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SUMMARY

This review describes some of the developments in helminth biochemistry that have taken place over the last 40 years. Since

the early 1970s the main anabolic and catabolic pathways in parasitic helminths have been worked out. The mode of action

of the majority of anthelmintics is now known, but in many cases the mechanisms of resistance remain elusive.

Developments in helminth biochemistry have depended heavily on developments in other areas. High throughputmethods

such as proteomics, transcriptomics and genome sequencing are now generating vast amounts of new data. The challenge

for the future is to interpret and understand the biological relevance of this new information.
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INTRODUCTION

This article is not a comprehensive review, but a brief

personal account of the development of helminth

biochemistry over the last 40 years, concentrating

on the areas in which I have been directly involved.

Consequently many important developments in

helminth biochemistry are not mentioned, but are

covered elsewhere in this volume. Research, of

course, is not carried out in isolation, there are always

others working on the same or related topics and

there is a constant interchange of ideas. Unfortu-

nately there is not room to properly acknowledge all

those who have contributed to the developments I am

going to describe, but extensive references to early

work can be found in von Brand (1966, 1972) and

Barrett (1981) and I have also tried to include review

articles where possible.

Standard biochemistry text books rarely make

any mention of parasitic helminths and their uni-

que metabolism. Helminth biochemistry, like mam-

malian biochemistry, grew out of physiology and in

the early 1970s a significant number of biochemi-

cal papers still dealt essentially with physiology. In

particular, the effects of physical factors such as pO2,

pCO2, temperature, osmotic pressure and ionizing

radiation on oxygen uptake and the effects of external

substrates and inhibitors were being investigated

(Barrett, 1968, 1969, among others). However, at

that time, relatively few species of parasite had been

studied and most of the enzyme publications in-

volved histochemistry. Attempts to culture adult

helminth parasites in vitro and tegumental transport

in tapeworms and flukes were also major research

interests throughout the 1960s and 1970s (see for

example, Pappas et al. 1973; Ash and Read, 1975;

Smyth and Davies, 1975; Esch and Smyth, 1976).

Progress in helminth biochemistry has always

been dependent on progress in other fields, and has

been marked by sudden bursts of activity in selected

areas that then decline. The development in the

1960s of spectrophotometric methods for enzyme

assays, coupled with the availability of 14C-labelled

substrates at last enabled helminth pathways to start

to be unravelled. Similarly, advances in analytical

techniques allowed more accurate identification of

end products. Differences in metabolism between

parasites and their hosts are of course potential sites

for chemotherapy, whilst differences between para-

sites and their free-living relatives can give an insight

into the molecular basis of parasitism. Similarly, the

presence of unusual organic acids in, for example,

parasite excretory products, or the isolation of novel

lipids or amino acids, or the identification of unusual

nucleic acid modifications are good indicators of the

presence of novel pathways.

CATABOLIC PATHWAYS

The production of organic acids by helminths was

first reported as long ago as 1850; however, it was not

until 1950, when Epps et al. (1950) showed that or-

ganic acids were produced by axenic Ascaris, that

it was fully accepted that these compounds were

produced by the parasite and not by contaminating

bacteria. By the end of the 1970s the major pathways

of energy metabolism in helminths had been worked

out. It was clear that adult, parasitic helminths had

an absolute dependency on carbohydrate, either in

the form of glycogen or glucose, as their sole energy

source. In adult helminths there was no evidence

for beta-oxidation of fatty acids, no significant* E-mail : jzb@aber.ac.uk
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catabolism of amino acids, no evidence for the co-

fermentation of amino acids and carbohydrate or for

the co-fermentation of fatty acids and carbohydrate

(Barrett, 1984).

An interesting variant of the usual TCA cycle

was found in developing Ascaris lumbricoides eggs.

