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Abstract. This paper presents an analysis of the spatial growth of a transverse
instability, corresponding to the propagation of an electromagnetic beam, with
uniform irradiance along the wavefront in a collisional plasma, along the direction
of a static magnetic field; expressions have been derived for the rate of growth, the
maximum value of the rate of growth and the corresponding value of the wave num-
ber of the instability. The instability arises on account of the ejection of electrons
from regions where the irradiance of the perturbation is large. The energy balance
of the electrons taking into account ohmic heating and the power loss of electrons on
account of (i) collisions with ions and neutral species and (ii) thermal conduction
has been taken into account for the evaluation of the perturbation in electron
temperature, which determines the subsequent growth of the instability. Further,
the relationship between the electron density and temperature, as obtained from
the kinetic theory, has been used. The filamentation instability becomes enhanced
with the increase of the static magnetic field for the extraordinary mode while the
reverse is true for the ordinary mode. Dependence of growth rate on irradiance
of the main beam, magnetic field and a parameter proportional to the ratio of
power loss of electrons by conduction to that by collisions has been numerically
studied and illustrated by figures. The dependence of the maximum growth rate
and the corresponding optimum value of the wave number of the instability on the
irradiance of the main beam has also been studied. The paper concludes with a
discussion of the numerical results, so obtained.

1. Introduction
A nonlinear medium is susceptible to filamentation instability, which is charac-
terized by growing electron density and irradiance fluctuations, transverse to the
direction of propagation. There are two complementary approaches to the study of
the filamentation instability in a plasma. Sodha and Sharma (2007) have recently
made a comparison of the two approaches, referring to 60 important papers in
the process. In the first approach, one considers an instability E1 exp [ik⊥x + ik‖z],
superposed on a beam E0 exp [i(ωt − kz)]; the suffixes ‖ and ⊥ refer to the com-
ponents of the wave number k of the instability parallel and perpendicular to the
direction of propagation, viz. z; the instability grows or does not grow as the beam
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propagates depending on whether k‖ is imaginary or real. Inspired by the direct
(Chiligarayan 1968; Abbi andMahr 1971) and indirect (Loy and Shen 1969) evidence
that filamentation in a nonlinear medium is caused by the presence of intensity
spikes, normal to the direction of propagation, Sodha and his associates (Sodha
et al. 1979, 1981, 1992), Sharma et al. (2004), Pandey and Tripathi (1990) and
Asthana et al. (1999) followed the other approach, viz. the study of the growth of a
Gaussian ripple on a plane (uniform or Gaussian) wavefront of an electromagnetic
beam. The second approach has however not been followed in this paper.
In the presence of a high-power electromagnetic beam the electrons of the plasma

are redistributed in the transverse direction on account of the ponderomotive force
and non-uniform heating, arising from the gradient of the non-uniform irradiance
(Sodha et al. 1974; Litvak 1970; Tewari et al. 1973). Stenzel (1976) reported ex-
perimental results regarding filamentation of a high-power whistler in a laboratory
plasma. Giving special attention to low-frequency whistlers (ω � ωc, ω and ωc being
wave and electron cyclotron frequencies), Sodha and Tripathi (1977) discussed
various aspects of self focusing and growth of the instability and revealed that
for short time scales t � τε (dominant ponderomotive nonlinearity), where τε is the
energy relaxation time, the self focusing of whistlers is possible for all frequencies
while for long time scales t > τε (dominant collisional nonlinearity) only those
whistlers can be self focused whose frequency is larger than a certain value; this is
in conformance with the experimental results of Stenzel (1976). Temporal growth
of the filamentation instability has been investigated by Sodha et al. (1978) in
collisional and collisionless plasmas, while the same has been studied by Sharma
et al. (1981) for the whistler mode and the upper hybrid mode of propagation
in a strongly ionized magnetoplasma. Thermal conduction has been included in
the analyses by some researchers (Perkins and Valeo 1974; Cornolti and Lucchesi
1989) but they ignored the change in electron temperature on account of the main
beam. Ott et al. (1974) studied the self-focusing instability in a magnetized plasma
when the applied magnetic field was weak and concluded that the growth rate is
unaffected by the magnetic field. Many papers have been devoted to the study
of self-focusing and filamentation instabilities in a plasma embedded in a magnetic
field with (e.g. Sodha et al. 2007) and without (e.g. Sodha and Sharma 2008) thermal
conduction. Sodha et al. (2007) have investigated the filamentation instability in the
ionospheric plasma, but the analysis was restricted by the assumption that the wave
frequency is much larger than the electron cyclotron frequency and thus the cir-
cularly polarized nature of the beam was ignored. Further, the direction of the
magnetic field was assumed to coincide with the transverse component of the
wave number of the perturbation, so that its effect on thermal conductivity was
justifiably neglected. However, thermal conduction can be neglected only when
δr2

