
Math. Struct. in Comp. Science (2006), vol. 16, pp. 429–451. c© 2006 Cambridge University Press

doi:10.1017/S0960129506005251 Printed in the United Kingdom

Quantum weakest preconditions

ELLIE D ’HONDT† and PRAKASH PANANGADEN‡

† Vrije Universiteit Brussel, Belgium
‡ McGill University, Montreal, Canada

Received 24 January 2005; revised 15 December 2005

We develop a notion of predicate transformer and, in particular, the weakest precondition,

appropriate for quantum computation. We show that there is a Stone-type duality between

the usual state-transformer semantics and the weakest precondition semantics. Rather than

trying to reduce quantum computation to probabilistic programming, we develop a notion

that is directly taken from concepts used in quantum computation. The proof that weakest

preconditions exist for completely positive maps follows immediately from the Kraus

representation theorem. As an example, we give the semantics of Selinger’s language in

terms of our weakest preconditions. We also cover some specific situations and exhibit an

interesting link with stabilisers.

1. Introduction

Quantum computation is rapidly becoming a significant topic in theoretical computer

science. To be sure, there are still essential technological and conceptual problems to

overcome in building functional quantum computers. Nevertheless, fundamental new

insights have been produced into quantum computability (Deutsch 1985; Deutsch and

Jozsa 1992), quantum algorithms (Grover 1996; Shor 1994) and the nature of quantum

mechanics itself (Peres 1995, Part III), particularly with the emergence of quantum

information theory (Nielsen and Chuang 2000, Chapter 12).

These developments inspire one to consider the problems of programming general-

purpose quantum computers. Much of the theoretical research is aimed at using the new

tools available – superposition, entanglement and linearity – for algorithmic efficiency.

However, quantum algorithms are currently programmed at a very low level – comparable

to classical computing 60 years ago. In the search for structure in the space of quantum

algorithms, one is led to consider issues like compositionality, semantics, type systems

and logics; these are issues that usually arise in the context of programming languages.

The present paper is situated in the nascent area of quantum programming methodology

and the design and semantics of quantum programming languages. We extend the well-

known paradigm of weakest preconditions (Hoare 1969; Dijkstra 1976) to the quantum

context. The influence of Dijkstra’s work on weakest preconditions has been deep and

pervasive, and even led to textbook level expositions of the subject (Gries 1981). The

† Ellie D’Hondt was funded by the FWO and the VUB (Flanders).
‡ Prakash Panangaden was funded in part by a grant from NSERC (Canada) and in part by a visiting

fellowship from EPSRC (U.K.).

https://doi.org/10.1017/S0960129506005251 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005251

E. D’Hondt and P. Panangaden 430

main point is that it leads to a goal-directed program, or algorithm development strategy.

Hitherto, quantum algorithms have been invented by brilliant new insights. As more and

more algorithms accumulate and a stock of techniques start to accumulate, a systematic

program development strategy will be required. It is this that we hope will eventually

come out of the present work.

In this paper we make two contributions. First, we develop the appropriate quantum

analogue of weakest preconditions and develop the duality theory. Rather than reducing

quantum computation to probabilistic computation and using well-known ideas from this

setting (Kozen 1981; Kozen 1985), we define quantum weakest preconditions directly.

It turns out that the same beautiful duality between state-transformer (forwards) and

predicate-transformer (backwards) semantics that one finds in the traditional (Smyth 1983;

Plotkin 1983) and probabilistic settings (Kozen 1985) appears in the quantum setting.

This is related to the fact that when state transformers are specified to be completely

positive maps, we can prove the existence of corresponding weakest preconditions in a

very general way using a powerful mathematical result, called the Kraus representation

theorem (Nielsen and Chuang 2000, Section 8.2.4). In fact, the correspondence is very

much more direct in this case than in the case of conventional or probabilistic languages.

Second, we write the detailed weakest precondition semantics for a particular quantum

programming language. Quantum programming languages have started to appear recently.

Perhaps the best known is the quantum flow chart language (Selinger 2004), also referred

to as QPL, which is based on the slogan ‘quantum data and classical control’. QPL has a

clean denotational semantics and a clear conceptual basis; we give an alternative weakest

precondition semantics for this language. It should be noted, however, that our notion of

weakest preconditions and the basic existence results are language independent.

The structure of this paper is as follows. In Section 2 the general setup, in particular,

quantum state transformers and quantum predicates, is laid out. Next, in Section 3

we define quantum weakest preconditions and healthy predicate transformers, proving

their existence for arbitrary completely positive maps and observables. In Section 4 we

summarise the basic structure of Selinger’s language, and develop its weakest precondition

semantics. We apply our results to specific situations such as Grover’s algorithm and

stabilisers in Section 5, and give conclusions in Section 6.

2. The quantum framework

In this section we define the main concepts on which our theory of quantum weakest

preconditions is based. We first give a general overview, after which we specify concrete

definitions for quantum states and state transformers in Section 2.1 and for quantum

predicates in Section 2.2.

Traditionally, there are several means of developing formal semantics for programming

languages. In the operational semantics for an imperative language, one has a notion of

states, typically denoted s, such that the commands in the language are interpreted as

state transformers. If the language is deterministic, the state transformation is given by

a function, and composition of commands corresponds to functional composition. The

flow is forwards through the program. This type of semantics is intended to give meaning

https://doi.org/10.1017/S0960129506005251 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005251

Quantum weakest preconditions 431

Table 1. Comparing situations.

Deterministic Probabilistic Quantum

states probability distributions density matrices

s µ ρ

predicates measurable functions observables

p f M

satisfaction expectation value quantum expectation value

s |= p
∫
fdµ tr(Mρ)

to programs that have already been written. It is useful for guiding implementations of

programming languages but is, perhaps, less useful for program development. By contrast,

in a predicate transformer semantics the meaning is constructed by flowing backwards

through the program, starting from the final intended result and proceeding to determine

what must be true of the initial input. States are replaced by predicates p over the state

space, together with a satisfaction relation |=. Language constructs are interpreted as

predicate transformers. This type of semantics is useful for goal-directed programming.

Of course, the two types of semantics are intimately related, as they should be! In a

sense to be made precise in Section 3.4, they are dual to each other. The situation for

deterministic languages can be found in the first column of Table 1.

In the world of probabilistic programs one sees the same duality in action, after suitably

generalising the notions of states and predicates. Probability distributions now play the

role of states. There are, of course, states as before and, in a particular execution, there is

only one state at every stage. However, in order to describe all the possible outcomes (and

their relative probabilities), one keeps track of the probability distribution over the state

space and how it changes during program execution. What plays the role of predicates?

Kozen has argued (Kozen 1985) that predicates are measurable functions – or random

variables, to use the probability terminology. We note that a special case of random

variables are characteristic functions, which are more easily recognisable as the analogues

of predicates; in fact, they are predicates. In a probabilistic setting one has an expectation

value rather than truth: truth values now lie in [0, 1] rather than in {0, 1}. The pairing

between measurable functions f and probability distributions µ is now given by the

integral, which is the probabilistic expression of the expectation value. These measurable

functions are to be viewed as observations, which may or may not lead to termination.

