematic
low-frequency signals. The frequency spectrum is calculated only for the tangential
displacement recorded from above as shown in figure 1(b), because the resolution is
much higher than that for the normal displacement recorded from the side as shown
in figure 1(a).

For the wall displacement measurements, three sequences of 1000 frames (1 second)
each are recorded. The average and the root mean square of the displacement are
calculated as averages over all three sequences (3000 frames). The averages for
each subsequence of 1000 frames is also calculated, and the standard deviation is
determined using the averages for the three subsequences.

3. Transitions from a laminar flow

The flow in a channel of height 0.6 mm is considered, where the soft-wall and
wall-flutter transitions take place at Reynolds numbers less than 1000 for transition in
a rigid channel. The results for the flow characteristics and the wall dynamics after
the soft-wall transition are analysed in § 3.1, followed by the results for the flow after
the wall-flutter transition in § 3.2.

3.1. Soft-wall transition
3.1.1. Flow characteristics

The mean velocity profiles across the channel with walls made of shear modulus
0.75 kPa at the downstream location III (figure 1a) are shown in figure 3. The bottom
wall of the channel is at y = 0, while the location of the top wall is shown by the
dashed vertical lines on the right in figure 3. The height increase is quite small at the
downstream location III at Reynolds numbers up to 500 – the height increases by only
8 % when the Reynolds number increases from 278 to 448. However, the qualitative
features reported here are also observed at the other locations.
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FIGURE 3. (Colour online) The cross-stream variation of v̄x (a); v′x (b); v′y (c); 〈v′xv
′

y〉 (d);
the stress τxy (solid line) and viscous stress τ vxy (red dashed line) (e); and (v̄x/v∗) versus
(yv∗/ν) ( f ), at location III (figure 1a) when the wall is made of shear modulus 0.75 kPa
at Reynolds number 278 (E), 301 (A), 335 (C), 392 (B) and 448 (D) for a channel with
height approximately 0.6 mm in the undeformed state. The vertical dashed lines show the
location of the top wall and the dashed curves in panel (a) show parabolic velocity profiles
with equal average velocity. In panel ( f ), the dotted curve is (v̄x/v∗)= (yv∗/ν), and the
dashed line is (v̄x/v∗)= 3.45(yv∗/ν)− 1.8.
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In figure 3(a), the dashed curves show the parabolic profiles that have the same
average velocity as the experimentally measured profiles. It is observed that the
velocity profiles are parabolic up to a Reynolds number of 301. When the Reynolds
number increases to 335, there is a distinct departure from the parabolic profile,
and the difference is significantly higher than the experimental standard deviation.
The experimental velocity profiles are clearly flatter at the centre and steeper at the
walls in comparison to the parabolic profile. At Re = 335, the root mean square
of the streamwise fluctuating velocity v′x shows a significant increase in magnitude
(figure 3b). More importantly, the shape of the v′x profile exhibits the near-wall
maxima which are characteristic of a turbulent flow in a channel. A significant
increase in the cross-stream root mean square velocity, v′y is also observed in
figure 3(c) when the Reynolds number increases from 301 to 335. Figure 3(d)
shows that the correlation 〈v′xv

′

y〉, which is zero to within the experimental standard
deviation for Re 6 301, increases significantly in magnitude at Re= 337 and exhibits
the characteristic shape of the Reynolds stress profiles in channel flow.

Subject to experimental uncertainties, the mean velocity and the root mean square
of the fluctuating velocities are symmetric, and 〈v′xv

′

y〉 is antisymmetric, about the
centreline of the channel. The transition at the Reynolds number of 335 is also
significantly different from those for a rigid channel in some important aspects. Due
to experimental limitations (the seed particles are 8–14 µm in diameter), it is not
possible to resolve the region within a distance of 15 µm from the wall of the
channel. The data in figures 3(b) and 3(c) suggest that the root mean square of the
fluctuating velocities could be non-zero at both walls although the data could plausibly
be extrapolated to zero velocity at the wall. The data in figure 3(d) do suggest that
〈v′xv

′

y〉 is non-zero at both walls. It should be noted that there are uncertainties in the
measurement of the fluctuating velocities close to the wall. However, figure 21(c) in
appendix B for a Reynolds number of approximately 3500 indicates that it is possible
to capture the Reynolds stress accurately within approximately 50 µm of the wall,
and a steep decrease in the Reynolds stress is observed at the wall. In contrast, in
figure 3(d), a reasonable polynomial extrapolation predicts a non-zero Reynolds stress
at the wall, although a sharp decrease in the Reynolds stress close to the wall cannot
be ruled out by our measurements. More work is required to resolve this issue.

Figure 3(e) shows the variation in the total stress

τxy = η(dv̄x/dy)− ρ〈v′xv
′

y〉, (3.1)

as well as the variation in the viscous stress τ vxy = η(dv̄x/dy), as a function of the
cross-stream distance. For Re6 301, the viscous stress is a linear function of distance
(because the mean velocity profile is parabolic), and the difference between the
total and viscous stress is smaller than the experimental uncertainty in the stress
measurement. However, for Re > 335, there is a significant difference between the
viscous and the total stress, indicating that the Reynolds stress provides a substantial
contribution to the total stress, even at the wall of the channel. Moreover, the viscous
stress profiles are not a linear function of the cross-stream distance. The total stress
profiles are expected to be nearly linear, since the wall slope is small at the location
III (figure 1a), as shown in figure 23 in appendix C. The linear stress profile can be
obtained only when the Reynolds stress (which is non-zero at the wall) is added to
the viscous stress, suggesting that the fluctuating velocities play an important role in
the cross-stream transport of momentum.

The near-wall variation in the mean velocity v̄x, scaled by the friction velocity v∗=
(τw/ρ)

1/2, is shown as a function of the scaled distance yv∗/ν in figure 3( f ). Here, τw
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FIGURE 4. The near-wall velocity profiles when the wall is made of shear modulus
0.75 kPa (a) and 2.19 kPa (b) for a channel with height about 0.6 mm in the undeformed
state. In panel (a),E location II, Re=340;A location II, Re=441;C location II, Re=539;
B location III, Re= 335;D location III, Re= 392;6 location III, Re= 448; × location IV,
Re= 335; + location IV, Re= 467, the dotted curve shows the relation (v̄x/v∗)= (yv∗/ν);
and the dashed line shows the relation (v̄x/v∗) = 3.45 log (yv∗/ν) − 1.8. In panel (b),
E location II, Re = 599; A location II, Re = 668; C location II, Re = 758; B location
III, Re= 600;D location III, Re= 674;6 location III, Re= 757; × location IV, Re= 599;
+ location IV, Re= 665;u location IV, Re= 779; the dotted curve is (v̄x/v∗)= (yv∗/ν);
and the dashed line is (v̄x/v∗)= 3.67 log (yv∗/ν)− 2.53.

is the wall shear stress which is the sum of the viscous stress and the Reynolds stress
at the wall and ν is the kinematic viscosity. The velocity profile satisfies the linear
relationship (v̄x/v∗)= (yv∗/ν) close to the wall for the laminar profile for Re6 301. In
the turbulent regime for 3356Re6 448, there is no evidence of a viscous sublayer to
within the experimental resolution for (yv∗/ν)6 2. However, in the narrow range 36
(yv∗/ν)620, there is clear evidence of a logarithmic layer, (v̄x/v∗)=A log (yv∗/ν)+B,
at both the top and bottom walls.

The von Kármán plots for the mean velocity are shown in more detail in figure 4
at different downstream locations when the walls are made of shear modulus 0.75 kPa
and 2.19 kPa, only for the Reynolds numbers where soft-wall turbulence is observed.
It is clear that all the velocity profiles, scaled by the friction velocity, do follow a
logarithmic law for 3 6 (yv∗/ν) 6 20. There is no visible viscous sublayer observed
even for (yv∗/ν) as low as 1. The best fits for the von Kármán constants do change
when the shear modulus is changed, and the constants are also very different from
those in the turbulent flow past a rigid surface.

