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Abstract. In this paper we consider a special class of polymorphisms with invariant
measure, the algebraic polymorphisms of compact groups. A general polymorphism is—
by definition—a many-valued map with invariant measure, and the conjugate operator of
a polymorphism is a Markov operator (i.e. a positive operator on L2 of norm 1 which
preserves the constants). In the algebraic case a polymorphism is a correspondence in the
sense of algebraic geometry, but here we investigate it from a dynamical point of view. The
most important examples are the algebraic polymorphisms of a torus, where we introduce
a parametrization of the semigroup of toral polymorphisms in terms of rational matrices
and describe the spectra of the corresponding Markov operators. A toral polymorphism is
an automorphism of Tm if and only if the associated rational matrix lies in GL(m, Z). We
characterize toral polymorphisms which are factors of toral automorphisms.

1. Algebraic polymorphisms
Definition 1.1. Let G be a compact group with Borel field BG , normalized Haar measure
λG and identity element 1 = 1G . A closed subgroup P ⊂ G × G is an (algebraic)
correspondence of G if π1(P) = π2(P) = G, where πi : G × G −→ G, i = 1, 2, are the
coordinate projections (which are obviously group homomorphisms).

Every correspondence P ⊂ G × G defines a map 5P from G to the set of all non-empty
closed subsets of G by

5P(x) = {y | (x, y) ∈ P}, (1.1)
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for every x ∈ G. Clearly, πi sends the Haar measure on P to the Haar measure on G; in the
terminology of [1], the correspondence P defines an (algebraic) polymorphism of G (more
exactly, P determines a polymorphism of the measure space (G, BG , λG) to itself )†.

The correspondence P ⊂ G × G and the polymorphism 5P obviously determine each
other.

Algebraic polymorphisms from one compact group to another are defined similarly.
A correspondence P′

⊂ G ′
× G ′ is a factor of a correspondence P ⊂ G × G (and the

polymorphism 5P′ is a factor of 5P) if there exists a surjective group homomorphism
φ : G −→ G ′ with (φ × φ)(P) = P′. If φ can be chosen to be a group isomorphism then
P and P′ (respectively 5P and 5P′ ) are isomorphic.

This notion of factors is consistent with the terminology in [1]: if 5 is a measure-
preserving polymorphism of a probability space (X, S, µ) determined by a self-coupling
ν of µ, and if T ⊂ S is a sub-sigma-algebra, then the factor polymorphism 5T of (X, T) is
determined by the restriction of ν to the sigma-algebra T ⊗ T ⊂ S ⊗ S.

Let P ⊂ G × G be a correspondence (since we only consider algebraic correspondences
and polymorphisms we drop the term algebraic from now on). The subgroup

P∗
= {(y, x) | (x, y) ∈ P} (1.2)

corresponds to the conjugate (or inverse) polymorphism of 5P. If P1, P2 are two
correspondences of G, their product P1 ? P2 is the correspondence

P1 ? P2 = {(x, z) ∈ G × G | (x, y) ∈ P2 and (y, z) ∈ P1 for at least one y ∈ G}.

(1.3)

Clearly,
5P1?P2(x) = 5P1 ◦ 5P2(x) =

⋃
y∈5P2

(x)

5P1(y),

for every x ∈ G. With respect to the composition (1.3) the set of all correspondences (or,
equivalently, the set of all polymorphisms) of G is a semigroup, denoted by P(G), with
involution P 7→ P∗, identity element P1 = {(g, g), g ∈ G} and zero element P0 = G × G.

For later use we introduce also the higher powers Pn of P, n ≥ 2, defined recursively by

Pn
= Pn−1 ? P. (1.4)

If P ⊂ G × G is a correspondence such that the group homomorphisms πi : P −→

G, i = 1, 2, are injections, then P is (the graph of) an automorphism of G, and the
conjugate correspondence yields the inverse automorphism. If π2 is an injection then
P is (the graph of) an endomorphism (i.e. of a surjective group homomorphism), and
if π1 is an injection then P is (the graph of) an exomorphism (i.e. P∗ is the graph of
an endomorphism). The group of automorphisms as well as semigroups of endo- and
exomorphisms are sub-semigroups of the semigroup of P(G) of correspondences of G.