The pairing between f and µ then expresses the probability with which termination is

achieved when observing f. The second column of Table 1 summarises the main concepts

for probabilistic languages.

For the quantum world we again need a notion of state – or, more precisely, probability

distributions over possible states – a notion of predicate, and a pairing. Our choices

are very much guided by the probabilistic case, but we are not claiming that quantum

computation can be seen as a special case of classical probabilistic computation. Instead,

we take density matrices as the analogue of probability distributions, while for predicates

we take the observables of the system. These are given by (a certain restricted class

https://doi.org/10.1017/S0960129506005251 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005251

E. D’Hondt and P. Panangaden 432

of) Hermitian operators. Finally, the notion of a pairing is again the expectation value,

but given by the rules of quantum mechanics; that is, we have tr(Mρ), where tr stands

for the usual trace from linear algebra, ρ is a density matrix and M is an observable.

Throughout this paper we work with finite-dimensional Hilbert spaces, and one can think

of M and ρ as matrices. We discuss these concepts in more depth in Sections 2.1 and 2.2;

a summary can be found in the last column of Table 1. Note, however, that, just as for the

probabilistic case, the pairing tr(Mρ) may be interpreted as the probability of termination

when observation M is made in the state ρ.

Why can one not just use probabilistic predicates and the general theory of probabilistic

predicate transformers in a quantum context? The following simple example – due to one

of the referees – illustrates the reason. Suppose we have a two-dimensional Hilbert space

of states with basis vectors written |0〉 and |1〉. Two other states in this Hilbert space are
1√
2
(|0〉+ |1〉) and 1√

2
(|0〉−|1〉). We use the notation {|ψ〉} for the density matrix |ψ〉〈ψ| and

write convex combinations like λ{|ψ〉} + (1 − λ){|ψ〉} for the density matrix of a mixed

state, that is, an ensemble. Now consider the measurable function f defined by

f(|0〉) = 0

f(|1〉) = 0

f

(
1√
2
(|0〉 + |1〉)

)
= 1

f

(
1√
2
(|0〉 − |1〉)

)
= 1.

(1)

This function is indeed measurable, but not linear, and cannot correspond to any kind

of physical observable or measurement. To see what happens, consider the ensemble

ρ = 1
2
{|0〉} + 1

2
{|1〉}. When f is applied to this, we get 0. However, when f is applied to

the ensemble ρ′ = 1
2
{ 1√

2
(|0〉 + |1〉)} + 1

2
{ 1√

2
(|0〉 − |1〉)}, we get the value 1. The point is that

ρ and ρ′ are physically indistinguishable, so one cannot have a physical observable that

distinguishes between these ‘two’ ensembles. When developing a theory of predicates and

predicate transformers we must therefore restrict ourselves to mathematical objects that

are compatible with the linear structure of quantum mechanics. It is a conceptual error

to think that quantum mechanics can be understood just using probabilistic constructs.

We note that the work in (Butler and Hartel 1999), which uses probabilistic predicates

to analyze Grover’s algorithm (Grover 1996), avoids this conundrum because it considers

only pure-state situations.

2.1. Quantum states and state transformers

Typically a quantum system is described by a Hilbert space, physical observables are

described by Hermitian operators on this space and transformations of the system are

effected by unitary operators (Peres 1995). However, we need to describe not only so-

called pure states but also mixed states. These arise as soon as one has to deal with

partial information in a quantum setting. For example, a system may be prepared as a

statistical mixture, it may be mixed as a result of interactions with a noisy environment

(decoherence), or by certain parts of the system being unobservable. For all these reasons

https://doi.org/10.1017/S0960129506005251 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005251

Quantum weakest preconditions 433

we need to work with probability distributions over the states in a Hilbert space. In

quantum mechanics this situation is characterised by density matrices, of which a good

expository discussion appears in Nielsen and Chuang (2000, Chapter 2). Concretely, a

density matrix ρ on a Hilbert space H is a positive operator, that is, for all states |x〉 in

H, we require that 〈x|ρx〉 � 0, with, furthermore, trρ � 1. The reason we do not have the

usual equality is that we do not assume that everything is always normalised. Hence, in

order to interpret a density matrix as a probability distribution we first need to renormalise

when necessary. This is a bit of a nuisance if one wants a direct interpretation of the

density matrix at every stage of the computation; however, we do recover the probabilities

correctly if we start with a normalised density matrix at the start of a computation and

multiply out everything at the end. This convention saves some notational overhead and

is used by Selinger (Selinger 2004). We denote the set of all density matrices over a Hilbert

space H by DM(H).

As we have already mentioned, forward operational semantics is described by quantum

state transformers. The properties of such state transformers are now well understood. A

physical transformation must take a density matrix to a density matrix. Thus, it seems

reasonable to require that physical operations correspond to positive maps, which are

linear maps that take a positive operator to a positive operator. However, it is possible

for a positive map to be tensored with another positive map – even an identity map –

and for the result to fail to be positive. Physically this is a disaster. Indeed, this means

that if we formally regard some system as part of another far away system that we do

not touch (that is, to which we apply the identity transformation), then suddenly we have

an unphysical transformation. A simple example is provided by the transpose operation,

which is a positive map while its tensor with an identity is not. Therefore, we need the

stronger requirement that physical operations are completely positive, a property that is

defined as follows.

Definition 2.1. A map E is completely positive when it takes density matrices to density

matrices, and likewise for all trivial extensions I ⊗ E.

Note that such a map may operate between distinct Hilbert spaces, that is, in general, we

have E : DM(H1) → DM(H2). We use CP(H1,H2) to denote the set of all such maps,

and write CP(H) for CP(H,H).

We frequently rely on the Kraus representation theorem for completely positive maps.

Theorem 2.1 (Kraus Theorem). The map E : DM(H1) → DM(H2) is a completely

positive map if and only if for all ρ ∈ DM(H1) we have

E(ρ) =
∑
i

EiρE
†
i (2)

for some set of operators {Ei : H1 → H2}, with
∑

i E
†
i Ei � I .

The condition on the Ei ensures that trace of the density matrix never increases. Equation

(2) is also known as the operator-sum representation. The proof of this theorem can be

found, for example, in Nielsen and Chuang (2000, Section 8.2.4). Note there is nothing in

the theorem that says that the Ei are unique.

https://doi.org/10.1017/S0960129506005251 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005251

E. D’Hondt and P. Panangaden 434

2.2. Quantum predicates

In this section, we define quantum predicates and the associated order structure required

for the development of our theory. Concretely, we need an ordering on predicates so that

we can define weakest preconditions, and this order should be Scott-continuous in order

to deal with programming language aspects such as recursion and iteration.

As argued above, quantum predicates are given by Hermitian operators. However,

general Hermitian operators will not yield a satisfactory logical theory with the duality

that we are looking for. We need to restrict ourselves to positive operators and, in order

to obtain least upper bounds for increasing sequences, we need to bound them. More

precisely, we have the following definition.

Definition 2.2. A predicate is a positive, and hence Hermitian, operator with the maximum

eigenvalue bounded by 1.