Quantitative measures of the departure from the parabolic profile and the velocity
fluctuations, shown in figure 5, are now analysed. A quantitative measure of the
difference between the actual profile and the parabolic velocity profile is,

v̄diff =

√
1

h(v̄(p)
x )2

∫ h

0
dy(v̄x(y)− v̄l

x(y))2, (3.2)

where v̄(p)
x is the profile-averaged mean velocity defined in (C 1) and v̄l

x(y) is the
parabolic profile with average velocity equal to v̄(p)

x . The other measures used are
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FIGURE 5. The measures v̄diff (a) (max(v′x)/v̄) (b), (max(v′y)/v̄) (c) and (max(|〈v′xv
′

y〉|)/v̄)
2

(d), as a function of the Reynolds number for a channel with height about 0.6 mm in
the undeformed state at locations II (E), III (A) and IV (C) shown in figure 1(a), when
the channel is made of gel of shear modulus 0.75 kPa (solid line) and 2.19 kPa (dashed
line). The symbol6 shows the respective measures for the flow in a rigid channel. The
Reynolds number for the soft-wall and wall-flutter transitions are shown using the labels
SW and WF respectively.

the scaled maxima of the root mean square velocity fluctuations, max(v′x)/v̄ and
max(v′y)/v̄, and the maximum of |〈v′xv

′

y〉|/v̄
2, where v̄ is the average velocity (ratio

of the flow rate and the channel cross-section).
The measure v̄diff is shown as a function of Reynolds number in figure 5(a). There

is relatively little variation in v̄diff downstream of location III, indicating that the flow
has reached a fully developed state downstream of location III (figure 1a). There is
a sharp increase in v̄diff at a Reynolds number of approximately 335 when the shear
modulus of the walls is 0.75 kPa, and at approximately 480 in the shear modulus of
the walls is 2.19 kPa. The increase in v̄diff takes place at the same Reynolds number
as the steep increase in the maximum values of v′x, v

′

y and 〈v′xv
′

y〉 in figure 5(b–d).
This Reynolds number is labelled as SW (for soft-wall transition) in figure 5. The
root mean square of the fluctuating velocities in the streamwise and cross-stream
directions initially increase rapidly when the transition Reynolds number is exceeded,
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FIGURE 6. The mean displacement ūx on the top wall (a) and the bottom wall (b) at
locations II (E), III (A) and IV (C) in figure 1(a) when the wall is made with shear
modulus 0.75 kPa for a channel with height approximately 0.6 mm in the undeformed
state. The Reynolds number for the soft-wall and wall-flutter transitions are shown using
the labels SW and WF respectively.

and then saturate at approximately 12 % and 8 % of the mean velocity for soft-wall
turbulence. Despite the sharp nature of the transition, we did not detect any hysteresis
in the transition Reynolds number while increasing and decreasing the flow velocity,
suggesting that this transition is supercritical.

An important observation in figure 5 is that the magnitudes of the turbulent
velocity fluctuations (when scaled by suitable powers of the average velocity) after
the soft-wall transition are significantly higher than those observed at the hard-wall
transition at a Reynolds number of approximately 1000 in a rigid channel shown by
the6 symbols.

3.1.2. Wall dynamics
The mean displacement of the top and bottom walls in the streamwise (x) direction

are shown as a function of the Reynolds number at three different downstream
locations in figure 6 when the wall is made of gel with shear modulus 0.75 kPa.
In figure 6, there is no indication of a sharp change in the mean displacement at
the Reynolds number for the soft-wall transition or the wall flutter, where there is a
striking change in the flow dynamics. Similar results were obtained when the wall is
made of shear modulus 2.19 kPa and for the channels with height 1.8 mm; these are
not shown here.

There is, however, a discontinuous change in the root mean square of the
displacement fluctuations tangential to the surface at the soft-wall transition, as shown
in figure 7(a). There is a sharp increase in the root mean square of the tangential
displacement to approximately 4–5 µm when there is the soft-wall transition (labelled
SW in figure 7) at a Reynolds number of approximately 300 for walls with shear
modulus 0.75 kPa, and at a Reynolds number of approximately 480 for walls of shear
modulus 2.19 kPa. The spanwise root mean square of the displacement fluctuations,
u′z (not shown for conciseness) is approximately 0.5–0.75 times that of u′x, and u′z
also exhibits a sharp increase at the soft-wall transition Reynolds number. In both the
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FIGURE 7. (Colour online) The variation of u′x on the top wall (open symbols, red dashed
line), on the bottom wall (open symbols, blue dotted line) referenced to the left vertical
axis, and u′y on the top wall (filled symbols, black solid line) referenced to the inverted
right vertical axis at locations II (A), III (C) and IV (B) in figure 1(a) when the wall is
made with shear modulus 0.75 kPa (a) and 2.19 kPa (b) for a channel with height about
0.6 mm in the undeformed state. The Reynolds number for the soft-wall and wall-flutter
transitions are shown using the labels SW and WF respectively.

streamwise and spanwise directions, the fluctuations are symmetric, and the magnitude
of the fluctuations on the top wall is comparable to that on the bottom wall.

Even though there is a sharp increase in the tangential displacement fluctuations
at the surface, a remarkable observation is that there are no discernible displacement
fluctuations in the direction perpendicular to the surface. This is shown in figure 7,
where u′y (measured using the configuration in figure 2(a) using a side camera) is
shown on an inverted right vertical axis for clarity. Subject to the experimental
uncertainties, (the minimum dimension that can be resolved is approximately 3 µm)
there is no measurable wall motion perpendicular to the surface. This is consistent
with the observations of Verma & Kumaran (2013) and Srinivas & Kumaran (2015)
for the flow in a micro-channel. The frequency spectra of the streamwise displacement
fluctuations show low-frequency structure below a frequency of approximately
200 rad s−1; these are not shown here for conciseness.

3.2. Wall-flutter transition
3.2.1. Wall dynamics

There is a second transition as the Reynolds number is increased beyond about
550 when the wall is made of shear modulus 0.75 kPa, and 760 when the wall is
made of shear modulus 2.19 kPa, as shown in figure 7. In the experiments, flutter
of the top wall is observed in the soft section. A sharp increase is observed in
u′x and u′y in figure 7. Figure 7 also shows that the displacement fluctuations are
asymmetric – while there is a sharp increase in the displacement fluctuations of the
top wall, there is very little increase in the displacement fluctuations on the bottom
wall. The magnitudes of u′x and u′y are comparable when there is wall flutter. The
amplitude of these downstream travelling waves decreases with distance travelled –
the amplitude is largest at location II (figure 1a) where the deformation is largest,
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FIGURE 8. The frequency spectrum for ũx (2.2) at different Reynolds numbers when the
shear modulus of the channel wall is 0.75 kPa (a) and 2.19 kPa (b) for a channel with
height approximately 0.6 mm in the undeformed state.

and it decreases at locations III and IV. The amplitude of the waves first increases
as the Reynolds number is increased above 545, reaches a maximum at a Reynolds
number of approximately 750 and then appears to decrease again.

The frequency spectrum of the tangential displacement fluctuations shows a distinct
maximum in the range 100–300 rad s−1 after the onset of wall flutter, in contrast to
the broad low-frequency spectrum for the soft-wall turbulence, as shown in figure 8.
This frequency range is shown to correspond to that expected from the wall thickness
and the shear wave speed in the discussion in § 6.2.

3.2.2. Flow characteristics
The motion of the top wall is also reflected in the fluid velocity field. The mean

velocity profile, shown in figure 9(a), is symmetric for Re = 545, but develops a
distinct asymmetry at Re = 599. It is interesting that there is a distinct shift in
the maximum towards the upper wall. The formation of waves on the top wall
cannot be modelled as just static roughness elements which would decrease the mean
velocity, but these waves actually increase the mean velocity near the upper wall. This
transition is also evident in the profiles of v′x, v

′

y and 〈v′xv
′

y〉 in figure 9(b–d), where
the maximum is near the upper wall at Re = 599. This asymmetry further increases
at Re = 741, and then decreases when the Reynolds number is further increased
to 860 and 923. The velocity v′y appears to increase monotonically with Reynolds
number, in contrast to v′x which appears to first increase and then decrease. A similar
feature is observed in the shear stress profiles in figure 9(e), where there is a distinct
increase in the asymmetry when the Reynolds number increases from approximately
500 to approximately 860; the stress profile then becomes more symmetric when the
Reynolds number increases to approximately 923. While the logarithmic profile is a
good fit for Re = 545, the fit is poor when the Reynolds number increases to 599
after the wall-flutter transition, as shown in figure 9( f ). Thus, figure 9( f ) shows that
the velocity profile close to the walls can no longer be fitted by a logarithmic profile
after the wall-flutter transition, at either the top or bottom walls.