We note in passing that the product of the algebraic polymorphisms is a special case of
the general notion of the product of measure-preserving polymorphisms in [1].

† In general, a measure-preserving polymorphism 5 of a probability space (X, S, µ) is determined by a
probability measure ν on X × X with πi ∗ν = µ for i = 1, 2, i.e. by a coupling of µ with itself.

https://doi.org/10.1017/S0143385707001022 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385707001022


Algebraic polymorphisms 635

Definition 1.2. For the following definitions we fix a correspondence P of a compact
group G. We write BP and λP for the Borel field and the Haar measure of P.

(1) Algebraic factor polymorphisms. Let H ⊂ G be a closed subgroup, and let PH =

P/(H × H) ⊂ (G/H × G/H) be the associated factor correspondence. The subgroup
H ⊂ G is invariant, co-invariant or doubly invariant under the polymorphism 5P if PH

is an endomorphism, exomorphism or an automorphism, respectively. Examples will be
given in §3.

(2) The Markov operator. Put B
(i)
P = π−1

i (BG) ⊂ BP, i = 1, 2, and let Fi ⊂

L2(G, BG , λG) be the subspace of functions measurable with respect to B
(i)
P , i = 1, 2.

Let Pri be the orthogonal projection in L2(G, BG , λG) onto Fi , i = 1, 2. We define the
Markov operator

VP : L2(G, BG , λG) −→ L2(G, BG , λG)

as follows. If f ∈ L2(G, BG , λG), we define h ∈ L2(P, BP, λP) by

h(x, y) = f (x),

for every (x, y) ∈ P and set
VP f = EλP(h|B

(2)

P ), (1.5)

where EλP(·|·) stands for conditional expectation with respect to λP. Then

VP = Pr2 · Pr1, V ∗

P = Pr1 · Pr2, (1.6)

and
VP∗ = V ∗

P (1.7)

(cf. (1.2)). Note that VP preserves positivity and has norm 1.
(3) The Markov process XP. The closed, shift-invariant subgroup

XP = {(xn) ∈ GZ | (xn, xn+1) ∈ P for every n ∈ Z} (1.8)

is the Markov process of P, and the corresponding Markov shift σP : XP −→ XP is defined
by (σPx)n = xn+1 for every x = (xn) ∈ XP. Note that σP is an automorphism of the
compact group XP which preserves the normalized Haar measure λXP of XP, and that
the Markov shift σP∗ : XP∗ −→ XP∗ corresponding to P∗ is the time reversal of σP.

Motivated by considering the various tail sigma-algebras (past, future and two-sided)
of the Markov process XP, we call the polymorphism 5P right (left or totally) non-
deterministic if there is no closed invariant (co-invariant or doubly invariant, respectively)
proper subgroup H ⊂ G (cf. Theorem 2.4).

(4) Ergodicity. The polymorphism 5P is ergodic if the constants are the only VP-
invariant functions.

PROPOSITION 1.3. Let G be a compact group and P ⊂ G × G a correspondence.
Then there exist closed normal subgroups K (i)

P ⊂ G, i = 1, 2, and a continuous group

isomorphism ηP : G/K (1)

P −→ G/K (2)

P such that

P = {(g1, g2) ∈ G × G | ηP(g1 K (1)

P ) = g2 K (2)

P }. (1.9)
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Proof. We set K (1)

P = {g ∈ G | (g, 1) ∈ P}, K (2)

P = {g ∈ G | (1, g) ∈ P} and observe that

K (1)

P and K (2)

P are normal subgroups of G, since π1(P) = π2(P) = G. Since P =

{(g1 p1, g2 p2) | (g1, g2) ∈ P, p1 ∈ K (1)

P , p2 ∈ K (2)

P }, we may view P as a subset P̄ ⊂

G/K (1)

P × G/K (2)

P , and the definition of the groups K (i)
P implies that P̄ is the graph of

a continuous group isomorphism ηP : G/K (1)

P −→ G/K (2)

P . 2

Remark 1.4. The triples (K (1)

P , K (2)

P , ηP), where K (i)
P , i = 1, 2, are subgroups of G and

ηP : G/K (1)

P −→ G/K (2)

P is a group isomorphism, form a parametrization of the algebraic
polymorphisms of G.

