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Abstract

The Rayleigh—Taylor instabilityRTI) of a laser-accelerated ablative surface of a thin plasma layer in an inertial fusion
energy(IFE) target with incompressible electrically conducting plasma in the presence of a transverse magnetic field is
investigated using linear stability analysis. A simple theory based on Stokes-lubrication approximation is proposed. It is
shown that the effect of a transverse magnetic field is to reduce the growth rate of RTI considerably over the value it
would have in the absence of a magnetic field. This is useful in the extraction of IFE efficiently.
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1. INTRODUCTION n = AVEg/(1+ efL) — Blv,, 1)

In this article we report the Rayleigh—Taylor instabili§Tl) | heren is the growth ratef is the wave number of the

of a laser-accelerated ablative surface of a thin plasma laygfertyrbationg is the acceleration due to gravity at the in-
inan |_nert|e_1l fusion energyFE) target s_heII with anincom-  terface Als the Atwood numbe is a constant multiplying
pressible viscous, electrically c_:on.ductmg plasmainthe Presme density gradient correction terinjs the density scale
ence.of a transverse magnetic field. The RTI occurs at afbngth at the ablative surfagijs a constant multiplying the
ablative surface between the dense and less dense plasma ifjation stabilization term, ang is the velocity across the
the dense plasma is accelerated by the less dense plasma, liation surface. The first term on the right-hand side of
is one of the physical mechanisms and limits the perforgq (1) s the classical growth rate of a classical RTI for an
mance of laser fusion IFE targets. Hence, the additiong],iscid incompressible fluid and the second term is the
mitigation of the RTI growth rate is needed to achieve highgftect of compressibility. We note that with a suitable choice
gain of IFE. . ) o ofe, L, A, andB, we can get the compressible fluid results of
At present, mechanisms like a gradual variation of denTakabeet al. (1985, Kilkenney et al. (1994, Betti et al.
sity instead of an abrupt change in a heterogeneous invisciagga Lindl (1995, and Bychkowet al. (1994). During the
fluid and compressible inviscid fluid without a foam layer o« approximately 10 years, porous IFE-relevant ablation
have been used to reduce the growth rate of RTI. The resuIrﬁyers with foam have been considered by IFE researchers
of numerous experiments and numerical simulations of th?Sethianet al. 1999 Bataniet al. 2000: and references
RTI growth rate of compressible inviscid fluid at the abla- iherein to reduce the RTI growth, rate. To our knowledge
tion surface fit the following generalized dispersion formulahare is no definite analytical formula to predict the effect of
(see Kanueet al.,, 2000: foam to reduce the growth rate. Recently, Rudra2003
has shown that the nondeformable porous lining made up of
foametal porous material or aloxite porous material on one
Address correspondence and reprint requests to: N. Rudraiah, Nationglige and the IFE target shell filled with viscous incompress-
Research Institute for Applied Mathematics, 4@ 7th Cross, 7th Block ible fluid on the other side bounded by rigid surface reduces

(Wesb, Jayanagar, Bangalore-560 082, India. E-mail: nrudraiah@ - X
hotmail.com the RTI growth raten,,, considerably and derived the formula
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1, £2 3ao, sical plasma, thatis, incompressible, inviscid, perfectly con-
=30\l g ) " Ala  A=7 acy)’ ducting fluid in the presence of a transverse magnetic field,
called the classical problem of Magneto Rayleigh Taylor
(4+ aoy) £2 Instability (MRTI) has been extensively investigated in the