The wall flutter also causes a significant increase, by a factor of 2, in the maximum
of v′x shown in figure 5(b), and a smaller but still significant increase in the maximum
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FIGURE 9. (Colour online) The cross-stream variation of v̄x (a), v′x (b), v′y (c) and 〈v′xv
′

y〉

(d), the stress τxy (solid line) and viscous stress τ vxy (red dashed line) (e); and the variation
of (v̄x/v∗) with (yv∗/ν) ( f ) at the location III (figure 1a) when the wall is made of shear
modulus 0.75 kPa at Reynolds number 545 (E), 599 (A), 741 (C), 860 (B) and 923 (D) for
a channel with height approximately 0.6 mm in the undeformed state. The vertical dashed
lines show the location of the top wall. In panel ( f ), the dotted curve is (v̄x/v∗)= (yv∗/ν),
and the dashed line is (v̄x/v∗)= 3.45(yv∗/ν)− 1.8.
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FIGURE 10. (Colour online) The variation with Reynolds number of u′x on the top wall
(open symbols, red dashed line), on the bottom wall (open symbols, blue dotted line)
referenced to the left vertical axis, and u′y on the top wall (filled symbols, solid line)
referenced to the inverted right vertical axis at the downstream locations II (E), III (A)
and IV (C) in figure 1(a), when the wall is made with shear modulus 0.75 kPa (a) and
2.19 kPa (b) for a channel with height approximately 1.8 mm in the undeformed state.
The Reynolds number for the hard-wall laminar–turbulent transition is labelled HW, the
soft-wall transition is labelled SW, and the wall flutter is labelled WF.

of v′y in figure 5(c). The increase in the fluid velocity fluctuations is not monotonic,
and there is an increase in the amplitude of the fluctuations up to a Reynolds number
of about 860 and a decrease when the Reynolds number is further increased, in
correlation with the wall displacement fluctuations. The fluid velocity fluctuations are
also higher at the upstream location II (figure 1a), and they decrease with downstream
position.

4. Transition from a turbulent flow
The flow in a soft channel with height approximately 1.8 mm is considered next.

In this case, the soft-wall transition occurs at a higher Reynolds number higher than
1000 for the hard-wall laminar–turbulent transition. The results for the wall dynamics
are discussed first, followed by the results for the flow dynamics.

4.1. Wall dynamics
The root mean square of the displacement fluctuations for this case, shown in
figure 10, do exhibit signatures of the soft-wall and wall-flutter transitions. At the
laminar–turbulent transition at a Reynolds number of approximately 1000, there is no
evidence of wall fluctuations in either the tangential or normal directions. However,
there is evidence of a soft-wall transition at a Reynolds number of approximately
1400 when the wall is made of shear modulus 0.75 kPa and about 1850 when the
wall is made of shear modulus 2.19 kPa. After the soft-wall transition, there is a
significant increase in the wall displacement fluctuations tangential to the surface, but
no visible increase in the fluctuations perpendicular to the surface. The magnitudes
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FIGURE 11. The frequency spectra ũx (2.2) of the tangential wall oscillations at different
Reynolds numbers after the soft-wall transition (a) and wall-flutter transition (b) for a
channel with height 1.8 mm when the walls are made of gel with shear modulus 0.75 kPa
at location II in figure 1(a).

of the displacement fluctuations are approximately equal on the top and bottom walls,
and are invariant with downstream distance.

As the Reynolds number is increased, the wall-flutter transition takes place at a
Reynolds number of approximately 1700 for the wall with shear modulus 0.75 kPa,
and approximately 2350 for the wall with shear modulus 2.19 kPa. The displacement
fluctuations tangential to the surface at the top wall are observed to increase sharply,
and the amplitude decreases with downstream distance. The root mean square
displacement perpendicular to the top wall also shows a discontinuous increase after
the wall-flutter transition. However, the magnitude of the tangential fluctuations at the
bottom wall shows no discontinuity, and there is no visible fluctuation perpendicular
to the bottom wall, indicating that the increase in fluctuations is confined to the top
wall.

The two distinct transitions are also evident in the frequency spectra of the
tangential wall oscillations, shown in figure 11. After the soft-wall transition at a
Reynolds number of approximately 1400 and before the wall-flutter transition at a
Reynolds number of approximately 1700 in figure 11(a), there is a sharp peak in
the frequency spectrum at a relatively high frequency of approximately 395 rad s−1

when the wall is made of shear modulus 0.75 kPa. Similarly, the data for the wall
with shear modulus 2.19 kPa (not shown here for conciseness) indicate that after the
soft-wall transition (Re= 1850) and before the wall-flutter transition (Re= 2350), there
is one distinct maximum in the frequency spectrum at a frequency of approximately
210 rad s−1. The frequency spectra after the wall-flutter transition, (figure 11b)
indicate that the magnitude of the fluctuations increases significantly (as indicated by
the a comparison of the scales on the vertical axes in figure 11a,b). The maximum at
395 rad s−1 after the soft-wall transition is no longer observed in figure 11(b) after
the wall-flutter transition. Instead, there is a distinct maximum at a lower frequency
of approximately 195 rad s−1, which appears at a Reynolds number of approximately
1900 and then grows rapidly as the Reynolds number is increased. In a similar
manner, when the soft wall is made of shear modulus 2.19 kPa, the spectrum (not
shown here) exhibits a maximum at a lower frequency of approximately 155 rad s−1

after the wall-flutter transition.
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The wall dynamics for the soft-wall and wall-flutter transitions in a turbulent flow
is very similar to that in a laminar flow, except in one respect. In the laminar flow,
a specific frequency for the wall oscillations was not detected within the range of
0–500 rad s−1 accessible in our experiments; this is consistent with the expectation
of a frequency of approximately 103–104 Hz predicted by the linear stability analysis
(Verma & Kumaran 2013, 2015). In contrast, in the soft-wall transition in a turbulent
flow, there was a distinct maximum in the frequency spectrum at a frequency of
approximately 395 rad s−1 for the wall made of shear modulus 0.75 kPa, and
approximately 210 rad s−1 for the wall made of shear modulus 2.19 kPa.

4.2. Flow characteristics
The evolution of the fluid velocity field is summarised in figure 12 at the location
II in figure 1(a); the results for the other locations are qualitatively similar. The
hard-wall laminar–turbulent transition is first observed when Reynolds number is
increased from 768 to 1071. The mean velocity profile (figure 12a) is parabolic at
Re= 768, but is clearly non-parabolic, with a lower curvature at the centre and higher
gradient at the wall, at Re = 1071. The hard-wall transition is also accompanied an
increase in the amplitude of the velocity fluctuations, as shown in figure 12(b–d).
The effects of the soft-wall transition are visible when the Reynolds number increases
from 1332 to 1515. There is a distinct change in the shape of the mean velocity
profile accompanying this transition in figure 12(a). The magnitude of the streamwise
velocity fluctuations increases and the prominence of the near-wall maxima decreases
in figure 12(b). Figure 12(d) shows that the Reynolds stress increases significantly
after the soft-wall transition. In the von Kármán plot in figure 12( f ), there is a clear
shift in the near-wall velocity profile when the Reynolds number increases from 1332
to 1551. While there is no clear logarithmic region when the Reynolds number is
1332 or less, there velocity profiles for Reynolds number 1551 and 1734 are clearly
very well fitted by a logarithmic law.