Definition 1.5. A correspondence P ⊂ G × G is finite-to-one (and defines a polymorphism
of discrete type) if the groups K (i)

P in (1.9) are both finite.
The finite-to-one correspondences of G form a subsemigroup P f (G) ⊂ P(G) of the

semigroup of all correspondences of G.

For the notation in the following characterization of (co-)invariance we again refer
to (1.9).

THEOREM 1.6. Let P ⊂ G × G be a correspondence and H ⊂ G a closed normal
subgroup:
(1) H is invariant under the polymorphism 5P if and only if ηP(H K (1)

P ) ⊂ H;

(2) H is co-invariant under 5P if and only if η−1
P (H K (2)

P ) ⊂ H;

(3) H is bi-invariant under 5P if and only if K (1)

P ⊂ H and ηP(H) = H (in which case

we also have that K (2)

P ⊂ H).

Proof. Clearly, K (2)

P ⊂ ηP(H K (1)

P ). If ηP(H K (1)

P ) ⊂ H then invariance follows from

Definition 1.2(1). Conversely, if K (2)

P ⊂ ηP(H K (1)

P ) ⊂ H , then PH is the graph of a group
endomorphism.

The other assertions are proved similarly. 2

COROLLARY 1.7. Let P ⊂ G × G be a correspondence and let H ⊂ G be a closed
normal subgroup. We denote by K (i)

Pn , i = 1, 2, the closed normal subgroups of G
associated with the correspondence Pn , n ≥ 2, in (1.4) by (1.9). The sequences of
subgroups (K (i)

Pn , n ≥ 1) are non-decreasing and have the following property:

(1) H is invariant under 5P if and only if it contains
⋃

n≥1 K (2)

Pn ;

(2) H is co-invariant under 5P if and only if it contains
⋃

n≥1 K (1)

Pn .

Proof. If a closed normal subgroup H ⊂ G is invariant under 5P then Theorem 1.6(1)
shows that K (2)

P2 = ηP(K (1)

P K (2)

P ) ⊂ ηP(K (1)

P H) ⊂ H , so hence ηP(K (2)

P2 ) ⊂ H and, by

induction, ηP(K (2)

Pn ) ⊂ H for every n ≥ 1.

Conversely, if H ⊃
⋃

n≥1 K (2)

Pn , then it is obviously invariant.
The proof of the second assertion is analogous. 2

If the group G is abelian, the characterization of ergodicity of a polymorphism of G is
completely analogous to that of ergodicity of an automorphism of G.
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THEOREM 1.8. Let P ⊂ G × G be a correspondence of a compact abelian group G with
Markov operator VP (cf. (1.5)). Then 5P is non-ergodic if and only if there exist a non-
trivial character χ of G and an integer n ≥ 1 with V n

P χ = χ .

Proof. If χ is a non-trivial character of G then the restriction to P of h = χ ◦ π1 is a
non-trivial character on P, and VPχ = EλP(h|B

(2)

P ) is either equal to zero or a non-trivial

character of G (depending on whether h is constant on {1G} × K (2)

P or not). Fourier
expansion completes the proof of the theorem. 2

2. Toral polymorphisms

Compact groups do not have dynamically interesting polymorphisms unless they have large
abelian quotients. For this reason we focus our attention in this section on compact abelian
groups, and in particular on finite-dimensional tori.

Let m ≥ 1, and let P f (Tm) be the semigroup of all finite-to-one correspondences of
Tm . We denote by L the semigroup of all finite index subgroups of Zm with respect to
the addition L1 + L2 = {u + v | u ∈ L1, v ∈ L2}. For every n = (n1, . . . , nm) ∈ Zm and
x = (x1, . . . , xm) ∈ Tm we write

χn(x) = e2π i
∑m

j=1 n j x j (2.1)

for the value of the corresponding character χn of Tm at x . The annihilator of a subgroup
F ⊂ Tm (or F ′

⊂ T2m) is denoted by F⊥ (respectively F ′⊥).
For Q ∈ GL(m, Q) we put

3Q = Zm
∩ QZm

∈ L. (2.2)

Finally, we introduce the semigroup

M= {(Q, 3) | Q ∈ GL(m, Q), 3 ∈ L, 3 ⊂ 3Q}, (2.3)

with composition

(Q, 3) · (Q′, 3′) = (Q Q′, 3 + Q3′). (2.4)

PROPOSITION 2.1. The semigroup P f (Tm) is isomorphic to the semigroup M in (2.3),
where the isomorphism θ : M−→ P f (Tm) is given by

θ(Q, 3)⊥ = {(Q−1n, n) | n ∈ 3}, (2.5)

for every (Q, 3) ∈M.

