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Abstract

The Rayleigh–Taylor instability~RTI! of a laser-accelerated ablative surface of a thin plasma layer in an inertial fusion
energy~IFE! target with incompressible electrically conducting plasma in the presence of a transverse magnetic field is
investigated using linear stability analysis. A simple theory based on Stokes-lubrication approximation is proposed. It is
shown that the effect of a transverse magnetic field is to reduce the growth rate of RTI considerably over the value it
would have in the absence of a magnetic field. This is useful in the extraction of IFE efficiently.
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1. INTRODUCTION

In this article we report the Rayleigh–Taylor instability~RTI!
of a laser-accelerated ablative surface of a thin plasma layer
in an inertial fusion energy~IFE! target shell with an incom-
pressible viscous, electrically conducting plasma in the pres-
ence of a transverse magnetic field. The RTI occurs at an
ablative surface between the dense and less dense plasma if
the dense plasma is accelerated by the less dense plasma. It
is one of the physical mechanisms and limits the perfor-
mance of laser fusion IFE targets. Hence, the additional
mitigation of the RTI growth rate is needed to achieve high
gain of IFE.

At present, mechanisms like a gradual variation of den-
sity instead of an abrupt change in a heterogeneous inviscid
fluid and compressible inviscid fluid without a foam layer
have been used to reduce the growth rate of RTI. The results
of numerous experiments and numerical simulations of the
RTI growth rate of compressible inviscid fluid at the abla-
tion surface fit the following generalized dispersion formula
~see Kanueret al., 2000!:

n 5 AM,g0~11 e,L! 2 b,va, ~1!

wheren is the growth rate,, is the wave number of the
perturbation,g is the acceleration due to gravity at the in-
terface,A is the Atwood number,e is a constant multiplying
the density gradient correction term,L is the density scale
length at the ablative surface,b is a constant multiplying the
ablation stabilization term, andva is the velocity across the
ablation surface. The first term on the right-hand side of
Eq. ~1! is the classical growth rate of a classical RTI for an
inviscid incompressible fluid and the second term is the
effect of compressibility. We note that with a suitable choice
of e, L, A, andb, we can get the compressible fluid results of
Takabeet al. ~1985!, Kilkenney et al. ~1994!, Betti et al.
~1995!, Lindl ~1995!, and Bychkovet al. ~1994!. During the
past approximately 10 years, porous IFE-relevant ablation
layers with foam have been considered by IFE researchers
~Sethianet al., 1999; Bataniet al., 2000; and references
therein! to reduce the RTI growth rate. To our knowledge,
there is no definite analytical formula to predict the effect of
foam to reduce the growth rate. Recently, Rudraiah~2003!
has shown that the nondeformable porous lining made up of
foametal porous material or aloxite porous material on one
side and the IFE target shell filled with viscous incompress-
ible fluid on the other side bounded by rigid surface reduces
the RTI growth rate,np, considerably and derived the formula
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where the subscriptp denotes the quantities in the presence
of porous lining,B is the Bond number, which is a measure
of gravitational effect to surface tension effect,sp is the
permeability of the porous lining,a is the slip parameter
~see Rudraiah, 1985! vap is the velocity across the ablative
surface lined with porous lining and other quantities are as
defined in Eq.~1!. From Eq.~2!, Rudraiah~2003! had ob-
tained the maximum wave number

,m 5 MB02 ~3!

and the corresponding maximum growth ratenmp is

nmp 5
B

48

~4 1 asp!

~11 asp!
. ~4!

From this he had obtained

nmp

nmo

5
~4 1 asp!

4~11 asp!
, ~5!

where

nmo 5 B012 ~6!

is the maximum growth rate in the absence of porous lining.
From Eq.~1! with b 5 3, A5 0.9 Takabeet al. ~1985! have
obtained

~nm!Ta 5 0.45~nmo!Ta, ~7!

where the subscriptTa refers to the results of Takabeet al.
~1985!. From Eq.~7! Takabeet al. ~1985! have concluded
that the growth rate of a RTI is reduced to 45% of the
classical value~nmo!Ta. For foam material used in the exper-
iments of Beavers and Joseph~1967!, the slip parametera
ranges from 0.1 to 4.0 and porous parametersp ranges from
4 to 20. Fora 5 0.1 andsp 5 4.0, Eq.~5! reduces tonmp5
0.7857nmo. From this result Rudraiah~2003! had concluded
that the maximum growth rate,nmp, is reduced to 78.57% of
nmo. In particular he~Rudraiah 2003! has shown that the
reduction of the growth rate is possible even up to 80% for a
proper choice of the porous parametersa andsp. Physically,
this reduction in growth rate in the presence of porous lining
is due to the contraction and expansion of flow in the pores,
which absorbs some of the energy that would go otherwise
into the target.

