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In this paper we are concerned with the well-posedness and the exponential
stabilization of the generalized Korteweg–de Vries–Burgers equation, posed on the
whole real line, under the effect of a damping term. Both problems are investigated
when the exponent p in the nonlinear term ranges over the interval [1, 5). We first
prove the global well-posedness in Hs(R) for 0 � s � 3 and 1 � p < 2, and in H3(R)
when p � 2. For 2 � p < 5, we prove the existence of global solutions in the
L2-setting. Then, by using multiplier techniques and interpolation theory, the
exponential stabilization is obtained with an indefinite damping term and 1 � p < 2.
Under the effect of a localized damping term the result is obtained when 2 � p < 5.
Combining multiplier techniques and compactness arguments, we show that the
problem of exponential decay is reduced to proving the unique continuation property
of weak solutions. Here, the unique continuation is obtained via the usual Carleman
estimate.
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1. Introduction

It is common knowledge that many physical problems, e.g. nonlinear shallow-water
waves and wave motion in plasmas, can be described by the family of Korteweg–
de Vries (KdV) equations. The KdV-type equations have also been used to describe
a wide range of important physical phenomena related to acoustic waves in a har-
monic crystals, quantum field theory, plasma physics and solid-state physics. In the
study of wave propagation in a tube filled with viscous fluid or of the flow of a fluid
containing gas bubbles, for example, the control equation can be reduced to the
so-called KdV–Burgers equation [23]. This is commonly obtained from the KdV
equation by adding a viscous term, and combines nonlinearity, linear dissipation
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and dispersion terms:

ut + δuxxx − νuxx + uux = 0, t > 0, x ∈ R.

Since δ and ν are positive numbers, the model can be viewed as a generalization
of the KdV and Burgers equations. In particular, the Burgers equation is a sim-
ple model equation for a variety of diffusion/dissipative processes in convection
dominated systems, which include the formation of weak shocks, traffic flow and
turbulence. If, besides the convective nonlinearity and dissipation/diffusion mech-
anism, dispersion also plays a role over the spatial and temporal scales of interest,
then the simplest nonlinear partial differential equation (PDE) governing the wave
dynamics is a combination of both the KdV and Burgers equations, known as the
KdV–Burgers equation.

In this work we are concerned with the generalized KdV–Burgers (GKdVB) equa-
tion under the effect of a damping term represented by a function b = b(x); more
precisely,

ut + uxxx − uxx + a(u)ux + b(x)u = 0 in R × R+,

u(x, 0) = u0(x) in R.

}
(1.1)

Our main aim is to address two mathematical issues connected with the initial-value
problem (1.1): global well-posedness and large-time behaviour of solutions. More
precisely, we establish the well-posedness and the exponential decay of solutions in
the classical Sobolev spaces Hs. Therefore, as usual, let us first consider the energy
associated with the model, given by

E(t) = 1
2

∫
R

u2(x, t) dx.

Thus, at least formally, the solutions of (1.1) should satisfy

d
dt

E(t) = −
∫

R

u2
x dx −

∫
R

b(x)u2 dx (1.2)

for any positive t. Then, if we assume that b(x) � b0 for some b0 > 0, it is straight-
forward to infer that E(t) converges to zero exponentially. By contrast, when the
damping function b is allowed to change sign or is effective on a subset of the
domain, the problem is much more subtle. Moreover, whether (1.2) generates a
flow that can be continued indefinitely in the temporal variable, defining a solution
valid for all t � 0, is a non-trivial question.

To obtain the tools with which to handle both problems, we assume that a = a(x)
is a positive real-valued function that satisfies the growth conditions

|a(j)(µ)| � C(1 + |µ|p−j), ∀µ ∈ R, for some C > 0,

j =

{
0, 1 if 1 � p < 2,

0, 1, 2 if p � 2,

⎫⎪⎪⎬
⎪⎪⎭ (1.3)

except when u0 belongs to L2(R) and 2 � p < 5 (see theorem 2.14 and remark 2.15).

20

https://doi.org/10.1017/S0308210518000240 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210518000240


On the behaviour of the generalized KdV–Burgers equation

Moreover, in order to obtain the exponential stability in the 1 � p < 2 case,
we take an indefinite damping satisfying the following, where ‘a.e.’ denotes ‘almost
everywhere’:

b ∈ H1(R) and b(x) � λ0 + λ1(x) a.e. for some λ0 > 0 and λ1 ∈ Lp(R),

such that ‖λ1‖Lp(R) <

(
λ0

cp

)1−1/2p

, cp =
(

1 − 1
2p

)(
2
p

)1/(2p−1)

. (1.4)

Concerning the p � 2 case, we consider a localized damping that acts everywhere
but on a bounded subset of the line; more precisely,

b ∈ H1(R) is non-negative and b(x) � λ0 > 0 a.e. in (−∞, α) ∪ (β,∞),
for some α, β ∈ R, with α < β. (1.5)

Our analysis was inspired by the results obtained by Cavalcanti et al . for the
KdV–Burgers equation [10] and by Rosier and Zhang for the generalized KdV
equation posed on a bounded domain [19] (see also [14]). In this context, we refer
the reader to the survey [20] for a review on the state of the art.

When 1 � p < 2 and 0 � s � 3, we obtain the global well-posedness in the class
Bs,T = C([0, T ];Hs(R)) ∩ L2(0, T ; Hs+1(R)) and prove that the solution decays
exponentially to zero in Hs(R), where Hs denotes the classical Sobolev spaces. As
in the theory of dispersive wave equations, the results depend on the local theory,
on the a priori estimates satisfied by the solutions and also on linear theory. Indeed,
we combine the Duhamel formula and a contraction-mapping principle to prove the
local well-posedness directly. In order to get the global result we derive energy-type
inequalities and make use of interpolation arguments. Those a priori estimates are
sufficient to yield the global stabilization result and a strong smoothing property
for solutions u ∈ C([ε, T ];Hs(R)) ∩ L2(ε, T ; Hs+1(R)) for any ε > 0. Our analysis
extends the results obtained in [10], from which we borrow some ideas involved in
our proofs.

When p � 2 we can use the same approach to prove that the global well-posedness
also holds in B3,T . In order to obtain the result in a stronger/weaker norm, we need
a priori global estimates. However, the only available a priori estimate for (1.1)
is that provided by (1.2), which does not guarantee the existence of global-in-time
solutions. In fact, we do not know if the problem is locally well-posed in the energy
space. Therefore, we restrict ourselves to the 2 � p < 5 case to prove that the
estimate provided by the energy dissipation law holds, and establish the existence
of global solutions in the space Cω([0, T ];L2(R)) ∩ L2(0, T ; H1(R)).

The uniqueness remains an open problem. The main difficulty in this context
comes from the structure of nonlinearities and the lack of regularity of the solu-
tions we are dealing with. Concerning the asymptotic behaviour, we prove the
exponential decay in the L2-setting by following the approach in [19]. This com-
bines multiplier techniques and compactness arguments to reduce the problem to
some unique continuation property for weak solutions. To overcome this problem
we develop a Carleman inequality by modifying (slightly) a Carleman estimate
obtained by Rosier [18] to study the controllability properties of the KdV equation.
It allows us to prove the unique continuation property directly.
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We remark that, by using numerical simulations, in [7] Bona et al . studied the
blow-up and decay for periodic solutions of the GKdVB equation. They conjectured
that, for p � 4 and sufficiently large initial data, the solutions become unstable and
blow-up. Later, in [8], they considered the initial-value and periodic boundary-value
problems for the generalized Korteweg–de Vries equation

ut + uxxx + upux = 0,

and studied the effect of a dissipative term on the global well-posedness of the
solutions. Actually, they considered two different dissipative terms: a Burgers-type
one −δuxx and a zeroth-order term σu. In both cases, they showed that for p � 4
there exist critical values δc and σc such that if δ > δc or σ > σc, the solution
is globally well defined. However, the solution blows-up when the damping is too
weak, as with the KdV equation. In contrast, it was proved by Rosier and Zhang [19]
that the generalized KdV is exponentially stable for 1 � p < 4.

With this information in hand and following the ideas in [19], we get a solution of
the initial-value problem associated with the GKdVB equation that decays expo-
nentially for p � 4, without any restriction on the initial data. More precisely, we
get a solution of the initial-value problem for 1 � p < 2 and 2 � p < 5, under an
indefinite damping and a localized damping, respectively.

Our work was carried out for the particular choice of damping effect appearing
in (1.1) and aims to establish as a fact that such a model predicts the interesting
qualitative properties initially observed for the KdV–Burgers-type equations. Con-
sideration of this issue for nonlinear dispersive equations, particularly the problems
on the time decay rate, has received considerable attention. In this respect, it is
important to point out that the approach used here was successfully applied in
the context of the KdV equation posed on R

+ and R under the effect of a local-
ized damping term [9,15,17]. We also remark that the stabilization problem in the
absence of the damping term b was addressed by Bona and Luo [3,4], complement-
ing the earlier studies developed in [1, 2, 11] and deriving sharp polynomial decay
rates for the solutions. Later on, Bona and Luo [5] and Said-Houari [21] improved
upon such a theory. The asymptotic behaviour has also been discussed by Dlotko
and Sun in the language of global attractors [12,13]. More precisely, Dlotko and Sun
studied the large-time behaviour of the corresponding semigroup in constructing a
global attractor.

The analysis described above is organized into two sections: in § 2 we establish
the global well-posedness results, while § 3 is devoted to the stabilization problem.
In both sections we split the results into several steps for clarity.

2. Well-posedness

First, we consider the corresponding linear inhomogeneous initial-value problem:

ut − uxx + uxxx + b(x)u = f, (x, t) ∈ R × R+,

u(x, 0) = u0(x), x ∈ R.

}
(2.1)

Setting
Ab := ∂2

x − ∂3
x − bI and D(Ab) = H3(R), b ∈ L∞(R),
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(2.1) can be written in the form

ut = Abu + f,

u(0) = u0.

According to [10], Ab generates a strongly continuous semigroup {S(t)}t�0 of con-
tractions in L2(R). Hence, if we consider the Banach space

Bs,T := C([0, T ];Hs(R)) ∩ L2(0, T ; Hs+1(R)),

‖u‖s,T = sup
t∈[0,T ]

‖u(t)‖Hs(R) + ‖∂s+1
x u‖L2(0,T ;L2(R)),

⎫⎬
⎭ (2.2)

the following result holds.

Proposition 2.1. Let T > 0. If u0 ∈ L2(R) and f ∈ L1(0, T ; L2(R)), (2.1) has a
unique mild solution u ∈ B0,T , and

‖u‖0,T � CT {‖u0‖2 + ‖f‖L1(0,T ;L2(R))}, with CT = 2eT‖b‖∞ .

Furthermore, the following energy identity holds for all t ∈ [0, T ]:

‖u(t)‖2
2 + 2

∫ t

0
‖ux(s)‖2

2 ds + 2
∫ t

0

∫
R

b(x)|u(x, s)|2 dxds

= ‖u0‖2
2 + 2

∫ t

0

∫
R

f(x, s)u(x, s) dxds. (2.3)

Proof. See [10, proposition 4.1].

2.1. The 1 � p < 2 case

In order to establish the well-posedness of (1.1) we need the following technical
lemmas, which will play an important role in the proofs.

Lemma 2.2 (generalized Hölder inequality). Suppose fi ∈ Lpi and
∑n

i=1 1/pi = 1
for i = 1, 2, . . . , n. Then,

‖f1 · f2 · · · fn‖L1 �
n∏

i=1

‖fi‖Lpi . (2.4)

Lemma 2.3. Let a ∈ C0(R) be a function satisfying

|a(µ)| � C(1 + |µ|p), ∀µ ∈ R, (2.5)

with 0 � p < 2. Then, there exists a positive constant C such that for any T > 0
and u, v ∈ B0,T we have

‖a(u)vx‖L1(0,T ;L2(R)) � 2p/2CT (2−p)/4‖u‖p
0,T ‖v‖0,T + CT 1/2‖v‖0,T .

Proof. Recall that H1(R) ↪→ L∞(R) and

‖u‖2
∞ � 2‖u‖2‖ux‖2 (2.6)
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for all u ∈ H1(R). On the other hand, by (2.5),

‖a(u)vx‖L1(0,T ;L2(R)) � C

∫ T

0
‖(1 + |u(t)|p)vx(t)‖2 dt

� C

∫ T

0
‖vx(t)‖2 dt + C

∫ T

0
‖u(t)‖p

∞‖vx(t)‖2 dt.

Using the Hölder inequality (2.4) and (2.6), we have

‖a(u)vx‖L1(0,T ;L2(R)) � CT 1/2‖vx‖L2(0,T ;L2)

+ 2p/2C

∫ T

0
‖u(t)‖p/2

2 ‖ux(t)‖p/2
2 ‖vx(t)‖2 dt

� CT 1/2‖vx‖L2(0,T ;L2)

+ 2p/2C‖u‖p/2
C([0,T ];L2)

∫ T

0
‖ux(t)‖p/2

2 ‖vx(t)‖2 dt.

Applying lemma 2.2 with 1
4p, 1

4 (2 − p) and 1
2 , it follows that

‖a(u)vx‖L1(0,T ;L2(R)) � CT 1/2‖v‖0,T

+ 2p/2CT (2−p)/4‖u‖p/2
0,T ‖ux‖p/2

L2(0,T ;L2(R))‖vx‖L2(0,T ;L2(R))

� 2p/2CT (2−p)/4‖u‖p
0,T ‖v‖0,T + CT 1/2‖v‖0,T .

Lemma 2.4. For any T > 0, b ∈ L∞(R) and u, v, w ∈ B0,T , we have

(i) ‖bu‖L1(0,T ;L2(R)) � T 1/2‖b‖∞‖u‖0,T ,

(ii) ‖uwx‖L1(0,T ;L2(R)) � 21/2T 1/4‖u‖0,T ‖w‖0,T .