0/l2 � 1, where δ is the fraction of excess energy lost by an electron in a collision
with heavy particles and l is the mean free path of the electrons; this inequality is
not valid over a range of parameters for plasmas.
In this communication the authors have investigated the filamentation instability

superposed on a uniform beam in a magnetoplasma, characterized by dominant col-
lisional nonlinearity, which is manifested in a period of the order of 1/δνe, where νe
is the electron collision frequency. Expressions for the growth rate of the instability
and the condition for the instability to occur have been obtained and the maximum
value of the growth rate and the corresponding value of q⊥ have been specifically
investigated for both the modes of propagation. The effect of a magnetic field
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has been graphically presented for the neutral atom collision-dominated plasma
(constant mean free path). The energy balance of the electrons taking into account
the energy loss on account of collisions and thermal conduction has been considered
for the evaluation of the electron temperature, which determines the subsequent
nonlinearity. Growth rate of the instability has been plotted taking into account
the variation of the parameter proportional to the ratio of power loss of electrons
by conduction to that by collisions. Finally, a discussion of numerical results has
been presented.

2. Analysis
2.1. Expression for spatial growth rate of instability

Let the electric field of a beam of uniform illumination and that of a small per-
turbation (filament) superimposed on the beam be represented by E0± and E1±,
respectively. The total field E± (corresponding to extraordinary or ordinary modes)
propagating in the z-direction through a magnetoplasma can be expressed as

E± = (Ex ± iEy ) = (E0± + E1±) = (A0± + A1±) exp i(ωt − k±z), (1)

where A0±, without loss of generality, is a real positive constant and A1± (|A1±| �
A0±) is complex, k± is the wave number defined later and ω is the wave frequency.
Neglecting the small contribution A1A

∗
1 as compared to other terms, one can write

E± · E∗
± = A2

0± + A0±(A1± + A∗
1±). (2)

The effective dielectric function of the plasma depends on E±E∗
± and hence can be

expressed as

ε±(z,E±E∗
±) = ε0±(z) + ε2±(z)A0±(A1± + A∗

1±), (3)

where

ε2± =
[

∂ε±
∂(E±E∗

±)

]
E±E ∗

±=A 2
0 ±

.

The wave equation for the total field can be separated forA0± andA1±. On choosing
k± = (ω/c)√ε0± and dropping the subscript ± for convenience one can write the
wave equation for A0 , which yields a solution

A0 = constant.

The wave equation for A1 , on neglecting ∂2A1/∂z2 (assuming A1 to be slowly
varying) and A1A

∗
1 , reduces to

−2ik
∂A1

∂z
+ ∇2

⊥A1 +
ω2

c2 ε2A
2
0(A1 + A∗

1) = 0, (4)

in the JWKB approximation.
One can express the complex amplitude A1 of the perturbation as

A1 = A1r + iA1i, (5)

where A1r and A1i are real and ∇2
⊥ = ∇2 − (∂2/∂z2). In earlier analyses A1r and

A1i, which are real, have been assumed to be proportional to the complex quantity
exp {i(q⊥x + q‖z)}, which is not consistent. However, the results so obtained are
the same as the ones based on the following considerations, free of any objection.
Assuming A1 to be independent of y and proportional to exp(iq⊥x + iq‖z), one
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has ∇2
⊥A1 = −q2

⊥A1 . With this assumption and using (5), one obtains two homo-
geneous equations in A1r and A1i (after equating the real and imaginary parts).
Thus,

2k
∂A1i

∂z
− Λ2A1r = 0, (6a)

2k
∂A1r

∂z
+ q2

⊥A1i = 0, (6b)

where Λ2 = (2ω2/c2)ε2A
2
0 − q2

⊥.
Differentiating (6a) and (6b) with respect to z and substituting for ∂A1r/∂z and

∂A1i/∂z from (6b) and (6a), respectively, one obtains

∂2A1i

∂z2 =
Λ2q2

⊥
4k2 A1i (7a)

and

∂2A1r

∂z2 =
Λ2q2

⊥
4k2 A1r. (7b)

Hence, A1 will grow exponentially with z, with a growth rate

Γ = iq‖ =
Λq⊥
2k

=
q⊥
2k

{
2ω2

c2 ε2A
2
0 − q2

⊥

}1/2

. (8)

From the above equation one obtains the condition for the growth of the instability
(Γ being real) as the beam propagates, viz.