A correspondence P ∈ P f (Tm) is connected if and only if

P = PQ = θ(Q, 3Q), (2.6)

for some Q ∈ GL(m, Q) (cf. (2.2)). Finally, if P = θ(Q, 3) ∈ P f (Tm), then P∗
=

θ(Q−1, Q−13).

https://doi.org/10.1017/S0143385707001022 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385707001022


638 K. Schmidt and A. Vershik

Proof. For every Q ∈ GL(m, Q) and 3 ⊂ 3Q , θ(Q, 3) ⊂ Tm
× Tm is obviously an

element ofP f (Tm), and (1.9) guarantees that every P ∈ P f (Tm) is obtained in this manner.

If 3 ( 3Q ⊂ Zm , then P = θ(Q, 3) contains PQ = θ(Q, 3Q) as a finite index
subgroup and is therefore not connected. In order to prove the converse we set

WQ = {(Q−1n, n) | n ∈ 3Q}.

The dual group of PQ is of the form (Zm
× Zm)/WQ . If PQ is not connected, then

there exist an element (m, n) ∈ (Zm
× Zm) r WQ and an l > 1 with (lm, ln) ∈ WQ .

Hence (m, n) = (Q−1k, k) for some k ∈ Zm
∩ QZm

= 3Q , and (m, n) ∈ WQ . This
contradiction proves that PQ is connected.

The last assertion is obvious. 2

Remark 2.2. Proposition 2.1 shows that connected finite-to-one correspondences are in
one-to-one correspondence with the elements of GL(m, Q).

For every n ≥ 1 we define Pn and K (i)
Pn as in Corollary 1.7.

THEOREM 2.3. Let Q ∈ GL(m, R) and P = ξ(Q, 3) ∈ P f (Tm), where 3 ⊂ 3Q = Zm
∩

QZm is a finite index subgroup (cf. (2.2) and (2.5)).

(1) The following conditions are equivalent.
(a) 5P is right non-deterministic.
(b) 4+

P = {n ∈ 3 | Qkn ∈ Zm for every k ≤ 0} = {0}.

(c)
⋃

n≥1 K (2)

Pn is dense in Tm .
(2) The following conditions are equivalent.

(a) 5P is left non-deterministic.
(b) 4−

P = {n ∈ 3 | Qkn ∈ Zm for every k ≥ 0} = {0}.

(c)
⋃

n≥1 K (1)

Pn is dense in Tm .
(3) The following conditions are equivalent.

(a) 5P is totally non-deterministic.
(b) 4+

P ∩ 4−

P = {n ∈ 3 | Qkn ∈ Zm for every k ∈ Z} = {0}.

(c) Both
⋃

n≥1 K (1)

Pn and
⋃

n≥1 K (2)

Pn are dense in Tm .

Proof. In order to prove (1) we note that 4+

P is a group and that Q−14+

P ⊂ 4+

P . We
set H = (4+

P )⊥ ⊂ Tm . Then the correspondence PH = P/(H × H) is the graph of a
continuous surjective homomorphism of the group Y = Tm/H⊥ to itself. The converse
is proved by reversing this argument.

If the group H =
⋃

n≥1 K (2)

Pn is trivial, then P is the graph of an endomorphism. If H
is not dense in Tm , then its closure H̄ is non-trivial and is the smallest proper invariant
subgroup of 5P (cf. Corollary 1.7).

The assertions (2) and (3) are proved in exactly the same manner. 2

The property of being left, right or totally non-deterministic can also be expressed in
terms of the Markov group XP in (1.8).
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THEOREM 2.4. Under the hypotheses of Theorem 2.3 the polymorphism 5P is right non-
deterministic if and only if the remote past of the process XP is trivial†.