The wall-flutter transition at a Reynolds number of approximately 1850 results
in a distinct asymmetry in the mean velocity profile, as shown in figure 12(a) at a
Reynolds number of 1973. The near-wall velocity profile in the von Kármán plot
in figure 12( f ) shows a clear shift from a logarithmic law for Reynolds number
between 1515 to 1734, to a different profile when the Reynolds number increases to
1973. There is a significant increase in the magnitude, and a distinct asymmetry, in
the streamwise root mean square velocity when the Reynolds number is increased
from 1734 to 1973, as shown in figure 12(b). The Reynolds stress also increases
significantly after the wall-flutter transition, as shown in figure 12(d). Thus, the
qualitative features for flow after the soft-wall transition and wall-flutter transition are
common to transitions from a laminar and turbulent flow.

The von Kármán plots for the mean velocity are shown in figure 13 for the
channels with height 1.8 mm in the undeformed state, only for the range of Reynolds
numbers where soft-wall turbulence is observed. The scaled velocity profiles do
follow a logarithmic law only for the range of Reynolds numbers where soft-wall
turbulence is observed, but not after the wall-flutter transition. In figure 13, a viscous
sublayer is not visible to within experimental resolution even for (yv∗/ν) as low as
3, but there is a logarithmic layer for 3 6 (yv∗/ν)6 70 where y is the distance from
the wall, although it must be cautioned that there is a difference of approximately
10–20 % between the data and the log law for the lowest point. Figure 13 also shows
that the best fits for the von Kármán constants do change with the shear modulus,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

27
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.270


Transitions in a channel with soft walls 287

0 0.5 1.0 1.5 2.0 2.5 0 0.5 1.0 1.5 2.0 2.5

0 0.5 1.0 1.5 2.0 2.5 0 0.5 1.0 1.5 2.0 2.5

0.02

0.01

0.03

0.04

0.05

–0.005

0.005

0

0.10

0.05

0.15
1.0

1.2

1.4

0.2

0.4

0.6

0.8

y (mm)

y (mm)

y (mm)

y (mm)

(a)

(c)

(b)

(d )

0 0.5 1.0 1.5 2.0 2.5

0

5

10

–5

–10

0

5

10

15

20

y (mm)

(e) ( f )

100 102101

FIGURE 12. (Colour online) The cross-stream variation of v̄x (a); v′x (b); v′y (c); 〈v′xv
′

y〉

(d); the stress τxy (solid line) and viscous stress τ vxy (red dashed line) (e); and the variation
of (v̄x/v∗) with (ywv∗/ν) ( f ), at the streamwise location II in figure 1(a) when the wall
is made of shear modulus 0.75 kPa at Reynolds number 768 (E), 1071 (A), 1332 (C),
1515 (B), 1734 (D) and 1973 (6) for a channel with height approximately 1.8 mm
in the undeformed state. The vertical dashed lines show the location of the top wall,
and the dashed curves in panel (a) show parabolic velocity profiles with equal average
velocity. In panel ( f ), the dotted curve is (v̄x/v∗)= (yv∗/ν) the dashed line is (v̄x/v∗)=
4.20(yv∗/ν)− 3.12.
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FIGURE 13. The near-wall velocity profiles when the wall is made of shear modulus
0.75 kPa (a) and 2.19 kPa (b) for a channel with height approximately 1.8 mm in the
undeformed state. In (a),E location II, Re= 1515;A location II, Re= 1621;C location III,
Re= 1515;B location III, Re= 1621;D location IV, Re= 1580;6 location IV, Re= 1621;
the dashed curve is (v̄x/v∗)= (yv∗/ν); and the dashed line is (v̄x/v∗)= 4.20 log (yv∗/ν)−
3.12. In (b),E location II, Re= 1948;A location II, Re= 2290;C location III, Re= 1900;
B location III, Re= 2187;D location IV, Re= 1936;6 location IV, Re= 2151; the dotted
curve is (v̄x/v∗)= (yv∗/ν); and the dashed line is (v̄x/v∗)= 4.54 log (yv∗/ν)− 4.38.

and the constants are also very different from those in the turbulent flow past a rigid
surface.

The measures v̄diff (3.2), (max(v′x)/v̄), (max(v′y)/v̄) and (max(|〈v′xv
′

y〉|)/v̄
2) are

shown in figure 14. The results for a rigid channel are shown using the6 symbol. The
laminar–turbulent transition is clearly visible at a Reynolds number of approximately
1000 at all downstream locations. As the Reynolds number is increased, there is a
sharp increase in all the measures at the soft-wall transition Reynolds number of
approximately 1400 for the wall made with shear modulus 0.75 kPa, and about 1850
for the wall made with shear modulus 2.19 kPa. The increase is rather sharp in the
measure v̄diff , indicating a significant change in the form of the mean velocity profile
in comparison to that for the hard-wall turbulence. The increase is not as evident
in the measure (v′x/v̄) for the streamwise root mean square velocity, because the
fluctuation intensity after the hard-wall transition is rather large. However, figure 14
does not capture the significant change in the profile of v′x shown in figure 12, where
the low central minimum observed after the hard-wall transition transforms into a
much higher minimum, without a significant increase in the near-wall peaks, after
the soft-wall transition. There is an increase by a factor of 1.5 in (max(v′y)/v̄), and
a larger increase by a factor of 2–3 in (max(|〈v′xv

′

y〉|)/v̄)
2, at the soft-wall transition.

There is a further increase in the all measures after the wall-flutter transition at
a Reynolds number of approximately 1700 for the wall made with shear modulus
0.75 kPa, and approximately 2350 for the wall made with shear modulus 2.19 kPa,
but the values do depend on downstream position. The maximum increase is observed
at the upstream location II in figure 1(a), and the magnitudes of all measures decrease
progressively at the downstream locations III and IV. The fluctuation intensities also
do not increase monotonically with Reynolds number. The magnitudes of (max(v′x)/v̄)
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FIGURE 14. The measures v̄diff (a), (max(v′x)/v̄) (b), (max(v′y)/v̄) (c) and
(max(|〈v′xv

′

y〉|)/v̄
2) (d), as a function of the Reynolds number at different downstream

locations II (E), III (A), and IV (C) in figure 1(a), when the channel is made of gel of
shear modulus 0.75 kPa (solid line) and 2.19 kPa (dashed line) for a channel with height
approximately 1.8 mm in the undeformed state. The results for a hard-wall channel
are shown by the 6 symbol. The Reynolds number for the hard-wall laminar–turbulent
transition is labelled HW, the soft-wall transition is labelled SW, and the wall flutter is
labelled WF.

and (max(|〈v′xv
′

y〉|)/v̄
2) are almost always higher than those for the hard channel, but

the cross-stream fluctuating velocity appears, at the downstream locations, to be
smaller than that for a rigid channel at the same Reynolds number.

An interesting feature observed in figure 10, at Reynolds numbers greater
than approximately 3300 for the wall made with shear modulus 0.75 kPa, and
approximately 3800 for the wall with shear modulus 2.19 kPa, is a sharp increase
in the root mean square of the fluctuations on the bottom wall. At this point, we
also visually observe normal oscillations on the bottom wall, not shown in figure 10
to enhance clarity. This has not been explored in detail in the present analysis
because the range of Reynolds numbers is too small to observe the evolution of the
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FIGURE 15. The transition Reynolds number for the soft-wall transition from the present
study (u), the experimental study of Verma & Kumaran (2012) (E), the experimental study
of Kumaran & Bandaru (2016) (⊕) and the transition Reynolds number for the wall flutter
from the present study (A) as a function of the parameter Σ . The lower dashed line shows
the relation Re= 0.11Σ5/8, while the upper dashed line indicates a slope of (1/2) on a
log–log graph.

fluctuation amplitude and frequency. However, these oscillations could be analogous
to the hydroelastic instabilities observed by Hansen & Hunston (1974), Hansen &
Hunston (1983) and Gad-el Hak et al. (1985) in open flows, where waves were
observed on a surface that is fixed to a bottom substrate. This is a subject that
requires further study.