The reason for defining predicates to have their maximum eigenvalue bounded by 1 is

in order to get a complete partial order (CPO); we will clarify this below. Since our

predicates are positive operators, their eigenvalues are real and positive. We denote the

set of all predicates on a Hilbert space H by P(H).

Proposition 2.1. Let M be a Hermitian operator. Then 0 � tr(Mρ) � 1 holds for all

density matrices ρ if and only if M is positive and its eigenvalues are bounded by 1.

Proof. Note that for any element |ψ〉 of H we have tr(M|ψ〉〈ψ|) = 〈ψ | M | ψ〉. Assume

that 0 � tr(Mρ) � 1 for all density matrices ρ. Choose ρ = |ψ〉〈ψ| where |ψ〉 is an

arbitrary normalised vector. We have 0 � tr(M|ψ〉〈ψ|) = 〈ψ | M | ψ〉, which says that M

is positive. Now choose |ψ〉 to be a normalised eigenvector of M with eigenvalue λ, which

is necessarily real and positive, so we have tr(M|ψ〉〈ψ|) = 〈ψ | M | ψ〉 = λ〈ψ|ψ〉 = λ � 1.

Thus the eigenvalues are bounded by 1. The converse is obvious once we note that any

density matrix is a convex combination of density matrices of the form |ψ〉〈ψ|.

Thus we could have defined predicates as positive operators M such that for every

density matrix ρ we have 0 � tr(Mρ) � 1. This exhibits the predicates as ‘dual’ to density

matrices.

We define an ordering as follows.

Definition 2.3. For matrices M and N in �n×n, we define M 	 N if N −M is positive.

This order is known in the literature as the Löwner partial order (Löwner 1934). Note

that this definition can be rephrased in the following way, where DM(H) denotes the set

of all density matrices.

Proposition 2.2. M 	 N if and only if ∀ρ ∈ DM(H).tr(Mρ) � tr(Nρ)

Proof. Indeed, N −M positive means that for all x ∈ H we have 〈x|N −M|x〉 � 0, or,

equivalently, tr((N−M).|x〉〈x|) � 0. By linearity of the trace and the fact that the spectral

theorem holds for all ρ ∈ DM(H), we get the desired result. For the converse, take all

pure states ρ = |x〉〈x|. Then we find that for all x ∈ H we have 〈x|N −M|x〉 � 0, or, in

other words, M 	 N.

https://doi.org/10.1017/S0960129506005251 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005251

Quantum weakest preconditions 435

Put another way, M 	 N if and only if the expectation value of N exceeds that of M.

With the above definitions, we have the following result.

Proposition 2.3. The poset (P(H),) is a complete partial order (CPO), that is, it contains

least upper bounds of increasing sequences.

Taking predicates to be bounded Hermitian operators leads to Proposition 2.3, which

guarantees the existence of fixpoints and thus allows for the formal treatment of iteration

and recursion in Section 4.

3. Quantum weakest preconditions and duality

In this section we elaborate our theory of quantum weakest preconditions. We first give the

main definitions in Section 3.1, after which we explore healthiness conditions in Section 3.2.

Next, we investigate weakest precondition predicate transformers for completely positive

maps in Section 3.3. With the latter results we obtain a duality between the forward state

transformer semantics and the backward weakest precondition semantics in Section 3.4.

3.1. Definitions

In a quantum setting, the role of the satisfaction relation is taken over by the expectation

value of an observable M, just as for probabilistic computation. The quantum expectation

value of a predicate M is given by the trace expression tr(Mρ). Preconditions for a

quantum program Q – described in an unspecified quantum programming language – are

defined as follows. We write Q for the program as well as for the trace-nonincreasing

completely positive map that it denotes.

Definition 3.1. The predicate M is said to be a precondition for the predicate N with

respect to a quantum program Q, denoted M{Q}N, if

∀ρ ∈ DM(H).tr(Mρ) � tr(NQ(ρ)). (3)

We also introduce the notation ρ |=r M to mean that tr(Mρ) � r. Thus we think of this

as a quantitative satisfaction relation with the real number r providing a ‘threshold’ above

which we deem that ρ satisfies M.

The exact syntax of the quantum program Q is left unspecified deliberately, as we want

to state these definitions without committing to any particular framework. Of course, we

expect Q to implement at least some transformation on density matrices, in particular,

we may think of Q as implementing a completely positive map. Note, however, that

Definition 3.1, as well as Definition 3.2 below, does not exclude other possibilities. For

example, we could also investigate possibilities proposed in Shaji and Sudarshan (2005),

where it is argued that positive but not completely positive or even non-positive maps are

also good candidates for describing open quantum evolutions.

This definition deserves motivation. If all density matrices were normalised, it is easy

to motivate Definition 3.1: if we want the expectation value of N in the state Q(ρ) to be

https://doi.org/10.1017/S0960129506005251 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005251

E. D’Hondt and P. Panangaden 436

above some real number r, say, then this is guaranteed if the expectation value of M in

the state ρ is above r. In the case of our unnormalised density matrices we have to do

a little calculation to see that the same holds. We write the expectation value of M in a

state (density matrix) ρ as 〈M〉ρ. Now we assume that M,N and Q satisfy the conditions

of Definition 3.1. Let ρ be any (unnormalised) density matrix, and its normalised version

be ρ = ρ/tr(ρ). Then we have

〈M〉ρ = tr(Mρ)

=
1

tr(ρ)
· tr(Mρ)

�
1

tr(ρ)
· tr(NQ(ρ))

=
tr(Q(ρ))

tr(ρ)
· 1

tr(Q(ρ))
tr(NQ(ρ))

=
tr(Q(ρ))

tr(ρ)
· 〈N〉Q(ρ)

� 〈N〉Q(ρ).

(4)

Thus, even though the density matrices are not normalised and we cannot read the

expectations directly at every intermediate stage, Definition 3.1 still has the same import

as in the normalised case, as well as in the case of probabilistic predicate transformers.

From this we define weakest preconditions in the usual way.

Definition 3.2. A weakest precondition for a predicate M with respect to a quantum

program Q, denoted wp(Q)(M), is such that for all preconditions, L{Q}M implies L 	
wp(Q)(M).

Note that weakest in this context is equal to largest; indeed, a larger predicate would

mean that Equation (3) holds for more initial states ρ, and thus corresponds to a weaker

constraint. The weakest precondition predicate transformer for a program Q, if it exists, is

denoted wp(Q) : P(H2) → P(H1), where H2 and H1 are the output and input Hilbert

spaces, respectively.

3.2. Healthiness conditions

In analogy with Dijkstra (1976), we want to formulate healthiness conditions for quantum

predicate transformers. These are important because they characterise exactly those

programs that can be given a weakest precondition semantics that is dual to its forwards

state transformer semantics. Moreover, healthiness conditions allow one to prove general

laws for reasoning about programs. The healthiness conditions we propose for the quantum

case are linearity and complete positivity, which lead to the following definition.