We know that in continuum plasma the effect of a trans-
verse magnetic field is to suppress the perturbations by
converting the kinetic energy in to magnetic energy. In clas-

sical plasma, that is, incompressible, inviscid, perfectly con-
ducting fluid in the presence of a transverse magnetic field,
called the classical problem of Magneto Rayleigh Taylor
Instability ~MRTI ! has been extensively investigated in the
literature~see Chandrasekhar, 1961!. However, the MRTI of
a laser-accelerated ablative surface of a thin target shell with
viscous, electrically conducting incompressible plasma in
the presence of a transverse magnetic field and surface ten-
sion has not been given much attention. The study of it is the
main object of the present article with the motivation to
know whether a suitable strength of a transverse magnetic
field can reduce the RTI growth rate in the presence of
viscous shear and surface tension without considering the
mechanism of porous lining. It is also the objective to derive
a simple analytical formula analogous to Rudraiah’s for-
mula~2!.

To achieve these objectives, the plan of this article is as
follows. In Section 2, the basic equations, the relevant bound-
ary and surface conditions and approximations are given.
The dispersion relation is obtained in Section 3 using linear
stability analysis. The formula for the growth rate in the
presence of a magnetic field and the absence of a porous
lining, analogous to Eq.~2! is also derived in this section.
Some important conclusions are drawn in the Section 4.

2. FORMULATION OF THE PROBLEM

We consider a thin target shell in the form of a film of
unperturbed thicknessh filled with light incompressible vis-
cous electrically conducting plasma of constant densityr1

bounded on one side by a rigid surface and on the other side
by an incompressible heavy viscous electrically conducting
plasma of densityr2 of an infinite extent with an interface
between the two plasma layers subject to a transverse mag-
netic field and surface tension~see Fig. 1!. This assumption
on density is needed for the RTI as defined in Section 1. The
fluid within the shell is set in motion by the laser-accelerated
ablative surface. At timet, the fluctuations of the interface
are amplified and the local thickness becomes a function of
the position and timet and we havey 5 h 1 h~x, t ! where
h~x, t ! is the surface displacement. We consider a rectangu-

Fig. 1. Physical configuration.
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lar coordinate system~x, y! as shown in the Figure 1, with
thex-axis parallel to the shell and they-axis normal to it with
h~x, t ! as the perturbed interface.

The basic equations for conducting, incompressible, vis-
cous and electrically conducting plasma in the film are the
conservation of momentum,

r@]q0]t 1 ~q{¹!q# 5 2¹p 1 m¹2q 1 mhJ 3 H, ~8!

and the conservation of mass for an incompressible plasma,

¹{q 5 0, ~9!

whereq 5 ~u,v! is the velocity,J 5 s@E 1 shq 3 H # is the
current density,¹ 3 E 5 2mh]H0]t, ¹{E 5 0,¹{H 5 0,E is
the electric field,H is the magnetic field,m is the viscosity,
mh is the magnetic permeability, ands is the electrical con-
ductivity of fluid. These equations must be supplemented
with suitable boundary and surface conditions. These equa-
tions are sufficient for our purpose because we deal with
electrically conducting fluid of small conductivitys, so that
the induced magnetic field can be neglected in comparison
with the applied magnetic field.

In this article, we deal only with a linear two-dimensional
RTI in continuum plasma considering infinitesimally small
disturbances superposed on the basic state. The basic state is
quiescent and the interface is flat. Further, the following
stokes and lubrication approximations~see Babchinet al.,
1983, Rudraiahet al., 1997! will greatly simplify the analy-
sis:~1! h ,, h. This assumption helps to ignore the variation
of horizontal velocityu with respect tox. ~2! The Bond
numberB 5 dh20g ,, 1, which implies the gravitational
effect is small compared to the surface tension effect where
g is the surface tension andd 5 g~®2 2 ®1! is the normal
stress.~3! The Reynolds numberR5 Uh20Ln ,, 1, wheren
is the kinematic viscosity, which enables us to neglect iner-
tial force because of very viscous fluid.~4! The magnetic
Reynolds numberRm5 mhsUh ,, 1 because of small elec-
trical conductivity. This enables us to ignore the induced
magnetic field compared to the applied magnetic and elec-
tric fields. ~5! The Strouhal numberS5 L0t0U ,, 1, L 5
!g0d, wheret0 andU are the characteristic time and veloc-
ity, which enables us to ignore local acceleration in the
momentum equation. These approximations, which are valid
when the wavelength of the instability of the ablative sur-
face is large compared to the thickness of the layer, are
useful to ignore many terms, particularly nonlinear terms in
the basic Eq.~8!. We also assume that heavy fluid bounding
the lighter fluid is almost static because of creeping flow
approximation, which is needed to study RT instability~see
Babchinet al., 1983!. Under these approximations, the basic
Eq. ~8! reduces to, after making the resulting equations di-
mensionless using the scalesh for length,dh for pressure,
dh20m for velocity, andm0dh for time, the form

0 5 2]p0]x 1 ]2u0]y2 2 M 2u ~10!

0 5 2]p0]y ~11!

