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Gaël Raoul
Centre d’Ecologie Fonctionnelle et Evolutive, UMR 5175, CNRS,
1919 Route de Mende, 34293 Montpellier Cedex 5, France
(raoul@cefe.cnrs.fr)

(MS received 19 October 2010; accepted 7 November 2012)

We consider a selection–mutation equation for the density of individuals with respect
to a continuous phenotypic evolutionary trait. We assume that the competition term
for an individual with a given trait depends on the traits of all the other individuals,
therefore giving an infinite-dimensional nonlinearity. Mutations are modelled by
means of an integral operator. We prove existence of steady states and show that,
when the mutation rate goes to zero, the asymptotic profile of the population is a
Cauchy distribution.

1. Introduction

In this paper we consider a selection–mutation equation for the density of individ-
uals of a biological population with respect to a continuous one-dimensional phe-
notypic evolutionary trait x, belonging to a bounded interval X of R (for studies
on multi-dimensional phenotypic traits see [42, 43]). Selection–mutation equations
in the continuous framework were introduced in [14, 25] in order to explain the
maintenance of variability in a continuum of alleles. The balance of selection and
mutation generates a phenotypic diversity within a species, which improves the
ability of this species to adapt to a change of the environment (see, in particular,
the problem of evolutionary rescue [2]), but decreases its fitness (cf. the notion of
mutation load and its application to lethal mutagenesis [4,24]). Unfortunately, it is
difficult to experimentally measure this diversity (on organisms such as viruses or
bacteria), which legitimates its theoretical study.
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Selection–mutation equations have been previously studied in [25] under the sim-
plifying assumption that mutations have a small effect. (The mutation can then be
modelled by a diffusion. This is the Gaussian allelic approximation; see [5, 12, 25],
and see, for example, [10, 25, 28, 31, 36] for applications). In this case the popu-
lation has a Gaussian profile in a suitable limit. The assumption that mutations
have a small effect is, however, not accurate for many species of virus or bac-
terium, as shown, for example, by the recent experimental results of Bell and Gon-
zalez [2]. Removing the assumption that mutations have a small effect (see [5, 12],
and see [6, 13, 19, 32, 35, 37] for applications) can affect the profile of the popula-
tion in a selection–mutation equilibrium, as shown by the so-called house-of-cards
approximation (see [5, 7, 26, 38, 39]). The house-of-cards model assumes that the
probability distribution of a mutant’s trait is independent of its parent’s trait. In
that case, under some additional assumptions (in particular, the environmental
feedback must be one dimensional; we comment on this below), the population
profile can be explicitly found, and it is generically a Cauchy profile once a scal-
ing imposing a small number of mutations has been performed. The house-of-cards
model is a particular case of a more general model (see [7,38]) where mutations are
modelled with a mutation kernel (see assumption 4.5). It is then natural to wonder
whether the result found in the case of the house-of-cards model remains qualita-
tively true for the general model. The effect of such general mutation kernels has
been studied numerically in [40, 41], and an explicit computation of the selection–
mutation equilibrium for a very special mutation kernel is presented in [41]. In [7],
for a general mutation kernel and independently of the fitness function, a general
formula for the first-order approximation of the equilibrium mean fitness is given.
Moreover, assuming that the fitness function has a unique maximum point, it is
shown that the mutation load is equal (to first order) to the mutation rate. For
special fitness functions and mutation kernels, higher-order approximations of the
mutation load are obtained.

An important feature in most previous works (about mutation–selection equilib-
ria) is that the feedback variable (also called the environment; see, for example, [30])
is finite-dimensional, so the equations become linear when a finite number of quan-
tities are considered as given. This is what happens, for example, when individuals
compete for a given number of different nutrients (see, for example, [11,19]). More
precisely, this means that these equations can be written in the form ft = A(E(f))f ,
where f denotes the density of individuals with respect to the evolutionary trait,
ft is its time derivative, E is a (usually linear) function from the state space to a
finite-dimensional space and A(E) is a linear operator on the state space. The prob-
lem of looking for steady states is then equivalent to finding positive eigenfunctions
corresponding to the zero eigenvalue of the linear operator plus solving a fixed-point
problem in a finite-dimensional space (this fixed-point problem is nonlinear because
of the nonlinear dependence of the operator A(E) with respect to E; see [8,9,15]).
However, in many applications, the environment is not finite dimensional (see, for
example, [31,36,37]). We thus consider in the present paper the more general case
where the competitive stress that an individual of a given trait feels (undergoes)
is the sum of the individual competitions caused by all the other individuals (as
in, for example, [3, 16, 20, 33]), typically in such a way that those competitions are
stronger when individuals have closer traits.
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In this paper, we assume (see § 4) that the mutation rate for the phenotype we
consider is small. The mutation rate depends on the individual considered (viruses
often have higher mutation rates than cells, for instance). Moreover, this mutation
rate can be increased by UV light or drugs (see [4]). The typical mutation rate
is estimated to be of the order of 10−5 per generation for a single locus (see, for
example, [27]). For a given phenotype, which usually depends on many genes, the
mutation rate is larger, but still small (of the order of 10−2; see [1]). The assump-
tion that mutations are rare has been widely used in evolutionary biology, either
explicitly (as in the theory of adaptive dynamics [18,29], or for pure selection mod-
els [17,19,33]), or implicitly by simplifying the fitness landscape to a parabola or a
Gaussian function (see, for example, [25, 39]).

In § 2, we introduce the model and some notation that will be useful throughout
the paper.

In § 3, using Schauder’s fixed-point theorem, we show (under reasonable technical
assumptions on the coefficients) that the model admits a non-trivial steady state if
(and only if) the per capita growth rate is positive for some value of the trait when
the population is small.