Definition 3.3. A healthy predicate transformer α : P(H2) → P(H1) is a predicate

transformer that is linear and completely positive, that is, it takes predicates to predicates,

and similarly for all trivial extensions I⊗α. We use PT(H2,H1) to denote the associated

space of healthy predicate transformers.

https://doi.org/10.1017/S0960129506005251 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005251

Quantum weakest preconditions 437

As we shall see in the next section, these conditions all hold in the framework where

quantum programs correspond to completely positive maps. Linearity is certainly a

requirement in the inherently linear context of quantum mechanics, as the example given

in Section 2 clearly shows. Just as in the probabilistic case (Morgan and McIver 2004),

linearity implies the analogues of some of the healthiness conditions for deterministic

programs, namely feasibility, which means wp(Q)(0) = 0, monotonicity and continuity.

These proofs are easy and are left to the reader. The requirement that predicate

transformers should be completely positive on P(H), is a very natural one. Indeed,

if α is a predicate transformer, which acts only on part of a composite Hilbert space

H, then composing it with the identity predicate transformer working on the rest of the

Hilbert space should still result in a valid predicate transformer.

We equip PT(H2,H1) with an order structure by extending the Löwner order on

predicates as follows.

Definition 3.4. For healthy predicate transformers α and β in PT(H2,H1), we define

α 	 β if β − α is a healthy predicate transformer.

If α 	 β, then for all predicates M ∈ P(H2) we have that α(M) 	 β(M), where α(M) and

β(M) are predicates on H1. Requiring just this would be the obvious extension of the

Löwner order, but, since we are working in the space of healthy predicate transformers, we

also need to demand that β − α is completely positive. That is, for all extended predicates

Me ∈ P(H2 ⊗ H), we have (α ⊗ IH)(Me) 	 (β ⊗ IH)(Me). We then have the following

result.

Proposition 3.1. The poset (PT(H2,H1),) is a CPO.

Proof. The proof is analogous to that of Selinger (2003, Lemma 6.4).

Note that the CPO structure as defined on predicates P(H) and associated predicate

transformers PT(H) is identical to that for density matrices DM(H) and associated

completely positive maps CP(H), as defined in Selinger (2003).

Furthermore, for healthy predicate transformers, we have the following immediate

consequence of Kraus’s theorem.

Proposition 3.2. The operator α is a healthy predicate transformer if and only if

∀M ∈ P(H).α(M) =
∑
u

A†
uMAu (5)

for some set of linear operators {Au} such that
∑

u A
†
uAu � I .

3.3. Predicate transformers for completely positive maps

Let us now consider the following framework: the forward semantics of a quantum

program Q is given by a trace-nonincreasing completely positive map E ∈ CP(H1,H2),

which we write as �Q� = E. In this section we prove an existence theorem of weakest

preconditions for completely positive maps, and show that they satisfy the healthiness

conditions given in Section 3.2, that is, that they are healthy predicate transformers.

https://doi.org/10.1017/S0960129506005251 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005251

E. D’Hondt and P. Panangaden 438

Proposition 3.3. ∀E ∈ CP(H1,H2) and N ∈ P(H), wp(E)(N) exists and is unique.

Furthermore, we have

∀ρ.tr(wp(E)(N)ρ) = tr(NE(ρ)). (6)

Proof. To prove existence, take an arbitrary predicate N and operation E. From the

Kraus representation theorem stated in Section 2.1,

E(ρ) =
∑
m

EmρE
†
m (7)

with
∑

m E
†
mEm � I . Using this, together with the fact that the trace is linear and invariant

under cyclic permutations, we get for a predicate N that

tr(NE(ρ)) = tr((
∑
m

E†
mNEm)ρ). (8)

If we then take

M =
∑
m

E†
mNEm (9)

in Equation (8), we get

∀ρ.tr(Mρ) = tr(NE(ρ)). (10)

So M is a precondition for N with respect to E. Now take any other precondition M ′ for

N with respect to E. In other words,

∀ρ.tr(M ′ρ) � tr(NE(ρ)). (11)

However, because of Equation (10) and Proposition 2.2, this implies that M ′ 	 M. So M

is the weakest precondition for N with respect to E, denoted wp(E)(N).

To prove uniqueness, suppose the predicate P is also a weakest precondition for N with

respect to E. Then we have M 	 P , but also, since M is a weakest precondition, P 	 M.

But then, since 	 is an order, we have M = P .

From Equation (9) and Proposition 3.2, we get the following.

Corollary 3.1. For all E ∈ CP(H), wp(E) ∈ PT(H), that is, it is a healthy predicate

transformer.

3.4. Duality

In this section we investigate the duality between the forward semantics of completely

positive maps as state transformers and the backwards semantics of healthy predicate

transformers. This duality is part of a web of dualities known to mathematicians as

Stone-type dualities (Johnstone 1982), the prototype of which is the duality between

boolean algebras and certain topological spaces called Stone spaces. For readers with a

background in category theory we note that such a duality is captured by an adjoint

equivalence mediated by a pairing, for example, the satisfaction relation between states

https://doi.org/10.1017/S0960129506005251 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005251

Quantum weakest preconditions 439

and predicates. Kozen, following suggestions of Plotkin, found such a duality in the

context of probabilistic programs (Kozen 1985). We show that such a duality also exists

in the quantum setting.

In the quantum context, we find the duality by defining an isomorphism between the

set of all completely positive maps CP(H1,H2) and the set of all healthy predicate

transformers PT(H2,H1). We can associate a healthy predicate transformer with every

operation E ∈ CP(H1,H2); this follows immediately from Proposition 3.3. Indeed, we

associate with every operation E its weakest precondition predicate transformer wp(E).

To complete the duality, we need to associate an operation A ∈ CP(H1,H2) with

a predicate transformer α ∈ PT(H2,H1). Using the operator-sum representation for

predicate transformers as given in Equation (5), we have

tr(α(M)ρ) = tr

((∑
u

A†
uMAu

)
ρ

)

= tr

(
M.

(∑
u

AuρA
†
u

))
. (12)

If we then take

A(ρ) =
∑
u

AuρA
†
u , (13)

we get

tr(α(M)ρ) = tr(MA(ρ)) , (14)

thereby associating a state transformer with every healthy predicate transformer. Analog-

ously to the above, one could say that this expression defines the ‘strongest post-state’

A(ρ) for a state ρ with respect to a predicate transformer α ∈ PT(H).

To see this as a duality more clearly, we use the notation ρ |=r M defined in Section 3.

Then we have

E(ρ) |=r M

ρ |=r wp(E)M
. (15)

It is straightforward to see that we have an order isomorphism between the domain of

predicate transformers PT(H2,H1) and the domain of state transformers CP(H1,H2),

and this for arbitrary Hilbert spaces H1 and H2. As an aside, we observe that because

of this and the fact that maps in PT(H2,H1) are Scott-continuous, we can immediately

see that healthy predicate transformers are Scott-continuous as well.

4. Weakest precondition semantics for QPL

The quantum flow chart language or Quantum Programming Language (QPL), is a typed

programming language for quantum computation with a formal semantics, which is built

https://doi.org/10.1017/S0960129506005251 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005251

E. D’Hondt and P. Panangaden 440

upon the idea of quantum data and classical control (Selinger 2004). It is very different

from previously defined quantum programming languages, which do not have a formal

semantics and are imperative rather than functional. Syntactically, programs in QPL are

represented either by flow charts or by QPL terms. The basic language constructs are

allocating or discarding bits or qubits, assignment, branching, merge, measurement and

unitary transformation. One can then build more complex programs from these atomic

flow chart components through context extension, vertical and horizontal composition,

iteration and recursion.