5. Summary

The experiments reveal the existence of two distinct transitions, the soft-wall
transition and the wall-flutter transition, in addition to the hard-wall laminar–turbulent
transition, in the flow through a channel with soft walls. The transition Reynolds
numbers for the soft-wall and wall-flutter transitions observed here, as well as the
soft-wall transition in Verma & Kumaran (2013), are shown as a function of the
parameter Σ in figure 15.

(i) The transition Reynolds number for the soft-wall transition for both the laminar
and turbulent flows follows the relation ReSW = 0.11Σ5/8; over nearly two
decades of variation in Σ for the present results and the earlier results of Verma
& Kumaran (2013) and Kumaran & Bandaru (2016). (The Reynolds numbers
in figure 15 correspond to the transition Reynolds numbers where disturbances
are first observed in Kumaran & Bandaru (2016), whereas those reported in
Kumaran & Bandaru (2016) are higher Reynolds numbers where there is perfect
cross-stream mixing.) This suggests that the transition Reynolds number for
the soft-wall transition from a turbulent flow has similar dependence on the
parameter Σ as that in a laminar flow.

(ii) Based on the limited set of data points, the data in figure 15 are consistent with
the scaling ReWF ∝Σ

1/2 for the wall-flutter transition.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

27
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.270


Transitions in a channel with soft walls 291

Transition Soft wall Wall flutter

Wall configuration Fixed or free outer boundary. Only for unrestrained outer
boundary.a

Wall motion Primarily tangential, no
detectable normal motion.

Tangential and normal motion,
downstream travelling waves.

Wall oscillations Broad spectrum at low
frequency, no sharp resonance.b

Sharp frequency maximum
∼100–200 Hz, ∼frequency of
shear waves in solid.

Velocity fluctuations Symmetric about centreline. Asymmetric, higher at top
wall.

Fluid velocity fluctuations Appears to be non-zero at the
wall.

Appears to be non-zero at the
wall.

Near-wall Logarithmic layer. No logarithmic layer.

Pretransition flow Laminar & turbulent. Soft-wall turbulence.c

Transition Re ∝Σ5/8
∝Σ1/2

Mechanism Wall mode instability. Inviscid instability,
Hydroelastic instability.

TABLE 1. Comparison of the features of the soft-wall and wall-flutter transition.
aThere also appears to be an onset of the wall flutter instability at the bottom fixed wall

at Reynolds numbers exceeding 3000, but we do not have sufficient data to make a
detailed analysis.

bThe frequency predicted by linear stability analysis is in the range 1–10 kHz, but this
is too high to be resolved in experiments.

cThough soft-wall transition precedes the wall flutter in all cases studied here, figure 15
indicates that the wall-flutter transition may occur at a lower Reynolds number for

higher Σ .

The flow and wall dynamics after these two transitions have characteristics that are
distinct from each other, and also distinct from the turbulent flow after the hard-wall
laminar–turbulent transition, as summarised in table 1.

It should be noted that the Reynolds number used here, equation (2.1), is
independent of the height of the channel, and is based on the flow rate and channel
width. Since the PIV measurements are made along the central plane of the channel
in the spanwise direction, a Reynolds number for the velocity profile along the central
plane in the spanwise direction can also be defined by (C 2) in appendix C. This
Reynolds number does depend on deformation, and is larger than that based on flow
rate due to the height expansion, and the higher velocity in the central plane in
comparison to the average velocity. This profile-averaged Reynolds number, shown in
table 2, exceeds the Reynolds number based on (2.1) by less than 5 % at the soft-wall
transition, and up to 12 % at the wall-flutter transition.

6. Discussion
6.1. Comparison with linear stability analyses

(i) The soft-wall transition in a laminar base flow has been previously reported by
Verma & Kumaran (2013) and Srinivas & Kumaran (2015) in a micro-channel of
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G′ h0 Σ ReSW Re( p)
SW ReWF Re( p)

WF

0.75 kPa 0.6 mm 3.17× 105 300 321 550 611
2.19 kPa 0.6 mm 9.25× 105 480 507 760 849
0.75 kPa 1.8 mm 2.43× 106 1400 1430 1700 1789
2.19 kPa 1.8 mm 7.10× 106 1850 1882 2350 2410

TABLE 2. The transition Reynolds numbers defined in (2.1), ReSW and ReWF, and the
Reynolds numbers for the velocity profiles along the central plane in the spanwise direction
at location II (figure 1), Re( p)

SW and Re( p)
WF defined in (C 2) in appendix C, for the soft-wall

instability and the wall-flutter instability respectively.

a much smaller height of approximately 160 µm. The linear stability analysis for
a laminar flow in a deformed channel has been carried out by Verma & Kumaran
(2013) and for a deformed tube has been carried out by Verma & Kumaran
(2015). In both cases, the shape of the channel/tube from the experiments was
recreated in ANSYS FLUENT simulations to determine the modifications to the
mean velocity and pressure gradient due to channel deformation and the linear
stability analysis for a nearly parallel flow past a soft surface was carried out.
The destabilisation of the flow is due the ‘wall mode instability’ (Kumaran 1998;
Shankar & Kumaran 2001, 2002; Chokshi & Kumaran 2009), where the velocity
fluctuations are confined to a thin region of thickness Re−1/3 at the wall for high
Reynolds number. The flow is destabilised by the transfer of energy from the
mean flow to the fluctuations due to the shear work done at the interface, and
the amplitude of the tangential wall displacement is large compared to the normal
wall displacement. The linear stability analysis described in Verma & Kumaran
(2013) § 3.2 has also been carried out for the present flow. In the present case
also, the linear stability analysis of Verma & Kumaran (2013) (not repeated here
for conciseness) does quantitatively predict the Reynolds number for the soft-
wall transition from a laminar flow to within approximately 10 %, if the channel
deformation, and the consequent modification of the velocity profile and pressure
gradient, is incorporated.
It is surprising that the linear analysis quantitatively predicts the soft-wall
transition, because the transition in a hard-walled channel is highly subcritical
and three-dimensional, and cannot predicted by the linear stability analysis.
The linear stability analysis predicts that the transition Reynolds number is
approximately 5772, whereas the transition is experimentally observed at a
Reynolds number of about 1200. In the case of the soft-wall transition, there are
now multiple reports (Verma & Kumaran 2013, 2015), in addition to the present
study, that the transition is quantitatively predicted by a linear stability analysis.
Thus, this transition is qualitatively different from the hard-wall transition.

(ii) A linear stability analysis for the transition from a turbulent flow has not been
carried out before, but some general conclusions can be drawn based on the
stability analysis for a laminar flow. The stability analysis for the turbulent flow
will be analogous to that for a laminar flow if the thickness of the wall layer
in the stability analysis is smaller than the viscous sublayer for the turbulent
flow. In this case, the mean velocity increases linearly with distance from the
wall over the distance comparable to the wall layer thickness, as assumed in the
linear stability analysis. The thickness of the viscous sublayer is approximately
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FIGURE 16. The ratio (Re∗/Re1/3) as a function of the Reynolds number for the channel
with height approximately 1.8 mm in the undeformed state when the walls are made of
shear modulus 0.75 kPa (solid line) and 2.19 kPa (dashed line) at the location II (E), III
(A) and IV (C). The Reynolds numbers for the soft-wall transition are labelled SW and
are shown by the vertical solid line for the wall with shear modulus 0.75 kPa, and by the
dashed line for the wall with shear modulus 2.19 kPa.

30(ν/v∗) for the turbulent flow in a hard-walled channel, where ν and v∗ are
the kinematic viscosity and friction velocity. The thickness of the wall layer in
the linear stability analysis is hRe−1/3, where h is the channel height. The linear
stability analysis for a laminar base state can be used if 30(ν/v∗) > hRe−1/3,
or (Re∗/Re1/3) < 30, where Re∗ = (hv∗/ν) is the Reynolds number based on
the friction velocity. The ratio (Re∗/Re1/3) is shown as a function of Reynolds
number in figure 16 for the flow in a channel with height approximately 1.8 mm
in the undeformed state. At the Reynolds numbers where the soft-wall transition
takes place, this ratio is less than 15, indicating that the thickness of the
viscous sublayer for the turbulent flow is much larger than the thickness of the
wall layer in the stability analysis. This may explain why the instability for
the turbulent flow follows approximately the same scaling law as that for the
laminar flow.