2ω2

c2 ε2A
2
0 > q2

⊥.

2.2. Evaluation of ε0± and ε2±

2.2.1. Energy balance. The redistribution of electron density in a magnetoplasma
by the plane uniform irradiance beam is determined by the ohmic heating of
electrons and subsequent loss of energy by collisions with heavy particles and by
thermal conduction. The energy balance of the electrons in a magnetoplasma may
be expressed as

e2Neνe
8m

{
A+A∗

+ + A−A∗
−

ν2
e + (ω − ωc)2 +

A+A∗
+ + A−A∗

−
ν2
e + (ω + ωc)2

}

=
3
2
NekB(Te − T0)νeδ − ∂

∂x

(
χe

∂Te
∂x

)
, (9a)

where νe is the electron collision frequency, kB is Boltzmann’s constant, χe is
the electronic thermal conductivity, e and m are the electronic charge and mass,
respectively, and ωc = eB/mc is known as the electron cyclotron frequency. The
left-hand side represents the ohmic loss (Shkarofsky et al. 1966) per unit volume
or the power lost per unit volume by the electric field to the electrons; the first
term on the right-hand side represents the power lost by the electrons in collisions
per unit volume while the second corresponds to the power lost by the electrons on
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account of thermal conduction. Equation (9a) can be simplified to

Te
T

− 1 =
2

3kBTδ

1
Neνe

∂

∂x

(
χe

∂Te
∂x

)

+
[

α(E+E∗
+ + E−E∗

−)
ν2
e /ω2 + (1 − ωc/ω)2 +

α(E+E∗
+ + E−E∗

−)
ν2
e /ω2 + (1 + ωc/ω)2

]
, (9b)

where α = e2/12mkBTδω2 .

2.2.2. Distribution of electron density. The non-uniformity in the electric field and
consequent non-uniform ohmic heating of electrons on account of the instability
results in a non-uniform electron temperature distribution. The non-uniform elec-
tron density distribution is determined by balancing the force on an electron on
account of (i) pressure gradient and (ii) space-charge field; charge neutrality of
the plasma is assumed. Thus, following the rigorous kinetic treatment based on
Boltzmann’s transfer equation for the velocity distribution of carriers (Sodha et al.
1976), the electron density–temperature relationship can be written as

Ne

N0
=

(
2T0

Te + T0

)1−s/2

, (10)

whereN0 and T0 are the equilibrium concentration and temperature of the electrons
in the absence of the field, respectively, the parameter s in the exponent charac-
terizes the nature of collisions; in the case of collisions of electrons with neutral
particles, s = 1 and when collisions with ions predominate, s = −3. The dependence
of electron temperature on the irradiance of the beam and the instability is thus
governed by the energy balance equation.

2.2.3. Electron temperature. The electron temperature in the plasma in the presence
of the main beam as well as the perturbation given by (1), (6a) and (6b) can be
expressed as

Te = Te0 + Te1 (11)

where Te1 = Te10 exp [i(q‖z + q⊥x)], Te1 � Te0 and q⊥ � q‖. The temperature depend-
ence of the electron collision frequency and the electronic thermal conductivity is
given by

νe = ν0(Te/T0)s/2

� ν0

[
1 + (s/2)

Te − T0

T0

]
;

Te − T0

T0
� 1 (12)

and

χe =
5k2
BNeTe
m

νe
ν2
e + ω2

c
.

Using expressions for electron density and collision frequency from (10) and (12),
the expression for electronic thermal conductivity can be written as

χe = χ0
T

1+s/2
p0 ((1 + Tp0)/2)s/2−1Tp1

T s
p0 + ω2

c /ν2
0

×
{

1 +
((s/2) − 1)

1 + Tp0
+

(1 + (s/2))
Tp0

−
sT s−1

p0

T s
p0 + ω2

c /ν2
0

}
, (13)

where χ0 = 5k2
BN0T0/mν0 , Tp0 = Te0/T0 and Tp1 = Te1/T0 .
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The term for thermal conduction in the energy balance equation can be written as

∂

∂x

(
χe

∂Te
∂x

)
=

∂χe
∂Te

(
∂Te
∂x

)2

+ χe
∂2Te
∂x2 . (14)

From (11), one obtains

∂Te
∂x

= iq⊥Te1 and
∂2Te
∂x2 = −q2

⊥Te1.