During the development of Ascaris eggs, careful

analytical studies had shown that there was an ap-

parent net conversion of lipid to carbohydrate

(Passey and Fairbairn, 1957). The net conversion of

lipid to carbohydrate requires a special anapleuric

cycle called the glyoxalate cycle, this consists of 2

enzymes, isocitrate lyase and malate synthase which

effectively short circuit the TCA cycle. The gly-

oxalate cycle was well known in plants and micro-

organisms, but had not been shown to occur in

animals. We were able to show that not only was

there an active glyoxalate cycle inAscaris eggs, but its

peak activity corresponded to the peak conversion of

lipid to carbohydrate (Barrett et al. 1970a). Sub-

sequently, the glyoxalate cycle has been demon-

strated in a range of other nematodes (mostly

free-living or plant parasitic), but here the cycle

seems primarily concerned not with the conversion

of lipid to carbohydrate, but with glyconeogenesis

from ethanol (Butterworth and Barrett, 1985).

Characteristically, helminths have been shown to

breakdown carbohydrate to reduced organic acids

or more rarely alcohols that are then excreted, the

pathways involved being essentially anaerobic. On

the basis of their end products, parasitic helminths

were divided into 2 main groups. First, those which

relied essentially on glycolysis and excreted lactate

or some other derivative of pyruvate and secondly,

those which fixed carbon dioxide and had what may

be described as a partial, reversed TCA cycle, the

initial end products of metabolism being succinate

and pyruvate (Fig. 1). The latter usually being fur-

ther metabolized to short chain fatty acids. As more

species of parasite were investigated it became clear

that these 2 types of metabolism are just convenient

divisions and in reality there is a continuous spec-

trum between them (Barrett, 1984).

METABOLIC END PRODUCTS

Two common end products of carbohydrate break-

down in helminths are succinate and actetate (par-

ticularly in digeneans and cestodes). The pathways

involved in succinate and acetate production are

similar to those in mammals, at least as far as suc-

cinylCoA and acetylCoA production. But the

cleavage of these two potential high-energy com-

pounds involves not hydrolases, but CoA trans-

ferases (Köhler et al. 1978). This conserves energy

and effectively increases the yield of ATP per mol of

glucose catabolized. Subsequently it was shown by

members of Saz’s group that CoA transferases have a

prominent role in the synthesis of branched chain

fatty acids in Ascaris muscle, with a consequent in-

crease in ATP production (Komuniecki et al. 1981;

Pietrazack and Saz, 1981).

The production of alcohols rather than acids by

some helminth parasites presented some interesting

biochemical problems. In yeast, pyruvate is con-

verted to acetaldehyde by means of a soluble py-

ruvate decarboxylase and there is an NAD-linked

alcohol dehydrogenase. Helminths have alcohol

dehydrogenases, although in many cases they

are NADP-linked, not NAD-linked (Körting and

Fairbairn, 1972). However, helminths have no de-

tectable pyruvate decarboxylase, instead acetalde-

hyde production seems to be a partial reaction of the

pyruvate decarboxylase complex (Barrett andButter-

worth, 1984).

The production of propanol by parasites such

as Haemonchus contortus presents even more of a

problem. SuccinylCoA from the TCA cycle is con-

verted to methylmalonylCoA, which in turn is dec-

arboxylated to propionylCoA. Removal of the CoA

group by either hydrolysis or CoA transferase yields

propionic acid. However, from the energetic point

of view the direct reduction of propionic acid to

propanol is extremely unfavourable. Instead,H. con-

tortus contains an NAD-linked CoA reductase

capable of reducing propionylCoA to propanol, a

reaction more usually associated with bacteria

(Barrett et al. 1987).

Another ‘bacterial type’ enzyme found in parasitic

helminths is nucleoside diphosphate kinase. This

enzyme occurs in particularly high levels in the

cytoplasm of those helminths that have a partial re-

verse TCA cycle (Barrett, 1973). These are parasites,

such as adultAscaris, in which phosphoenolpyruvate

is converted to oxaloacetate via phosphoenolpy-

ruvate carboxykinase (PEPcarboxykinase). This en-

zyme is usually either GDP or IDP linked (not ADP

linked as in mammals) and nucleoside diphosphate

kinase transfers high energy phosphate from the re-

sulting GTP or ITP to ADP.