If 1 � p < 2, we have that

(iii) ‖u|v|p−1wx‖L1(0,T ;L2(R)) � 2p/2T (2−p)/4‖u‖0,T ‖w‖0,T ‖v‖p−1
0,T .

(iv) for the map M : B0,T → L1(0, T ; L2(R)) defined by Mu := a(u)ux, M is
locally Lipschitz continuous and

‖Mu − Mv‖|L1(0,T ;L2(R))

� C{21/2T 1/4‖u‖0,T

+ 2p/2T (2−p)/4(‖u‖p
0,T + ‖u‖0,T ‖v‖p−1

0,T + ‖v‖p
0,T ) + T 1/2}‖u − v‖0,T ,

where C is a positive constant.

Proof.
(i) Using the Hölder inequality, we have

‖bu‖L1(0,T ;L2(R)) � T 1/2‖b‖∞‖u‖L2(0,T ;L2) � T 1/2‖b‖∞‖u‖0,T .
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(ii) Combining (2.6) and lemma 2.2 with 1/2, 1/4 and 1/4, it follows that

‖uwx‖L1(0,T ;L2(R))

�
∫ T

0
‖u(t)‖∞‖wx(t)‖2 dt

� 21/2
∫ T

0
‖u(t)‖1/2

2 ‖ux(t)‖1/2
2 ‖wx(t)‖2 dt

� 21/2‖u(t)‖1/2
C([0,T ];L2)

( ∫ T

0
‖ux(t)‖2

2 dt

)1/4( ∫ T

0
‖wx(t)‖2

2 dt

)1/2

T 1/4

� 21/2T 1/4‖u‖0,T ‖wx‖0,T .

(iii) We proceed as in (i), combining (2.6) and lemma 2.2 with 1
4 , 1

4 (p−1), 1
4 (2−p)

and 1
2 to obtain

‖u|v|p−1wx‖L1(0,T ;L2(R))

�
∫ T

0
‖u(t)‖∞‖v(t)‖p−1

∞ ‖wx(t)‖2 dt

� 2p/2
∫ T

0
‖u(t)‖1/2

2 ‖ux(t)‖1/2
2 ‖v(t)‖(p−1)/2

2 ‖vx(t)‖(p−1)/2
2 ‖wx(t)‖2 dt

� 2p/2‖u‖1/2
0,T ‖v‖(p−1)/2

0,T

∫ T

0
‖ux(t)‖1/2

2 ‖vx(t)‖(p−1)/2
2 ‖wx(t)‖2 dt

� 2p/2‖u‖1/2
0,T ‖v‖(p−1)/2

0,T

×
( ∫ T

0
‖ux‖2

2 dt

)1/4( ∫ T

0
‖vx‖2

2 dt

)(p−1)/4( ∫ T

0
‖wx‖2

2 dt

)1/2

T (2−p)/4

� 2p/2T (2−p)/4‖u‖1/2
0,T ‖v‖(p−1)/2

0,T ‖u‖1/2
0,T ‖v‖(p−1)/2

0,T ‖w‖0,T ,

which allows us to conclude the result.

(iv) Note that

‖Mu − Mv‖L1(0,T ;L2(R)) � ‖(a(u) − a(v))ux‖L1(0,T ;L2(R))

+ ‖a(v)(u − v)x‖L1(0,T ;L2(R)).

Using the mean-value theorem, (ii), (iii) and lemma 2.3, we have

‖Mu − Mv‖L1(0,T ;L2(R)) � C‖(1 + |u|p−1 + |v|p−1)|u − v|ux‖L1(0,T ;L2)

+ ‖a(v)(u − v)x‖L1(0,T ;L2)

� C{21/2T 1/4‖u − v‖0,T ‖u‖0,T

+ 2p/2T (2−p)/4‖u − v‖0,T ‖u‖p
0,T

+ 2p/2T (2−p)/4‖u − v‖0,T ‖u‖0,T ‖v‖p−1
0,T

+ 2p/2T (2−p)/4‖u − v‖0,T ‖v‖p
0,T + T 1/2‖u − v‖0,T }.
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The above estimates lead to the following local existence result and a priori
estimate.

Proposition 2.5. Let a be a function C1(R) satisfying

|a(µ)| � C(1 + |µ|p) and |a′(µ)| � C(1 + |µ|p−1), ∀µ ∈ R,

with 1 � p < 2. Let b ∈ L∞(R) and u0 ∈ L2(R). Then, there exist T > 0 and a
unique mild solution u ∈ B0,T of (1.1). Moreover,

‖u(t)‖2
2 + 2

∫ t

0
‖ux(s)‖2

2 ds + 2
∫ t

0

∫
R

b(x)|u(x, s)|2 dxds = ‖u0‖2
2, ∀t ∈ [0, T ].

(2.7)

Proof. Let T > 0 be as determined later. For each u ∈ B0,T consider the problem

vt = Abv − Mu,

v(0) = u0,

}
(2.8)

where Abv = ∂2
xv − ∂3

xv − bv and Mu = a(u)ux. Since Ab generates a strongly
continuous semigroup {S(t)}t�0 of contractions in L2(R), lemma 2.3 and proposi-
tion 2.1 allow us to conclude that (2.8) has a unique mild solution v ∈ B0,T , such
that

‖v‖0,T � CT {‖u0‖2 + ‖Mu‖L1(0,T ;L2(R))}, (2.9)

where CT = 2eT‖b‖∞ . Thus, we can define the operator

Γ : B0,T → B0,T given by Γ (u) = v.

By using lemma 2.3 and (2.9), we have

‖Γu‖0,T � CT {‖u0‖2 + 2p/2CT (2−p)/4‖u‖p+1
0,T + CT 1/2‖u‖0,T }.

Thus, for u ∈ BR(0) := {u ∈ B0,T : ‖u‖B0,T
� R}, it follows that

‖Γu‖0,T � CT {‖u0‖2 + 2p/2CT (2−p)/4Rp+1 + CT 1/2R}.

Choosing R = 2CT ‖u0‖2, we obtain the following estimate:

‖Γu‖0,T � (K1 + 1
2 )R,

where K1 = K1(T ) = 2p/2CT CT (2−p)/4Rp + CT CT 1/2. On the other hand, note
that Γu − Γw is a solution of

vt = Abv − (Mu − Mw),
v(0) = 0.

Again, by applying proposition 2.1, we have

‖Γu − Γw‖0,T � CT ‖Mu − Mw‖L1(0,T ;L2),
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and estimate (iv) in lemma 2.4 allows us to conclude that

‖Γu − Γw‖0,T

� CT C{21/2T 1/4‖u‖0,T

+ 2p/2T (2−p)/4(‖u‖p
0,T + ‖u‖0,T ‖w‖p−1

0,T + ‖w‖p
0,T ) + T 1/2}‖u − w‖0,T .

Suppose that u, w ∈ BR(0) as defined above. Then,

‖Γu − Γw‖B0,T
� K2‖u − w‖B0,T

,

where K2 = K2(T ) = CT C{21/2T 1/4R + 3(2p/2)T (2−p)/4Rp + T 1/2}. Since K1 �
K2, we can choose T > 0 to obtain K2 < 1

2 and

‖Γu‖B0,T
� R,

‖Γu − Γw‖B0,T
< 1

2‖u − w‖B0,T
,

}
∀u, w ∈ BR(0) ⊂ B0,T .

Hence, Γ : BR(0) → BR(0) is a contraction, and by the Banach fixed-point theorem
we obtain a unique u ∈ BR(0) such that Γ (u) = u. Consequently, u is a unique
local mild solution of (1.1) and

‖u‖B0,T
� 2CT ‖u0‖2. (2.10)

In order to prove (2.7), consider vn = Γvn−1, n � 1. Since Γ is a contraction, we
have

lim
n→∞

vn = u in B0,T .

On the other hand, by (2.3), vn verifies the following identity:

‖vn(t)‖2
2 + 2

∫ t

0
‖vnx(s)‖2

2 ds + 2
∫ t

0

∫
R

b(x)|v(x, s)|2 dxds

= ‖u0‖2
2 + 2

∫ t

0

∫
R

Mvn−1(x, s)vn(x, s) dxds.

Then, taking the limit as n → ∞, we get

‖u(t)‖2
2 + 2

∫ t

0
‖ux(s)‖2

2 ds + 2
∫ t

0

∫
R

b(x)|u(x, s)|2 dxds = ‖u0‖2
2

since the limit of the last term is∫ t

0

∫
R

Mu(x, s)u(x, s) dxds = 0.

In fact, ∫
R

a(u(x))ux(x) dx =
∫

R

[A(u(x))]x dx, A(v) =
∫ v

0
a(s) ds.

From proposition 2.5 we obtain our first global-in-time existence result.
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Theorem 2.6. Let a be a function C1(R) satisfying

|a(µ)| � C(1 + |µ|p) and |a′(µ)| � C(1 + |µ|p−1), ∀µ ∈ R,

with 1 � p < 2. Let b ∈ L∞(R) and u0 ∈ L2(R). Then, there exists a unique global
mild solution u of (1.1) such that for each T > 0 there exists a non-decreasing
continuous function β0 : R+ → R+ that satisfies

‖u‖0,T � β0(‖u0‖2)‖u0‖2. (2.11)

Moreover, the following energy identity holds for all t � 0:

‖u(t)‖2
2 + 2

∫ t

0
‖ux(s)‖2

2 ds + 2
∫ t

0

∫
R

b(x)|u(x, s)|2 dxds = ‖u0‖2
2. (2.12)

Proof. By proposition 2.5, there exists a unique mild solution u ∈ B0,T for all
T < Tmax � ∞. Moreover,

‖u‖0,T � 4e‖b‖∞t‖u0‖2, ∀t ∈ [0, Tmax),

which implies that u is a global mild solution of (1.1). On the other hand, (2.10)
implies (2.11) with β0(s) = 2CT . The identity (2.12) is a direct consequence of (2.7)
in proposition 2.5.

It follows from theorem 2.6 that for each fixed T > 0 the solution map

A : L2(R) → B0,T , Au0 = u, (2.13)

is well defined. Moreover, we have the following result.

Proposition 2.7. The solution map (2.13) is locally Lipschitz continuous, i.e.
there exists a continuous function C0 : R

+ × (0,∞) → R
+, non-decreasing in its

first variable, such that for all u0, v0 ∈ L2(R) we have

‖Au0 − Av0‖0,T � C0(‖u0‖2 + ‖v0‖2, T )‖u0 − v0‖2.

Proof. Let 0 < θ � T and n = [T/θ]. By theorem 2.6, we have

‖Au0‖0,θ � 2Cθ‖u0‖2 (2.14)

and

‖Au0 − Av0‖0,θ � Cθ{‖u0 − v0‖2 + ‖M(Au0) − M(Av0)‖L1(0,θ;L2(R))},

where Cθ = 2eθ‖b‖∞ . By lemma 2.4, we have

‖Au0 − Av0‖0,θ

� Cθ‖u0 − v0‖2

+ CθC{21/2θ1/4‖Au0‖0,θ

+ 2p/2θ(2−p)/4(‖Au0‖p
0,θ + ‖Au0‖0,θ‖Av0‖p−1

0,θ + ‖Av0‖p
0,θ) + θ1/2}

× ‖Au0 − Av0‖0,θ,
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and, applying (2.14), it follows that

‖Au0 − Av0‖0,θ

� Cθ‖u0 − v0‖2

+ CθC{23/2θ1/4Cθ‖u0‖2

+ 23p/2θ(2−p)/4Cp
θ (‖u0‖p

2 + ‖u0‖2‖v0‖p−1
2 + ‖v0‖p

2) + θ1/2}
× ‖Au0 − Av0‖0,θ

� CT ‖u0 − v0‖2

+ CT Cθ(2−p)/4{23/2θ(p−1)/4CT (‖u0‖2 + ‖v0‖2)

+ 23p/2Cp
T (‖u0‖2 + ‖v0‖2)p + θp/4}‖Au0 − Av0‖0,θ

� CT ‖u0 − v0‖2

+ CT Cθ(2−p)/4{25/2T (p−1)/4C2
T (‖u0‖2 + ‖v0‖2)

+ 25p/2C2p
T (‖u0‖2 + ‖v0‖2)p + T p/4}‖Au0 − Av0‖0,θ.

Choosing θ sufficiently small such that

θ < [2CT C{25/2T (p−1)/4CT ‖u0‖2

+ ‖v0‖2 + 25p/2C2p
T (‖u0‖2 + ‖v0‖2)p + T p/4}]−4/(2−p) (2.15)

yields
‖Au0 − Av0‖0,θ � 2CT ‖u0 − v0‖2. (2.16)

Analogously, we can deduce that

‖Au0‖0,[kθ,(k+1)θ] � 2Cθ‖u(kθ)‖2, k = 0, 1, . . . , n − 1,

where ‖ · ‖0,[kθ,(k+1)θ] denotes the norm of

B0,[kθ,(k+1)θ] := C([kθ, (k + 1)θ];L2(R)) ∩ L2(kθ, (k + 1)θ; H1(R)).

Moreover, by using the same arguments, we have

‖Au0 − Av0‖0,[kθ,(k+1)θ]

� CT ‖u(kθ) − v(kθ)‖2

+ CT Cθ(2−p)/4{23/2T (p−1)/4CT (‖u(kθ)‖2 + ‖v(kθ)‖2)

+ 23p/2Cp
T (‖u(kθ)‖2 + ‖v(kθ)‖2)p + T p/4}

× ‖Au0 − Av0‖0,[kθ,(k+1)θ].

Combining (2.14) and the above estimate, it follows that

‖Au0 − Av0‖0,[kθ,(k+1)θ]

� CT ‖u(kθ) − v(kθ)‖2

+ CT Cθ(2−p)/4{25/2T (p−1)/4C2
T (‖u0‖2 + ‖v0‖2)

+ 25p/2C2p
T (‖u0‖2 + ‖v0‖2)p + T p/4}

× ‖Au0 − Av0‖0,[kθ,(k+1)θ].
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Finally, from (2.15), we get

‖Au0 − Av0‖0,[kθ,(k+1)θ] � 2CT ‖u(kθ) − v(kθ)‖2, k = 0, 1, . . . , n − 1. (2.17)

On the other hand, note that (2.16) and (2.17) imply that

‖Au0 − Av0‖0,[kθ,(k+1)θ] � 2kCk
T ‖u0 − v0‖2, k = 0, 1, . . . , n − 1,

and therefore
‖Au0 − Av0‖0,[kθ,(k+1)θ] � 2nCn

T ‖u0 − v0‖2.