]u0]x 1 ]v0]y 5 0 ~12!

whereM 5 mhhH0!s0m is the Hartmann number andH0 is
the applied transverse magnetic field. These equations have
to be solved using the following boundary and surface con-
ditions. The no-slip condition at the rigid surface is

u 5 v5 0 aty 5 0. ~13!

No shear at the free surface is

]u0]y 5 0 aty 5 1. ~14!

The dynamic condition is

p 5 2h 2
1

B

]2h

]x2 at y 5 1. ~15!

For linear analysis, the kinematic condition is

v 5 ]h0]x at y 5 1. ~16!

3. DISPERSION RELATION

Solving Eq.~10! and, using the conditions~13! to ~16!, we
get

u 5
P

M 2 FChM~12 y!

ChM
2 1G, ChM 5 CoshM, P 5

]p

]x
. ~17!

Integrating Eq.~12! with respect toy from 0 to 1 and sim-
plifying, we get

v~1! 5
MChM 2 ShM

M 3ChM

]2p

]x2 , ShM5 SinhM. ~18!

From Eq.~16!, using normal mode solution of the formh 5
h0ei,x1nt and using Eqs.~15! and~18!, we get the dispersion
relation of the form

n 5 n0 2 b,va, b 5
M 3 2 3~M 2tanhM !

3~M 2 tanhM !
,

va 5
~M 2 tanhM !,~12 ,20B!

M 3 , ~19!

wheren is the growth rate,, is the wave number,B is the
Bond number, and

n0 5
,2

3
~12 ,20B!, ~20!

obtained from Eq.~19! in the limit of M r 0, and for
convenience we call it a classical value.
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This Eq.~19! clearly shows that the effect of the magnetic
field is to reduce the growth rate of a RTI considerably
compared to the one in the absence of a magnetic field. The
physical reason for this reduction is that the transverse mag-
netic field suppresses the flow by converting the kinetic
energy into magnetic energy.

4. DISCUSSION AND CONCLUSIONS

In the present article, a self-consistent analytical approach is
used to study linear RTI of ablatively laser-accelerated tar-
gets filled with an incompressible electrically conducting
viscous plasma in the presence of a transverse magnetic
field. The RTI growth rate formula given by Eq.~19! is
analogous to the one given by Eq.~1! for a compressible
fluid, and Eq.~2! for a porous lining.

Setting n 5 0 in Eq. ~19!, we obtain the cutoff wave
number,ct, above which the RTI mode is stabilized and is
found to be

,ct 5 MB. ~21!

The maximum wave number,m obtained from Eq.~19! by
setting]n0], 5 0 is

,m 5 MB02 5 ,ct 0M2. ~22!

Eqs.~21! and~22! are true even for the case in the absence of
a magnetic field~i.e., M 5 0! given by Eq.~20! and for
convenience we call them a classical result. The maximum
growth rate,nm, for the corresponding,m given by Eq.~22!
is

nm 5
B

4 S1

3
2 DD, D 5

M 3 2 3~M 2 tanhM !

3M 3 . ~23!

Similarly n0m, from Eq.~20! using Eq.~22!, is

n0m 5 B012 ~24!

From these, we get the ratio of maximum growth ratenm to
n0m, given by

Gm 5 nm0n0m 5 3~M 2 tanhM !0M 3. ~25!

Relation~19! is plotted in Figure 2 for the growth raten
versus the wave number, for M 51 and for different values
of B. We see that the perturbations of the interface having a
wave number smaller than,ct are amplified whend . 0 ~i.e.,
r1 , r2! and the growth rate decreases with a decrease inB,
implying an increase in surface tension. That is, an increase
in surface tension makes the interface more stable. Similar
behavior is observed even forM 510 and we found that an
increase inM decreases the growth rate considerably. To
know the amount of reduction in the growth rate caused by
a magnetic field compared to that in the absence of magnetic
field, Eq.~25! is numerically computed for different values
of M ranging from 1022 to 102 and the results are tabulated
in Table 1 and are also plotted in Figure 3 withGm versusM.
We see that the decrease in the growth rate compared to the
classical one is very steep forM in the range of 1021 to 101,
and the ratioGm becomes independent ofM for valuesM .
10 tending to the value 0.0003. ForM 51, we find thatGm5
0.71522, that is, the maximum growth rate is reduced to
71.52% of the classical valuen0m. However, atM 5 10 we
find that the maximum growth rate is reduced by 97.3% of
the classical valuen0m. Similarly forM 5100 and above, we
find that the maximum growth rate is reduced to 2.7% of the
classical valuen0m. From this we conclude that an increase

Fig. 2. The growth ratenversus wave number, for M 51 and for different
Bond numbersB.

Table 1. Ratio Gm for maximum growth rate for different M

Hartmann numberM Maximum growth rateGm

0.01 0.99996
0.10 0.99602
1.00 0.71522

10.00 0.02700
100.00 0.00030

Fig. 3. Ratio of maximum growth rateGm versusM.
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in the value of the magnetic field, that isM, reduces consid-
erably the growth rate compared to the classical value. This
information is useful in the extraction of IFE efficiently by
maintaining the symmetry of the target.
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