(iii) The relevant linear stability studies for the wall flutter (Benjamin 1960; Landahl
1962; Benjamin 1963) and those for the ‘inviscid instability’ for internal flows
(Shankar & Kumaran 1999, 2000; Gaurav & Shankar 2010) do predict the scaling
Ret ∝ Σ

1/2, as observed in figure 15 for the wall flutter. This, along with the
good comparison of the frequency of oscillations with that for the shear wave
velocity in § 6.2, indicates that the hydroelastic instability is relevant to internal
flows. However, the stability studies for external flows usually do not consider
tangential wall motion which is detected in the experiments, and the effect of
the outer boundary conditions has not been considered even for internal flows.
A more detailed analysis, which takes into account wall deformation as well as
the constraints on the outer surface of the soft wall, is necessary to quantitatively
predict this instability.
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6.2. Frequency of wall oscillations
For the soft-wall instability from a laminar flow, the theoretical linear stability
analyses (Verma & Kumaran 2013, 2015) predict that the frequency of oscillations is
of the order of (0.01G/η), where G and η are the elasticity modulus and the viscosity.
For G∼ 1 kPa and η∼ 10−3 kg m−1 s−1, the predicted frequency is O(10 kHz). Due
to oversampling requirements, it is necessary to image at rates of up to 100 kHz in
order to be able to capture the theoretically predicted frequencies. Frequencies of this
magnitude are not accessible using the present imaging techniques, since the framing
rates are limited to 1 kHz. It is necessary to develop new techniques in order to
access this frequency range. However, it is interesting to note that for the soft-wall
transition from a turbulent flow, there is a peak in the spectrum for tangential wall
motion at a frequency of approximately 400 rad s−1 No such distinct peak is detected
for the transition from a laminar flow.

A distinct frequency for the wall motion is detected after the wall-flutter instability,
at a frequency between 150–200 rad s−1 for the channels of height 0.6 and 1.8 mm.
The magnitude of the frequency can be estimated as the ratio of the speed of
shear waves in the wall material, (G/ρ)1/2, and the wall thickness. For G ∼ 1 kPa
and ρ ∼ 103 kg m−3, the shear wave speed is of the order of 1 m s−1. The wall
thickness is approximately 7 mm (figure 1), and so the estimated frequency of
oscillations is, to within a proportionality constant, approximately 150 rad s−1. This
is certainly in quantitative agreement with the experimental observations in the range
of 150–200 rad s−1. Thus, the measured frequency of oscillations after the wall-flutter
transition is well explained on the basis of the shear wave velocity in the solid and
the wall thickness. However, it is not clear why the frequency of oscillations is
independent of the Reynolds number, and why the frequency depends on whether the
flow is laminar or turbulent. It would be necessary to solve the coupled solid–fluid
problem in order to determine the values of the resonant frequencies in laminar and
turbulent flows.

6.3. Logarithmic layer in soft-wall turbulence
A striking feature of soft-wall turbulence is the presence of a logarithmic layer
close to the wall even at Reynolds numbers as low as 350. The logarithmic layer
is observed after the soft-wall transition from both laminar and turbulent flows, but
there is no logarithmic layer after the wall-flutter transition. There is no evidence
of a viscous sublayer even at distances for 1–2 wall units from the wall; it is not
clear if the viscous sublayer is absent or if the thickness is too small to be resolved
in the experiments. The spatial extent of the logarithmic layer is approximately
2. (yv∗/ν). 30 for the channel of height approximately 0.6 mm, and approximately
3. (yv∗/nu).70 for the channel of height approximately 1.8 mm. This range is much
lower than the range 30 6 (yv∗/ν)6 200 usually quoted for hard-wall turbulence and
the spatial extent seems to increase as the Reynolds number increases. The constants
in the logarithmic law are different from those for turbulence in a rigid channel at
much higher Reynolds number. These constants also seem to depend on the shear
modulus of the soft wall and the channel height.

As an aside, note that recent very large-scale experiments and simulations (Zagarola
& Smits 1998; Hoya & Jimenez 2006) suggest that the logarithmic law may be
valid only at large distances from the wall, (yv∗/ν) > 200 or larger, in large-scale
experiments and simulations. It is not clear whether the lower limit of (yv∗/ν)
saturates or increases continuously in the high Reynolds number limit, and the von
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Kármán constant, which was earlier considered to be equal to a universal value
of 0.41, is now found to be slightly but distinctly different in channel and pipe
flows (Nagib & Chauhan 2008). We do not venture into these discussions, since the
logarithmic profile here is certainly different from that in hard-wall-bounded flows.

The log law reported here appears to have a different origin than the von Kármán
law for the turbulent flow past a rigid surface. In the classical description of wall-
bounded turbulence (Tennekes & Lumley 1972; Panton 1984), the flow consists of
a viscous sublayer close to the wall for (yv∗/ν) < 5 with a linear profile (v̄x/v∗) =

(yv∗/ν); a buffer layer for 5<(yv∗/ν)<30; and a logarithmic layer for 30<(yv∗/ν)<
200, where the scaled velocity is given by (1/κ) log (yv∗/ν)+ A, where κ is the von
Kármán constant (Townsend 1956; Rotta 1962). The original model of von Kármán
and Prandtl (George 2007) for the logarithmic layer is based on a constant stress
in the near-wall region coupled with an eddy viscosity which increases proportional
to the distance from the wall. This is clearly not applicable in the present case –
a comparison of figures 3(e, f ) and 12(e, f ) shows that the stress is certainly not a
constant in the region where the velocity follows the log law, and the viscous stress
is larger than the Reynolds stress in this region, so the eddy viscosity model cannot
be reliably used. Asymptotic matching techniques have also been used to derive the
logarithmic velocity profile. Here, the strain rate in the near-wall region, where the
length is scaled by (ν/v∗), and the strain rate in the outer flow, where the length
is scaled by the channel height, are matched using an ‘intermediate limit process’
(Tennekes & Lumley 1972). In the present system, the Reynolds number is relatively
low, and the logarithmic layer seems to extend up to approximately 20 %–30 % of
the channel height on both sides, as shown in figures 3( f ) and 12( f ). It is difficult
to justify an asymptotic matching procedure.

6.4. Practical implications
The present experiments show that the hydroelastic instability, hitherto observed
only in external flows, is of relevance in internal flows as well, but the instability
is sensitive to the constraints on the soft wall. The instability is observed at the
unrestrained wall at a Reynolds number of about 1000, but it is observed at the
fixed bottom wall at a Reynolds number of 3500. Physiological flows in constrained
channels are not likely to be affected by the wall-flutter instability, but this transition
provides an opportunity for controlling the instability by designing suitable walls.

The soft-wall transitions observed here necessitates a re-examination of our current
understanding of transition and turbulence in the flow through soft conduits, such
as physiological flows. It has hitherto been assumed that this transition is important
only if the transition Reynolds number is lower than that for hard-wall transition.
This requires very soft walls or very small dimensions, to attain a sufficiently small
value of the parameter Σ . Here, we find that the soft-wall transition takes place from
laminar and turbulent flow, and is of relevance of all values of Σ . The experiments
also show that soft-wall turbulence constitutes a specific type of turbulence, distinct
from hard-wall turbulence, due to the participation of the soft wall in turbulence
generation. In this case, the flow, friction and transport characteristics, especially in
the near-wall region, are likely to be very different from those for hard-wall turbulence.
A good understanding of soft-wall turbulence as a distinct class of turbulence, and
the coupling between fluid and wall dynamics in this class of turbulence, is necessary
for accurate modelling of physiological flows.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

27
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.270


296 S. S. Srinivas and V. Kumaran

AA MBA APS TEMED H2O WH2O G′ (kPa) G′′ (kPa) K (kPa)

15.56 0.414 0.710 0.628 50 0.75 15.89 3.40 327.87
4.06 0.108 0.185 0.164 52 0.92 2.19 0.18 73.52
2.98 0.079 0.135 0.120 52 0.94 0.75 0.11 36.47

TABLE 3. The weight in grams of Acrylamide (AA), Methylene Bisacrylamide (MBA),
Ammonium Persulphate (APS), Tetramethylenediamine (TEMED); the weight fraction of
water in the gel WH2O, and the average values of the storage and loss moduli, G′ and G′′,
in the frequency range 10–100 Hz, and the steady compression modulus K, as a function
of the composition of the gel.
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Appendix A. Channel fabrication and characterisation of the polyacrylamide gel

Channels were made of polyacrylamide gels with three different compositions,
shown in table 3. The final water mass fraction in these gels were 0.75, 0.92
and 0.94. The gel with water mass fraction 0.75, which has a shear modulus of
approximately 15.89 kPa, is used for making the development section, since it is
sufficiently hard that the soft-wall and wall-flutter transitions are not observed for
the range of Reynolds numbers examined in the experiments. This is also used for
validation of the hard-wall turbulence in a rigid channel in appendix B. The gel with
mass fractions 0.92 and 0.94 have shear moduli 2.19 and 0.75 kPa respectively, and
these are used for the experiments on soft-wall and wall-flutter transitions.