Finally,

‖Au0 − Av0‖0,T �
n−1∑
k=0

‖Au0 − Av0‖0,[kθ,(k+1)θ] �
n−1∑
k=0

2nCn
T ‖u0 − v0‖2

� 2nCn
T n‖u0 − v0‖2 � C0(‖u0‖2 + ‖v0‖2)‖u0 − v0‖2,

where
C0(s) =

T

θ(s)
[2CT ]T/θ(s).

Next, we shall show well-posedness in B3,T with 1 � p < 2. Therefore, let us first
consider the following linearized problem:

vt + vxxx − vxx + [a(u)v]x + bv = 0 in R × (0,∞),
v(0) = v0 in R × (0,∞).

}
(2.18)

Then, we can establish the following proposition.

Proposition 2.8. Let a be a function C1(R) satisfying

|a(µ)| � C(1 + |µ|p) and |a′(µ)| � C(1 + |µ|p−1), ∀µ ∈ R,

with 1 � p < 2. Let T > 0, b ∈ L∞(R), u ∈ B0,T and v0 ∈ L2(R). Then, prob-
lem (2.18) admits a unique solution v ∈ B0,T such that

‖v‖0,T � σ(‖u‖0,T )‖v0‖2,

where σ : R
+ → R

+ is a non-decreasing continuous function.

Proof. Let 0 < θ � T and u ∈ B0,T . The proof of the existence follows the steps
of proposition 2.5 and theorem 2.6. Therefore, we shall omit the details. First,
note that lemmas 2.3 and 2.4 imply that Nw := [a(u)w]x ∈ L1(0, θ; L2(R)) for all
w ∈ B0,θ. Hence,

‖Nw‖L1(0,θ;L2(R)) � C{21/2θ1/4‖u‖0,θ‖w‖0,θ

+ 2(p+2)/2θ(2−p)/4‖u‖p
0,θ‖w‖0,θ + θ1/2‖w‖0,θ}. (2.19)

With the notation above, problem (2.18) takes the form

vt = Abv − Nw,

v(0) = u0,

}
(2.20)
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where Abv = ∂2
xv − ∂3

xv − bv. Since Ab generates a strongly continuous semigroup
{S(t)}t�0 of contractions in L2(R), by proposition 2.1, (2.20) has a unique mild
solution v ∈ B0,θ, such that

‖v‖0,θ � Cθ{‖v0‖2 + ‖Nw‖L1(0,θ;L2(R))},

where Cθ = 2eθ‖b‖∞ . Thus, we can define the operator

Γ : B0,T → B0,T given by Γ (w) = v.

Let R > 0 be a constant to be determined later and let w ∈ BR(0) := {w ∈
B0,θ : ‖w‖B0,θ

� R}. Thus,

‖Γw‖0,θ � CT {‖v0‖2 + (21/2Cθ1/4‖u‖0,T + 2(p+2)/2Cθ(2−p)/4‖u‖p
0,T + θ1/2C)R}.

By choosing R = 2CT ‖v0‖2, we have

‖Γu‖0,θ � (K1 + 1
2 )R,

where K1 = CT C(21/2Cθ1/4‖u‖0,T +2(p+2)/2Cθ(2−p)/4‖u‖p
0,T +θ1/2). On the other

hand, note that Γs − Γw solves the following problem:

vt = Abv − (Ns − Nw),
v(0) = 0.

Thus,

‖Γs − Γw‖0,θ � K1‖s − w‖0,θ.

Choosing θ > 0 such that K1 = K1(θ) < 1
2 , we have

‖Γw‖B0,θ
� R,

|Γs − Γw‖B0,θ
< 1

2‖s − w‖0,θ,

}
∀s, w ∈ BR(0) ⊂ B0,θ.

Hence, Γ : BR(0) → BR(0) is a contraction and, by the Banach fixed-point theorem,
we obtain a unique v ∈ BR(0) such that Γ (v) = v. Consequently, v is a unique local
mild solution of problem (2.18) and

‖v‖B0,θ
� 2CT ‖v0‖2.

Then, using standard arguments we may extend θ to T . Finally, the proof is com-
pleted by defining σ(s) = 2CT .

Our second global-in-time existence result is proved below. We make use of propo-
sition 2.8 and classical energy-type estimates.

Theorem 2.9. Let a be a function C1(R) satisfying

|a(µ)| � C(1 + |µ|p) and |a′(µ)| � C(1 + |µ|p−1), ∀µ ∈ R, (2.21)

with 1 � p < 2. Let T > 0, b ∈ H1(R) and u0 ∈ H3(R). Then, there exists a unique
mild solution u ∈ B3,T of (1.1) such that

‖u‖3,T � β3(‖u0‖2)‖u0‖H3(R),

where β3 : R+ → R+ is a non-decreasing continuous function.
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Proof. For clarity of exposition, the proof will be carried out in several steps.

Step 1 (u ∈ L2(0, T ; H3(R))). Since u0 ∈ H3(R) ↪→ L2(R), by theorem 2.6 there
exists a unique solution u ∈ B0,T such that

‖u‖0,T � β0(‖u0‖2)‖u0‖2. (2.22)

We shall show that u ∈ B3,T . Let v = ut. Then, v solves the problem

vt + vxxx − vxx + [a(u)v]x + bv = 0,

v(0, x) = v0,

where v0 = −∂3
xu0 + ∂2

xu0 − a(u0)∂xu0 − bu0. Note that v ∈ L2(R) and there exists
C = C(‖u0‖2) satisfying

‖v0‖2 � C(‖u0‖2)‖u0‖H3(R).

In fact, from (2.6) we can bound v0 as follows:

‖v0‖2 � ‖∂3
xu0‖2 + ‖∂2

xu0‖2 + ‖a(u0)∂xu0‖2 + ‖bu0‖2

� C1{(1 + ‖b‖L∞(R))‖u0‖H3(R) + ‖u0‖p/2
2 ‖∂xu0‖(p+2)/2

2 }.

Recall the Gagliardo–Nirenberg inequality:

‖∂j
xu0‖2 � C‖∂m

x u0‖j/m
2 ‖u0‖1−j/m

2 , j, m = 0, 1, 2, 3, j � m. (2.23)

Applying (2.23) with j = 1 and m = 2, we have

‖v0‖2 � C2{(1 + ‖b‖L∞(R))‖u0‖H3(R) + ‖u0‖(3p+2)/4
2 ‖∂2

xu0‖(p+2)/4
2 }.

Then, Young’s inequality guarantees that

‖v0‖2 � C3{(1 + ‖b‖L∞(R))‖u0‖H3(R) + ‖u0‖4p/(2−p)
2 ‖u0‖2 + ‖∂2

xu0‖2}.

Consequently, this gives

‖v0‖2 � C(‖u0‖2)‖u0‖H3(R), (2.24)

where C(s) = C3{2 + ‖b‖L∞(R) + s4p/(2−p)}. Using proposition 2.8, we see that v ∈
B0,T and

‖v‖0,T � σ(‖u‖0,T )‖v0‖2,

where σ(s) = 2CT . Combining (2.22) and (2.24), we get

‖v‖0,T � σ(β0(‖u0‖2)‖u0‖2)C(‖u0‖2)‖u0‖H3(R). (2.25)

Then,
u, ut ∈ L2(0, T ; H1(R)), (2.26)

and therefore
u ∈ C([0, T ];H1(R)) ↪→ C([0, T ];C(R)). (2.27)
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On the other hand, note that a(u)ux, bu ∈ L2(0, T ; L2(R)). In fact, from (2.27) it
follows that

‖a(u)ux‖2
L2(0,T ;L2(R)) � C

{ ∫ T

0
‖ux‖2

2 dx +
∫ T

0
‖|u|pux‖2

2 dx

}
� C{1 + ‖u‖2p

C(0,T ;C(R))}‖u‖2
0,T

and

‖bu‖L2(0,T ;L2(R)) � ‖b‖L∞(R)‖u‖2
L2(0,T ;L2(R)).

Moreover, uxxx − uxx = −ut − a(u)ux − bu in D′(0, T, R). Hence,

uxxx − uxx = f ∈ L2(0, T ; L2(R)), where f := −ut − a(u)ux − bu.

Taking the Fourier transform, we have

û =
f̂ + û

[1 + ξ2 − iξ3]
(2.28)

and

‖u(t)‖2
H3(R) � C3{‖f(t)‖2

2 + ‖u(t)‖2
2}, (2.29)

where C3 = 2 supξ∈R
(1 + ξ2)3/((1 + ξ2)2 + ξ6). Integrating (2.29) over [0, T ], we

deduce that
u ∈ L2(0, T ; H3(R)). (2.30)

Step 2 (u ∈ B3,T ). First, observe that, according to (2.26) and (2.30), we can
apply [16, theorem 2.3] to obtain

u ∈ C([0, T ];H2(R)).

This further implies

uxx, bu ∈ C([0, T ];L2(R)) ∩ L2(0, T ; H1(R)). (2.31)

On the other hand, note that

‖a(u(t))ux(t) − a(u(t0))ux(t0)‖2

� ‖[a(u(t)) − a(u(t0))]ux(t)‖2 + ‖a(u(t0))[ux(t) − ux(t0)]‖2

� C{‖(1 + |u(t)|p−1 + |u(t0)|p−1)|u(t) − u(t0)|ux(t)‖2

+ ‖(1 + |u(t0)|p)|ux(t) − ux(t0)|‖2}
� C{(1 + ‖u(t)‖p−1

∞ + ‖u(t0)‖p−1
∞ )‖u(t) − u(t0)‖∞‖ux(t)‖2

+ (1 + ‖u(t0)‖p
∞)‖ux(t) − ux(t0)‖2}.

Then, by (2.27) we have

lim
t→t0

‖a(u(t))ux(t) − a(u(t0))ux(t0)‖2 = 0,

and therefore a(u)ux ∈ C([0, T ];L2(R)). The results above also guarantee that

a(u)ux ∈ C([0, T ];L2(R)) ∩ L2(0, T ; H1(R)). (2.32)
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Indeed, it is sufficient to combine (2.27), (2.30) and the estimates

‖a′(u)u2
x‖L2(0,T ;L2(R)) � C{(1 + ‖u‖p−1

C([0,T ];C(R)))‖ux‖C([0,T ];C(R))

× ‖ux‖L2([0,T ];L2(R))}

and

‖a(u)uxx‖L2(0,T ;L2(R)) � C{(1 + ‖u‖p
C([0,T ];C(R)))‖uxx‖L2([0,T ];L2(R))}.

Since

uxxx = −ut + uxx − a(u)ux − bu,

using the fact that ut ∈ C([0, T ], L2(R)) and (2.26), (2.31) and (2.32) we obtain

uxxx ∈ C([0, T ], L2(R)) ∩ L2(0, T ; H1(R)). (2.33)

Moreover, since u ∈ B0,T , it follows from (2.33) that u ∈ B3,T .

Step 3 (‖u‖C([0,T ];H3(R)) � σ1(‖u0‖2)‖u0‖H3(R)). First, note that, due to (2.29),
the following estimate holds:

‖u(t)‖H3(R) � C4{‖ut(t)‖2 + ‖a(u(t))ux(t)‖2 + ‖bu(t)‖2 + ‖u(t)‖2}. (2.34)

Next, we combine (2.21), (2.6) and (2.23), with j = 1 and m = 2, to obtain

‖a(u(t))ux(t)‖2 � C{‖ux(t)‖2 + ‖u(t)‖p/2
2 ‖ux(t)‖(p+2)/2

2 }

� C{‖uxx(t)‖1/2
2 ‖u(t)‖1/2

2 + ‖u(t)‖(3p+2)/4
2 ‖uxx(t)‖(p+2)/4

2 }.

Moreover, Young’s inequality gives

‖a(u(t))ux(t)‖2 � C5(‖u(t)‖2 + ‖u(t)‖(3p+2)/(2−p)
2 ) +

1
2C4

‖u(t)‖H3(R).

Replacing the estimate above in (2.34) and taking the supremum in [0, T ], we get

‖u‖C([0,T ];H3(R)) � 2C4{‖ut‖0,T + (C6 + ‖b‖∞)‖u‖0,T + C5‖u‖(3p+2)/(2−p)
0,T }.

Then, using (2.22) and (2.25), it follows that

‖u‖C([0,T ];H3(R)) � 2C4{σ(β0(‖u0‖2)‖u0‖2)C(‖u0‖2)‖u0‖H3(R)

+ (C6 + ‖b‖∞)β0(‖u0‖2)‖u0‖2

+ C5β
(3p+2)/(2−p)
0 (‖u0‖2)‖u0‖4p/(2−p)

2 ‖u0‖2}
= σ1(‖u0‖2)‖u0‖H3(R), (2.35)

where

σ1(s) = 2C4{σ(β0(s)s)C(s) + (C6 + ‖b‖∞)β0(s) + C5β
(3p+2)/(2−p)
0 (s)s4p/(2−p)}.

Step 4 (‖uxxxx‖L2(0,T ;L2(R)) � σ5(‖u0‖2)‖u0‖H3(R)). We know that u ∈ L2(0, T ;
H4(R)) by (2.33). To prove the desired result, we differentiate the equation with
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respect to x to obtain

‖uxxxx‖L2(0;T,L2(R)) � ‖v‖0,T + T 1/2‖u‖C(0;T,H3(R)) + ‖a′(u)u2
x‖L2(0;T,L2(R))

+ ‖a(u)uxx‖L2(0;T,L2(R)) + ‖[bu]x‖L2(0;T,L2(R)). (2.36)

Next, we estimate the terms on the right side of (2.36). First, observe that

‖[bu]x‖L2(0;T,L2(R)) � ‖b‖H1(R)‖u‖L2(0;T,H1(R)) + ‖b‖H1(R)‖ux‖L2(0;T,L2(R))

� 2‖b‖H1(R)‖u‖0,T .