MISSING PATHWAYS

Perhaps as intriguing as the presence of unusual

enzyme systems in parasites was the discovery of

the apparent absence, at least in adult helminths, of

what might be considered to be certain key pathways

(although quite often metabolic pathways which are

absent from the adult parasite are active in the larval

or free-living stages). Amongst the ‘missing’ systems

are phosphagens (Rogers and Lazarus, 1949).

Phosphotransferases transfer high-energy phosphate

bonds between a nucleoside triphosphate and a

phosphagen such as arginine or creatine. Although

their role is controversial, phosphagen phosphates

probably act as short-term energy stores, particu-

larly during muscle contraction. Nematodes, like

other invertebrates, contain arginine phosphate and
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Fig. 1. Carbohydrate catabolism in adult Ascaris lumbricoides. Glycogen is broken down by the normal glycolytic

sequence as far as phosphoenolpyruvate. Carbon dioxide fixation takes place and phosphoenolpyruvate is converted to

oxaloacetate by a cytoplasmic phosphoenolpyruvate carboxykinase and the oxaloacetate is then reduced to malate by a

cytoplasmic malate dehydrogenase. Malate is transported into the mitochondrion where a dismutation takes place, part

is oxidatively decarboxylated to pyruvate and part is reduced to succinate. Pyruvate and succinate are then the starting

point for branched chain fatty acid synthesis (after Barrett, 1984).
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have the corresponding arginine phosphotransferase

(Wickramasinghe et al. 2007). However, adult ces-

todes and digeneans appear to have no phosphagens

although phosphotransferases may again be present

(Barrett and Lloyd, 1981).

Another apparent anomaly is the glyoxalase sys-

tem. This consists of 2 enzymes, glyoxalase 1 and

glyoxalase 2 which together catalyse the conversion

of methylglyoxal to D-lactate. The physiological role

of these enzymes is not clear, but is probably related

to the control of intracellular methylglyoxal levels in

relation to regulating cell division. Nematodes have a

normal glyoxalase system, but again in adult cestodes

and digeneans there is no glyoxalase 1, although

glyoxalase 2 is present and active (Brophy et al.

1990).

The demonstration of the enzymes of the beta-

oxidation sequence in a number of adult helminth

parasites posed a different question. Although adult

helminth parasites such as Fasciola hepatica, A. lum-

bricoides andHymenolepis diminuta cannot catabolize

long chain fatty acids by beta-oxidation, they appear

to have all the enzymes necessary (Ward and Fair-

bairn, 1970; Barrett and Körting, 1976). One possi-

bility is that these parasites have adapted old

pathways for new uses, and in the case of beta-

oxidation this might be fatty acid chain lengthening

by a malonylCoA independent pathway.

SYNTHETIC PATHWAYS

Most studies on metabolic pathways in helminths

have concentrated on the pathways involved in en-

ergy metabolism, and for 2 reasons. First, inhibition

of pathways involved in energy metabolism is likely

to be rapidly fatal and, therefore, a potential target

for chemotherapy, and secondly catabolic enzymes

usually have relatively high specific activities making

their assaymuch easier. The high activity of catabolic

enzymes perhaps providing a buffer for fluctuating

energy demands. Inhibition of synthetic pathways,

on the other hand, is unlikely to lead to the rapid

death of the parasite (protozoa with their rapid div-

ision rates are an exception). Also synthetic enzymes

often have very low specific activities and are usually

under tight metabolic control making their assay

more difficult.

Much of the comparative biochemistry of syn-

thetic pathways in parasitic helminths is concerned

with pathways which are either missing or have been

down regulated. Parasitic helminths, for example,

seem unable to synthesize sterols de novo (although

theymay be able to take up plant sterols from the host

intestinal contents and modify them) nor can they

synthesize long chain fatty acids de novo (Meyer et al.