Section 4 is devoted to an asymptotic analysis of the shape of steady populations,
when the mutation rate tends to zero. As in [8, 9, 15], we consider cases where the
monomorphic population f = δ0 would be globally stable in the corresponding pure
selection model, and we study what happens when the mutation rate ε is small, but
not zero. In order to do so, we perform a rescaling and we obtain that the steady
states are asymptotically close, when the mutation rate goes to zero, to a Cauchy
distribution

fε(x) ∼ 1/ε

C1 + C2(x/ε)2
, (1.1)

where the evolutionary trait x is one dimensional and belongs to a bounded interval
and C1, C2 are constants that can be computed explicitly.

2. The model

We consider the selection–mutation model

∂tf(t, x) =
(

(1 − µ)b(x) − d0(x) −
∫

X

d(x, y)f(t, y) dy

)
f(t, x)

+ µ

∫
X

b(y)β(x, y)f(t, y) dy,

f(0, x) = f0(x),

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.1)

for a population described by its density f(t, x) of individuals, which at time t have
an (abstract) phenotypic trait x ∈ X, X being a bounded interval of R such that
0 ∈ IntX (the results of this paper could be generalized to an infinite phenotypic
trait space, e.g. X = R, with some additional assumptions on the behaviour of the
coefficients at ∞).

In (2.1), b(x) denotes the birth rate of individuals of trait x, and d0(x) denotes
their death rate in the absence of competition. For simplicity, we assume that
the competition only increases the death rate of the population. We model the
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increase of the death rate of individuals of trait x due to cohabitation with an
individual of trait y by a competition kernel d(x, y). Typically we think of a func-
tion d(x, y) = d̃(|x − y|) such that the function d̃ is bounded from below by a
strictly positive constant (meaning that any individual competes with all individu-
als in the population) and having a maximum at zero (meaning that the maximum
competition occurs between identical individuals). However we will make a weaker
hypothesis on d (see assumption 4.3 in § 4).

Finally, the parameter µ ∈ [0, 1] stands for the probability of mutation in a given
reproduction. If an individual of trait y gives birth to a mutant, we denote by
x �→ β(x, y) the probability distribution of the offspring’s trait. Hence,

(1 − µ)b(x)f(t, x)

represents the newborns per unit of time due to faithful reproduction and

µ

∫
X

b(y)β(x, y)f(t, y) dy

the newborns that mutated.
To simplify notation in the proofs, from now on we denote by µm(x, y) the rate

of mutants of trait x produced by a genitor of trait y, where

m(x, y) := b(y)β(x, y),

and by aµ the intrinsic growth rate:

aµ(x) := (1 − µ)b(x) − d0(x).

We also define the fitness of an individual of trait x when the environment is
determined by a population f(t, ·) as

s[f(t, ·)](x) = aµ(x) −
∫

X

d(x, y)f(t, y) dy.

3. Existence of steady states

This section is devoted to proving existence of steady states of (2.1). We introduce
the notation

d ∗̃ f(x) :=
∫

y∈X

d(x, y)f(y) dy,

and use a similar notation for the mutation kernel m. To avoid cases where the
population concentrates on the boundary, we make the following assumption.

Assumption 3.1. For any f ∈ L1
+(X) such that

− max s[f ] = min(d ∗̃ f − (1 − µ)b + d0) � 1,

the maximum of s[f ] = (1 − µ)b − d0 − d ∗̃ f is reached in the interior of X.

Remark 3.2. We do not consider in this paper the case where the maximum of the
fitness is on an edge of X, as it would involve different mathematical techniques.
Note that this situation is indeed interesting. It appears in some models, in partic-
ular if the phenotypic trait that is considered is the growth rate of the population
without competition (see, for example, [23, 34]).
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Assumption 3.1 has a simple biological meaning: for any population, the trait
that maximizes the fitness is an interior point of the trait space. That trait is then
a critical point of the fitness function, which will play an important role in the proof
of theorem 3.5.

However, it may be difficult to check whether this assumption is satisfied for a
given model. In the remark below, we provide some conditions that are easier to
check, and that imply assumption 3.1. The first condition given below, for instance,
is satisfied by the models studied in [5] (for any mutation kernel), as soon as the
fitness without competition has a maximum in the interior of X.

Remark 3.3. Note that − max s[f ] = min(d ∗̃ f − (1 − µ)b + d0) � 1 implies that

‖f‖L1 � max((1 − µ)b − d0) + 1
min d

.

Assumption 3.1 is then satisfied if one of the following two conditions is satisfied.

(i) There exists x̄ ∈ IntX such that

(1 − µ)b(x̄) − d0(x̄) = max((1 − µ)b − d0)

and, for any x ∈ ∂X,

(1 − µ)b(x) − d0(x)

� max((1 − µ)b − d0) − (‖d‖∞ − min d)
max((1 − µ)b − d0) + 1

min d
.

Indeed, this implies that, for x ∈ ∂X,

s[f ](x) − s[f ](x̄) � ‖d‖∞‖f‖L1 − max((1 − µ)b − d0)
− min d‖f‖L1 + ((1 − µ)b − d0)(x)

� 0.

Then, s[f ](x̄) � s[f ](x), and the maximum of s[f ](x) is necessarily reached
in the interior of X.

(ii) Let X = [x1, x2] and assume that

(1 − µ)b′(x1) − d′
0(x1) − ‖∂1d‖∞

max((1 − µ)b − d0) + 1
min d

� 0,

(1 − µ)b′(x2) − d′
0(x2) + ‖∂1d‖∞

max((1 − µ)b − d0) + 1
min d

� 0.

This implies that
d
dx

s[f ](x1) > 0 >
d
dx

s[f ](x2),

and the maximum of s[f ] is then reached in the interior of X.

In order to prove the theorem of existence of steady states, we first prove the
following technical lemma.
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Lemma 3.4. Let C1, C2, C3, C4, C5, C6 > 0. If δ > 0 is small enough, then there
exists α̂ > 0 such that

α̂ � (1 − δ)C1

C2 + C3(C4 + C5δ/α̂)
− C6δ. (3.1)

Proof. α̂ satisfies (3.1) if and only if

0 � α̂((C2 + C3C4)α̂ − C1) + δ((C1 + C3C5)α̂ + C6(C2α̂ + C3(C4α̂ + C5δ))),

which is satisfied (for instance) by α̂ = C1/2(C2 + C3C4) > 0, if δ > 0 is small
enough.