Then, from (2.22), (2.25) and (2.35), we obtain

‖uxxxx‖L2(0;T,L2(R)) � σ2(‖u0‖2)‖u0‖H3(R) + ‖a′(u)u2
x‖L2(0;T,L2(R))

+ ‖a(u)uxx‖L2(0;T,L2(R)), (2.37)

where σ2(s) = σ(β0(s)s)C(s) + T 1/2σ1(s) + 2‖b‖H1(R)β0(s). Moreover, using (2.6)
it follows that

‖a′(u(t))u2
x(t)‖2

� C{‖u2
x(t)‖2 + ‖|u(t)|p−1u2

x(t)‖2}

� C7{‖ux(t)‖3/2
2 ‖uxx(t)‖1/2

2 + ‖u(t)‖(p−1)/2
2 ‖ux(t)‖(p+2)/2

2 ‖uxx(t)‖1/2
2 }

� C7{‖ux(t)‖2‖u(t)‖H3(R) + ‖u(t)‖(p−1)/2
2 ‖ux(t)‖(p+2)/2

2 ‖uxx(t)‖1/2
2 }.

Then, the Gagliardo–Nirenberg inequality (2.23) with j = 1 and m = 3 leads to

‖a′(u(t))u2
x(t)‖2 � C8{‖ux(t)‖2‖u(t)‖H3(R) + ‖u(t)‖(5p+2)/6

2 ‖uxxx(t)‖(p+4)/6
2 }.

Moreover, Young’s inequality gives

‖a′(u(t))u2
x(t)‖2

2 � C9{‖ux(t)‖2‖u(t)‖H3(R) + ‖u(t)‖(5p+2)/(2−p)
2 + ‖uxxx(t)‖2},

which allows us to conclude that

‖a′(u)u2
x‖L2(0,T ;L2(R)) � C10{‖u‖C([0,T ];H3(R))‖u‖0,T

+ T 1/2‖u‖(5p+2)/(2−p)
0,T + T 1/2‖u‖C([0,T ];H3(R))}.

Hence,
‖a′(u)u2

x‖L2(0,T ;L2(R)) � σ3(‖u0‖2)‖u0‖H3(R) (2.38)

with

σ3(s) = C10{σ1(s)β0(s)s + T 1/2β
(5p+2)/(2−p)
0 (s)s((5p+2)/(2−p))−1 + T 1/2σ1(s)}.

On the other hand, (2.6) yields

‖a(u(t))uxx(t)‖2 � C11{‖u(t)‖H3(R) + ‖u(t)‖p/2
2 ‖ux(t)‖p/2

2 ‖uxx(t)‖2}

� C11{‖u‖C([0,T ];H3(R)) + ‖u‖p/2
0,T ‖u‖C([0,T ];H3(R))‖ux(t)‖p/2

2 }.

235

https://doi.org/10.1017/S0308210518000240 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210518000240


F. A. Gallego and A. F. Pazoto

It transpires that

‖a(u)uxx‖L2(0,T ;L2(R))

� C12

{
T 1/2‖u‖C([0,T ];H3(R)) + ‖u‖p/2

0,T ‖u‖C([0,T ];H3(R))

( ∫ T

0
‖ux(t)‖p

2

)1/2}
� C12{T 1/2‖u‖C([0,T ];H3(R)) + T (2−p)/4‖u‖p

0,T ‖u‖C([0,T ];H3(R))},

from which one obtains the inequality

‖a(u)uxx‖L2(0,T ;L2(R)) � σ4(‖u0‖2)‖u0‖H3(R), (2.39)

with σ4(s) = C12{T 1/2σ1(s) + T (2−p)/4βp
0 (s)σ1(s)sp}. Consequently, (2.37)–(2.39)

lead to
‖uxxxx‖L2(0;T,L2(R)) � σ5(‖u0‖2)‖u0‖H3(R), (2.40)

where σ5(s) = σ2(s) + σ3(s) + σ4(s). Finally, using (2.35) and (2.40), we conclude
that u ∈ L(0, T ; H4(R)) and

‖u‖3,T � β3(‖u0‖2)‖u0‖H3(R),

where β3(s) = σ1(s) + σ5(s).

Next, we shall show the well-posedness of the initial-value problem (IVP) (1.1)
in the space Hs(R) for 0 � s � 3 and 1 � p < 2. To do this, we shall use a method
introduced by Tartar [24] and adapted by Bona and Scott [6, theorem 4.3] to prove
the global well-posedness of the pure initial-value problem for the KdV equation
on the whole line in fractional order Sobolev spaces Hs(R).

Let B0 and B1 be two Banach spaces such that B1 ⊂ B0, with the inclusion map
being continuous. For f ∈ B0 and t � 0, let

K(f, t) = inf
g∈B1

{‖f − g‖B0 + t‖g‖B1}.

For 0 < θ < 1 and 1 � p � +∞, define

Bθ,p := [B0, B1]θ,p =
{

f ∈ B0 : ‖f‖θ,p :=
( ∫ ∞

0
K(f, t)t−θp−1 dt

)1/p

< ∞
}

with the usual modification for the p = ∞ case. Then, Bθ,p is a Banach space with
norm ‖ · ‖θ,p. Given two pairs, (θ1, p1) and (θ2, p2), as above, we write (θ1, p1) ≺
(θ2, p2) when

θ1 < θ2 or θ1 = θ2 and p1 > p2.

If (θ1, p1) ≺ (θ2, p2), then Bθ2,p2 ⊂ Bθ1,p1 with the inclusion map being continuous.
Then, the following result holds.

Theorem 2.10. Let Bj
0 and Bj

1 be Banach spaces such that Bj
1 ⊂ Bj

0, for j = 1, 2,
with continuous inclusion mappings. Let α and q lie in the ranges 0 < α < 1 and
1 � q � ∞. Suppose that A is a mapping satisfying

(i) A : B
1
α,q → B2

0 and, for f, g ∈ B
1
α,q,

‖Af − Ag‖B2
0

� C0(‖f‖B1
α,q

+ ‖g‖B1
α,q

)‖f − g‖B1
0
,
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(ii) A : B1
1 → B2

1 and, for h ∈ B
1
1,

‖Ah‖B2
1

� C1(‖h‖B1
α,q

)‖h‖B1
1
,

where Cj : R
+ → R

+ are continuous non-decreasing functions for j = 0, 1. Then, if
(θ, p) � (α, q), A maps B

1
θ,p into B

2
θ,p and for f ∈ B

1
θ,p we have

‖Af‖B
2
θ,p

� C(‖f‖B1
α,q

)‖f‖B
1
θ,p

,

where C(r) = 4C0(4r)1−θC1(3r)θ, r > 0.

Proof. See [6, theorem 4.3].

This theorem leads to the main result of this section.

Theorem 2.11. Let a be a C1(R)-function satisfying

|a(µ)| � C(1 + |µ|p), |a′(µ)| � C(1 + |µ|p−1), ∀µ ∈ R,

with 1 � p < 2, and let T > 0 and 0 � s � 3 be given. In addition, assume that
b ∈ L∞(R) when s = 0 and b ∈ H1(R) when s > 0. Then, for any u0 ∈ Hs(R),
the IVP (1.1) admits a unique solution u ∈ Bs,T . Moreover, there exists a non-
decreasing continuous function βs : R

+ → R
+, such that

‖u‖Bs,T
� βs(‖u0‖2)‖u0‖Hs(R).

Proof. We define

B1
0 = L2(R), B2

0 = B0,T , B1
1 = H3(R) and B2

1 = B3,T .

Thus,

B
1
s/3,2 = [L2(R), H3(R)]s/3,2 = Hs(R) and B

2
s/3,2 = [B0,T , B3,T ]s/3,2 = Bs,T .

Combining proposition 2.7 and theorem 2.9, we obtain (i) and (ii) in theorem 2.10.
Then, theorem 2.10 yields the result.

Theorem 2.11 gives a strong smoothing property for the solutions of the problem.

Corollary 2.12. Under the assumptions of theorem 2.11, for any u0 ∈ L2(R) the
corresponding solution u of (1.1) belongs to

B3,[ε,T ] = C([ε, T ];H3(R)) ∩ L2(ε, T ; H4(R))

for every T > 0 and 0 < ε < T .

Proof. The same result was obtained for the generalized KdV and the KdV–Burgers
equations in [19] and [10], respectively. Since the proof is analogous and follows from
classical arguments, we omit it here.
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2.2. The p � 2 case

We first restrict ourselves to the 2 � p < 5 case in order to obtain the existence
of solutions in the L2-setting, i.e. finite energy solutions. Next, we prove the global
well-posedness in the space B3,T .

First, we recall the following result, which follows from the Egoroff theorem.

Lemma 2.13. Let Ω be an open set in R
N , N � 1, and let {fn} be a sequence of

functions in Lp(Ω) with 1 < p < ∞, such that fn ⇀ f in Lp(Ω) and fn(x) → g(x)
a.e. Then f(x) = g(x) a.e.

Unlike the 1 � p < 2 case, the next result is not obtained by combining semi-
group theory and fixed-point arguments. Here, due to some technical problems, the
solution is obtained as a limit of the regular problems. We follow the ideas in [19].

Theorem 2.14. Let a be a C1(R)-function satisfying

|a(µ)| � C|µ|p |a′(µ)| � C|µ|p−1, ∀µ ∈ R, (2.41)

with 2 � p < 5. Then, for any u0 ∈ L2(R), problem (1.1) admits at least one
solution u, such that

u ∈ Cw([0, T ];L2(R)) ∩ L2(0, T ; H1(R)), ∀T > 0.

Proof. Consider a sequence {an} ∈ C∞
0 (R) such that

|a(j)
n (µ)| � C(1 + |µ|p−j), ∀µ ∈ R, j = 0, 1, (2.42)

an → a uniformly in each compact set in R. (2.43)

Note that |an(µ)| � Cn(1 + |µ|) and |a′
n(µ)| � Cn. Then, for each n, theorem 2.6

guarantees the existence of a function un ∈ B0,T as a solution of

∂tun + ∂3
xun − ∂2

xun + an(un)∂xun + b(x)un = 0,

un(0, x) = u0(x),

}
(2.44)

with ‖un‖0,T � 2CT ‖u0‖L2(R). Hence,

{un} is bounded in C([0, T ];L2(R)) ∩ L2(0, T ; H1(R)). (2.45)

From (2.45) we obtain a function u and a subsequence, still denoted by the same
index n, such that

un ⇀ u in L∞(0, T ; L2(R)) weak∗, (2.46)

un ⇀ u in L2(0, T ; H1(R)) weak. (2.47)

In order to analyse the nonlinear term an(un)∂xun, we consider the functions

A(u) :=
∫ u

0
a(v) dv and An(u) :=

∫ u

0
an(v) dv. (2.48)

Note that an(un)∂xun = ∂x[An(un)]. Then, taking α ∈ (1, 6/(p+1)) and proceeding
as in the proof of [19, theorem 2.14], we deduce that, for each interval I ⊂ R, the
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sequence {An(un)} is bounded in Lα([0, T ] × I). Indeed,

|An(u)|α � C

(
2|u| +

|u|p+1

p + 1

)α

� C ′(|u|α + |u|α(p+1)), (2.49)

where C and C ′ denote some positive constants depending only on p and α. There-
fore,

‖An(un)‖α
Lα((0,T )×I)

� C ′′
(

‖un‖α
L2(0,T ;L2(I)) +

∫ T

0
‖un(t)‖α(p+1)−2

∞ ‖un(t)‖2
2 dt

)

� C ′′
(

‖un‖α
0,T + 2(α(p+1)−2)/2

∫ T

0
‖un(t)‖(α(p+1)+2)/2

2 ‖unx(t)‖(α(p+1)−2)/2
2 dt

)

� C ′′(‖un‖α
0,T + 2(α(p+1)−2)/2T (6−α(p+1))/4‖un‖(α(p+1)+2)/2

0,T ‖un‖(α(p+1)−2)/2
0,T )

� C ′′(‖un‖α
0,T + ‖un‖α(p+1)

0,T )

� C̃(‖u0‖α
2 + ‖u0‖α(p+1)

2 ), (2.50)

where C̃ is a positive constant. Consequently,

{An(un)} is bounded in Lα(0, T ; H−1(I)) (since Lα(I) ↪→ H−1(I))

and

{an(un)∂xun} = {∂x[An(un)]} is bounded in Lα(0, T ; H−2(I)). (2.51)

Moreover, (2.45) and the fact that 1 < α � 2 allow us to conclude that

{∂3
xun}, {∂2

xun} and {bun} are bounded in L2(0, T ; H−2(R)) ⊂ Lα(0, T ; H−2(R)),

and therefore

∂tun = −∂3
xun +∂2

xun −an(un)∂xun −bun is bounded in Lα(0, T ; H−2(I)). (2.52)

Since {un} is bounded in Lα(0, T ; H1(R)) and the first embedding in H1(I) ↪→
L2(I) ↪→ H−2(I) is compact, we can apply [22, corollary 4, p. 85] to conclude that
{un} is relatively compact in L2(0, T ; L2(I)). Using a diagonal process, we obtain
a subsequence, still denoted by {un}, such that

un → u in L2(0, T ; L2
loc(R)) strongly and a.e. (2.53)

Moreover, by (2.47),

un ⇀ u weak in L2(0, T ; L2(R)) ≡ L2(R × (0, T ))

and by applying lemma 2.13 we obtain

un → u a.e in R × (0, T ). (2.54)

Then, using (2.43), (2.48) and (2.54), it is easy to see that

An(un(x, t)) → A(u(x, t)) a.e in R × (0, T ).
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Next, proceeding as in the previous steps and by applying lemma 2.13, the following
convergence holds:

An(un) ⇀ A(u) weak in Lα(0, T ; Lα
loc(R)).