Similarly, 5P is left non-deterministic if and only if the remote future of XP is trivial.

Proof. We denote by λXP the Haar measure of the compact abelian group XP. For every

n ≥ 1 we define the subgroups K (1)

Pn and K (2)

Pn as in Corollary 1.7.
For the proof of the theorem it is enough to notice that the conditional measure

λXP(· | xn = t) for fixed t ∈ Tm and n < 0 is the uniform measure on a coset of the group

K (2)

Pn . According to Theorem 1.6(1), the polymorphism 5P is right non-deterministic if and

only if
⋃

n≥1 K (2)

Pn is dense in Tm , in which case the conditional measures λXP(· | x−n = t)
converge to λTm as m → ∞. 2

THEOREM 2.5. Let Q ∈ GL(m, R) and P = ξ(Q, 3) ∈ P f (Tm), where 3 ⊂ 3Q = Zm
∩

QZm is a finite index subgroup (cf. (2.5)). Then 5P is non-ergodic if and only if Q has a
non-trivial root of unity as an eigenvalue.

Furthermore, if 5P is left, right or totally non-deterministic, then it is ergodic.

Proof. By definition, P⊥
= {(Q−1n, n) | n ∈ 3}. A direct calculation shows that, for

every n ∈ Zm ,

VP(χn) =

{
χQ−1n if n ∈ 3,

0 otherwise,
V ∗

P (χn) =

{
χQn if n ∈ Q−13,

0 otherwise
(2.7)

(cf. (2.1)). The existence of an n ∈ 3 with V k
Pχn = χn for some k ≥ 1 is obviously

equivalent to Q having a root of unity as an eigenvalue.
The last assertion is obvious. 2

We turn to the spectral properties of the Markov operator VP associated with a
correspondence P ∈ P f (Tm).

THEOREM 2.6. Let m ≥ 1, P ∈ P f (Tm), and let Sp(VP) ⊂ D = {z ∈ C | |z| ≤ 1} be
the spectrum of the linear operator VP : L2

0(T
m, Bm

T , λTm ) −→ L2
0(T

m, Bm
T , λTm )

in (1.5), where L2
0(T

m, Bm
T , λTm ) = { f ∈ L2(Tm, Bm

T , λTm ) |
∫

f dλTm = 0} is the
orthocomplement of the constants:
(1) Sp(VP) = Sp(V ∗

P ) = {0} if and only if P is totally non-deterministic;
(2) Sp(VP) = Sp(V ∗

P ) = S = {z ∈ C | |z| = 1} if and only if 4+

P = 4−

P = 3;
(3) Sp(VP) = Sp(V ∗

P ) ⊂ S ∪ {0} if and only if 4+

P = 4−

P ( 3;
(4) if 4−

P r 4+

P 6= ∅ then Sp(VP) = D;
(5) if 4+

P r 4−

P 6= ∅ then Sp(V ∗

P ) = D.

Proof. We choose (Q, 3) ∈M with ξ(Q, 3) = P (cf. (2.5)). By definition of M, we
have 3 ⊂ 3 ∩ Q3.

† The remote past of the process XP ⊂ (Tm )Z is the intersection A−∞ =
⋂

n∈Z A−
n , where A−

n is the sigma-
algebra generated by the coordinates of the process XP with index less than or equal to n. The remote future
of XP ⊂ (Tm )Z is the sigma-algebra A∞ =

⋂
n∈Z A+

n , where A+
n is generated by the coordinates with index

greater than or equal to n of XP.
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If P is totally non-deterministic then there exist, for every non-zero n ∈ 3, a smallest
positive integer k+(n) and a largest negative integer k−(n) such that Qk±(n)n /∈ 3. If we set

OQ(n) = {Qk−(n)+1n, . . . , Qk+(n)−1n},

then the restriction of V ∗

P to the linear span 〈OQ(n)〉 of OQ(n) in L2(Tm, BTm , λTm ) is
unitarily equivalent to a matrix of the form

0 1 0 0 . . . 0 0
0 0 1 0 . . . 0 0
...

. . .
...