The channel fabrication procedure is as follows. First, a hollow rectangular mould
of length approximately 20 cm, width 2.5 cm and height 1.5 cm is constructed using
glass plates, as shown in figure 17(a). A glass slide of width 1 cm and one of two
heights, 0.5 mm and 1.5 mm, is held at the centre of the channel using a Teflon
spacer. One end of the mould is sealed, the mould is held vertically and the gelation
mixture with concentrations appropriate for the development section is poured in up
to a height of 10 cm, as shown in figure 17(b). The gelation mixture is stored for
ten minutes at room temperature for completion of the reaction. After this, polymer
mixture with concentration appropriate for the test section is poured into the mould
for the remaining height of 10 cm, as shown in figure 17(c), and the mould is kept
at room temperature for another ten minutes to complete gelation of the test section.

The mould is then placed in a water bath with its axis horizontal and the top
and side glass plates are carefully removed. For experiments with a fixed top wall,
only the side plates are removed and the top and bottom plates are retained. The
gel is then allowed to swell in a water bath for approximately three weeks and
then the glass slide at the centre of the gel is carefully removed, resulting in a
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Glass slide

Side walls

Top plate

SIDE VIEW TOP VIEW

Bottom plate

Pre−polymer for
developing section 

and cross−link

Pre−polymer for test seaction and Curing

Swell in water and remove glass plates and glass slide

(a)

(b)

(c)

(d)

FIGURE 17. Fabrication procedure: (a) glass mould with side and bottom glass plates
and with top glass plate covering one half of the channel length and glass template held
in place by sticking tape, (b) channel held with axis vertical and prepolymer for the
development section is poured into one half of the channel, development section is cured,
(c) channel is held horizontal and prepolymer for test section is poured into the other half
of the channel, test section cured, (d) polymer swollen in water and the glass slide and
glass top and side walls removed to obtain a rectangular bore in a block of polyacrylamide
gel on a glass substrate.

rectangular channel in the centre of the gel, as shown in figure 17(d). After swelling,
the lengths of the development and test sections increase to approximately 13 cm and
14 cm respectively, and the width of the channel increases to approximately 1.3 cm,
as shown in figure 1(a). When the glass slide template used at the centre of the
channel is of height 0.5/1.5 mm, the final channel height after swelling increases to
approximately 0.6 mm/1.8 mm, as shown in figure 1(b). One issue that has been of
concern is regarding the effect of gradients in the gel elastic properties on the stability
characteristics; it has been reported that these could have a significant effect at low
Reynolds numbers (Gkanis & Kumar 2006). In the present polyacrylamide gels, these

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

27
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.270


298 S. S. Srinivas and V. Kumaran

10

0

2

4

6

8

12

14

16

18

20

20 40 60 80 100 20 40 60 80 1000

1

2

3

4

5(a) (b)

FIGURE 18. The frequency-dependent storage modulus (a) and loss modulus (b) for gels
with water weight fraction 0.75 (E), 0.92 (A) and 0.94 (C).

gradients are not likely to be significant, since these are prepared using the same
protocol as those in gel chromatography, and are known to be very homogeneous.

The frequency-dependent storage and loss modulus of the gel was determined using
a AR 1000 N Rheometer from TA Instruments. A slab of gel of height 2 mm was
fabricated using the same reactant compositions and curing procedure as those used
for the soft channels. These were placed on the bottom plate of the rheometer, the
top plate was lowered and the oscillatory rheology measurements were carried out in
stress controlled mode over a frequency range 0.1–100 Hz using a maximum stress
oscillation of 50 Pa. The measurements were repeated three times for three different
samples with identical compositions and preparation protocols, and the mean and the
standard deviation were calculated over these three different measurements. The results
of the oscillatory measurements are shown in figure 18, and the error bars show one
standard deviation above and below the mean value. It is evident that the storage
modulus is nearly independent of frequency over the range of frequencies studied,
although there is some variation in the limit of low frequency. The loss modulus is
approximately an order of magnitude smaller than the storage modulus, and it shows
greater variation with frequency. The average of the storage modulus in the range
10–100 Hz is denoted the plateau modulus, provided in table 3, is used for calculating
relevant dimensionless groups. The steady compression modulus is also determined
using the AR 1000N rheometer using the following procedure. The gel slab is placed
on the bottom plate of the rheometer and the top plate is lowered until a normal stress
is detected. The plate is further lowered in increments of approximately 5 µm, and
the normal stress on the top plate is recorded. The normal stress σ is plotted as a
function of the normal compressive strain ε, which is the ratio of the displacement and
the initial thickness. The results of the measurements for three different values of the
gel composition are shown in figure 19. The compression modulus is the slope of the
stress–strain curve in the limit of zero strain, as shown in figure 19. The compression
modulus is also tabulated as a function of the gel composition in table 3.

The roughness of the walls of the channel were measured by first slicing the
channel and then using a WYKO NT 1100 optical profilometer. Four representative
surface patches of area 1 mm × 1 mm were chosen, and the height profile in these
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FIGURE 19. The normal stress σn as a function of the compressive strain ε for gels with
water weight fraction 0.75 (E), 0.92 (A) and 0.94 (C). The compression modulus is equal
to the slope of the dashed lines in the figure.

patches were measured. The root mean square of the deviation of the height from
the average value was found to be approximately 1.06 µm, thereby resulting in
an average roughness of approximately 1 %. For comparison, the height variation in
custom fabricated pipes for low noise pipe flow experiments is of the order of 10 µm
(Darbyshire & Mullin 1995; Hof, Juel & Mullin 2003), although the roughness is
smaller at approximately 0.05 % for a pipe of diameter 2 cm.

Appendix B. Validation

In order to validate the PIV measurements for a laminar flow, velocity profiles were
determined at a location 0.5 cm upstream of the joint between the development and
test sections, where the velocity profile is expected to be fully developed. The results,
shown in figure 20, confirm that mean velocity profile is parabolic at all Reynolds
numbers up to approximately 800 in the channel with height approximately 0.6 mm.
The measured values of the root mean square of the fluctuating velocities are also
shown, scaled by the average velocity. These measurements provide the limit of the
experimental resolution in the velocity measurements for the following reason. The
time delay in the PIV pulses is adjusted so as to capture the maximum flow velocity.
When this is done, there is a limitation in the resolution of the minimum velocity
which can be measured, which scales approximately linearly with the flow velocity,
as shown in figure 20. This does not affect the mean velocity, since the positive and
negative fluctuations in the PIV measurements average to zero. However, since we
are adding up both positive and negative fluctuations when calculating the root mean
square velocities, this error is visible even close to the wall in the PIV measurements.
The background level of fluctuations in the streamwise root mean square velocity,
v′x, is approximately 4 % of the average velocity, while that of the cross-stream root
mean square velocity v′y is approximately 2 % of the average velocity. The correlation
〈v′xv

′

y〉 is approximately 10−3 when scaled by the square of the average velocity. This
provides an estimate of the background level of fluctuations in the PIV measurements
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FIGURE 20. (Colour online) The cross-stream variation of (v̄x/v̄) (a), (v′x/v̄) (b), (v′y/v̄)
(c) and (〈v′xv

′

y〉/v̄
2) (d), at the streamwise location 0.5 cm upstream of the junction

between the development and test sections at Reynolds number 217 (E), 403 (A), 482
(C), 597 (B), 662 (D) and 814 (6) for a channel with height approximately 0.6 mm in
the undeformed state, when the walls are made with shear modulus 0.75 kPa. The dashed
curve in panel (a) shows a parabolic velocity profile with the same mean velocity.

of the mean and root mean square velocities. The experimental results are relevant
only if they exceed this resolution limit in the PIV measurements.