Y= 121+ aoy) o) "B ) @ literature(see Chandrasekhar, 196owever, the MRTI of

alaser-accelerated ablative surface of a thin target shell with
where the subscrigt denotes the quantities in the presenceViscous, electrically conducting incompressible plasma in
of porous lining B is the Bond number, which is a measure the presence of a transverse magnetic field and surface ten-
of gravitational effect to surface tension effeat, is the sion has not been given much attention. The study of itis the
permeability of the porous liningy is the slip parameter Mmain object of the.present article with the motivation to'
(see Rudraiah, 198%,, is the velocity across the ablative Know whether a suitable strength of a t.ransverse magnetic
surface lined with porous lining and other quantities are adield can reduce the RTI growth rate in the presence of
defined in Eq(1). From Eq.(2), Rudraiah(2003 had ob-  Viscous shear and surface tension without considering the

tained the maximum wave number mechanism of porous lining. It is also the objective to derive
a simple analytical formula analogous to Rudraiah’s for-
¢, = \B/2 3) mula(2).
To achieve these objectives, the plan of this article is as
and the corresponding maximum growth ratg is follows. In Section 2, the basic equations, the relevant bound-
ary and surface conditions and approximations are given.
B (4+acy) The dispersion relation is obtained in Section 3 using linear
Nmp = 48 (1+—aap) 4) stability analysis. The formula for the growth rate in the
presence of a magnetic field and the absence of a porous
Erom this he had obtained lining, analogous to Eq.2) is also derived in this section.
Some important conclusions are drawn in the Section 4.
Nmp (4 + aoyp) .
Mo 4(1+ aoy)’ ® 2. FORMULATION OF THE PROBLEM

We consider a thin target shell in the form of a film of
unperturbed thicknegsfilled with lightincompressible vis-

N = B/12 (6) cous electrically conducting plasma of constant density
bounded on one side by arigid surface and on the other side

is the maximum growth rate in the absence of porous liningPy an incompressible heavy viscous electrically conducting

From Eq.(1) with 8 = 3, A= 0.9 Takabeet al. (1985 have  Plasma of density, of an infinite extent with an interface
obtained between the two plasma layers subject to a transverse mag-

netic field and surface tensigaee Fig. 1. This assumption
(Nm)7a = 0.45(Nimo)var (7)  ondensity is needed for the RTI as defined in Section 1. The
fluid within the shellis setin motion by the laser-accelerated
where the subscripka refers to the results of Takaletal. ~ ablative surface. At timg the fluctuations of the interface
(1985. From Eq.(7) Takabeet al. (1985 have concluded are amplified and the local thickness becomes a function of
that the growth rate of a RTI is reduced to 45% of thethe position and tim¢ and we havey = h + n(x, t) where
classical valuén,,,)r.. For foam material used in the exper- n(x,t) is the surface displacement. We consider a rectangu-
iments of Beavers and Josefi967), the slip parametex
ranges from 0.1 to 4.0 and porous parametgianges from
4 10 20. Fora = 0.1 ando, = 4.0, Eq.(5) reduces to,, =
0.785M,,o. From this result Rudraiat2003 had concluded
that the maximum growth rata,,, is reduced to 78.57% of
Nmeo- IN particular he(Rudraiah 200Bhas shown that the I J/\
reduction of the growth rate is possible even up to 80% for a 1 Yy=4
proper choice of the porous parameteendoy,. Physically, \/ ‘LH I
this reduction in growth rate in the presence of porous lining
is due to the contraction and expansion of flow in the pores, shell- film h

where

which absorbs some of the energy that would go otherwise
into the target.

We know that in continuum plasma the effect of a trans-
verse magnetic field is to suppress the perturbations by
converting the kinetic energy in to magnetic energy. In clas- Fig. 1. Physical configuration.
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lar coordinate systertx, y) as shown in the Figure 1, with 0 = —ap/ax + 92u/dy? — M2u (10
thex-axis parallel to the shell and tlyeaxis normal to it with
n(x,t) as the perturbed interface. 0= —dp/dy 1D