At each moment, the denotation of the system, called a state in Selinger (2003), is

given by a tuple of density matrices. The tuple dimension originates from classical bits

present in the program, while tuple entries represent the state of all available qubits as

density matrices. Each member of the tuple corresponds to a particular instantiation of

the classical variables in lexicographical order; this is otherwise interpreted as a classical

control path. Concretely, a state for a typing context containing n bits and m qubits is given

by a 2n-tuple (ρ0, . . . , ρ2n−1) of density matrices in DM(�2m). Program transformations are

given by tuples of trace-decreasing completely positive maps that act on states – these are

called superoperators in Selinger (2003). Note that positivity on tuples is defined so that

it holds for each entry, while the trace of a tuple is defined as the sum of the traces of its

entries.

The formal semantics of QPL is developed within the category Q, which has signatures

(which define tuples of complex finite-dimensional vector spaces) as its objects and

superoperators as its morphisms. This category is equipped with a CPO-structure,

composition, a coproduct ⊕ and a tensor product ⊗, all of which are Scott-continuous, and

a monoidal trace Tr. The latter is just the categorical trace for the co-pairing map ⊕; as in

Selinger (2003), we use the term monoidal to avoid confusion with the categorical trace for

the tensor product, that is, the matrix trace tr. The coproduct ⊕ denotes concatenation of

signatures. Note that, unlike the very similar situation for finite-dimensional vector spaces,

it is not a product, as the diagonal map ∆ : A → A ⊕ A does not respect matrix traces

and hence is not a superoperator. All basic flow chart components are morphisms of this

category. For example, the semantics of the measurement of one qubit q is defined as

�measure q� : qbit → qbit ⊕ qbit : ρ → (E0 ⊕ E1)(ρ) = P0ρP0 ⊕ P1ρP1, (16)

where Pψ = |ψ〉〈ψ|. Context extension is modelled by specific ⊕ or ⊗ operations on the

state. Vertical and horizontal composition correspond to composition and coproducts of

morphisms, respectively, while iteration is interpreted via the monoidal trace. Specifically,

suppose that an operation E : σ ⊕ τ → σ′ ⊕ τ, where σ, σ′ and τ are signatures, has been

decomposed into components E11 : σ → σ′, E12 : σ → τ, E21 : τ → σ′ and E22 : τ → τ.

The operation obtained from E by iterating over τ is then given by the monoidal trace of

E, defined by

Tr(E) = E11 +

∞∑
i=0

E21; Ei
22; E12. (17)

The CPO structure on superoperators (Selinger 2003) ensures the existence of this limit.

https://doi.org/10.1017/S0960129506005251 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005251

Quantum weakest preconditions 441

QPL also allows recursively defined operations E = F(E), where F is a flow chart. In this

case, F defines a Scott-continuous function ΦF on morphisms such that the interpretation

of E is given as the least fixed point of ΦF . Concretely,

E =
iFi with F0 = 0 and Fi+1 = ΦF (Fi) (18)

=
iΦ
i
F (0), (19)

where 0 is the zero completely positive map, which corresponds to the divergent program.

Again, the existence of these fixed points is ensured by the CPO structure.

In the following, we derive a weakest precondition semantics for QPL. Note that in

order to to this, our predicates need to operate on tuples of density matrices. We do

this by writing expressions of the type M1 ⊕M2, where M1 and M2 are predicates in the

sense of Definition 2.2. This works since ⊕ is in fact defined on arbitrary linear maps. We

frequently write wp(Q) instead of wp(�Q�); by which we mean that we use the forward

semantics of Q, which is given by a tuple of completely positive maps, to derive the

weakest precondition predicate transformer for Q according to the results in Section 3.3.

Basic flow charts In our approach we uniformly consider all basic flow charts to be

operations in the operator-sum representation as in Equation (7). As such, Proposition 3.3

already provides a weakest precondition semantics for these atomic flow charts. Note,

however, that predicates need to be defined in accordance with the type of the tuple

exiting a basic flow chart. As a concrete example, we mention measurement, for which the

forward semantics is specified in Equation (16). We find that for all predicates M1 ⊕ M2

we have

wp(measure q)(M1 ⊕M2) = wp(E0 ⊕ E1)(M1 ⊕M2)

= wp(E0)(M1) + wp(E1)(M2)

= P0M1P0 + P1M2P1.

(20)

We now turn towards weakest precondition relations for composition techniques of

QPL.

Sequential composition Suppose we take the sequential composition of two operations E1

and E2, as shown in Figure 1. For the composed operation E1; E2 and for all predicates

M we have

tr(M.(E1; E2)(ρ)) = tr(wp(E1; E2)(M).ρ). (21)

If we calculate weakest preconditions for both operations separately and then compose

them sequentially, we get

tr(M.(E1; E2)(ρ)) = tr(M.E2(E1(ρ)))

= tr(wp(E2)(M).E1(ρ))

= tr(wp(E1)(wp(E2)(M)).ρ)

= tr((wp(E2); wp(E1))(M).ρ).

(22)

https://doi.org/10.1017/S0960129506005251 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005251

E. D’Hondt and P. Panangaden 442

Fig. 1. Sequential composition schematically.

Hence, by Equations (21) and (22), we get that weakest predicate transformers compose

sequentially as follows,

wp(E1; E2) = wp(E2); wp(E1). (23)

This is the same rule as found for sequential composition in classical programming

languages (Dijkstra 1976).

Parallel composition Suppose we take the parallel composition of two operations E1 and

E2, as shown in Figure 2. For the composed operation E1 ⊕ E2 we have

tr((M1 ⊕M2).(E1 ⊕ E2)(ρ1 ⊕ ρ2)) = tr(wp(E1 ⊕ E2)(M1 ⊕M2).(ρ1 ⊕ ρ2)). (24)

On the other hand, if we calculate weakest preconditions for both operations separately

and then compose them in a parallel way, we get

tr((M1 ⊕M2).(E1 ⊕ E2)(ρ1 ⊕ ρ2)) = tr(M1.E1(ρ1) ⊕M2.E2(ρ2))

= tr(M1.E1(ρ1)) + tr(M2.E2(ρ2))

= tr(wp(E1)(M1).ρ1) + tr(wp(E2)(M2).ρ2)

= tr((wp(E1)(M1) ⊕ wp(E2)(M2)).(ρ1 ⊕ ρ2))

= tr((wp(E1) ⊕ wp(E2))(M1 ⊕M2).(ρ1 ⊕ ρ2)).

(25)

Comparing Equations (24) and (25), we get that for parallel composition weakest precon-

dition predicate transformers compose as follows,

wp(E1 ⊕ E2) = wp(E1) ⊕ wp(E2) (26)

https://doi.org/10.1017/S0960129506005251 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005251

Quantum weakest preconditions 443

Fig. 2. Parallel composition schematically.