Therefore, after neglecting the second-order perturbation terms, equation (14) fur-
ther reduces to

∂

∂x

(
χe

∂Te
∂x

)
=

−(q2
⊥Te1)χ0T

1+s/2
p0 ((1 + Tp0)/2)s/2−1

T s
p0 + ω2

c /ν2
0

. (15)

Further, the irradiance term present in the energy balance equation can be writ-
ten as[

α(E+E∗
+ + E−E∗

−)
ν2
e /ω2 + (1 − ωc/ω)2 +

α(E+E∗
+ + E−E∗

−)
ν2
e /ω2 + (1 + ωc/ω)2

]

= α{A2
0± + A0±(A1± + A∗

1±)}
[{

(1 − Ωc)2 +
ν2

0

ω2 T s
p0

(
1 + s

Tp1
Tp0

)}−1

+
{

(1 + Ωc)2 +
ν2

0

ω2 T s
p0

(
1 + s

Tp1
Tp0

)}−1]

= α{A2
0± + A0±(A1± + A∗

1±)}
[{

1
D1

+
1

D2

}
− s

ν2
0

ω2 Tp0Tp1

{
1

D2
1

+
1

D2
2

}]
, (16)

where

D1 = (1 − Ωc)2 +
ν2

0

ω2 T s
p0,

D2 = (1 + Ωc)2 +
ν2

0

ω2 T s
p0,

Ωc = ωc/ω and terms with T 2
p1 and higher powers of Tp1 have been neglected.

Substituting the relevant values from (11), (15) and (16) in the energy balance
equation (9b) and equating the terms with and without exp(iq‖z + iq⊥x), one ob-
tains

Te0
T0

− 1 =
αA2

0±
D1

+
αA2

0±
D2

(17)

and
Te1
T0

=
αA0±(A1± + A∗

1±)
F (q⊥)

, (18)

where

F (q⊥) =
[ (1 + (DTp0q

2
⊥/(T s

p0 + ω2
c /ν2

0 )) + sT s−1
p0 (ν2

0 /ω2)αA2
0±(1/D2

1 + 1/D2
2 ))

(1/D1 + 1/D2)

]

and

D = 10kBT0ω
2/3mc2δc2 .
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2.2.4. Dielectric function. For electromagnetic wave propagation along the direction
of the magnetic field, the dielectric function ε± in a plasma (assuming the medium to
be non-absorptive) corresponding to the two modes (Ex ± iEy ) can be expressed as

ε± = 1 − Ω2
p
Ne

N0

[1 ∓ ωc/ω]
[(νe/ω)2 + (1 ∓ ωc/ω)2 ]

,

where Ωp = ωp0/ω; ωp0 = (4πN0e
2/m)1/2 is the electron plasma frequency in the

absence of the beam.
Substituting for Ne/N0 in terms of the electron temperature from (10) and

using (12),

ε± = 1 −
Ω2
p(1 ∓ Ωc)

M

(
1 + Tp0

2

)s/2−1

+
(1 ∓ Ωc)Ω2

p

M

(
1 + Tp0

2

)s/2−1{1 − s/2
1 + Tp0

+
s(ν0/ω)2(Tp0 − 1)

M

}

×
αA0±(A1± + A∗

1±)
F (q⊥)

. (19a)

Comparing (3) and (19a), one obtains

ε0±(z) = 1 −
Ω2
p(1 ∓ Ωc)

M

(
1 + Tp0

2

)s/2−1

, (19b)

ε2±(z) =
αΩ2

p(1 ∓ Ωc)
MF (q⊥)

(
1 + Tp0

2

)s/2−1[1 − s/2
1 + Tp0

+
s(ν0/ω)2(Tp0 − 1)

M

]
, (19c)

where

M =
[
(1 ∓ Ωc)2 + (ν0/ω)2

{
1 +

s

2
(Tp0 − 1)2

}]
.

2.3. Maximum growth rate of instability

Substituting for ε2±(z) from (19c) in (8), one obtains an expression for the growth
rate Γ of the perturbation in terms of q as follows:

c

ω
Γ =

q

2
√

ε0

[2Ω2
p(1 ∓ Ωc)
MF (q)

(
1 + Tp0

2

)s/2−1

×
{

1 − s/2
1 + Tp0

+
s(ν0/ω)2(Tp0 − 1)

M

}
αA2

0 − q2
]1/2

, (20)

where

q = (c/ω)q⊥,

F (q) =
[ (1 + (βTp0q

2/(T s
p0 + ω2

c /ν2
0 )) + sT s−1

p0 (ν2
0 /ω2)αA2

0±(1/D2
1 + 1/D2

2 ))
(1/D1 + 1/D2)

]

and β = D(ω2/c2) = 10kBTω2/3mc2δν2
0 . For the instability to occur, Γ > 0. Thus,

the critical value of q = (c/ω)q⊥, below which the instability occurs (viz. qcritical), is
given by putting the right-hand side of (20) equal to zero.
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For Γ to be maximum, the optimum value of q, i.e. qopt, is given by the extremum
condition dΓ/dq = 0, which yields

q2
opt[F (qopt)]

2 =
Ω2
p(1 ∓ Ωc)

M

(
1 + Tp0

2

)s/2−1

×
{

1 − s/2
1 + Tp0

+
s(ν0/ω)2(Tp0 − 1)

M

}
αA2

0F1 , (21)

where

F1 =
1 + sT s−1

p0 (ν2
0 /ω2)αA2

0±(1/D2
1 + 1/D2

2 )
(1/D1 + 1/D2)

.