The following theorem shows that (2.1) has at least one steady state, under some
conditions.

Theorem 3.5. Let µ ∈ (0, 1), b, d0 ∈ W 2,∞(X), d ∈ W 2,∞(X×X), β ∈ W 1,∞(X×
X) such that min d > 0, min β > 0, min b > 0 and such that max((1−µ)b−d0) > 0.
Under assumption 3.1 there exists a non-trivial (i.e. non-zero everywhere) steady
state f̄ ∈ W 1,∞(X) of (2.1). Moreover, if (for some k ∈ N) b, d0 ∈ W k,∞(X) and
d, β ∈ W k,∞(X × X), then f̄ ∈ W k,∞(X).

Proof. Let δ > 0. We define

F (f) := (1 − δ)f + δ
µm ∗̃ f

−s[f ]

and (for ᾱ > 0, Λ̄ > 0, γ > 0 to be chosen later) the sets

F := {f ∈ L1
+; α(f) � ᾱ, ‖f‖L1 � Λ̄},

where α(f) := min{−s[f ]}, and

G := F ∩ {g ∈ W 1,∞(X); ‖g′‖∞ � γ}.

We note that G is a convex, bounded and closed set in (C(X), ‖ · ‖∞) and F is
continuous on G. Then, due to the Ascoli theorem, it is compact in (C(X), ‖ · ‖∞).
We show that it is not empty (see (3.9)), and that, for δ small enough, one can find
ᾱ, Λ̄ such that F (G) ⊂ G. We can then apply Schauder’s fixed-point theorem to the
set G and obtain the existence of f̄ ∈ G such that

f̄ = F (f̄) = (1 − δ)f̄ + δ
µm ∗̃ f̄

−s[f̄ ]
,

and, therefore,
0 = (s[f̄ ])f̄ + µm ∗̃ f̄ ,

which proves the existence of a steady state f̄ ∈ W 1,∞(X) of (2.1). Note that f̄ is
non-trivial because 0 /∈ F , since α(0) = min(−aµ) = − max((1 − µ)b − d0).

We prove that, for δ small enough, F (G) ⊂ G. We present a proof in four steps.
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Step 1. We bound {α(F (f)); f ∈ F} from below:

α(F (f)) = min{−s[F (f)]}

= min
{

d ∗̃
[
(1 − δ)f + δ

µm ∗̃ f

−s[f ]

]
− aµ

}

� min{−s[f ]} + δ min
{

d ∗̃
(

µm ∗̃ f

−s[f ]
− f

)}

� α(f) + δ

(
µ(min d)(minm)‖f‖L1

∫
X

dx

−s[f ]
− ‖d‖∞‖f‖L1

)
.

Due to assumption 3.1, if α(f) � 1, there exists x0 ∈ IntX such that

(−s[f ])(x0) = min(−s[f ]) = α(f).

Then, (−s[f ])′(x0) = 0 and

(−s[f ])(x) � α(f) + 1
2‖(−s[f ])′′‖∞(x − x0)2,

which, provided that α(f) � min(1
8‖a′′

µ‖∞|X|2, 1), gives the following estimate on∫
X

(−s[f ])−1 dx:∫
X

dx

−s[f ]
�

∫ |X|/2

0

dy

α(f) + 1
2 (‖a′′

µ‖∞ + ‖∂2
11d‖∞‖f‖L1)y2

=

√
2

α(f)(‖a′′
µ‖∞ + ‖∂2

11d‖∞‖f‖L1)

× arctan
(√

‖a′′
µ‖∞ + ‖∂2

11d‖∞‖f‖L1

2α(f)
|X|
2

)

� π

2
√

2α(f)(‖a′′
µ‖∞ + ‖∂2

11d‖∞‖f‖L1)
.

Then,

α(F (f)) − α(f)

� δ‖f‖L1

{
µ(min d)(minm)

π/2
√

2√
α(f)(‖a′′

µ‖∞ + ‖∂2
11d‖∞Λ̄)

− ‖d‖∞

}

� 0

if

α(f) � min
{ 1

8π2µ2(min d)2(minm)2

‖d‖2
∞(‖a′′

µ‖∞ + ‖∂2
11d‖∞Λ̄)

,
‖a′′

µ‖∞

8
|X|2, 1

}
.

We define a constant Λ̃, which will be used in step 2, by

Λ̃ :=
1

min d
(µ‖m‖∞|X| + max aµ). (3.2)
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We also define the constant Cα by

Cα := (‖a′′
µ‖∞ + ‖∂2

11d‖∞Λ̃)

× min
{ 1

8π2µ2(min d)2(minm)2

‖d‖2
∞(‖a′′

µ‖∞ + ‖∂2
11d‖∞Λ̃)

,
‖a′′

µ‖∞

8
|X|2, 1, µ‖m‖∞|X|

}
(3.3)

(the last term, µ‖m‖∞|X|, will be useful at the end of step 3), and define α̃Λ̄ by

α̃Λ̄ :=
Cα

(‖a′′
µ‖∞ + ‖∂2

11d‖∞Λ̄)
. (3.4)

From now on we assume that Λ̄ � Λ̃ and ᾱ � α̃Λ̄.
We take f ∈ F . If α(f) � α̃Λ̄, then we have just proved that α(F (f)) � α(f) � ᾱ.

On the other hand, if α(f) � α̃Λ̄, then

α(F (f)) = min
{

(1 − δ)(−s[f ]) + δ

[
d ∗̃

(
µm ∗̃ f

−s[f ]

)
− aµ

]}

� (1 − δ)α̃Λ̄ + δ min
{

d ∗̃
(

µm ∗̃ f

−s[f ]

)
− aµ

}

� (1 − δ)α̃Λ̄ − δ max aµ

=
(1 − δ)Cα

(‖a′′
µ‖∞ + ‖∂2

11d‖∞Λ̄)
− δ max aµ.