1970; Barrett et al. 1970b). Helminths also seem to

have a reduced ability to synthesize and interconvert

amino acids (Barrett, 1991). There are other ex-

amples where synthetic pathways seem to be missing

or inactive, for example the synthesis of haem

and purines. Helminths can synthesize pyrimidines

de novo, but salvage pathways seem to be more im-

portant (Wong and Yeung, 1981).

There are, however, some unusual synthetic en-

zymes in parasitic helminths, including cystathio-

nine beta-synthase in nematodes. In vertebrates the

main physiological function of this enzyme is the

synthesis of cystathionine from serine and homo-

cysteine, and this is the rate-limiting step in the

conversion of methionine to cysteine. However, the

enzyme from nematodes also catalyses a reaction

between cysteine and an hydroxythiol (such as mer-

captoethanol) to give a thioether plus hydrogen sul-

phide. This activity was found to occur in almost

every nematode species investigated (free-living and

parasitic) and the activity was often present as a series

of isoenzymes (Walker and Barrett, 1991). There is

also some experimental evidence that intact nema-

todes can catalyse the production of thioethers when

exposed to hydroxythiol compounds, but the physio-

logical role of this strange enzyme activity remains a

mystery (Walker et al. 1992).

METABOLIC CONTROL

The main pathways of carbohydrate catabolism were

largely worked out using crude homogenates. In the

mid 1970s attention turned to how these pathways

were controlled using purified or semi-purified en-

zymes. In general, helminth and mammalian en-

zymes were found to be modulated by a similar range

of effectors, although there are minor differences

(Stone andMansour, 1967; Behm and Bryant, 1975;

Mied and Bueding, 1979; McManus and Smyth,

1982; Starling et al. 1982, among others).

In many helminths, phosphoenolpyruvate oc-

cupies a central position in energy metabolism (a po-

sition analogous to that of acetylCoA in mammals).

Phosphoenolpyruvate in helminths can either be

metabolized to pyruvate via pyruvate kinase and

hence to lactate, acetate or ethanol or else via phos-

phoenolpyruvate carboxykinase to succinate and so

eventually to propionate, propanol or short chain

fatty acids. In general there is a correlation between

the major end products of carbohydrate metabolism

in helminths and the ratio of pyruvate kinase activity

to phosphoenolpyruvate carboxykinase activity.

Parasites which rely primarily on glycolysis have

ratios in the region of 2–10, whilst helminths which

fix carbon dioxide have ratios of the order of 0.1–0.05

(Bryant, 1978). However, the pattern of end-product

production is labile and many studies showed that

the relative proportions of succinate, acetate and

lactate excreted by parasites such as F. hepatica or

H. diminuta depended on the physiological con-

ditions; more lactate being produced under aerobic

conditions but more acetate under anaerobic con-

ditions (Bryant, 1978; Barrett, 1984). The relative
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flux through the two pathways is also influenced by

the presence of exogenous substrates and by physio-

logical modulators such as serotonin (Mansour,

1962).

The logical way for the phosphoenolpyruvate

branch point to be controlled would be to have re-

ciprocal modulation. Thus the activators of pyruvate

kinase would act as inhibitors for phosphoenolpy-

ruvate carboxykinase and vice versa. However, al-

though a whole range of activators and inhibitors

have been described for pyruvate kinase, there are

no known physiological modulators for phospho-

enolpyruvate carboxykinase (Prichard, 1976; Bryant,

1978; Barrett, 1981; Lloyd and Barrett, 1983).

However, metabolic control theory provides another

explanation for the control of the branch point

(Heinrich et al. 1977; Kacser and Burns, 1979;

Barrett, 1988). Control theory suggests that meta-

bolic control is, in fact, distributed throughout the

whole pathway and not just concentrated in one

‘rate-limiting’ enzyme. So, for example, the flux

through the pyruvate kinase branch is influenced, not

only by the enzymes in that branch of the pathway,

but also by the activities of enzymes in the other

branch of the pathway and also by the enzymes in the

main glycolytic sequence.