Context extension We will now look at what happens if we weaken a context with

dummy classical or quantum variables. Suppose first that we have a QPL program Q with

denotation E. We first modify Q by picking a fresh classical variable b and adding it to

Q’s context; we denote the resulting program Qb. The forward semantics of the latter is

given by E ⊕ E (Selinger 2004), and hence by Equation (26), we find that

wp(Qb) = wp(Q) ⊕ wp(Q). (27)

Suppose next that we add a fresh qubit q to Q’s context, and write Qq for the resulting

program. The forward semantics of Qq is given by

�Qq�

⎛
⎝ ρ1 ρ2

ρ3 ρ4

⎞
⎠ =

⎛
⎝ E(ρ1) E(ρ2)

E(ρ3) E(ρ4)

⎞
⎠, (28)

which we write more concisely as

�Qq� =

⎛
⎝ E E

E E

⎞
⎠. (29)

Accordingly, we find that

wp(Qq) =

⎛
⎝ wp(E) wp(E)

wp(E) wp(E)

⎞
⎠. (30)

Iteration Consider a flow chart that is obtained from a program Q by introducing a loop,

as shown in Figure 3. As explained in the above, the semantics of the flow chart is given

by the monoidal trace Tr(E), where E is the semantics of the flow chart obtained from Q
by removing the loop. For a predicate M we have

tr(M.(Tr(E))(ρ)) = tr(wp(Tr(E))(M).ρ). (31)

https://doi.org/10.1017/S0960129506005251 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005251

E. D’Hondt and P. Panangaden 444

Fig. 3. Iteration schematically.

By iterating explicitly and using Equations (17) and (23), we get

tr(M.(Tr(E))(ρ))

= tr

(
M.

(
E11 +

∞∑
i=0

E21; Ei
22; E12

)
(ρ)

)

= tr(M.E11(ρ)) +

∞∑
i=0

tr(M.(E21; Ei
22; E12)(ρ))

= tr(wp(E11)(M).ρ) +

∞∑
i=0

tr((wp(E12); wp(E22)
i; wp(E21))(M).ρ)

= tr

((
wp(E11) +

∞∑
i=0

wp(E12); wp(E22)
i; wp(E21)

)
(M).ρ

)
.

(32)

Comparing Equations (31) and (32), we get

wp(Tr(E)) = wp(E11) +

∞∑
i=0

wp(E12); wp(E22)
i; wp(E21). (33)

Moreover, the existence of the limit in Equation (33) is guaranteed by Proposition 3.1.

Recursion Consider an operation that is defined recursively, that is, an operation E
satisfying the equation E = F(E), where F is a flow chart. The required fixed point

https://doi.org/10.1017/S0960129506005251 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005251

Quantum weakest preconditions 445

solution to this recursive equation is given by Equations (18) and (19). If we work out the

weakest precondition relations using Equation (18) and the fact that weakest precondition

predicate transformers are Scott-continuous, we get

tr(M.E(ρ)) = tr(M.(
iFi)(ρ))

= tr(wp(
iFi)(M).ρ)

= tr((
iwp(Fi))(M).ρ).

(34)

Combining this result with Proposition 3.3, we find that the weakest precondition predicate

transformer for a recursively defined operation E = F(E) is obtained as

wp(E) =
iwp(Fi) =
iwp(Φi
F (0)). (35)

The existence of the least upper bound in Equation (35) is guaranteed by Proposition 3.1.

Of course, this result depends on the concrete recursive specification considered. Specific-

ally, one needs to determine ΦF in order to determine the weakest precondition predicate

transformer corresponding to an operation E, defined recursively as E = F(E).

5. Applications

In this section we look at some specific situations and their weakest precondition predicate

transformers.

5.1. Grover’s algorithm

We first look into Grover’s algorithm, also known as the database search algorithm

(Grover 1996). The algorithm is parameterised by the number of qubits n and is specified

in QPL as follows, where we write N for 2n:

Grover(N) ::= new qintn q :=
1√
N

N−1∑
i=0

|i〉;

new int k := C;

while k > 0 do {
q ∗= G;

k := k − 1;

}
measure q

(36)

Note that we assume the presence of product types of quantum integers qintn – qubit

registers of size n – and integers int, which were elaborated in Selinger (2003), and also

the presence of integer operations.

The Grover operator G is given by

G = O; IAM, (37)

where O is a quantum oracle, which labels solutions to the search problem, and IAM is

the inversion about mean operation, specifically, IAM = 2
N

∑N−1
i,j=0 |i〉〈j| − I .

https://doi.org/10.1017/S0960129506005251 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005251

E. D’Hondt and P. Panangaden 446

Supposing the solution to the search problem is given by s, the relevant postcondition

for Grover is given by
⊕N−1

i=0 |s〉〈s|; in particular, we want to get

tr

(
N−1⊕
i=0

|s〉〈s|ρfi

)
= 1, (38)

where
⊕N−1

i=0 ρfi is the final state of the algorithm, and the tuple summation is present

because of measurement branching.

We work our way backwards through the algorithm using Equation (23) in order to

find the weakest precondition corresponding to the postcondition
⊕N−1

i=0 |s〉〈s|. First we

derive the weakest precondition for the measurement in the last step of the algorithm.

We do this according to a generalisation of Equation (20) for N-valued measurements, as

follows:

wp(measure q)

(
N−1⊕
i=0

|s〉〈s|
)

= wp(E0 ⊕ . . .⊕ EN−1)

(
N−1⊕
i=0

|s〉〈s|
)

= wp(E0)(|s〉〈s|) + · · · + wp(EN−1)(|s〉〈s|)
= P0|s〉〈s|P0 + · · · + PN−1|s〉〈s|PN−1

= |s〉〈s|.

(39)

Note that, since the remainder of the algorithm consists of unitary evolution, all relevant

preconditions continue to be pure state projectors. In this case, Equation (38) holds only if

the output state equals the predicate, that is, if ρf = |s〉〈s|, so that pure state preconditions

are also the states required for the algorithm to satisfy Equation (38) after termination.

We now focus on the while loop in the algorithm. Geometrically, the Grover operator is

a rotation in the two-dimensional space (Nielsen and Chuang 2000, Section 6.1.3) spanned

by the states |s〉 and

|α〉 =
1√
N − 1

∑
x �=s

|x〉. (40)

More specifically, G can be decomposed as

G =

(
cos θ − sin θ

sin θ cos θ

)
with sin θ =

2
√
N − 1

N
. (41)

Applying Equation (23) again, we get the following as weakest precondition with respect

to the while loop:

wp(while k > 0 do q ∗= G)(|s〉〈s|) = (GC)†|s〉〈s|GC, (42)

where we omit explicit weakest precondition reasoning for the purely classical command

k := k − 1. Using Equation (41), we see that (GC)†|s〉 corresponds to C rotations

over an angle of −θ in the state space spanned by |α〉 and |s〉. By choosing C =

arccos 1√
N

(Nielsen and Chuang 2000, Section 6.1.3), we rotate the postcondition |s〉〈s|
towards the precondition |ψi〉〈ψi|, where |ψi〉 is the initial state of the algorithm, that is,

https://doi.org/10.1017/S0960129506005251 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005251

Quantum weakest preconditions 447

the equal superposition state, which lies in the space spanned by the states |α〉 and |s〉. In

other words, using Equation (6) and Equation (38), we get that for all ρi

tr(wp(Grover)(|s〉〈s|)ρi) = tr(|s〉〈s|Grover(ρi))
⇐⇒ tr(|ψi〉〈ψi|ρi) = 1.