That is, we have shown that, for any f ∈ F ,

α(F (f)) � (1 − δ)Cα

(‖a′′
µ‖∞ + ‖∂2

11d‖∞Λ̄)
− δ max aµ or α(F (f)) � ᾱ. (3.5)

Step 2. We bound {‖F (f)‖L1 ; f ∈ F} from above:

‖F (f)‖L1 =
∫ [

f + δ

(
µm ∗̃ f

−s[f ]
− f

)]
dx

= ‖f‖L1 + δ

[ ∫
µm ∗̃ f

−s[f ]
dx − ‖f‖L1

]

� ‖f‖L1 + δ

[
µ‖m‖∞|X|
min(−s[f ])

− 1
]
‖f‖L1

� ‖f‖L1 + δ

[
µ‖m‖∞|X|

‖f‖L1 min d − max aµ
− 1

]
‖f‖L1 .

So, if

‖f‖L1 � µ‖m‖∞|X| + max aµ

min d
= Λ̃,

then ‖F (f)‖L1 � ‖f‖L1 � Λ̄.
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We next consider f ∈ F such that ‖f‖L1 � Λ̃. Then,

‖F (f)‖L1 � (1 − δ)‖f‖L1 + δµ‖m‖∞‖f‖L1
|X|
α(f)

� (1 − δ)Λ̃ + δµ‖m‖∞Λ̃
|X|
ᾱ

� Λ̃

(
1 + δµ‖m‖∞

|X|
ᾱ

)
.

That is, we have shown that, for any f ∈ F ,

‖F (f)‖L1 � Λ̃

(
1 + δµ‖m‖∞

|X|
ᾱ

)
or ‖F (f)‖L1 � Λ̄. (3.6)

Step 3. We show that if δ > 0 is small enough, there exist 0 < ᾱ, Λ̄ < ∞ such
that F (F) ⊂ F and F �= ∅.

Due to steps 1 and 2, in order to show that F (F) ⊂ F , we need to show that,
for δ > 0 small enough, ᾱ > 0 and Λ̄ < ∞ can be chosen in such a way that

ᾱ � (1 − δ)Cα

(‖a′′
µ‖∞ + ‖∂2

11d‖∞Λ̄)
− δ max aµ,

Λ̄ � Λ̃

(
1 + δµ‖m‖∞

|X|
ᾱ

)
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.7)

In order to show that such a choice of ᾱ, Λ̄ is possible, we apply lemma 3.4 and get
that, for δ > 0 small enough, there exists α̂ > 0 satisfying

α̂ � (1 − δ)Cα

‖a′′
µ‖∞ + ‖∂2

11d‖∞(Λ̃(1 + δµ‖m‖∞|X|/α̂))
− δ max aµ. (3.8)

We then define ᾱ := α̂ and Λ̄ := Λ̃(1+δµ‖m‖∞|X|/α̂). The second equation of (3.7)
is satisfied due to the definition of Λ̄, and the first equation of (3.7) is satisfied due
to (3.8). Also, ᾱ � α̃Λ̄ and Λ̄ � Λ̃ due to (3.8). It follows that F (F) ⊂ F .

Finally, in order to show that F is not empty, we consider the constant function
g ∈ L1(X):

g(x) :=
Λ̃

|X| . (3.9)

Then, ‖g‖L1 = Λ̃ � Λ̄, and

α(g) = min{−s[g]}

� Λ̃

|X| |X| min d − max aµ

= µ‖m‖∞|X|
� α̃Λ̄,

due to the definitions of (3.2)–(3.4). Then, α(g) � ᾱ and g ∈ F , which cannot be
empty. Note that g ∈ G.
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Step 4. We conclude by applying Schauder’s fixed-point theorem.
We choose δ, ᾱ, Λ̄ > 0 such that F (F) ⊂ F , which is possible due to step 3. We

compute the first derivative of F (f) as

F (f)′ = (1 − δ)f ′ + δ

[
µ∂1m ∗̃ f

−s[f ]
+ (µm ∗̃ f)

a′
µ − ∂1d ∗̃ f

(−s[f ])2

]
,

and then, if f ∈ F ∩ W 1,∞(X),

‖F (f)′‖∞ � (1 − δ)‖f ′‖∞ + γδ, (3.10)

where

γ :=
µ‖∂1m‖∞Λ̄

ᾱ
+ µ‖m‖∞Λ̄

‖a′
µ‖∞ + ‖∂1d‖∞Λ̄

ᾱ2 .

Then, F (G) ⊂ G due to step 3 and (3.10). Thus, we can apply Schauder’s fixed-point
theorem, which proves the existence of a steady state f̄ ∈ W 1,∞(X) of (2.1) and
concludes the proof.

Remark 3.6. If b, d0 ∈ W k,∞(X), d, β ∈ W k,∞(X × X), the same argument can
be used to build a set Gk ⊂ W k,∞(X) such that F (Gk) ⊂ Gk. It then follows that
the steady state f̄ given by theorem 3.5 can be taken in W k,∞(X).

4. Asymptotics

In this section we perform an asymptotic analysis of the steady states for small
mutation rates. We denote it, from now on, by ε. Model (2.1) then reads (for
notation see § 2)

∂tf
ε(t, x) = s[fε(t, ·)](x)fε(t, x)+ε

∫
X

m(x, y)fε(t, y) dy for t � 0, x ∈ X. (4.1)

We now present those assumptions on the coefficients that will enable us to perform
our asymptotic study.

Assumption 4.1. Assume that b, d0 ∈ W 3,∞(X), d ∈ W 3,∞(X×X) satisfy b′(0) =
d′
0(0) = 0 and

max
x∈X

(b′′(x) − d′′
0(x)) +

max(b − d0)
min d

‖∂2
11d‖∞ � −δ < 0.