The effects of the different enzymes on the branch

point can be quantified by calculating the flux control

coefficients that in turn can be estimated from the

simultaneous measurement of metabolite levels and

flux rates under different physiological conditions.

When this analysis was applied to H. diminuta it

showed that an increase in pyruvate kinase activity

exerted a strong negative effect on the flux through

the phosphoenolpyruvate kinase branch (Precious

and Barrett, 1993; Barrett and Precious, 1995). This

is because of the differences in the Km of the two

enzymes for phosphoenopyruvate. Pyruvate kinase

has a low Km and is saturated with substrate under

physiological conditions, whilst phosphoenolpy-

ruvate carboxykinase has a relatively high Km and

is only partially saturated with substrate. So small

changes in the steady state levels of phosphoenol-

pyruvate in the tissues have a marked effect on the

flux through phosphoenolpyruvate carboxykinase,

but no effect on the flux through pyruvate kinase. So

in parasites that have a phosphoenolpyruvate branch

point, it is not in fact necessary to have reciprocal

effectors, the flux through pyruvate kinase is regu-

lated by enzyme activators and inhibitors, whilst the

flux through phosphoenolpyruvate carboxykinase is

controlled by small changes in intracellular phos-

phoenolpyruvate levels.

DETOXIFICATION PATHWAYS

As well as anabolic and catabolic pathways, cells

contain other enzyme systems. Of particular rel-

evance to parasites are the enzymes involved in

detoxification reactions and their possible role in

drug resistance. In mammals, toxic compounds are

metabolized in 3 stages (Table 1). In phase 1 reactive

groups such as hydroxyl groups, amino groups or

sulphydryl groups are introduced into the molecule.

In phase 2, the activated molecule is conjugated

with a low molecular compound such as glutathione

prior to phase 3 where the conjugated molecule may

be excreted, sequestered or further metabolized.

In most organisms the principal phase 1 reactions

are oxidative and are catalysed by cytochrome P450

mono-oxygenases. In contrast, phase 1 in helminths

relies primarily on reductive or hydrolytic enzymes

and there are few or no oxidative phase 1 reactions

(Munir and Barrett, 1985; Precious and Barrett,

1989). Phase 2 metabolism in helminths seems

similarly limited. Mammals can conjugate xenobio-

tics with a wide range of compounds including amino

acids and sugars, as well as glutathione and inorganic

ions. In contrast, the principal and probably sole

conjugation reaction in helminths is with glu-

tathione, a reaction catalysed by the multi-functional

enzyme glutathione transferase (Brophy and Barrett,

1990a).

To date, 7 species-independent classes of glu-

tathione transferases have been proposed (Alpha,

Mu, Pi, Theta, Sigma, Zeta and Omega). However,

studies have shown that helminth glutathione trans-

ferases do not fall clearly into these classes. Cestode

glutathione transferases are most similar to the Mu

class. In Schistosomes, Sm28 also has an overall

homology with the Mu class, but Sj26 shows a mix-

ture of Mu and Alpha features (Barrett, 1995). In

nematodes, where a more detailed survey has been

carried out, it has been found that the majority of

nematode glutathione transferases belong to 1 of 2

Table 1. The three phases of detoxification

Phase 1
(bioactivation)

Phase2
(conjugation
with)

Phase 3
(elimination)

Oxidation2 Glutathione3 Excretion3

Dehalogenation1 Glucuronides1 Sequestration4

Hydroxylation1 Methyl groups1 Further metabolism5

Reduction3 Acetyl groups1

Hydrolysis3 Amino groups1

Sulphate1

Phosphate1

Thiosulphate
(Rhodanese)3

1 Not demonstrated in helminths.
2 Low activity detected in helminths, possibly associated
with the synthesis of prostaglandins
3 Demonstrated in helminths.
4 High levels of binding proteins found in helminths, but
detoxification role not established.
5 Low activities of cysteine conjugate beta-lyase found in
helminths (from Barrett, 1997).
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new nematode-specific classes (Van Rossum et al.