Therefore, An(un) → A(u) in D′(R × (0, T )) and, by taking the partial derivative,
we obtain

an(un)∂xun → a(u)∂xu in D′(R × (0, T )). (2.55)

From (2.53) and (2.55), we can take the limit in (2.44) to conclude that u solves
(1.1) in the sense of distribution, i.e.

ut + uxxx − uxx + a(u)ux + bu = 0 in D′(R × (0, T )). (2.56)

On the other hand, by (2.45) and (2.52), we infer from [22, corollary 4, p. 85] that
{un} is relatively compact in C([0, T ];H−1

loc (R)). Therefore, there exists a subse-
quence (denoted by {un}), such that

un → u in C([0, T ];H−1
loc (R)). (2.57)

In particular, u(x, 0) = limn→∞ un(x, 0) = u0(x). Now, note that (2.47) yields

uxxx ∈ L2(0, T ; H−2(R)) ↪→ Lα(0, T ; H−2(R)),

uxx ∈ L2(0, T ; H−1(R)) ↪→ Lα(0, T ; H−2(R)),

bu ∈ L2(0, T ; H1(R)) ↪→ Lα(0, T ; H−2(R)).

Finally, we claim that

a(u)ux = [A(u)]x ∈ Lα(0, T ; H−2(R)) (2.58)

for any α ∈ (1, 6/(p+1)). In fact, first note that β = 1
2α(p+1)−2 < 2, then (2.46)

and (2.47) imply that u ∈ L∞(0, T, L2(R)) ∩ L2(0, T, H1(R)) ⊂ L∞(0, T, L2(R)) ∩
Lβ(0, T, H1(R)). Moreover, by using (2.41) and (2.48), there exists C = C(α, p) > 0
such that |A(u)|α � C|u|α(p+1). Thus, we obtain

‖A(u)‖α
Lα((0,T )×R) =

∫ T

0

∫
R

|A(u)(x, t)|α dxdt � C

∫ T

0

∫
R

|u(x, t)|α(p+1) dxdt

� C

∫ T

0
‖u(t)‖α(p+1)−2

∞ ‖u(t)‖2
2 dt

� 2(α(p+1)−2)/2C

∫ T

0
‖u(t)‖(α(p+1)+2)/2

2 ‖ux(t)‖(α(p+1)−2)/2
2 dt

� 2(α(p+1)−2)/2C‖u‖(α(p+1)+2)/2
L∞(0,T,L2(R))‖u‖β

Lβ(0,T,H1(R)).

This yields that
A(u) ∈ Lα(0, T, Lα(R)). (2.59)

Furthermore, since α ∈ (1, 2), it is easy to see that Lα(R) ⊂ H−1(R). Indeed, taking
v ∈ Lα(R) with 1 < α < 2 for any q > 1, it thus follows that

‖v‖2
H−1(R) =

∫
R

(1 + |ξ|2)−1|v̂(ξ)|2 dξ � K‖v̂‖2
L2q(R),
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where

K =
( ∫

R

(1 + |ξ|2)−q/(q−1) dξ

)(q−1)/q

.

In order to obtain finite K, we take q = α/2(α−1) > 1 and, applying the Hausdorff–
Young inequality

‖v̂‖Lα/(α−1)(R) � Cα‖v‖Lα(R) for some Cα > 0,

we obtain

‖v‖2
H−1(R) � M‖v‖2

Lα(R),

where M is a positive constant, which proves that Lα(R) ⊂ H−1(R). Thus, (2.59)
implies that A(u) ∈ Lα(0, T, H−1(R)), proving the claim (2.58). Now, by (2.56),
we deduce that ut ∈ Lα(0, T ; H−2(R)), and then u ∈ W 1,α(0, T ; H−2(R)). Since
α > 1, we conclude that u ∈ C([0, T ];H−2(R)). In particular, we obtain

u ∈ L∞(0, T ; L2(R)) ∩ Cw([0, T ];H−2(R)),

and from [25, ch. III, lemma 1.4] it follows that u ∈ Cw([0, T ];L2(R)).

Remark 2.15. When 2 � p < 4 we can prove theorem 2.14 with more general
assumptions on the function a(·). More precisely,

|a(µ)| � C(1 + |µ|p), |a′(µ)| � C(1 + |µ|p−1), ∀µ ∈ R.

The proof follows the same steps as those above, except for (2.59). Indeed, we first
claim that there exists α ∈ (1, 6/(p + 1)) such that

A(u) ∈ Lα(0, T, L2(R)). (2.60)

To prove it, note that

‖A(u)‖α
Lα(0,T,L2(R))

=
∫ T

0

( ∫
R

|A(u)(x, t)|2 dx

)α/2

dt

� C

∫ T

0

( ∫
R

(|u(x, t)|2 + |u(x, t)|2(p+1)
)

dx)α/2 dt

� C

( ∫ T

0
‖u(t)‖α

L2(R) dt +
∫ T

0

( ∫
R

|u(x, t)|2(p+1) dx

)α/2

dt

)

� C

(
‖u‖α

Lα(0,T ;L2(R)) +
∫ T

0
‖u(t)‖αp

L∞(R)‖u(t)‖α
L2(R) dt

)

� C

(
‖u‖α

Lα(0,T ;L2(R)) + 2αp/2
∫ T

0
‖u(t)‖α(p+2)/2

2 ‖ux(t)‖αp/2
2 dt

)
. (2.61)

Since 1 < 4/p � 6/(p+1), by picking any α ∈ (1, 4/p) and by using (2.47) we obtain
u ∈ L∞(0, T, L2(R)) ∩ L2(0, T, H1(R)) ⊂ Lα(0, T, L2(R)) ∩ Lαp/2(0, T, H1(R)).
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Hence, (2.61) implies that

‖A(u)‖α
Lα(0,T,L2(R))

� C
(
‖u‖α

Lα(0,T ;L2(R)) + 2αp/2‖u‖α(p+2)/2
L∞(0,T,L2(R))‖u‖αp/2

Lαp/2(0,T,H1(R))

)
,

which proves (2.60). Consequently, we obtain (2.58) provided that 2 � p < 4.

Definition 2.16. Let T > 0. A function u ∈ Cw([0, T ];L2(R)) ∩ L2(0, T ; H1(R))
is said to be a weak solution of (1.1) if there exist a sequence {an} of functions in
C∞

0 (R) satisfying (2.42) and (2.43) and a sequence of strong solutions un to (2.44)
such that (2.46), (2.47), (2.54) and (2.57) hold.

The proof of theorem 2.19 requires the following adaptation of lemma 2.4.

Lemma 2.17. For any T > 0, p � 1 and u, v, w ∈ B3,T such that ut, vt, wt ∈ B0,T ,
the following hold.

(i) We have

‖(a(u)vx)x‖L2(0,T ;L2(R)) � CT 1/2{‖u‖3,T ‖v‖3,T + 2‖u‖p
3,T ‖v‖3,T + ‖v‖3,T }.

(ii) We have

‖a(u)vx‖W 1,1(0,T ;L2(R))

� CT 1/2{(‖v‖3,T + ‖vt‖0,T ) + ‖u‖p
3,T (‖v‖3,T + ‖vt‖0,T )

+ ‖ut‖0,T ‖v‖3,T + ‖ut‖0,T ‖v‖3,T ‖u‖p−1
3,T },

(iii) We have

‖uwx‖W 1,1(0,T ;L2(R))

� 21/2T 1/4{‖u‖3,T ‖w‖3,T + ‖ut‖0,T ‖w‖3,T + ‖u‖3,T ‖wt‖0,T }.

(iv) If p � 2, then

‖u|w|p−1vx‖W 1,1(0,T ;L2(R))

� T 1/2{‖u‖3,T ‖w‖p−1
3,T (‖v‖3,T + ‖vt‖0,T )

+ ‖v‖3,T ‖w‖p−1
3,T ‖ut‖0,T + (p − 1)‖u‖3,T ‖w‖p−2

3,T ‖v‖3,T ‖wt‖0,T }.

Proof. First, note that if u ∈ B3,T , then we have

∂j
xu ∈ C([0, T ];H3−j(R)) ↪→ C([0, T ];C(R)),

‖∂j
xu‖C([0,T ];C(R)) � C‖u‖3,T ,

}
j = 0, 1, 2, (2.62 a)

∂j
xu ∈ L2([0, T ];H4−j(R)) ↪→ L2([0, T ];L2(R)),

‖∂j
xu‖L2([0,T ];L2(R)) � C‖u‖3,T ,

}
j = 0, 1, 2, 3. (2.62 b)
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(i) Formulae (1.3) and (2.62) imply that

‖(a(u)vx)x‖L2(0,T ;L2(R))

� C{T 1/2‖ux‖C([0,T ];C(R))‖vx‖C(0,T ;L2(R))

+ T 1/2‖u‖p−1
C([0,T ];C(R))‖ux‖C([0,T ];C(R))‖vx‖C(0,T ;L2(R))

+ T 1/2‖vxx‖C([0,T ];L2(R)) + T 1/2‖u‖p
C([0,T ];C(R))‖vxx‖C(0,T ;L2(R))}

� CT 1/2{‖u‖3,T ‖v‖3,T + 2‖u‖p
3,T ‖v‖3,T + ‖v‖3,T }.

(ii) By (1.3), the Hölder inequality and (2.62) we get

‖a(u)vx‖W 1,1(0,T ;L2(R))

� C{‖vx‖L2(0,T ;L2(R))T
1/2 + ‖u‖p

C([0,T ];C(R))‖vx‖L2(0,T ;L2(R))T
1/2

+ ‖vx‖C([0,T ];C(R))‖ut‖L2(0,T ;L2(R))T
1/2

+ ‖u‖p−1
C([0,T ];C(R))‖vx‖C([0,T ];C(R))‖ut‖L2(0,T ;L2(R))T

1/2

+ T 1/2‖vtx‖L2(0,T ;L2(R)) + ‖u‖p
C([0,T ];C(R))‖vtx‖L2(0,T ;L2(R))T

1/2}

� CT 1/2{‖v‖3,T + ‖u‖p
3,T ‖v‖3,T + ‖v‖3,T ‖ut‖0,T

+ ‖u‖p−1
3,T ‖v‖3,T ‖ut‖0,T + ‖vt‖0,T + ‖u‖p

3,T ‖vt‖0,T }.

(iii) This is a consequence of lemma 2.4(ii).

(iv) The Hölder inequality and (2.62) lead to the desired result:

‖u|w|p−1vx‖W 1,1(0,T ;L2(R))

� ‖u‖C([0,T ];C(R))‖w‖p−1
C([0,T ];C(R))‖vx‖L2(0,T ;L2(R))T

1/2

+ ‖vx‖C([0,T ];C(R))‖w‖p−1
C([0,T ];C(R))‖ut‖L2(0,T ;L2(R))T

1/2

+ (p − 1)‖u‖C([0,T ];C(R))‖w‖p−2
C([0,T ];C(R))‖vx‖C([0,T ];C(R))‖wt‖L2(0,T ;L2(R))T

1/2

+ ‖u‖C([0,T ];C(R))‖w‖p−1
C([0,T ];C(R))‖vtx‖L2(0,T ;L2(R))T

1/2

� T 1/2{‖u‖3,T ‖w‖p−1
3,T ‖v‖3,T + ‖v‖3,T ‖w‖p−1

3,T ‖ut‖0,T

+ (p − 1)‖u‖3,T ‖w‖p−2
3,T ‖v‖3,T ‖wt‖0,T + ‖u‖3,T ‖w‖p−1

3,T ‖vt‖0,T }.

Proposition 2.1 asserts that the inhomogeneous linear problem (2.1) is well posed,
and we obtain the existence of a mild solution. However, we can have a regular
solution as shown by the following.

Proposition 2.18. Let T > 0, b ∈ H1(R) and u0 ∈ H3(R). If f ∈ W 1,1(0, T ;
L2(R)) and fx ∈ L2(0, T ; L2(R)), the inhomogeneous linear problem (2.1) has a
unique regular solution u ∈ B3,T such that

‖u‖3,T � C3,T {‖u0‖H3(R) + ‖f‖W 1,1(0,T ;L2(R)) + ‖fx‖L2(0,T ;L2(R))}, (2.63)
‖ut‖0,T � C0,T {‖u0‖H3(R) + ‖f(0)‖L2(R) + ‖ft‖L1(0,T ;L2(R))} (2.64)

and ut ∈ B0,T , where C3,T = 2Ce‖b‖∞T and C0,T = 2e‖b‖∞T .
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Proof. By using semigroup theory and the previous results, we obtain a unique
regular solution u ∈ C([0, T ];H3(R)). Therefore, we shall prove that u ∈ L2(0, T,
H4(R)). Indeed, first note that u0 ∈ H3(R) ↪→ L2(R). Hence, by applying proposi-
tion 2.1 it follows that u ∈ B0,T and

‖u‖0,T � CT {‖u0‖H3(R) + ‖f‖W 1,1(0,T ;L2(R)) + ‖fx‖L2(0,T ;L2(R))}, (2.65)

where CT = 2e‖b‖∞T . On the other hand, note that ut solves the following problem:

vt − vxx + vxxx + bv = ft in R × (0,∞),
v(0) = v0 in R × (0,∞),

where v0 = ∂2
xu0 −∂3

xu0 − bu0 + f(·, 0) ∈ L2(R). Then, by applying proposition 2.1,
we have ut ∈ B0,T and

‖ut‖0,T � CT {‖u0‖H3(R) + ‖f(0)‖2 + ‖ft‖L1(0,T ;L2(R))}, (2.66)

which yield (2.64). Moreover,

‖(bu)x‖L2(0,T ;L2(R)) � ‖bx‖2‖u‖L2(0,T ;L∞(R)) + ‖b‖∞‖ux‖L2(0,T ;L2(R))

� C‖b‖H1(R)‖u‖0,T , (2.67)

where C is the embedding constant of H1(R) ↪→ L∞(R). Since

∂4
xu = ∂3

xu − ∂xut − ∂x(bu) + ∂xf in D′(R), ∀t > 0,

we have that ∂4
xu ∈ L2(0, T ; L2(R)), i.e. u ∈ L2(0, T ; H4(R)) and u ∈ B3,T . In order

to prove (2.63), we need some estimates. Note that from (2.65) we get

sup
t∈[0,T ]

‖u(t)‖2 � CT {‖u0‖H3(R) + ‖f‖W 1,1(0,T ;L2(R)) + ‖fx‖L2(0,T ;L2(R))}. (2.68)

Multiplying the equation in (2.1) by uxx and integrating in R, one obtains the
inequality

1
2

d
dt

‖ux(t)‖2
2 + ‖uxx(t)‖2

2 � {‖f(t)‖2 + ‖bu(t)‖2}‖uxx(t)‖2.