(43)

That is, Equation (38) holds if and only if ρi = |ψi〉〈ψi|, which is the case by construction

of the algorithm. Hence we have established the correctness of the algorithm via our

backwards semantics.

Note that an alternative derivation for Grover’s algorithm based on probabilistic

weakest preconditions has been reported in Butler and Hartel (1999). However, the use of

probabilistic notions only works there because Grover’s algorithm is considered for pure

states only. The mathematical structures underlying their analysis is that of probabilistic

weakest preconditions, which are, in fact, not at all suited to a generalised quantum

setting, as we have stressed in Section 2. In our setting we could reason about mixed

state solutions to Grover and compare them with the pure state solution elaborated in the

above. Also, while it may seem at first sight that the value of C in Butler and Hartel (1999)

is derived via the backward semantics, this is in fact not the case. Instead, a recurrence

relation for amplitudes occurring in each Grover iteration is solved; these amplitudes are

found by applying the Grover iteration backwards, just as we did. We chose to adhere to

the interpretation of G as a rotation in a two-dimensional state space in order to find C;

we could just as well have adhered to the derivation in Butler and Hartel (1999). While

their proof is an ingenious alternative to that in Nielsen and Chuang (2000), it is not

based on the theory of probabilistic weakest preconditions.

5.2. Tossing a coin

As a second application, we derive the weakest precondition for the flow chart imple-

menting a fair coin toss (Selinger 2004, Example 4.1). In QPL terms, the flow chart is

specified as follows, where r is an input qubit register of unspecified length:

coin(r) ::= new qbit q := 0;

q ∗= H;

measure q;

discard q

(44)

An arbitrary postcondition for this program is of the form M1 ⊕ M2, where M1 and

M2 are both predicates over P(�2n) and n is the number of qubits in the register r.

We derive the corresponding weakest precondition by flowing backwards through the

program, starting with the discard operation. The latter induces the following quantum

operation, where IN is the (N × N) identity map with N = 2n as before, 0 denotes the

(N ×N) zero block matrix, and ρ is a density matrix in DM(�2n+1

):

�discard q�(ρ) =
(
IN 0

)
ρ

⎛
⎝ IN

0

⎞
⎠ +

(
0 IN

)
ρ

⎛
⎝ 0

IN

⎞
⎠ . (45)

https://doi.org/10.1017/S0960129506005251 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005251

E. D’Hondt and P. Panangaden 448

This leads to the following weakest precondition:

wp(discard q)(M1 ⊕M2) =

⎛
⎝M1 0

0 M1

⎞
⎠ ⊕

⎛
⎝M2 0

0 M2

⎞
⎠ . (46)

Next, we have the measurement step. We just give the result here, as this type of derivation

has already been covered in the Grover example above:

wp(measure q)

⎡
⎣

⎛
⎝M1 0

0 M1

⎞
⎠ ⊕

⎛
⎝M2 0

0 M2

⎞
⎠

⎤
⎦ =

⎛
⎝M1 0

0 M2

⎞
⎠ . (47)

The Hadamard transformation is straightforward and leads to

wp(q ∗= H)

⎛
⎝M1 0

0 M2

⎞
⎠ =

1

2

⎛
⎝M1 +M2 M1 +M2

M1 +M2 M1 +M2

⎞
⎠ . (48)

Finally, we move through the first command in the coin toss program, namely the addition

of a new qubit. The forward semantics of this command is as follows, where ρ is a density

matrix in DM(�2n):

�new qbit q := 0�(ρ) =

⎛
⎝ IN

0

⎞
⎠ ρ

(
IN 0

)
. (49)

Hence, we get

wp(new qbit q := 0)

⎛
⎝1

2

⎛
⎝ M1 +M2 M1 +M2

M1 +M2 M1 +M2

⎞
⎠

⎞
⎠ =

1

2
(M1 +M2). (50)

Wrapping all individual steps of the coin toss program up into one weakest precondition

predicate transformation according to Equation (23), we get

wp(coin(r))(M1 ⊕M2) =
1

2
(M1 +M2). (51)

5.3. Stabilisers are predicates

The stabiliser formalism is an alternative description of quantum states (Gottesman 1999).

Instead of describing states as vectors in a suitable Hilbert space, they are described by

a set of operators that leave the state invariant. Concretely, for an n-qubit system these

operators are taken from the Pauli group Gn, that is, the group of n-fold tensor products of

the Pauli matrices with factors ±1,±i in front. Note that if we allow all positive operators

instead, we get the more familiar density matrix formalism. Of course not all states can

be described in this way. Formally, a stabiliser state is a simultaneous eigenvector of

an abelian subgroup of the Pauli group with eigenvalue 1. This subgroup is then called

the stabiliser S of this state, and usually represented by its generators. Surprisingly, some

forms of entanglement, such as graph states (Raussendorf et al. 2003), for example, as well

https://doi.org/10.1017/S0960129506005251 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005251

Quantum weakest preconditions 449

as all Clifford group operations, can be described efficiently via stabilisers – a celebrated

result known as the Gottesman–Knill theorem (Nielsen and Chuang 2000, Section 10.5.4).

This is because the stabiliser S for an n-qubit stabiliser state has n − 1 generators (as

opposed to 2n amplitudes in the state formalism). A nice overview of stabiliser theory can

be found in Nielsen and Chuang (2000, Chapter 10).

Stabilisers, which are unitaries, fit well within the setting of weakest preconditions,

because when restricting ourselves to pure states, they are, in fact, quantum predicates.

This follows from the following theorem.

Proposition 5.1. Given a pure state ρ = |ψ〉〈ψ| and a unitary U, we have

tr(Uρ) = 1 ⇐⇒ U|ψ〉 = |ψ〉. (52)

Proof. For the left to right direction, we have

tr(U|ψ〉〈ψ|) = 〈ψ | U | ψ〉 = 1

⇒ (〈ψ| − 〈ψ|U†)(|ψ〉 −U|ψ〉) = 0

⇒ |ψ〉 −U|ψ〉 = 0

⇒ |ψ〉 = U|ψ〉.

(53)

The other direction is obvious.

For example, consider the creation of a Bell state

|B〉 =
|00〉 + |11〉√

2

by applying U = CNOT.(H ⊗ I) to |00〉. The stabiliser of |B〉 is generated by Z1Z2 and

X1X2. Hence, by the above result, we have tr(Z1Z2EU(|ψ〉〈ψ|)) = tr(X1X2EU(|ψ〉〈ψ|)) = 1,

where |ψ〉 is the initial state of the algorithm and EU(ρ) = UρU† for all ρ. Applying

Equation (9), we get as weakest preconditions wp(EU)(Z1Z2) = Z2 and wp(EU)(X1X2) =

Z1. So, by Proposition 3.3, we also have tr(Z1|ψ〉〈ψ|) = tr(Z2|ψ〉〈ψ|) = 1. But then, by the

above result, Z1 and Z2 are stabilisers of |ψ〉. Hence |ψ〉 = |00〉, as required.