Remark 4.2. This assumption is the cornerstone of our study. It implies that there
exist ε̄ > 0, δ̃ > 0 such that

max
x∈X

max(b′′(x), (1 − ε̄)b′′(x)) − min
x∈X

d′′
0(x)

+
max(b − d0) + ε̄ maxy∈X ‖m(·, y)‖L1(X)

min d
‖∂2

11d‖∞ � −δ̃ < 0. (4.2)

In other words, assumption 4.1 ensures that the fitness s[f ](·) is concave as soon
as the total population is less than a constant∫

X

f(x) dx �
max(b − d0) + ε̄ maxy∈X ‖m(·, y)‖L1(X)

min d
.
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Asymptotics of steady states of a selection–mutation equation 1133

An integration over X of (4.1) shows that any steady population satisfies this last
inequality when ε � ε̄.

Assumption 4.1 implies, in particular, that aε = (1 − ε)b − d0 has a unique
maximum at x = 0, and that

−
[
a′′
0(0)

a0(0)
− ∂2

11d(0, 0)
d(0, 0)

]
> 0.

This last quantity appears in the asymptotic result provided by theorem 4.7. It
also means, exactly, that the Dirac mass a0(0)δ0/d(0, 0) is a linearly stable steady
solution of (4.1) when ε = 0 (cf. [16]).

Assumption 4.1 is, for instance, satisfied when b(x) − d0(x) = 1 − x2, d(x, y) = 1
(see, for example, [25]).

Assumption 4.3. The following ‘symmetry’ condition holds:

∀x ∈ X, ∂1d(x, x) = 0.

Remark 4.4. This assumption is satisfied in the classical case when the competi-
tion between two individuals is maximal when they have the same trait (x �→ d(x, y)
is maximal when x = y). Our analysis could, however, be generalized to cases when
this condition is not satisfied.

Assumption 4.5. The mutation kernel satisfies

min
X×X

m > 0, m ∈ C1(X × X) ∩ L∞(X × X).

Remark 4.6. This assumption is quite general, apart from the strict positivity
condition. This last condition could probably be replaced by the weaker assumption
that m � 0, m(0, 0) > 0, but this generalization would most likely require long and
technical estimates (see [32], where a similar generalization is made).

The next theorem describes the asymptotic profile of the steady states when the
mutation rate is small. It shows that fε has the shape of a Cauchy distribution
centred at εx̄ε = O(ε2/3).

Theorem 4.7. Suppose that assumptions 4.1, 4.3 and 4.5 hold. For ε ∈ (0, ε̄)
(where ε̄ is defined as in remark 4.2) let fε be a steady state of (4.1) (such as
obtained in theorem 3.5, for example). Then, there exists x̄ε = O(ε−1/3), such that

εfε(ε(x̄ε + x))

=
(

m(0, 0)
a0(0)
d(0, 0)

+ O(
√

ε) + O(εx)
)

×
(

2(m(0, 0)π)2

−[a′′
0(0) − a0(0)∂2

11d(0, 0)/d(0, 0)]
+ O(

√
ε)

+
1
2

(
−

[
a′′
0(0) − a0(0)

d(0, 0)
∂2
11d(0, 0)

]
+ O(

√
ε) + O(εx)

)
x2

)−1

.

Remark 4.8. This result shows that, for a small mutation rate, the profile of the
steady states for general mutation and competition kernels is indeed similar to the
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profile obtained when the house-of-cards model is used (see [5, 39]). In particular,
it is different from the Gaussian profiles (see [22,25]) obtained when mutations are
modelled through a diffusion (that is, roughly speaking, when one assumes that
mutations have a very small effect; see [12]). For a discussion of the population
profile depending on the mutations rate, see [7].

In particular, our result shows that the steady populations have fat tails (that is,
fε(x) ≡ Cε/x2 for εx large). This feature is not at all in accordance with the usual
assumption that populations have a Gaussian distribution. Those tails may lead to
different values of the mutation load (see [4, 7]) and may have a significant role in
rapidly changing environments, as in evolutionary rescue experiments (see [2, 21]).
In [2], the success of the evolutionary rescue is directly related to the number of
resistant (to the new environment) cells initially present in the population. A precise
estimate of the tails of the population distribution is then especially interesting.

Note that the mutation rate ε is linked to the concentration of the population at
the point x = 0, as was previously noted in [7]. Assuming that ε is small then allows
us to describe the profile of the population using only the values of the coefficients
and their derivatives at the point x = 0.

We observe that the competition in our asymptotics only changes the coefficients
in the Cauchy profile, not the general shape of the profile.

Finally, we note that the fact that X is bounded does not play an important role
in the asymptotics, since the quantity that is studied is εfε(ε(x̄ε +x)). In the limit
ε → 0 the whole Cauchy profile is recovered, since, for any x ∈ R, ε(x̄ε + x) ∈ X
for ε > 0 small enough.

Proof. We introduce the change of variable fε(t, x) = gε(t, x/ε)/ε, and consider
the non-trivial steady states uε � 0 for the equation on gε:

∀x ∈ ε−1X, 0 = sε[uε](x)uε(x) + ε2
∫

ε−1X

m(εx, εy)uε(y) dy, (4.3)

where

sε[uε](x) := aε(εx) −
∫

ε−1X

d(εx, εy)uε(y) dy.

Then,

uε(x) =
1

−sε[uε](x)/ε2

∫
ε−1X

m(εx, εy)uε(y) dy. (4.4)

Let x̄ε ∈ ε−1X be such that

sε[uε](x̄ε) := max
x∈ε−1X

sε[uε](x). (4.5)

Remark 4.9. Note that, since uε(x) � 0, the second term of the right-hand side of
(4.3) is strictly positive and, therefore, uε(x) > 0 and sε[uε](x) < 0 for x ∈ ε−1X.