2004; Schuller et al. 2005). In addition, nematodes

also have Alpha and Pi type isoenzymes.

Like their mammalian counterparts, helminth

glutathione transferases bind a wide range of ligands

including haem, unsaturated fatty acids and bile

salts. In a number of helminths (for example cestodes

and acanthocephalans) bile salts have a role as highly

specific environmental triggers and it is possible that

glutathione transferases are acting as intracellular

receptors. A number of anthelmintics, especially

those containing a phenolic ring can also bind. These

ligands are not conjugated with glutathione, but are

bound reversibly to the protein suggesting there is

probably a separate binding site distinct from the

active site (Walker et al. 1993).

Althoughglutathione transferases reactwith awide

range of exogenous chemicals, it is not certain what

their natural intracellular targets might be. One

group of compounds with which helminth gluta-

thione transferases show high activity are long-chain,

unsaturated aldehydes such as trans-2-nonenal

and trans-2-octenal and their hydroxyl-derivatives

such as 9-hydroxynonenol. These aldehydes are ex-

tremely reactive and cytotoxic, and are produced

from the breakdown of lipid peroxides. Lipid per-

oxides are formed by a chain reaction between un-

saturated fatty acids in the cell membranes and

reactive oxygen intermediates such as superoxide or

hydroxyl radicals (Brophy and Barrett, 1990b). So

glutathione transferase forms part of the parasite’s

anti-oxidant defence system. Helminths are, of

course, exposed to damage by oxygen radicals as part

of the effector arm of the hosts’ immune response.

Conjugation with glutathione does 2 things, it in-

creases water solubility of the compound and, for

most chemicals, it decreases chemical reactivity.

However, glutathione conjugates are potent in-

hibitors of glutathione dependent enzymes including

glutathione transferase itself and glutathione re-

ductase. In mammals glutathione conjugates are re-

moved from cells by an ATP-dependent pump,

in addition mammals are also able to metabolize

glutathione conjugates to other derivatives such as

mercapturic acid. Only low activities of cysteine

conjugate beta-lyase have been detected in helminths

(Adcock et al. 2000), but a glutathione conjugate

pump with many of the characteristics of the mam-

malian pump has been found in cestodes (Barrett,

1997).

BINDING PROTEINS

An alternative to metabolism or excretion for xeno-

biotic compounds is sequestration. In mammals

there are a variety of lipid-binding proteins: they

are all low molecular weight, cytoplasmic proteins,

but with differing PIs, binding affinities and re-

lative abundances. Proteins similar to mammalian

lipid-binding proteins have been found in nema-

todes, cestodes and digeneans. In addition, 2 other

types of lipid-binding protein have been found in

parasitic helminths, the first are the polyprotein

allergens found in nematodes that have been exten-

sively studied by Kennedy and colleagues (Kennedy,

2000). The other is a group of unusual, polymeric,

hydrophobic binding proteins found in cestodes

(Barrett et al. 1997). These are small, 8–10 kDa

proteins, which form oligomers in solutions, and

unlike mammalian lipid binding proteins, which

have a beta-barrel structure, these tapeworm pro-

teins are composed of 4 alpha-helices arranged in a

bunch, like the fingers of a hand.

The lipid-binding protein from M. expansa binds

both saturated and unsaturated long-chain fatty acids

(but not their CoA esters). It also binds steroids and

retinol as well as a number of anthelmintics, the latter

binding with KDs in the micromolar range: the

structural requirement for binding being a planar

molecule with a significant hydrophobic region and a

charged carboxylate or hydroxyl head group.