Then, Young’s inequality leads to

1
2

d
dt

‖ux(t)‖2
2 + 1

2‖uxx(t)‖2
2 � C{‖f(t)‖2

2 + ‖b‖2
∞‖u(t)‖2

2}.

By integrating on [0, T ], using (2.65) and the embedding W 1,1(0, T )(0, T ; L2(R)) ↪→
L∞(0, T ; L2(R)), the solution can be estimated as follows:

sup
t∈[0,T ]

‖ux(t)‖2 � CCT {‖u0‖H3(R) + ‖f‖W 1,1(0,T ;L2(R)) + ‖fx‖L2(0,T ;L2(R))}. (2.69)

A similar estimate is obtained by multiplying the equation by ∂4
xu, integrating in

R and using Young’s inequality:

1
2

d
dt

‖uxx(t)‖2
2 + 1

2‖uxxx(t)‖2
2 � C{‖fx(t)‖2

2 + ‖(bu)x(t)‖2
2}.
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Integrating on [0, T ] and using (2.67) and (2.65) yields

sup
t∈[0,T ]

‖uxx(t)‖2 � CCT {‖u0‖H3(R)+‖f‖W 1,1(0,T ;L2(R))+‖fx‖L2(0,T ;L2(R))}. (2.70)

Since

‖uxxx(t)‖2 � ‖ut(t)‖2 + ‖uxx(t)‖2 + ‖bu(t)‖2 + ‖f(t)‖2,

using (2.65), (2.66), (2.70) and the embedding above, we conclude that

sup
t∈[0,T ]

‖uxxx(t)‖2 � CCT {‖u0‖H3(R) + ‖f‖W 1,1(0,T ;L2(R)) + ‖fx‖L2(0,T ;L2(R))}.

(2.71)
Putting together (2.68), (2.69), (2.70) and (2.71), we obtain

‖u‖C([0,T ];H3(R)) � CCT {‖u0‖H3(R)+‖f‖W 1,1(0,T ;L2(R))+‖fx‖L2(0,T ;L2(R))}. (2.72)

On the other hand,

‖∂4
xu‖L2(0,T ;L2(R)) � ‖uxxx‖L2(0,T ;L2(R)) + ‖∂xut‖L2(0,T ;L2(R))

+ ‖(bu)x‖L2(0,T ;L2(R)) + ‖fx‖L2(0,T ;L2(R))

� T 1/2‖u‖C([0,T ];H3(R)) + ‖ut‖0,T + ‖(bu)x‖L2(0,T ;L2(R))

+ ‖fx‖L2(0,T ;L2(R)).

The above inequality, (2.65)–(2.67) and (2.71) allow us to conclude that

‖∂4
xu‖L2(0,T ;L2(R)) � CCT {‖u0‖H3(R) + ‖f‖W 1,1(0,T ;L2(R)) + ‖fx‖L2(0,T ;L2(R))}.

(2.73)
Estimates (2.72) and (2.73) imply (2.63).

Theorem 2.19. Let b ∈ H1(R) and a ∈ C2(R) satisfy

|a(µ)| � C(1 + |µ|p), |a′(µ)| � C(1 + |µ|p−1) and |a′′(µ)| � C(1 + |µ|p−2),
∀µ ∈ R, (2.74)

with p � 2. Let T > 0 and u0 ∈ H3(R). Then, there exists a unique solution
u ∈ B3,T of (1.1) such that

‖u‖3,T � η3(‖u0‖2)‖u0‖H3(R),

where η3 : R+ → R+ is a non-decreasing continuous function.

Proof. Let 0 < θ � T and R > 0 to be a constant to be determined later. Consider

Sθ,R := {(u, v) ∈ B3,θ × B0,θ : v = ut, ‖(u, v)‖B3,θ×B0,θ
:= ‖u‖3,θ + ‖v‖0,θ � R}.

Then, for each (u, ut) ∈ Sθ,R ⊂ B3,θ × B0,θ, consider the problems

vt = Abv − a(u)ux,

v(0) = u0

}
(2.75)
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and
zt = Abz − [a(u)ux]t,

z(0) = z0,

}
(2.76)

with z0 = −u0xxx+u0xx−bu0−a(u0)u0x ∈ L2(R) and Abv = ∂2
xv − ∂3

xv − bv. Recall
that Ab generates a strongly continuous semigroup {S(t)}t�0 of contractions in
L2(R). Moreover, by lemma 2.17(i), (ii), a(u)ux ∈ W 1,1(0, θ; L2(R)) and [a(u)ux]x ∈
L2(0, θ; L2(R)). Then, by proposition 2.18, problems (2.75) and (2.76) have a unique
mild solution v such that (v, vt) ∈ B3,θ × B0,θ and

‖(v, vt)‖B3,θ×B0,θ
� Cθ{‖u0‖H3(R) + ‖a(u)ux‖W 1,1(0,θ;L2(R))

+ ‖[a(u)ux]x‖L2(0,θ;L2(R))}, (2.77)

where Cθ = 2eθ‖b‖∞ . Thus, we can define the operator

Γ : Sθ,R ⊂ B3,θ × B0,θ → B3,θ × B0,θ by Γ (u, ut) = (v, vt).

Since Cθ � CT , from (2.77) and lemma 2.17, we have

‖Γ (u, ut)‖B3,θ×B0,θ
� CT ‖u0‖H3(R)

+ CT Cθ1/2{(‖u‖3,θ + ‖ut‖0,θ) + ‖u‖p
3,θ(‖u‖3,θ + ‖ut‖0,θ)

+ ‖ut‖0,θ‖u‖3,θ + ‖ut‖0,θ‖u‖p
3,θ}

+ CT Cθ1/2{‖u‖2
3,θ + 2‖u‖p+1

3,θ + ‖u‖3,T }
� CT ‖u0‖H3(R) + CT Cθ1/2{4Rp+1 + 2R2 + 2R}.

Choosing R = 2CT ‖u0‖H3(R), it follows that

‖Γ (u, ut)‖B3,θ×B0,θ
� (K1 + 1

2 )R,

where K1(θ) = CT Cθ1/2{4Rp + 2R + 2}. On the other hand, let (u, ut), (w, wt) ∈
Sθ,R and note that Γ (u, ut) − Γ (w, wt) is solutions of

vt = Abv + [a(w)wx − a(u)ux],
v(0) = 0

and

zt = Abz + [a(w)wx − a(u)ux]t,
z(0) = 0.

Hence, by lemma 2.17, the following estimate holds:

‖Γ (u, ut) − Γ (w, wt)‖B3,θ×B0,θ

� CT {‖a(w)wx − a(u)ux‖W 1,1(0,θ;L2(R))

+ ‖[a(w)wx − a(u)ux]x‖L2(0,θ;L2(R))}. (2.78)

The next steps are devoted to estimating the terms on the right-hand side of (2.78),
i.e.

‖a(w)wx − a(u)ux‖W 1,1(0,θ;L2(R))

� ‖(a(w) − a(u))wx‖W 1,1(0,θ;L2(R)) + ‖a(u)(w − u)x‖W 1,1(0,θ;L2(R)).

https://doi.org/10.1017/S0308210518000240 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210518000240


On the behaviour of the generalized KdV–Burgers equation 247

By using the mean-valued theorem and lemma 2.17, we have

‖a(w)wx − a(u)ux‖W 1,1(0,θ;L2)

� C{‖(1 + |u|p−1 + |w|p−1)|w − u|wx‖W 1,1(0,θ;L2(R))

+ ‖a(u)(w − u)x‖W 1,1(0,θ;L2(R)) + ‖|w|p−1|w − u|wx‖W 1,1(0,θ;L2(R))

+ ‖a(u)(w − u)x‖W 1,1(0,θ;L2(R))}
� C{21/2θ1/4{‖w − u‖3,θ‖w‖3,θ + ‖(w − u)t‖0,θ‖w‖3,θ + ‖w − u‖3,θ‖wt‖0,θ}

+ θ1/2{‖w − u‖3,θ‖u‖p−1
3,θ (‖w‖3,θ + ‖wt‖0,θ)

+ ‖(w − u)t‖0,θ‖w‖3,θ‖u‖p−1
3,θ

+ (p − 1)‖ut‖0,θ‖w − u‖3,θ‖u‖p−2
3,θ ‖w‖3,θ}

+ θ1/2{‖w − u‖3,θ‖w‖p−1
3,θ (‖w‖3,θ + ‖wt‖0,θ)

+ ‖w‖p
3,θ‖[w − u]t‖0,θ + (p − 1)‖w − u‖3,θ‖w‖p−1

3,θ ‖wt‖0,θ}
+ Cθ1/2{(‖w − u‖3,θ + ‖(w − u)t‖0,θ)

+ ‖u‖p
3,θ(‖w − u‖3,θ + ‖(w − u)t‖0,θ)

+ ‖ut‖0,θ‖w − u‖3,θ + ‖ut‖0,θ‖w − u‖3,θ‖u‖p−1
3,θ }

� K2‖(w − u, (w − u)t)‖B3,θ×B0,θ
, (2.79)

where K2(θ) = C{(23/2θ1/4 + θ1/2)R + 2(p + 1)θ1/2Rp + θ1/2}. To estimate the
second term, note that

[a(w)wx − a(u)ux]x = [a′(w) − a′(u)]w2
x + a′(u)[w − u]x[w + u]x

+ [a(w) − a(u)]wxx + a(u)[wxx − uxx]. (2.80)

Then, using the mean-value theorem, (2.62) and (2.74), we have the following esti-
mates:

‖[a′(w) − a′(u)]w2
x‖L2(0,θ;L2(R))

� C‖[1 + |w|p−2 + |u|p−2]|w − u|w2
x‖L2(0,θ;L2(R))

� C{‖|w − u|w2
x‖L2(0,θ;L2(R)) + ‖|w|p−2|w − u|w2

x‖L2(0,θ;L2(R))

+ ‖|u|p−2|w − u|w2
x‖L2(0,θ;L2(R))}

� Cθ1/2{‖w‖2
3,θ‖w − u‖3,θ + ‖w‖p

3,θ‖w − u‖3,θ + ‖u‖p−2
3,θ ‖w‖2

3,θ‖w − u‖3,θ},

‖a′(u)[w − u]x[w + u]x‖L2(0,θ;L2(R))

� ‖a′(u)[w − u]xwx‖L2(0,θ;L2(R)) + ‖a′(u)[w − u]xux‖L2(0,θ;L2(R))

� C{‖[w − u]xwx‖L2(0,θ;L2(R)) + ‖[w − u]xux‖L2(0,θ;L2(R))

+ ‖u|p−1|[w − u]xwx‖L2(0,θ;L2(R)) + ‖|u|p−1[w − u]xux‖L2(0,θ;L2(R))}
� Cθ1/2{‖w‖3,θ‖w − u‖3,θ + ‖u‖3,θ‖w − u‖3,θ

+ ‖u‖p−1
3,θ ‖w‖3,θ‖w − u‖3,θ + ‖u‖p

3,θ‖w − u‖3,θ}
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and

‖[a(w) − a(u)]wxx‖L2(0,θ;L2(R))

� Cθ1/2{‖w‖3,θ‖w − u‖3,θ

+ ‖u‖p−1
3,θ ‖w‖3,θ‖w − u‖3,θ + ‖w‖p

3,θ‖w − u‖3,θ},

‖a(u)[wxx − uxx]‖L2(0,θ;L2(R))

� Cθ1/2{‖w − u‖3,θ + ‖u‖p
3,θ‖w − u‖3,θ}.

The above estimates and (2.80), show that

‖[a(w)wx − a(u)ux]x‖L2(0,θ;L2(R))

� Cθ1/2{2‖w‖p
3,θ + ‖w‖2

3,θ + 2‖w‖3,θ + 2‖u‖p
3,θ + ‖u‖3,θ

+ 2‖u‖p−1
3,θ ‖w‖3,θ + ‖u‖p−2

3,θ ‖w‖2
3,θ + 1}‖w − u‖3,θ

� K3‖(w − u, [w − u]t)‖B3,θ×B0,θ
, (2.81)

where K3(θ) = Cθ1/2{7Rp + R2 + 3R + 1}. From (2.78), (2.79) and (2.81), we get

‖Γ (u, ut) − Γ (w, wt)‖B3,θ×B0,θ
� K4‖(w − u, [w − u]t)‖B3,θ×B0,θ

,

where

K4 = CT (K2 + K3)

= CT Cθ1/2{2(p + 9)Rp + Rp−1 + R2 + 4R + 2} + 23/2CT Cθ1/4R.

Note that K1 � K4. Therefore, choosing θ > 0 such that K4 < 1
2 , it follows that

‖Γ (u, ut)‖B3,θ×B0,θ
� R,

‖Γ (u, ut) − Γ (w, wt)‖B3,θ×B0,θ
� 1

2‖(w − u, [w − u]t)‖B3,θ×B0,θ
,

}

∀(u, ut), (w, wt) ∈ Sθ,R ⊂ B3,θ × B0,θ.