Step 1. We show that ∂2
xxsε[uε]/ε2 � −δ.
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Since uε satisfies (4.3),

0 =
∫

ε−1X

[(
aε(εx) −

∫
ε−1X

d(εx, εy)uε(y) dy

)
uε(x)

]
dx

+
∫

ε−1X

[
ε2

∫
ε−1X

m(εx, εy)uε(y) dy

]
dx

� (max aε − (min d)‖uε‖L1(ε−1X))‖uε‖L1(ε−1X)

+ ε
(

max
y∈X

‖m(·, y)‖L1(X)

)
‖uε‖L1(ε−1X),

we can bound ‖uε‖L1(ε−1X) from above as

‖uε‖L1(ε−1X) �
max aε + ε maxy∈X ‖m(·, y)‖L1(X)

min d
. (4.6)

Moreover, ∂2
xxsε[uε] satisfies

∂2
xxsε[uε](x) = ε2a′′

ε (εx) − ε2
∫

ε−1X

∂2
11d(εx, εy)uε(y) dy

� ε2
[
max

X
a′′

ε + ‖uε‖L1(ε−1X)‖∂2
11d‖L∞(X×X)

]
.

Due to (4.6) and assumption 4.1,

1
ε2 ∂2

xxsε[uε](x)

� max
X

a′′
ε +

maxX aε + ε maxy∈X ‖m(·, y)‖L1(X)

min d
‖∂2

11d‖L∞(X×X)

� −δ < 0,

which proves step 1.

Remark 4.10. Step 1 proves that sε[uε] is concave. Then, x̄ε is well defined (that
is, unique) due to (4.5).

Step 2. We show that |εx̄ε| = O(
√

ε).
We prove that if εx̄ε > 0, then εx̄ε � O(

√
ε). The case εx̄ε < 0 can be dealt with

in the same way.
Noting that εx̄ε > 0, [0, εx̄ε) ⊂ X, and using definition (4.5) of x̄ε, we see that

0 � ∂xsε[uε](x̄ε). (4.7)

Then,

a′
ε(εx̄

ε) �
∫

ε−1X

∂1d(εx̄ε, εy)uε(y) dy

=
∫

|y−x̄ε|�1/
√

ε

∂1d(εx̄ε, εy)uε(y) dy +
∫

|y−x̄ε|�1/
√

ε

∂1d(εx̄ε, εy)uε(y) dy.

(4.8)
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We perform a Taylor expansion to estimate the first term of the right-hand side of
the equality in (4.8), using assumption 4.3 and (4.6),∫

|y−x̄ε|�1/
√

ε

∂1d(εx̄ε, εy)uε(y) dy

�
∫

|y−x̄ε|�1/
√

ε

∂1d(εx̄ε, εx̄ε)uε(y) dy

+ ε

∫
|y−x̄ε|�1/

√
ε

∂2
12d(εx̄ε, εθ(y))(y − x̄ε)uε(y) dy

� 0 − ε‖∂2
12d‖∞

1√
ε
‖uε‖L1

� −C1
√

ε

for some C1 > 0. To estimate the second term of (4.8), we first estimate sε[uε] using
a Taylor expansion: for εx ∈ X,

sε[uε](x) = sε[uε](x̄ε) + (x − x̄ε)∂xsε[uε](x̄ε) + 1
2 (x − x̄ε)2∂2

xxsε[uε](θ)

� sε[uε](x̄ε) − 1
2ε2δ(x − x̄ε)2, (4.9)

where we used (4.7) to estimate ∂xsε[uε](x), and step 1 to estimate ∂2
xxsε[uε](θ).

Then, using (4.4), we get (from remark 4.9) that∫
|y−x̄ε|�1/

√
ε

∂1d(εx̄ε, εy)uε(y) dy

� −‖∂1d‖∞

∫
|y−x̄ε|>1/

√
ε

‖m‖∞‖uε‖L1

−sε[uε](x̄ε)/ε2 + δ(y − x̄ε)2/2
dy,

and then (due to remark 4.9 and (4.6)),∫
|y−x̄ε|�1/

√
ε

∂1d(εx̄ε, εy)uε(y) dy

� −‖∂1d‖∞‖uε‖L1

∫
|y−x̄ε|>1/

√
ε

‖m‖∞
0 + δ(y − x̄ε)2/2

dy

� −C2
√

ε (4.10)

for some C2 > 0. Finally, due to (4.9) and (4.10), (4.8) becomes

a′
ε(εx̄

ε) � −C
√

ε,

where C = C1 + C2. We assumed that εx̄ε > 0. Then, due to assumption 4.1,
a′

ε(εx̄
ε) � −εx̄εδ, and thus

εx̄ε � −a′
ε(εx̄

ε)
δ

� C

δ

√
ε.

Remark 4.11. Step 2 implies, in particular, that, for ε > 0 small enough, εx̄ε ∈
IntX, and then

0 = ∂xsε[uε](x̄ε).
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Due to this equality and a Taylor expansion, (4.4) becomes

uε(x) =

∫
ε−1X

m(εx, εy)uε(y) dy

−sε[uε](x̄ε)/ε2 + (−∂2
xx(sε[uε])(θ))(x − x̄ε)2/2ε2 , (4.11)

where θ ∈ [x̄ε, x] (or θ ∈ [x, x̄ε] if x < x̄ε).

Step 3. We bound Qε := −sε[uε](x̄ε)/ε2 from above and below.
We recall what we showed in step 1, that is,

∀x ∈ ε−1X, −∂2
xx(sε[uε])(x) � δε2 > 0. (4.12)

Then, due to (4.11) (Qε > 0 from remark 4.9),

uε(x̄ε + x) �
∫

ε−1X
m(ε(x̄ε + x), εy)uε(y) dy

Qε + δx2/2

� ‖m‖∞

∫
ε−1X

uε(y) dy

Qε + δx2/2
. (4.13)

Then, ∫
ε−1X

uε � ‖m‖∞

( ∫
ε−1X

uε

) ∫
ε−1X−x̄ε

dx

Qε + δx2/2

� ‖m‖∞

( ∫
ε−1X

uε

) ∫
R

dx

Qε + δx2/2

= ‖m‖∞

( ∫
ε−1X

uε

) √
2π√
Qεδ

,

which yields the following (uniform in ε) upper bound on Qε:

Qε � 2π2‖m‖2
∞

δ
.