In order to validate the turbulence measurements, experiments were carried out in a
channel with test section made with gel of shear modulus 15.89 kPa, fabricated using
the procedure shown in figure 17. Even though the development and test sections
are made with the same concentration, we use the same two-step process shown in
figure 17 to ensure that the joint between the development and test sections does not
create any artefact in the flow. The optical set-up and the PIV measurement techniques
are identical to those used for the experiments with soft gels. The measurements were
carried out at a Reynolds number of 3500 based on the flow rate and the channel
width. Simulations have also been carried out using the direct numerical simulation
(DNS) procedure outlined in Goswami & Kumaran (2011) at the same Reynolds
number. The results of the experiments and simulation, compared in figure 21,
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FIGURE 21. The cross-stream variation of v̄x (a), v′x A and v′y C (b) and 〈v′xv
′

y〉 (c);
and the variation of (vx/v∗) with (yv∗/ν) (d), for a channel with height approximately
1.8 mm in the undeformed state when the wall is made of shear modulus 15.89 kPa at a
Reynolds number of 3500 based on the average velocity and channel height. The symbols
are the experimental results, and the lines are the results from DNS simulations expressed
in wall units. In panel (d), the dotted curve is (vx/v∗)= (yv∗/ν), and the dashed line is
2.44 log (yv∗/ν)+ 5.5.

show that the profiles of the mean and root mean square fluctuating velocities are
accurately measured in the experiments, thus validating the experimental procedure.
The logarithmic velocity profile is captured in the von Kármán plot of the velocity
profile in figure 21(d), and the two points nearest the wall fit the linear profile in the
viscous sublayer.

Appendix C. Channel deformation
The channel deformation in the soft section due to the applied pressure gradient

is first characterised by measuring the channel height along the midplane in the
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FIGURE 22. The variation of height along the channel length when the walls in the test
section are made with shear modulus 0.75 kPa (solid line) and 2.19 kPa (dashed line).
Panel (a) shows the height variation for a channel with height approximately 0.6 mm at
Reynolds number 270 (E), 298 (A), 366 (C), 557 (B), 785 (D) and 923 (6) for a channel
with walls made of shear modulus 0.75 kPa and at Reynolds number 214 (E), 398 (A),
477 (C), 768 (B), 1050 (D) when the walls are made of shear modulus 2.19 kPa. Panel (b)
shows the height variation for a channel with height approximately 1.8 mm at Reynolds
number 1360 (E), 1660 (A), 1900 (C), 2340 (B), 2660 (D), 2850 (6) and 3200 (×).
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FIGURE 23. The variation of (1h/h0) as a function of Reynolds number when the walls
are made of gel with shear modulus 0.75 kPa (E, solid line) and 2.19 kPa (A, dashed line)
when the height of the undeformed channel is approximately 0.6 mm (a) and 1.8 mm (b).
The Reynolds number for the soft-wall and wall-flutter transitions are shown using the
labels SW and WF respectively.

spanwise direction (vertical line in figure 1c), where the deformation is a maximum.
The variation in height with downstream distance is shown in figure 22 for channels
with two different shear moduli in the soft section. In the absence of flow, the
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Transition h0 (mm) G (kPa) Re (1h/h0)max (dh/dx)|max

SW 0.6 0.75 300 0.2 0.0012
WF 0.6 0.75 550 0.6 0.0036
SW 0.6 2.19 480 0.2 0.0012
WF 0.6 2.19 760 0.3 0.0018
SW 1.8 0.75 1300 0.05 0.0009
WF 1.8 0.75 1700 0.15 0.0027
SW 1.8 2.19 1850 0.10 0.0018
WF 1.8 2.19 2350 0.50 0.0090

TABLE 4. The deformation (1h/h0)max and the maximum wall slope (dh/dx)max at the
Reynolds numbers corresponding to the soft-wall (SW) and wall-flutter (WF) transitions
for channels of undeformed height h0 made of walls with shear modulus G.

channels have a uniform height of approximately 0.6 mm and 1.8 mm independent
of downstream distance.

In the experimental results, we note that there are two specific Reynolds numbers
of interest – the first where there is a soft-wall transition and the second where
flutter is observed at the wall of the channel. The maximum deformation and the
maximum slope at these Reynolds numbers is listed in table 4. Although there is a
substantial deformation of the channel at high Reynolds numbers, the slope of the
wall at the transition Reynolds numbers for the soft-wall and wall-flutter transition are
numerically small in the experiments. The deformation is a maximum at a distance
of about 5 cm downstream of the entrance of the test section. Many of the results
presented are at locations beyond 8 cm of the entrance to the test section, where there
is relatively little expansion, because the difference between the local pressure and
the outlet pressure is much smaller than the pressure difference across the channel.
Due to this small slope, computational fluid dynamics (CFD) simulations carried
out using ANSYS FLUENT CFD package, discussed in §§ 2.4 and 3.1 of Verma
& Kumaran (2013) and § 2.2 Srinivas & Kumaran (2015), indicate that the velocity
profile along the central plane in the spanwise direction is not discernibly different
from a parabolic flow.

Due to the variation in the height of the channel, there is also a local variation in
the Reynolds number calculated for the velocity profile along the central plane in the
spanwise direction (vertical line in figure 1c). Here, the profile-averaged streamwise
mean velocity is defined as,

v̄(p)
x (x)=

1
h

∫ h

0
dy v̄x(y), (C 1)

where v̄x(y) is the mean velocity profile measured along the central plane in the
spanwise direction at streamwise location x, and h is the local height. The Reynolds
number for the velocity profile along the central plane is defined as

Re(p)
=
ρv̄(p)

x h
η

. (C 2)

This Reynolds number is, in general, higher than the Reynolds number Re based on
the flow rate (2.1), because the flow retardation at the side walls in the spanwise
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FIGURE 24. The Reynolds number Re( p) based on the profile-averaged velocity as a
function of the Reynolds number Re based on the flow rate when the wall is made of
shear modulus 0.75 kPa (solid line) and shear modulus 2.19 kPa (dashed line) when the
height of the channel is approximately 0.6 mm (a) and approximately 1.8 mm (b) at
different downstream locations I (E), II (A), III (C) and IV (6), shown in figure 1(a).

direction results in a higher velocity along the centreline, and due to the increase in
height caused by the applied pressure gradient. The profile Reynolds number Re(p)

is shown as a function of the Reynolds number based on the flow rate Re (2.1) in
figure 24.

For the channel with undeformed height approximately 0.6 mm made with gel
of shear modulus 0.75 kPa, Re(p) is significantly higher than Re at the location II
(figure 1), due to the large increase in the height along the central plane at high
Reynolds numbers, as shown in figure 22(a). At the downstream locations III and
IV, Re(p) exceeds Re by less than 5 % at the transition Reynolds number of about
300, and less than 10 % at the Reynolds number of approximately 500 where flutter
is first observed. Similar ratios of Re(p)/Re are obtained at the soft-wall transition
at a Reynolds number of 480 and the inception of flutter at a Reynolds number of
approximately 760 for a channel of undeformed height 0.6 mm with walls made of
shear modulus 2.19 kPa. For the channel with height approximately 1.8 mm in the
absence of deformation, the Re(p) exceeds Re by approximately 5 % or smaller for
the entire range of Reynolds numbers considered here, as shown in figure 24(b).
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