Hence, Γ : Sθ,R → Sθ,R is a contraction, and by the Banach fixed-point theorem we
obtain a unique pair (u, ut) ∈ Sθ,R such that Γ (u, ut) = (u, ut). Thus, u is a unique
local mild solution to problem (1.1) and satisfies

‖u‖3,θ � 2CT ‖u0‖H3(R). (2.82)

Moreover, (2.82) implies the solution does not blow-up in finite time, and by using
standard arguments we can extend θ to [0, T ]. Finally, by defining η3(s) = 2CT , the
proof is complete.

3. Exponential stability

This section is devoted to proving the exponential decay of the solutions under the
assumptions (1.4) and (1.5). We consider two cases: 1 � p < 2 and 2 � p < 5.
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3.1. The 1 � p < 2 case

In order to make our work self-contained, we prove the following proposition,
which is similar to [10, theorem 5.1].

Proposition 3.1. Let b satisfy (1.4). Then, for any u0 ∈ L2(R) and 1 � p < 2,
the corresponding solution u of (1.1) is exponentially stable and satisfies the decay
estimate

‖u(t)‖2 � e−2λ0t‖u0‖2, ∀t � 0. (3.1)

Proof. We first consider u0 ∈ H3(R) and the corresponding smooth solution, u.
Multiplying the equation in (1.1) by u and integrating in R yields

d
dt

‖u(t)‖2
2 + 2‖ux(t)‖2

2 = −2
∫

R

b(x)|u(x, t)|2 dx.

Hence, proceeding as in [10, theorem 5.1], we obtain

‖u(t)‖2 � e−2λ0t‖u0‖2.

Now, let u0 ∈ L2(R) and let u be the corresponding mild solution given by theo-
rem 2.6. Consider {un,0} ∈ H3(R), such that

un,0 → u0 in L2(R).

Then, the corresponding strong solutions un satisfy the estimate

‖un(t)‖2 � e−2λ0t‖un,0‖2. (3.2)

On the other hand, note that the identity (2.12) in theorem 2.6 implies that, for all
t � 0,

un → u in L2(R).

On taking the limit in (3.2), we obtain (3.1).

Corollary 3.2. Let T > 0, u0 ∈ L2(R) and b satisfy (1.4). Then there exists
a non-decreasing continuous function α0 : R

+ → R
+ such that the corresponding

solution, u, of (1.1) with 1 � p < 2 satisfies

‖u‖0,[t,t+T ] � α0(‖u0‖2)e−2λ0t, ∀t � 0.

Proof. Note that, after a change of variable, the restriction of u to [t, t + T ] is a
solution of problem (1.1) with respect to the initial data u(t). Then, by theorem 2.11
and proposition 3.1 we have

‖u‖0,[t,t+T ] � β0(‖u(t)‖2)‖u(t)‖2

� β0(e−2λ0t‖u0‖2)‖u0‖2e−2λ0t

� α0(‖u0‖2)e−2λ0t,

where α0(s) = β0(s)s.

The next result was inspired by the ideas introduced in the proof of [10, theo-
rem 6.1] and in [19, proposition 3.9].
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Proposition 3.3. Let T > 0, 1 � p < 2, a(0) = 0 and b satisfy (1.4). Then, there
exist γ > 0, T0 > 0 and a non-negative continuous function α3 : R

+ → R
+ such

that for every u0 ∈ H3(R) the corresponding solution, u, satisfies

‖u(t)‖H3(R) � α3(‖u0‖2, T0)‖u0‖H3(R)e−γt, ∀t � T0. (3.3)

Proof. Let v = ut. Then, by proposition 2.8, v solves the linearized equation (2.18)
with v0 = −∂3

xu0 + ∂2
xu0 − a(u0)∂xu0 − bu0 and satisfies

‖v‖0,T � σ(‖u‖0,T )‖v0‖2. (3.4)

After a change of variable, the restriction of v to [t, t + T ] is a solution of prob-
lem (2.18) with respect to the initial data v(t) and

‖v‖0,[t,t+T ] � σ(‖u‖0,[t,t+T ])‖v(t)‖2.

Applying corollary 3.2, it follows that

‖v‖0,[t,t+T ] � σ(α0(‖u0‖2)e−2λ0t)‖v(t)‖2 � σ(α0(‖u0‖2))‖v(t)‖2. (3.5)

On the other hand, the solution v may be written as

v(t) = S(t)v0 −
∫ t

0
S(t − s)[a(u(s))v(s)]x ds,

where S(t) is a C0-semigroup of contraction in L2(R) generated by the operator
Ab. Note that v1(t) = S(t)v0 is solution of problem (2.18) with a(u) = 0. Then,
proceeding as in the proof of proposition 3.1, we have

‖v1(t)‖2 � ‖v0‖e−2λ0t, ∀t � 0. (3.6)

Let us now define

v2(t) =
∫ t

0
S(t − s)[a(u(s))v(s)]x ds.

Note that

‖v2(T )‖2 � ‖a′(u)uxv‖L1(0,T ;L2(R)) + ‖a(u)vx‖L1(0,T ;L2(R)).

Moreover, a(0) = 0 implies that |a(u)| � C(1 + |u|p−1)|u| for some C > 0. Thus,
by using lemma 2.4, the following holds:

‖v2(T )‖2 � C{‖(1 + |u|p−1)uxv‖L1(0,T ;L2(R)) + ‖(1 + |u|p−1)|u|vx‖L1(0,T ;L2(R))}
� 2C{21/2T 1/4‖u‖0,T ‖v‖0,T + 2p/2T (2−p)/4‖u‖p

0,T ‖v‖0,T }. (3.7)

Using (3.4), (3.6) and (3.7), we obtain a positive constant KT such that

‖v(T )‖2 � (e−2λ0T + KT (1 + ‖u‖p−1
0,T )‖u‖0,T σ(‖u‖0,T ))‖v0‖2.

With the notation introduced above, we consider the sequence yn(·) = v(·, nT ) and
introduce wn(·, t) = v(·, t + nT ). For t ∈ [0, T ], wn solves the problem

∂twn + ∂3
xwn − ∂2

xwn + [a(u(· + nT ))wn]x + bwn = 0 in R × R
+,

wn(0) = yn in R.
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First, observe that for yn we can obtain an estimate similar to that for v(T ):

‖yn+1‖2

= ‖wn(T )‖2

� e−2λ0T ‖w0‖2 + KT (1 + ‖u(· + nT )‖p−1
0,T )‖u(· + nT )‖0,T ‖wn‖0,T

� {e−2λ0T + KT (1 + ‖u‖p−1
0,[nT,(n+1)T ])‖u‖0,[nT,(n+1)T ]σ(‖u‖0,[nT,(n+1)T ])}‖yn‖2.

(3.8)

On the other hand, we can take β > 0 sufficiently small such that

e−2λ0T + KT (1 + βp−1)βσ(β) < 1.

With this choice of β, corollary 3.2 allows us to choose N > 0 sufficiently large,
which satisfies

‖u‖0,[nT,(n+1)T ] � α0(‖u0‖2)e−2λ0nT � α0(‖u0‖2)e−2λ0NT � β, ∀n > N.

Thus, from (3.8) we obtain the following estimate:

‖yn+1‖2 � r‖yn‖2, ∀n � N, 0 < r < 1,

which implies
‖v((n + k)T )‖2 � rk‖v(nT )‖2, ∀n � N. (3.9)

Let T0 = NT and t � T0. Then, there exist k ∈ N and θ ∈ [0, T ] satisfying

t = (N + k)T + θ.

Then, from (3.5) and (3.9), we find that

‖v(t)‖2 � ‖v‖0,[(N+k)T,(N+k+1)T ] � σ(α0(‖u0‖2))‖v((N + k)T )‖2

� σ(α0(‖u0‖2))r(t−NT−θ)/T ‖v(T0)‖2

� σ(α0(‖u0‖2))r(t−NT−θ)/T σ(α0(T0, ‖u0‖2))‖v(0)‖2

� η1(‖u0‖)e−δ1t‖v0‖2,

where

δ1 =
1
T

ln
(

1
r

)
and η1(s) = σ(α0(s))σ(α0(T0, s))r−(N+1).

Invoking the estimate (2.24) in theorem 2.9, and bearing in mind that v = ut, we
get

‖ut(t)‖2 � η2(‖u0‖2)‖u0‖H3(R)e−δ1t, ∀t � T0, (3.10)

where η2(s) = η1(s)C(s). On the other hand, note that

‖uxxx(t)‖2 � ‖ut(t)‖2 + ‖uxx(t)‖2 + ‖a(u(t))u(t)‖2 + ‖b‖∞‖u(t)‖2. (3.11)

Estimating the nonlinear term as in the proof of lemma 2.3, i.e.

‖a(u(t))u(t)‖2 = ‖u(t)p+1ux(t)‖2

� ‖u(t)p+1‖∞‖ux(t)‖2

� 2(p+1)/2‖u(t)‖(p+1)/2
2 ‖ux(t)‖(p+3)/2

2 ,
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we obtain from (3.11) that

‖uxxx(t)‖2 � ‖ut(t)‖2 + ‖uxx(t)‖2

+ 2(p+1)/2‖u(t)‖(p+1)/2
2 ‖ux(t)‖(p+3)/2

2 + ‖b‖∞‖u(t)‖2.

Using the Gagliardo–Nirenberg and Young inequalities, it follows that

‖uxxx(t)‖2 � ‖ut(t)‖2 + C‖uxxx(t)‖2/3
2 ‖u(t)‖1/3

2

+ 2(p+1)/2C‖u(t)‖(5p+9)/6
2 ‖uxxx(t)‖(p+3)/6

2 + ‖b‖∞‖u(t)‖2

� ‖ut(t)‖2 +
(

C

3ε
+ ‖b‖∞

)
‖u(t)‖2

+
2(p+1)/2(3 − p)C

6ε
‖u(t)‖(5p+9)/(3−p)

2 +
(

p + 7
6

)
Cε‖uxxx(t)‖2.

Choosing ε = 3/C(p + 7), we have

‖uxxx(t)‖2 � 2‖ut(t)‖2 + 2
(

C2(p + 7)
9

+ ‖b‖∞

)
‖u(t)‖2

+
2(p+1)/2(3 − p)(p + 7)C2

18
‖u(t)‖(5p+9)/(3−p)

2 .

By applying proposition 3.1 and estimate (3.10), the following decay estimate holds:

‖uxxx(t)‖2 � η3(‖u0‖)‖u0‖H3(R)e−γt, ∀t � T0, (3.12)

where

η3(s) = 2η2(s) + 2
9C2(p + 7) + 2‖b‖∞ + 1

3 (2(p+1)/2C2(3 − p)(p + 7)s(6p−1)/(3−p))

and γ = min{δ1, 2λ0}. Now, using Gagliardo–Nirenberg and Young inequalities it
is easy to obtain

‖u(t)‖H3(R) � C1(‖u(t)‖2 + ‖uxxx(t)‖2).

Finally, by proposition 3.1 and (3.12) we obtain (3.3) with α3(s) = C1(1+η3(s)).

Propositions 3.1 and 3.3, together with corollary 2.12 and interpolation argu-
ments, give the main result of this section.

Theorem 3.4. Let T > 0, 1 � p < 2, a(0) = 0 and b satisfying (1.4). Then, there
exist positive constants γ, ε0 and a continuous non-negative function α : R

+ → R
+,

such that, for every u0 ∈ Hs(R), with 0 � s � 3, the corresponding solution u
satisfies

‖u(t)‖Hs(R) � α(T0, ‖u0‖2)‖u0‖Hs(R)e−λt, ∀t � T0. (3.13)

Proof. By corollary 2.12, the corresponding solution u belongs to B0,[ε,T ] for all
ε ∈ (0, T ]. In particular, we choose ε � T0, where T0 is given by proposition 3.3.
Then, by using the interpolation inequality (2.43) in [16, p. 19], we have

‖u(t)‖Hs(R) = ‖u(t)‖[L2(R),H3(R)]2,s/3
� C‖u(t)‖1−s/3

2 ‖u(t)‖s/3
H3(R), ∀t � ε.
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Finally, propositions 3.1 and 3.3 give us that

‖u(t)‖Hs(R) � Ce−2(1−s/3)λ0t‖u0‖(1−s/3)
2 α

s/3
3 (‖u0‖2, T0)e−sγt/3, ∀t � T0.

Observe that, by construction, γ � 2λ0. Therefore we obtain (3.13) with α(s, T0) =
Cα

s/3
3 (s, T0).

3.2. The 2 � p < 5 case

Throughout this section we assume that the damping function b = b(x) does not
change sign and satisfies (1.5). Under this condition, we prove the exponential decay
of the solutions in the L2-norm by using the so-called compactness–uniqueness
argument. The key is to establish the unique continuation property for the solution
of the GKdVB equation. The proof of this unique continuation property is mainly
based on a Carleman estimate.

The following Carleman estimate is based on the global Carleman inequality
obtained for the KdV equation in [18].

Lemma 3.5 (Carleman’s estimate). Let T and L be positive numbers. Then, there
exist a smooth positive function ψ on [−L, L] (which depends on L) and positive
constants s0 = s0(L, T ) and C = C(L, T ) such that, for all s � s0 and any

q ∈ L2(0, T ; H3(−L, L)) ∩ H1(0, T ; L2(−L, L)) (3.14)

satisfying
q(t, ±L) = qx(t, ±L) = qxx(t, ±L) = 0 for 0 � t � T, (3.15)

we have∫ T

0

∫ L

−L

{
s5

t5(T − t)5
|q|2+

s3

t3(T − t)3
|qx|2+

s

t(T − t)
|qxx|2

}
exp

(
− 2sψ(x)

t(T − t)

)
dxdt

� C

∫ T

0

∫ L

−L

|qt − qxx + qxxx|2 exp
(

− 2sψ(x)
t(T − t)

)
dxdt.

The Carleman estimate in lemma 3.5 does not require a proof. Indeed, it is well
known that the second-order term −qxx and the first-order term qx can be absorbed
by choosing s sufficiently large and increasing the constant C in the Carleman
estimate in [18].