On the other hand, since (using (4.6))

1
ε2 ∂2

xxsε[uε](x) = a′′
ε (εx) −

∫
ε−1X

∂2
11d(εx, εy)uε(y) dy

� [min a′′
ε − ‖uε‖L1(ε−1X)‖∂2

11d‖L∞(X×X)]

�
[

min a′′
ε −

max aε̄ + ε̄ maxy∈X ‖m(·, y)‖L1(X)

min d
‖∂2

11d‖∞

]

=: −δ̃,

we obtain, using (4.11), the estimate∫
ε−1X

uε � (minm)‖uε‖L1(ε−1X)

∫
ε−1X−x̄ε

dx

Qε − ∂2
xxsε[uε](θ)x2/2ε2

� (minm)‖uε‖L1(ε−1X)

∫
ε−1X−x̄ε

dx

Qε + δ̃x2/2
.
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Since X is an interval, ε−1X − x̄ε contains the interval (−|X|/2ε, 0] or [0, |X|/2ε).
Then,

1
min m

�
∫ |X|/2ε

0

dx

Qε + 1
2 δ̃x2

=
π√
2Qεδ̃

−
∫ ∞

|X|/2ε

dx

Qε + 1
2 δ̃x2

� π√
2Qεδ̃

− O(ε).

For ε > 0 small enough, we thus get a (uniform in ε) lower bound on Qε:

Qε � π2(minm)2

2δ̃
> 0.

Step 4. We estimate
∫

ε−1X
uε and Qε.

We first estimate
∫

ε−1X
uε. Due to step 3, Qε = O(1). Then,

O(1) =
1
ε2 sε[uε](x̄ε)

=
1
ε2

(
aε(εx̄ε) −

∫
ε−1X

d(εx̄ε, εy)uε(y) dy

)

=
1
ε2

(
aε(εx̄ε) −

∫
|y−x̄ε|�1/

√
ε

d(εx̄ε, εy)uε(y) dy

)

− 1
ε2

( ∫
|y−x̄ε|>1/

√
ε, y∈ε−1X

d(εx̄ε, εy)uε(y) dy

)

� 1
ε2

(
aε(εx̄ε) −

∫
|y−x̄ε|�1/

√
ε

(d(εx̄ε, 0) + O(εy))uε(y) dy

)

− 1
ε2

(
‖d‖∞

∫
|y−x̄ε|>1/

√
ε, y∈ε−1X

uε(y) dy

)
.

We estimate (using (4.6), step 2 and (4.13) for the second estimate) that

∣∣∣∣
∫

|y−x̄ε|�1/
√

ε

O(εy)uε(y) dy

∣∣∣∣ �
∫

|y−x̄ε|�1/
√

ε

Cst‖εy‖∞uε(y) dy

� Cst
√

ε‖uε‖L1(ε−1X)

= O(
√

ε), (4.14)∣∣∣∣
∫

|y−x̄ε|>1/
√

ε, y∈ε−1X

uε(y) dy

∣∣∣∣ � ‖m‖L∞(X×X)‖uε‖L1(ε−1X)

∫
|y|>1/

√
ε

dy
1
2δy2

= O(
√

ε). (4.15)
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Then,

O(ε2) � aε(εx̄ε) − d(εx̄ε, 0)
∫

|y−x̄ε|�1/
√

ε

uε(y) dy − C
√

ε

= aε(εx̄ε) − d(εx̄ε, 0)
∫

ε−1X

uε(y) dy − O(
√

ε).

We thus obtain

d(εx̄ε, 0)
∫

ε−1X

uε(y) dy � aε(εx̄ε) − O(ε2) − O(
√

ε). (4.16)

On the other hand, since

O(1) =
1
ε2 sε[uε](x̄ε)

� 1
ε2

(
aε(εx̄ε) −

∫
|y−x̄ε|�1/

√
ε

(d(εx̄ε, 0) + O(εy))uε(y) dy

)

+
1
ε2

(
‖d‖∞

∫
|y−x̄ε|>1/

√
ε, y∈ε−1X

uε(y) dy

)
,

we obtain that

d(εx̄ε, 0)
∫

ε−1X

uε(y) dy � aε(εx̄ε) − O(ε2) + O(
√

ε). (4.17)

From (4.16) and (4.17) we obtain∫
ε−1X

uε(y) dy =
aε(εx̄ε)
d(εx̄ε, 0)

+ O(
√

ε)

=
a0(0)
d(0, 0)

+ O(
√

ε). (4.18)

Next, using (4.11) and (4.15), we estimate Qε as∫
ε−1X

uε(x) dx

=
∫

|x−x̄ε|�1/
√

ε

uε(x) dx +
∫

|x−x̄ε|�1/
√

ε, x∈ε−1X

uε(x) dx

=
∫

|x−x̄ε|�1/
√

ε

∫
ε−1X

m(εx, εy)uε(y) dy

Qε + (−∂2
xxsε[uε](θ))(x − x̄ε)2/2ε2 dx

+
∫

|x−x̄ε|�1/
√

ε, x∈ε−1X

uε(x) dx

=
∫

|x−x̄ε|�1/
√

ε

∫
ε−1X

(m(0, εy) + O(ε/
√

ε))uε(y) dy

Qε + (−∂2
xxsε[uε](x̄ε) + ε2O(ε1/

√
ε))(x − x̄ε)2/2ε2 dx + O(

√
ε).