The basic eql_Jatlons for cor_lductlng, |ngompre_53|ble, Vis- au/ox + dv/ay = 0 12)
cous and electrically conducting plasma in the film are the
conservation of momentum, whereM = u,hHo\o/u is the Hartmann number art is

the applied transverse magnetic field. These equations have
p[0a/0t + (q-V)q] = —Vp + uV2q + mnd X H, (8  tobe solved using the following boundary and surface con-

ditions. The no-slip condition at the rigid surface is
and the conservation of mass for an incompressible plasma, u=v=0 aty=0. (13

No shear at the free surface is
vV-q =0, (9)

du/dy =0 aty=1. (19
whereq = (u,v) is the velocityJ = ¢[E + on,q X H] is the ) o
current densityy X E = —undH/dt, V-E=0,V-H =0,Eis  The dynamic condition is
the electric fieldH is the magnetic fieldy is the viscosity,
un is the magnetic permeability, amdis the electrical con-
ductivity of fluid. These equations must be supplemented
with suitable boundary and surface conditions. These equa- ) ) _ o
tions are sufficient for our purpose because we deal witfor linear analysis, the kinematic condition is
electrically conducting fluid of small conductivity, so that
the induced magnetic field can be neglected in comparison
with the applied magnetic field.

In this article, we deal only with a linear two-dimensional 3. DISPERSION RELATION

RTI in continuum plasma considering infinitesimally small Solving Eq.(10) and, using the conditiond3) to (16), we
disturbances superposed on the basic state. The basic state,j
quiescent and the interface is flat. Further, the following
stokes and lubrication approximatiofsee Babchiret al., P [ ChM(1-y) ap
1983, Rudraialet al, 1997 will greatly simplify the analy- U= 1% [Ch—M - 1], ChM = CoshM, P = i 17)
sis: (1) n < h. This assumption helps to ignore the variation
of horizontal velocityu with respect tox. (2) The Bond  |ntegrating Eq(12) with respect toy from 0 to 1 and sim-
numberB = 6h%/y < 1, which implies the gravitational plifying, we get
effect is small compared to the surface tension effect where
v is the surface tension ardd= g(g, — 0;) is the normal MChM — ShM a2p
stress(3) The Reynolds numbd® = Uh?/Ly < 1, wherey v(1) = TMEChM ax?’ ShM= SinhM. (18
is the kinematic viscosity, which enables us to neglect iner-

tial force because of very viscous fluih) The magnetic  From Eq.(16), using normal mode solution of the forg=

Reynolds numbeR, = upoUh < 1 because of small elec- , eitxnt and using Eqg15) and(18), we get the dispersion
trical conductivity. This enables us to ignore the inducedyg|ation of the form

magnetic field compared to the applied magnetic and elec-

(o1}

2
20 aty=1. (15)

P="n- X2

W=

v =9dn/ox aty=1. (16)

tric fields. (5) The Strouhal numbes = L/toU < 1,L = M3 — 3(M —tanhM)

\y/8, wheret, andU are the characteristic time and veloc- n=no—Blva, B= 3M —tanhM)

ity, which enables us to ignore local acceleration in the

momentum equation. These approximations, which are valid (M —tanhM)€(1 — ¢?%/B)

when the wavelength of the instability of the ablative sur- Va = M3 ‘ (19)

face is large compared to the thickness of the layer, are

useful to ignore many terms, particularly nonlinear terms inwheren is the growth rate{ is the wave numbeB is the
the basic Eq(8). We also assume that heavy fluid bounding Bond number, and

the lighter fluid is almost static because of creeping flow
approximation, which is needed to study RT instabi(#ge
Babchinetal., 1983. Under these approximations, the basic
Eq. (8) reduces to, after making the resulting equations di-
mensionless using the scalesor length,sh for pressure, obtained from Eq.19) in the limit of M — 0, and for
8h?/u for velocity, andu/8h for time, the form convenience we call it a classical value.