0 0 0 0 . . . 0 1
0 0 0 0 . . . 0 0

 ,

which has spectrum {0}. By taking the direct sum of the subspaces 〈OQ(n)〉, n ∈ Zn , in
L2(Tm, BTm , λTm ) we see that Sp(V ∗

P ) = {0}, and that the same is true for Sp(VP). This
proves (1).

The assertion (2) is obvious, since the condition given there is equivalent to Q being an
element of GL(m, Z).

In order to prove (3) we set 4 = 4+

P = 4−
p , S = 4⊥, Y = 4̂ = Tm/S, and we observe

that the restriction of Q to 4 is a group automorphism. Hence the restrictions of VP and
V ∗

P to the closed linear span of {χn | n ∈ 4} in L2(Tm, BTm , λTm ) are unitary.
For n /∈ 4 there exist a smallest non-negative integer k+(n) and a largest non-positive

integer k−(n) such that Qk±(n)n /∈ Zn , and by combining the preceding paragraph with the
argument in the proof of (1) we obtain (3).

If 4−

P r 4+

P 6= ∅ there exists an n ∈ 3 with Qkn ∈ 3 for every k ≥ 0, but Q−1n /∈ 3.
The restriction W of VP to the closed linear span H of {χQk n | k ≥ 0} has a non-zero
kernel, since VPχn = 0. Furthermore, if γ ∈ C, |γ | < 1, and if vγ =

∑
k≤0 γ kχQk n ∈ H ,

then VPvγ = γ vγ , i.e. vγ is an eigenvector of VP with eigenvalue γ . This proves that
Sp(VP) ⊃ Sp(W ) = D.

The same argument shows that Sp(V ∗

P ) ⊃ Sp(W ) = D if 4+

P r 4−

P 6= ∅, and the
remaining implications are immediate consequences of what has already been shown. 2

3. Factors of toral automorphisms and other examples
If A, B are endomorphisms of Tm , then

P(A, B) = {(x, y) ∈ Tm
× Tm

| Ax = By} (3.1)

is a finite-to-one correspondence, and every P ∈ P f (Tm) is of this form. Note that
P(A, B) = P(C A, C B) for every C ∈ GL(m, Z), and that P(AC ′, BC ′) and P(A, B) are
isomorphic if C ′

∈ GL(m, Z).
The subgroups K (1)

P(A,B)
and K (2)

P(A,B)
and the isomorphism ηP(A,B) : Tm/K (1)

P(A,B)
−→

Tm/K (2)

P(A,B)
associated with P(A, B) by (1.9) are given by K (1)

P(A,B)
= (A>Zm)⊥,

K (2)

P(A,B)
= (B>Zm)⊥ and ηP(A,B) = −B−1 A, respectively, where > denotes transpose.

Ergodicity of P(A, B) is thus equivalent to the assumption that B−1 A ∈ GL(m, Q) has
no eigenvalues which are roots of unity (cf. Theorem 1.8).
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In order to characterize the connectedness of P(A, B) we set Q = η̂−1
P = B>(A>)−1.

According to Proposition 2.1, P(A, B) is connected if and only if

B>Zm
= Zm

∩ B>(A>)−1Zm
= 3Q,

i.e. if and only if
Zm

= (A>)−1Zm
∩ (B>)−1Zm . (3.2)

Example 3.1. Let m = 1, k, l ∈ N and P = {(u, v) | u, v ∈ T, ku = lv}. We denote by s the
highest common factor of k, l and set k = k′s, l = l ′s. Then P = θ(Q, 3), where 3 = lZ
and Q is multiplication by −(k′/l ′) (cf. (2.5)).

If k, l are coprime (i.e. if s = 1) then P = PQ is connected by (3.2).
If s > 1 then φ is the quotient map from Z to F = Z/sZ, P is disconnected and

K (1)

P ∩ K (2)

P = {x ∈ T | sx = 0 (mod 1)}).
Finally, if |k/ l| 6= 1 then 5P is ergodic. If k, l are coprime and |k| > 1, |l| > 1, then 5P

is totally non-deterministic.