Binding proteins can mediate a wide variety of

intracellular processes, including regulating gene

action and intracellular transport as well as the pro-

tection of intracellular components from toxic com-

pounds. They could, in theory, aid the intracellular

transport of anthelmintics, facilitating for example

the movement of anthelmintics from the cell surface

to intracellular organelles. Ligands bound to binding

proteins may also have a kinetic advantage as sub-

strates for other enzyme systems compared with

unbound substrates and so be preferentially meta-

bolized. This again could be important in deter-

mining the fate and site of action of protein-bound

anthelmintics and could have a role in resistance

(Barrett and Saghir, 1999).

GENOMICS, PROTEOMICS AND METABOLOMICS

The last few years have seen tremendous advances in

experimental techniques, especially in genomics,

proteomics and metabolomics. These techniques are

now enabling us to go back and look at problems

which hitherto had seemed impossible to investigate

experimentally.

Genome sequencing promised a new paradigm in

which drug and vaccine targets might be rapidly

identified from the genome. To date, only 3 para-

sitic helminth genomes have been fully sequenced

(Brugia malayi, Schistosoma manson and S. japon-

icum) although several more are at various stages of

completion and there are a number of extensive EST

databases available (www.sanger.ac.uk/Projects/

Helminths). As the sequencing projects are com-

pleted the data will allow detailed comparisons

between species and higher taxa and lead to the

identification of conserved and divergent gene fam-

ilies as well as regulatory regions. However, many of
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the genes so far identified in parasites do not have

homologues in commonly studied model organisms

and lack an obvious cellular function. The free-living

nematode Caenorhabditis elegans has been exten-

sively used as a model system for parasitic nematodes

(unfortunately there is nothing similar for digeneans

or cestodes). Large-scale RNAi screens in C. elegans

have greatly added to our knowledge of gene function

and this can be exploited. However, regardless of

its phylogenetic position, C. elegans still represents a

heterologous model for parasitic worms. For the

majority of parasites the tools required for functional

genomics have not yet been developed and although

there are several examples of successful application

of RNAi techniques to helminths (e.g. Boyle et al.

2003; Britton and Murray 2006; McGonigle et al.

2008), in other cases it has proved impossible to use

RNAi (Viney and Thompson, 2008; Lender et al.

2008). Techniques for over expression and mutant

recovery in helminths are currently lacking.

An approximate definition of proteomics is the

large scale or systematic characterization of the pro-

teins present in a single cell or tissue. So proteomics

differs from the conventional reductionist scientific

investigations that dominated the 1970s and 80s

which typically focused on a single gene or protein. It

is now possible, on a 2D polyacrylamide gel, to re-

solve up to 2000 proteins and, if there is a protein

database for the organism, to identify the different

spots by mass spectroscopy. As well as the relative

amounts of protein, proteomics can reveal the extent

and nature of any protein modification, protein/

protein interactions and by suitable pulse incubation

with labelled substrates it is also possible to estimate

rates of protein turnover. Unlike the genome, which

is the same in most cells, the proteome is a dynamic

entity, constantly changing in response to internal

and external conditions, so there really is no such

thing as a single representative proteome. However,

proteomics does allow us to address such questions

as how do changes in the proteome correlate with

biological functions such as drug resistance or host

specificity.

There have been 2 slightly different approaches to

proteomics in helminths. The first, ‘expression

proteomics’ concentrates on looking at global pro-

teomes, usually from parasites under different

physiological conditions. For example, Heligmoso-

moides bakeri from fast and slow responder mice

(Morgan et al. 2006) or the effects of anthelmintic

exposure on Ascaris larvae (Islam et al. 2006).

Alternatively subproteomes have been studied either

using specific tissues e.g. the schistosome tegument

(Braschi et al. 2006) or concentrating on changes in

specific enzymes or proteins, for example glutathione

transferases (Chemale et al. 2006). Protein spots

that are up or down regulated can then be further

characterized. The other approach, ‘functional pro-

teomics’ focuses on identifying the role of individual

proteins and their interactions with other proteins,

nucleic acids or low molecular weight ligands.