€2
Ng = 3 (1-¢?/B), (20
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This Eq.(19) clearly shows that the effect of the magnetic Table 1. Ratio G, for maximum growth rate for different M
field is to reduce the growth rate of a RTI considerably

compared to the one in the absence of a magnetic field. Thigartmann numbeit Maximum growth rate
physical reason for this reduction is that the transverse mag- 0.01 0.99996
netic field suppresses the flow by converting the kinetic 0.10 0.99602
energy into magnetic energy. 1.00 0.71522
10.00 0.02700
100.00 0.00030

4. DISCUSSION AND CONCLUSIONS

Inthe present article, a self-consistent analytical approach is

used to study linear RTI of ablatively laser-accelerated tar-

gets filled with an incompressible electrically conducting From these, we get the ratio of maximum growth natgo
viscous plasma in the presence of a transverse magnetig  given by

field. The RTI growth rate formula given by E@19) is

analogous to the one given by Ed,) for a compressible Gum = N/Nom = 3(M — tanhM)/M3, (25)
fluid, and Eq.(2) for a porous lining.

Settingn = 0 in Eq. (19), we obtain the cutoff wave Relation(19) is plotted in Figure 2 for the growth rate
number€ct, above which the RTI mode is stabilized and is versus the wave numbérfor M=1 and for different Va|ues
found to be of B. We see that the perturbations of the interface having a

wave number smaller thafy, are amplified whe@d > 0(i.e.,
€= \B. (21)  p, < p,) and the growth rate decreases with a decreaBe in
implying an increase in surface tension. That is, an increase
The maximum wave numbef, obtained from Eq(19) by in surface tension makes the interface more stable. Similar

settingon/o¢ = O is behavior is observed even fit = 10 and we found that an
increase inM decreases the growth rate considerably. To
€= \B/2 = [N2. (220 know the amount of reduction in the growth rate caused by

a magnetic field compared to that in the absence of magnetic
Eqgs.(21) and(22) are true even for the case in the absence ofield, Eq.(25) is numerically computed for different values
a magnetic field(i.e., M = 0) given by Eq.(20) and for  of M ranging from 102 to 10? and the results are tabulated
convenience we call them a classical result. The maximunih Table 1 and are also plotted in Figure 3 w@h, versusM.
growth ratenn,, for the correspondingy, given by Eq.(22)  we see that the decrease in the growth rate compared to the
is classical one is very steep bt in the range of 10* to 10",
and the ratids,,, becomes independent Bf for valuesM >
L_B (} B A) A M?® —3(M — tanhM) 23 10 tending to the value 0.0003. Adr= 1, we find thaiG,,, =
m4\3 ' 3m3 ' 0.71522, that is, the maximum growth rate is reduced to
71.52% of the classical valug,,,. However, atM = 10 we
Similarly nom, from Eq.(20) using Eq.(22), is find that the maximum growth rate is reduced by 97.3% of
the classical valupy,,. Similarly forM =100 and above, we
Nom = B/12 (249 find that the maximum growth rate is reduced to 2.7% of the
classical valuen,,. From this we conclude that an increase

B=006
n10.003
B=0.04 !
0.002
B=002 G 0.8
0.001 /1-0.01 ) m
| n by 0.6 I
. I AN
amt f— 04
-0.002 02
-0.003 or . . . . .
10° 10 10" 10° 10" 107
) . M
Fig. 2. The growth rate versus wave numbérfor M =1 and for different
Bond number®. Fig. 3. Ratio of maximum growth rat&,, versusM.
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in the value of the magnetic field, thathg, reduces consid- KaNUER, J.P,, BETTI, R., BRADLEY, D.K., BocHLY, T.R., COLINO,
erably the growth rate compared to the classical value. This T.J.B., CoNcHAROV, V.N., MEKENTY, P.W., MEYERHOFER, D.D.,
information is useful in the extraction of IFE efficiently by =~ SMALYUK, V.A., VERDON, B.C.P., GLENDINNING, S.G., KAL-

Taylor growth rate measurements on the OMEGA laser system.

Phys. Plasm@&@, 338-345.
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