6. Conclusions

In this article, we have developed the predicate transformer and weakest precondition

formalism for quantum computation. We did this by first noting that the quantum

analogue to predicates are expectation values of quantum measurements, given by the

expression tr(Mρ). Then we defined the concept of weakest preconditions within this

framework, proving that a weakest precondition exists for arbitrary completely positive

maps and observables. We have also worked out the weakest precondition semantics for

the Quantum Programming Language (QPL) developed in Selinger (2003). QPL is the

first model for quantum computation with a denotational semantics, and as such the first

serious attempt to design a quantum programming language intended for programming

quantum algorithms compositionally.

With this development in place one can envisage a goal-directed programming meth-

odology for quantum computation. Of course one needs more experience with quantum

https://doi.org/10.1017/S0960129506005251 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005251

E. D’Hondt and P. Panangaden 450

programming idioms, and the field is not yet ready to produce a ‘quantum’ Science of

Programming. It is likely that in the field of communication protocols, such as those based

on teleportation, we have a good stock of ideas and examples that could be used as the

basis of methodologies in this context.

The most closely related work, apart from Selinger’s work on his programming language,

is the work by Sanders and Zuliani (Sanders and Zuliani 2000), which develops a guarded

command language used for developing quantum algorithms. This is a very interesting

paper and works seriously towards developing a methodology for quantum algorithms.

However, they use probability and nondeterminism to capture probabilistic aspects of

quantum algorithms. Ours is an intrinsically quantum framework. The notion of weakest

precondition that we develop here is not related to anything in their framework. There is

other, as yet unpublished, work (Baltag and Smets 2006) in which a quantum dynamic logic

is being developed. Clearly, such work will be related though they use a different notion

of pairing. Also, the work in Edalat (2004) is related and merits further investigation.

Edalat uses the interval domain of reals, rather than the reals, as the values of the entries

in his density matrices. This seems a good way to deal with uncertainty in the values.

There is a large literature on probabilistic predicate transformers, including several

papers from the probabilistic systems group at Oxford. A forthcoming book (Morgan

and McIver 2004) gives an expository account of their work. We emphasise again that

the theory of probabilistic predicate transformers does not capture the proper notions

appropriate for the quantum setting. Linearity and complete positivity are essential aspects

of the theory of quantum predicate transformers. If one tries to work with probabilistic

predicates alone, one will not be able to express healthiness conditions that capture the

physically allowable transformations, as the example presented in Section 3 illustrates.

One might worry that the predicates are too restricted. There are many ‘observables’

in physics that are not positive; for example, the z-component of angular momentum,

written Jz , for a spin 1
2

system takes on the values ± 1
2
. However, for reasoning about the

evolution of Jz one can work instead with the operator 1
2
[I + Jz], which has eigenvalues

1
4

and 3
4
, and so is a predicate. Of course one cannot do this for unbounded operators

like the energy, but this will not be a handicap for quantum computation.

One pleasant aspect of the present work is that it is language independent; though we

have used it to give the semantics of QPL, the weakest precondition formalism stands on

its own. We can therefore apply it to other computational models that are appearing, for

example, the one-way model (Raussendorf and Briegel 2001; Raussendorf et al. 2003), for

which language ideas are just emerging (Danos et al. 2004).

Acknowledgements

It is a pleasure to thank Samson Abramsky, Bob Coecke, Elham Kashefi and Peter

Selinger for helpful discussions. Comments by the referees were also very helpful.

References

Beltag, A. and Smets, S. (2006) LQP: The dynamic logic of quantum information. Mathematical

Structures in Computer Science 16 (3) 491–525.

https://doi.org/10.1017/S0960129506005251 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005251

Quantum weakest preconditions 451

Butler, M. J. and Hartel, P.H. (1999) Reasoning about Grover’s quantum search algorithm using

probabilistic wp. ACM transactions on programming languages and systems 21 (3) 417–430.

Danos, V., Kashefi, E. and Panangaden, P. (2004) The measurement calculus. quant-ph/0412135.

Deutsch, D. (1985) Quantum theory, the Church–Turing principle and the universal quantum

computer. Proc. R. Soc. Lond. A400 97–117.

Deutsch, D. and Jozsa, R. (1992) Rapid solution of problems by quantum computation. Proc. R.

Soc. Lond. A 439–553.

Dijkstra, E.W. (1976) A Discipline of Programming, Prentice-Hall.

Edalat, A. (2004) An extension of Gleason’s theorem for quantum computation. Int. J. of Theor.

Phys. (to appear).

Gottesman, D. (1999) The Heisenberg representation of quantum computers. In: Corney, S. P.,

Delbourgo, R. and Jarvis, P.D. (eds.) Proceedings of the XXII International Colloquium on Group

Theoretical Methods in Physics, International Press 32–43.

Gries, D. (1981) The Science of Programming, Springer-Verlag.

Grover, L.K. (1996) A fast quantum mechanical algorithm for database search. In: ACM Symposium

on Theory of Computing 212–219.

Hoare, C. (1969) An axiomatic basis for computer programming. Communications of the ACM 12

(10) 576–580.

Johnstone, P. (1982) Stone Spaces, Cambridge Studies in Advanced Mathematics 3, Cambridge

University Press.

Kozen, D. (1981) Semantics of probabilistic programs. Journal of Computer and Systems Sciences 22

328–350.

Kozen, D. (1985) A probabilistic PDL. Journal of Computer and Systems Sciences 30 (2) 162–178.

Löwner, K. (1934) Uber monotone matrixfunktionen. Mathematische Zeitschrift 38 177–216.

Morgan, C. and McIver, A. (2004) Abstraction, refinement and proof for probabilistic systems,

Springer-Verlag.

Nielsen, M.A. and Chuang, I. (2000) Quantum computation and quantum information, Cambridge

University Press.

Peres, A. (1995) Quantum Theory: Concepts and Methods, Kluwer Academic Publishers.

Plotkin, G.D. (1983) Lecture notes on domain theory.

Raussendorf, R. and Briegel, H. J. (2001) A one-way quantum computer. Phys. Rev. Lett. 86 (22)

5188–5191.

Raussendorf, R., Browne, D. E. and Briegel, H. J. (2003) Measurement-based quantum computation

on cluster states. Phys. Rev. A 68 (2) 022312.

Sanders, J.W. and Zuliani, P. (2000) Quantum programming. In: Mathematics of Program

Construction. Springer-Verlag Lecture Notes in Computer Science 1837 80–99.

Selinger, P. (2004) Towards a quantum programming language. Mathematical Structures in Computer

Science 14 527–586.

Shaji, A. and Sudarshan, E. (2005) Who’s afraid of not completely positive maps? Phys. Lett. A

341 48–54.

Shor, P.W. (1994) Algorithms for quantum computation: Discrete logarithms and factoring. In:

IEEE Symposium on Foundations of Computer Science 124–134.

Smyth, M. (1983) Powerdomains and predicate transformers. In: Diaz, J. (ed.) Proceedings of the

International Colloquium On Automata Languages And Programming. Springer-Verlag Lecture

Notes in Computer Science 154 662–676.

https://doi.org/10.1017/S0960129506005251 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005251