For qopt given by (21), the maximum growth rate, written as Γmax, is given by

c

ω
Γmax =

(
q2
opt

2ε0

){
2F (qopt)

F1
− 1

}1/2

. (22)

The significance of this instability is that as the plane wave propagates in a nonlinear
medium in the z-direction, it may split up in filaments transverse to the z-axis. The
transverse scale length for filaments (or the perturbation) is k−1

⊥ .

3. Numerical results and discussion
All the numerical calculations have been made for the scattering parameter s = 1
(electron–neutral collision-dominated plasma). Similar calculations can be carried
out for s = −3 (electron–ion collision-dominated plasma). Figure 1 illustrates
the dependence of the dimensionless growth rate Γ of the self-focusing instability
with the dimensionless wave number q = (c/ω)q⊥ in the direction transverse to
the propagation, for different values of the dimensionless background irradiance
αA2

0+ = 1, 5 and 10 for the extraordinary mode. It is seen that, corresponding to
a certain value of the beam irradiance, there is an optimum value of wave number,
namely qopt, for which the growth rate is maximum.
To study the effect of the static magnetic field on the spatial growth rate of

the instability, curves have been presented for different values of ωc/ω for both the
modes (Fig. 2). The growth rate is seen to become enhanced with the static magnetic
magnetic field for the extraordinary mode. However, curves for the ordinary mode
are reverse in nature, i.e. the growth rate of the instability is found to be decrease
on increasing the applied magnetic field.
Figure 3 depicts the variation of both the optimum value of the wave number

qopt and the maximum growth rate Γmax on the uniform background irradiance for
the extraordinary mode. It is seen that Γmax and qopt increase monotonically.
Figure 4 corresponds to the dependence of the growth of the instability with wave

number for different values of β (the parameter which characterizes the ratio of the
electron energy loss by thermal conduction to that by collisions) for a fixed value
of irradiance of the main beam. It is seen that the growth rate of the instability
decreases as the value of β increases. This can be readily explained by the fact that
increasing thermal conductivity leads to enhanced energy loss by ohmically heated
electrons, and consequently lower electron temperature and associated nonlinearity.
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Figure 1. Dependence of dimensionless growth rate (c/ω)Γ of self-focusing filamentation
instability of an extraordinarymode on q, the dimensionless wave number of the perturbation
in the transverse direction corresponding to the dimensionless background irradiance
αA2

0 = 1 (i), 5 (ii) and 10 (iii). The other parameters are Ω2
p = ω2

p/ω2 = 0.5, Ωc = ωc/ω = 0.4,
ν2

0 /ω2 = 0.1 and β = 1.

Figure 2. Variation of dimensionless spatial growth rate (c/ω)Γ of instability on q for
extraordinary mode ( ) ωc/ω = 0.1 (i), 0.2 (ii) and 0.3 (iii) and for ordinary mode ( )
ωc/ω = 0.1 (iv), 0.2 (v) and 0.3 (vi); αA2

0 =1, ω2
p/ω2 = 0.5, ν2

0 /ω2 = 0.1 and β = 1.
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Figure 3. Variation of optimum value of the dimensionless wave number qopt and
dimensionless maximum growth rate (c/ω)Γmax with the dimensionless background
irradiance αA2

0 when ωc/ω = 0.1 (i), 0.2 (ii) and 0.3 (iii) {for (c/ω)Γmax} and 0.1 (iv), 0.2 (v)
and 0.3 (vi) {for qopt}; ω2

p/ω2 = 0.5, ν2
0 /ω2 = 0.1 and β = 1 (extraordinary mode).

Figure 4. Variation of growth rate of instability (c/ω)Γ with wave number q for β = 0 (i),
1 (ii), 5 (iii), 10 (iv) and 50 (v). β is a parameter proportional to thermal conductivity. The
other parameters are ω2

p/ω2 = 0.5, ν2
0 /ω2 = 0.1 and ωc/ω = 0.4.
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