Lemma 3.6 (unique continuation property). Let T be a positive number. If u ∈
L∞(0, T ; H1(R)) solves

ut − uxx + uxxx + a(u)ux = 0 in R × (0, T ),
u ≡ 0 in (−∞,−L) ∪ (L,∞) × (0, T ),

for some L > 0, with a ∈ C(R) satisfying (1.3), then u ≡ 0 in R × (0, T ).

Proof. For h > 0, consider

uh(x, t) =
1
h

∫ t+h

t

u(x, s) ds.
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Then, uh ∈ W 1,∞(0, T ′, H1(R)) and

uh → u in L∞(0, T ′; H1(R)) (3.16)

for any T ′ < T . Moreover, uh solves

uh
t − uh

xx + uh
xxx + (a(u)ux)h = 0 in R × (0, T ′),

uh ≡ 0 in (−∞,−L) ∪ (L,∞) × (0, T ).

}
(3.17)

On the other hand, note that u ∈ L∞(0, T, H1(R)) implies a(u)ux ∈ L∞(0, T,
L2(R)). Indeed, since

‖a(u)ux‖L∞(0,T,L2(R)) � C{‖u‖L∞(0,T,H1(R)) + ‖u‖p
L∞(0,T,L∞(R))‖u‖L∞(0,T,H1(R))},

(a(u)ux)h ∈ L∞(0, T, L2(R)). Then, proceeding as in the proof of theorem 2.9, we
have

uh ∈ L∞(0, T ′, H3
0 (−L, L)) ∩ H1(0, T ′, L2(−L, L)).

Invoking lemma 3.5, we obtain C, s0 > 0 and a positive function ψ such that

∫
Q

{
s5|uh|2

t5(T − t)5
+

s3|uh
x|2

t3(T − t)3
+

s|uh
xx|2

t(T − t)

}
exp

(
− 2sψ(x)

t(T − t)

)
dxdt

� C

∫
Q

|uh
t − uh

xx + uh
xxx|2 exp

(
− 2sψ(x)

t(T − t)

)
dxdt

for all s > s0 and Q = (0, T ′) × (−L, L). By (3.17),∫
Q

|uh
t − uh

xx + uh
xxx|2 exp

(
− 2sψ(x)

t(T − t)

)
dxdt

=
∫

Q

|(a(u)ux)h|2 exp
(

− 2sψ(x)
t(T − t)

)
dxdt

�
∫

Q

|a(u)uh
x|2 exp

(
− 2sψ(x)

t(T − t)

)
dxdt +

∫
Q

|(a(u)ux)h − a(u)uh
x|2 dxdt

� ‖a(u)‖2
L∞(Q)

∫
Q

|uh
x|2 exp

(
− 2sψ(x)

t(T − t)

)
dxdt + ‖(a(u)ux)h − a(u)uh

x‖2
L2(Q).

Hence,

0 <

∫
Q

{
s5

t5(T − t)5
|uh|2 +

(
s3

t3(T − t)3
− C‖a(u)‖2

L∞(Q)

)
|uh

x|2 +
s

t(T − t)
|uh

xx|2
}

× exp
(

− 2sψ(x)
t(T − t)

)
dxdt

� C‖(a(u)ux)h − a(u)uh
x‖2

L2(Q), (3.18)

since, for s large enough, we obtain

s3

t3(T − t)3
− C‖a(u)‖2

L∞(Q) > 0.
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Note that (3.16) guarantees that a(u)uh
x → a(u)ux in L2(0, T ; L2(−L.L)), since

a(u) ∈ L∞(0, T ′, L∞(−L, L)). Moreover, as a(u)ux ∈ L2(0, T ′, L2(−L, L)) we have
that

(a(u)ux)h ∈ W 1,∞(0, T ′, L2(−L, L)),

(a(u)ux)h → a(u)ux ∈ L2(0, T ′, L2(−L, L)).

Thus, passing to the limit in (3.18), we obtain that u ≡ 0 in (−L, L) × (0, T ′).
Using (3.17), and since T ′ may be taken arbitrarily close to T , we have u ≡ 0 in
R × (0, T ).

Now we show that any weak solution of (1.1) decays exponentially to zero in the
space L2(R).

Theorem 3.7. Let a be a C2(R)-function satisfying (2.41) with 1 � p < 5 and b
satisfying (1.5). Then, system (1.1) is semi-globally uniformly exponentially stable
in L2(R), i.e. for any r > 0 there exist two constants C > 0 and η = η(r) > 0 such
that, for any u0 ∈ L2(R) with ‖u0‖L2(R) < r, and any weak solution u of (1.1),

‖u(t)‖L2(R) � C‖u0‖L2(R)e−ηt, t � 0.

Proof. First, note that the corresponding solution u of (1.1) satisfies the following
estimate:

‖u(t)‖2
L2(R) + 2‖ux‖2

L2(0,t;L2(R)) + 2
∫ t

0

∫
R

b(x)|u(x, τ)|2 dxdτ = ‖u0‖2
2. (3.19)

On the other hand, by multiplying the equation in (1.1) by (T − t)u and integrating
on R × [0, T ], we obtain

1
2T‖u0‖2

2 = 1
2‖u‖2

L2(0,T ;L2(R)) +
∫ T

0

∫
R

(T − t)|ux(x, t)|2 dxdt

+
∫ T

0

∫
R

(T − t)b(x)|u(x, t)|2 dxdt, (3.20)

which implies that

‖u0‖2
2 � 1

T
‖u‖2

L2(0,T ;L2(R)) + 2‖ux‖2
L2(0,T ;L2(R)) + 2

∫ T

0

∫
R

b(x)|u(x, t)|2 dxdt.

(3.21)

Claim 3.8. For any T > 0 and r > 0 there exist C = C(r, T ) such that the following
estimate holds for any weak solution u of (1.1) with ‖u0‖2 � r:∫ T

0

∫ β

α

|u(x, t)|2 dxdt � C

(
‖ux‖2

L2(0,T ;L2(R))+
∫ T

0

∫
R

b(x)|u(x, t)|2 dxdt

)
. (3.22)

Proof. We argue by contradiction and suppose that (3.22) does not hold. Hence,
there exists a sequence {un} of weak solutions in Cw([0, T ];L2(R))∩L2(0, T ; H1(R))
satisfying

‖un(0)‖2 � r
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and such that

lim
n→∞

‖un‖2
L2(0,T ;L2(α,β))

(
‖∂xun‖2

L2(0,T ;L2(R)) +
∫ T

0

∫
R

b(x)|un|2 dxdt

)−1

= +∞.

(3.23)
Define

λn := ‖un‖L2(0,T ;L2(α,β)) and vn(x, t) :=
un(x, t)

λn
.

Then, vn satisfies
‖vn‖L2(0,T ;L2(α,β)) = 1, ∀n ∈ N, (3.24)

and is a weak solution of

∂tvn + ∂3
xvn − ∂2

xvn + a(λnvn)∂xvn + bvn = 0,

vn(x, 0) =
un(x, 0)

λn
.

Moreover, from (3.20), we get

λn := ‖un‖L2(0,T ;L2(α,β)) � T 1/2‖un(0)‖2 � T 1/2r, (3.25)

and (3.23) implies that

lim
n→∞

‖∂xvn‖2
L2(0,T ;L2(R)) = 0 and lim

n→∞

∫ T

0

∫
R

b(x)|vn|2 dxdt = 0. (3.26)

Furthermore, by (3.25) we obtain a subsequence, denoted by the same index n, and
λ � 0, such that

λn → λ.

On the other hand, note that

|a(λnµ)| � C ′(1 + |µ|p)

and vn(x, 0) is bounded in L2(R). In fact, by (3.21) and (3.26) we obtain that

‖vn(0)‖2
2 � 2

T
+

2
λ2

n

{
‖∂xun‖2

L2(0,T ;L2(R)) +
∫ T

0

∫
R

b(x)|un(x, t)|2 dxdt

}
(3.27)

for n sufficiently large. Combining (3.26), (3.27) and (3.19), we conclude that {vn}
is bounded in L∞(0, T ; L2(R)) ∩ L2(0, T ; H1(R)). Hence, extracting a subsequence
if needed, we have

vn ⇀ v in L∞([0, T ];L2(R)) weakly∗,

vn ⇀ v in L2([0, T ];H1(R)) weakly,

as n → ∞. In order to analyse the nonlinear term, we consider the function

A(v) :=
∫ v

0
a(λu) du, An(v) :=

∫ v

0
a(λnu) du.
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Proceeding as in the proof of theorem 2.14, it is easy to see that a(λnvn)∂xvn =
∂x[An(vn)] is bounded in Lα([0, T ];H−2

loc (R)), for α ∈ (1, 6/(p + 1)), and ∂tvn =
−∂3

xvn + ∂2
xvn − a(λnvn)∂xvn − bvn is bounded in Lα([0, T ];H−2

loc (R)) ↪→ L1(0, T ;
H−2

loc (R)). Since {vn} is bounded in L2([0, T ];H1(R)), using the Aubin–Lions theo-
rem (see [16]), we obtain a subsequence such that

vn → v strongly in L2((α, β) × (0, T )). (3.28)

On the other hand, by (3.26) it follows that vn → 0 strongly in L2((R \ (α, β)) ×
(0, T )). Therefore,

vn → v strongly in L2(R × (0, T )), (3.29)

with
v ≡ 0 on ω × [0, T ], ω = R \ (α, β) (3.30)

and
a(λnvn)∂xvn → a(λv)∂xv in D′(R × [0, T ]).

Thus, v solves

vt + vxxx − vxx + a(λv)vx + bv = 0 in D′([0, T ] × R),

and from (3.24) and (3.28)–(3.30), it follows that

‖v‖L2(0,T ;L2(R)) = 1. (3.31)

Claim 3.9. Let 0 < t1 < t2 < T . Then, there exist (t′1, t
′
2) ⊂ (t1, t2) such that

v ∈ L∞(t′1, t
′
2; H

1(R)).

Proof. Let wn be a solution of

∂twn − ∂2
xwn + ∂3

xwn + an(λnwn)∂xwn = 0 in R × (0, T ),
wn(x, 0) = vn(x, 0) in R,

where an ∈ C∞
0 (R) satisfies (2.42) and (2.43). Proceeding as in the proof of theo-

rem 2.14, we have that

wn − vn → 0 in C([0, T ];H−1
loc (R)) and ‖wn‖L2(0,T ;H1(R)) � C. (3.32)

Consider τn ∈ (t1, 1
2 (t1 + t2)) such that

τn → τ and ‖wn(τn)‖L2(0,T ;H1(R)) � C.

Hence, by theorem 2.19,

‖wn(τn + ·)‖L2(0,ε;H1(R)) � C (3.33)

for any ε � T . On the other hand, note that (3.32) implies that

wn(τn + ·) → v(τ + ·) in C([0, ε];H−1
loc (R)) (3.34)

for ε < 1
2 (t2 − t1). Thus by (3.33) and (3.34), v ∈ L∞(τ, τ + ε; H1(R)).

Applying the claim above and lemma 3.6, we deduce that v = 0 in R × (t′1, t
′
2),

where (t′1, t
′
2) ⊂ (t1, t2). As t2 can take an arbitrary value close to t1, by continuity

of v in H−1
loc (R) we obtain that v ≡ 0, which contradicts (3.31).
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Returning to the proof of theorem 3.7, note that (3.19) implies

‖u(T )‖2
L2(R) + 2λ0

∫ T

0

∫
R\(α,β)

|u(x, t)|2 dxdt � ‖u0‖2
L2(R).

Consequently,

1
2λ0

‖u(T )‖2
L2(R) +

∫ T

0

∫
R

|u(x, t)|2 dxdt � 1
2λ0

‖u0‖2
L2(R) +

∫ T

0

∫ β

α

|u(x, t)|2 dxdt.

Then, by claim 3.8 and the monotonicity of ‖u(·, t)‖2
L2(R), the following estimate

holds:(
1

2λ0
+ T

)
‖u(T )‖2

L2(R)

� 1
2λ0

‖u0‖2
L2(R) + C(r, T )

(
‖ux‖2

L2(0,T ;L2(R)) +
∫ T

0

∫
R

b(x)|u(x, t)|2 dxdt

)
,

and by (3.19) we get(
1

2λ0
+ T +

C(r, T )
2

)
‖u(T )‖2

L2(R) �
(

1
2λ0

+
C(r, T )

2

)
‖u0‖2

L2(R),

i.e.
‖u(T )‖2

L2(R) � γ‖u0‖2
L2(R), with 0 < γ < 1.

Consequently,
‖u(kT )‖2

L2(R) � γk‖u0‖2
L2(R), ∀k � 0.

Moreover, for any t � 0, there exist k > 0 such that kT � t < (k + 1)T . Thus,

‖u(t)‖2
L2(R) � ‖u(kT )‖2

L2(R) � γk‖u0‖2
L2(R)

� γt/T γ−1‖u0‖2
L2(R)

� γ−1‖u0‖2
L2(R)e

−ηt,

where η = −(ln γ)/T > 0.

The next result asserts that (1.1) is globally uniformly exponentially stable in
L2(R). It means that the constant η in proposition 3.7 is independent of r when
‖u0‖L2(R) � r.

Theorem 3.10. Let a be a C2(R)-function satisfying (1.3), with 1 � p < 5 and
let b satisfy (1.5). Then, (1.1) is globally uniformly exponentially stable in L2(R),
i.e. there exist a positive constant η and a non-negative continuous function α : R →
R such that, for any u0 ∈ L2(R) with ‖u0‖L2(R) < r and any weak solution u
of (1.1),

‖u(t)‖L2(R) � α(‖u0‖L2(R))e−ηt, t � 0. (3.35)

Theorem 3.10 is a direct consequence of theorem 3.7, as the decay η can be taken
as the decay for r = 1 (the decay rate is given by the behaviour of the solutions in
a neighbourhood of the origin, since all trajectories enter into this neighbourhood).
The estimate (3.35) holds for all t � 0.
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