Protein-protein interactions play a central role in the

structural and functional organization of cells. Dis-

ruption of protein-protein interactions is frequently

associated with disease, and modulation of protein-

protein interactions is increasingly seen as a target

for chemotherapy. Benzimidazole drugs, for ex-

ample, are known to disrupt protein interactions by

binding to tubulin and drug resistance is correlated

with specific mutations in the tubulin molecule

(Prichard, 2001).

Proteomic studies have shown that many helminth

proteins are post-translationally modified. With over

400 kinds of different protein modifications known

from the literature, it is estimated that any one pro-

tein has on average 10 post-translationally modified

forms. Such a high degree of modification suggests

important regulatory functions, but these have yet to

be studied in detail in helminths. Several of the

newer proteomic techniques such as activity-based

protein profiling and isotope-coded affinity tags are

still essentially at the proof of principal stage and it

remains to be seen how soon these techniques can be

applied to parasite problems.

Whilst proteomics is the global analysis of pro-

teins, metabolomics is the global analysis of the low

molecular weight metabolites in the tissue or cell. In

theory the advantage of metabolomic analysis is that

the biochemical consequences of, for example, mu-

tations, environmental change or drug treatment can

be viewed directly. This could help with under-

standing how drugs work and interact and with the

development of new drugs. High throughput meta-

bolomic techniques, like genomics, can generate vast

amounts of data. Data interpretation, however, can

be difficult, especially when whole organisms are

being used. Different tissues (and even different

cell types) can have different metabolite profiles and

cellular compartmentation means that metabolites

are not evenly distributed throughout the cell

(Nicholson et al. 2004). In the case of parasites there

is the added complication of the host contribution.

At the moment, the emphasis in metabolomics is

in biomarker discovery (metabonomics) rather than

fundamental biochemistry (Wang et al. 2006).

FUTURE DEVELOPMENTS

In general the biochemistry of helminths has lagged

behind that of parasitic protozoa. In part this

is probably due to our inability to culture adult

helminths or their cell lines in vitro for any length of

time. Since the early 1970s the major pathways of

energy metabolism in adult parasitic helminths have

been worked out in some detail. The mode of action

of most anthelmintics is now known, but in most

cases the mechanism of drug resistance remains

elusive and this is likely to remain a major area of
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research in the future. The overall synthetic capa-

bilities of adult helminths are now reasonably well

known, but synthetic enzymes have been relatively

little studied. Extensive changes take place in energy

metabolism between the different life-cycle stages of

helminths. Whether there are similar major changes

in synthetic pathways is not known, although this

may become clearer from micro-array studies which

show that different groups of genes are being tran-

scribed at different life-cycle stages (Vermeire et al.

2006). However, genes may be transcribed ahead

of the environmental event and only translated after

transition. The discovery of the role of small RNAs

(20–30 nucleotide long pieces) in developmental pro-

cesses may give new impetus to this area (Grosshans

and Filipowicz, 2008).

There aremany fascinating aspects to helminth life

cycles that have yet to be addressed. For example:

what is the basis of host/site specificity, in parasites

which undergo tissue migration what biochemical

cues do they use to navigate through the body and

how do they subvert/avoid the hosts’ immune re-

sponse? Biochemistry may be well placed to tackle

some of these problems in the coming decade.

High throughput methods such as proteomics,

metabolomics, micro-arrays and genome sequencing

are generating data faster than we can analyse it.

In order to find associations hidden across different

kinds of data in different databases developing

methods for enabling disparate sorts of data to be

integrated will become a priority (Barrett et al. 2005).

Ideally this would involve the use of a common on-

tology (a controlled, structured vocabulary). Whilst

this may be feasible in the future there remains the

question of how to incorporate older data into the

new database structure? Advances in data mining

unstructured text may provide the way forward in

the future (Buckingham, 2004).

I should like to thank all my students, post-docs and nu-
merous colleagues and collaborators with whom I have
worked over the past 40 years, and the support of the
various funding bodies that have allowed me to undertake
my research.
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