Examples 3.2. (Factors of polymorphisms) (1) Consider the correspondence P = {(u, v) |

u, v ∈ T, 3u = 2v} (cf. Example 3.1(1)), and let H = {0, 1/5, 2/5, 3/5, 4/5} ⊂ T. Then
P is the annihilator of {(3k, −2k) | k ∈ Z} ⊂ Z2 and PH is the annihilator of {(15k, −10k) |

k ∈ Z}. Note that P and PH are isomorphic.
(2) Let

Q =

(
1 1
1 0

)
,

and let P = PQ = θ(Q, Z2). Put

H =

{
0,

(
1/2
0

)}
⊂ T2,

and set P′
= PH . We identify T2/H with T2 by the map

φ

(
s
t

)
=

(
2s
t

)
,

and view P′ as a correspondence of T2. Then P′ is isomorphic to the polymorphism of
P(A, B) of T2 with

A =

(
1 0
0 2

)
, B =

(
1 2
1 0

)
.

Since A, B /∈ GL(2, Z), P′ is not the graph of an automorphism.

Example 3.2(2) shows that a toral automorphism P may have a proper polymorphism as
a factor (proper means that the groups K (1)

P , K (2)

P in (1.9) are not both trivial). However, the
following theorem shows that factors of automorphisms always have a non-trivial doubly
invariant subgroup.

THEOREM 3.3. Let P(A) ∈ P f (Tm) be the graph of a toral automorphism A ∈ GL(m, Z).
For every finite subgroup H ⊂ Tm there exists a finite doubly invariant subgroup H ′

⊂ Tm

containing H. In particular, PH ′ is the graph of an automorphism of Tm/H ′.
In other words, if a polymorphism is a factor of a toral automorphism then it has a

further factor which is again an automorphism.
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Proof. Since H is finite, there exists a q ≥ 1 such that H ⊂ H ′
= {t ∈ Tm

| qt = 0}. As
one can check easily,

⋃
n≥1 K (i)

Pn ⊂ H ′ for i = 1, 2. Theorem 2.3 shows that H ′ is invariant
under PH , which proves our claim. 2

Theorem 3.3 allows us to say a little more about the structure of factors of toral
automorphisms.

COROLLARY 3.4. Let P(A) ∈ P f (Tm) be the graph of a toral automorphism A ∈

GL(m, Z), H ⊂ Tm a finite subgroup and H ′
⊂ Tm a finite doubly invariant subgroup

containing H.
If we identify both Tm/H and Tm/H ′ with Tm , then the correspondence P′′

= PH ′ is the
graph of a toral automorphism A′′ (i.e. P′′

= P(A′′)), and the correspondence P′
= PH has

the graph of the automorphism A′′
∈ GL(m, Z) as a factor with kernel (H/H ′) × (H/H ′).

Proof. The identifications of Tm/H and Tm/H ′ with Tm yield finite-to-one equivariant
homomorphisms

Tm
−→ Tm/H −→ Tm/H ′,

where the automorphisms A and A′′ act on the first and third tori and the polymorphism
5P′ on the second. 2

Remarks 3.5. (1) The automorphism A′′
∈ GL(m, Z) in Corollary 3.4 is obviously

conjugate to A in GL(m, Q), but not necessarily in GL(m, Z).
Conversely, if P = P(A) is the graph if some A ∈ GL(m, Z), and if A′′

∈ GL(m, Z) is
conjugate to A in GL(m, Q), then the graph P(A′′) is isomorphic to P(A)H ′ for some finite
subgroup H ′

⊂ Tm .
(2) There is a minimal choice of the subgroup H ′

⊂ Tm in Theorem 3.3: the subgroup
generated by

⋃
n∈Z Ak H (which we know to be finite from the proof of Theorem 3.3).

(3) Corollary 3.4 shows that a polymorphism 5P′ is a factor of an automorphism
A ∈ GL(m, Z) of Tm if and only if there exist an A′′

∈ GL(m, Z) which is conjugate to
A in GL(m, Q) and finite groups H ⊂ H ′

⊂ Tm such that P′ is a skew product over the
(the graph of) automorphism A′′ with fibre (H/H ′). Note, however, that P′ is connected
and is therefore a non-trivial H/H ′-bundle over the base Tm on which A′′ acts.

(4) In [1] it is shown that every polymorphism is a factor of an automorphism with
respect to some invariant partition (i.e. invariant sub-sigma-algebra), but Theorem 3.3
shows that this is not true in the algebraic category.
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