(4.19)
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We compute, using (4.14) and (4.15), that∫
ε−1X

m(0, εy)uε(y) dy

=
∫

|y−x̄ε|�1/
√

ε

m(0, εy)uε(y) dy +
∫

|y−x̄ε|�1/
√

ε

m(0, εy)uε(y) dy

=
∫

|y−x̄ε|�1/
√

ε

(m(0, 0) + O(ε1/
√

ε))uε(y) dy +
∫

|y−x̄ε|�1/
√

ε

m(0, εy)uε(y) dy

= m(0, 0)
∫

ε−1X

uε(x) dx + O(
√

ε),

and we estimate∫
|x−x̄ε|�1/

√
ε

dx

Qε + (−∂2
xxsε[uε](x̄ε) + ε2O(

√
ε))(x − x̄ε)2/2ε2

=
∫

R

dy

Qε + (−∂2
xxsε[uε](x̄ε) + ε2O(

√
ε))y2/2ε2

−
∫

|y|�1/
√

ε

dy

Qε + (−∂2
xxsε[uε](x̄ε) + ε2O(

√
ε))y2/2ε2

=
√

2π√
Qε(−∂2

xxsε[uε](x̄ε)/ε2 + O(
√

ε))
+ O(

√
ε),

because, from step 1, we know that

0 �
∫

|y|�1/
√

ε

dy

Qε + (−∂2
xxsε[uε](x̄ε) + ε2O(

√
ε))y2/2ε2

�
∫

|y|�1/
√

ε

dy
1
2δy2

=
4
√

ε

δ
.

Then, (4.19) becomes

∫
ε−1X

uε(x) dx =
(

m(0, 0)
∫

ε−1X

uε(x) dx + O(
√

ε)
)

×
( √

2π√
Qε(−∂2

xxsε[uε](x̄ε)/ε2 + O(
√

ε))
+ O(

√
ε)

)
,

so

Qε =
2(m(0, 0)π)2

(−ε−2∂2
xxsε[uε](x̄ε) + O(

√
ε))

+ O(
√

ε)

=
2(m(0, 0)π)2

−∂2
xxsε[uε](x̄ε)/ε2 + O(

√
ε).
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To get a better approximation of Qε, we estimate −∂2
xxsε[uε](x̄ε)/ε2 using (4.18):

∂2
xxsε[uε](x̄ε) = ε2a′′

ε (εx̄ε) −
∫

ε−1X

ε2∂2
11d(εx̄ε, εy)uε(y) dy

= ε2
[
a′′

ε (εx̄ε) −
∫

|y−x̄ε|�1/
√

ε

∂2
11d(εx̄ε, εy)uε(y) dy

−
∫

|y−x̄ε|�1/
√

ε

∂2
11d(εx̄ε, εy)uε(y) dy

]

= ε2
[
a′′

ε (0) + O(εx̄ε)

−
∫

|y−x̄ε|�1/
√

ε

(∂2
11d(0, 0) + O(εx̄ε) + O(εy))uε(y) dy + O(

√
ε)

]

= ε2
[
a′′
0(0) − ∂2

11d(0, 0)
∫

ε−1X

uε + O(
√

ε)
]

= ε2
[
a′′
0(0) − a(0)

d(0, 0)
∂2
11d(0, 0) + O(

√
ε)

]
.

Finally, we obtain the following estimate on Qε:

Qε =
2(m(0, 0)π)2

−[a′′
0(0) − a0(0)∂2

11d(0, 0)/d(0, 0)]
+ O(

√
ε).

Step 5. We show that asymptotically fε has a Cauchy-like profile.
Thanks to (4.11), (4.15) and the estimates obtained in step 4, we find (with

θ ∈ [x̄ε, x], or θ ∈ [x, x̄ε] if x < x̄ε),

uε(x̄ε + x)

=

∫
ε−1X

m(ε(x̄ε + x), εy)uε(y) dy

Qε + (−∂2
xx(sε[uε])(θ))x2/2ε2

=

∫
|y−x̄ε|�1/

√
ε
(m(ε(x̄ε + x), εx̄ε) + O(ε(y − x̄ε)))uε(y) dy

Qε + (−∂2
xx(sε[uε])(x̄ε) + ε2O(ε(θ − x̄ε)))x2/2ε2

+

∫
|y−x̄ε|�1/

√
ε
m(ε(x̄ε + x), εy)uε(y) dy

Qε + (−∂2
xx(sε[uε])(x̄ε) + ε2O(ε(θ − x̄ε)))x2/2ε2

=
m(ε(x̄ε + x), εx̄ε)

∫
ε−1X

uε(y) dy + O(
√

ε)
Qε + (−∂2

xx(sε[uε])(x̄ε) + ε2O(εx) + ε2O(εx̄ε))x2/2ε2

=
(

m(0, 0)
a(0)

d(0, 0)
+ O(

√
ε) + O(εx)

)

×
(

2(m(0, 0)π)2

−[a′′
0(0) − a0(0)∂2

11d(0, 0)/d(0, 0)]
+ O(

√
ε)

+
1
2

(
−

[
a′′
0(0) − a0(0)

d(0, 0)
∂2
11d(0, 0)

]
+ O(

√
ε) + O(εx)

)
x2

)−1

.
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Step 6. We improve our estimate on x̄ε.
Due to remark 4.11,

0 = ∂xsε[uε](x̄ε)

= εa′
ε(εx̄

ε) − ε

∫
ε−1X

∂1d(εx̄ε, εy)uε(y) dy

= ε2a′′
ε (εθ)x̄ε − ε

∫
ε−1X

∂1d(εx̄ε, εy)uε(y) dy,

where θ ∈ [0, x̄ε] (or θ ∈ [x̄ε, 0] if x̄ε < 0). Then,

x̄ε =
1

εa′′
ε (εθ)

∫
ε−1X

∂1d(εx̄ε, εy)uε(y) dy.

We consider C > 0 small enough that

[x̄ε − C, x̄ε + C] ⊂ ε−1X

(C will be chosen precisely later). Then,∣∣∣∣
∫

ε−1X

∂1d(εx̄ε, εy)uε(y) dy

∣∣∣∣ �
∣∣∣∣
∫

|y−x̄ε|�C

∂1d(εx̄ε, εy)uε(y) dy

∣∣∣∣
+

∣∣∣∣
∫

|y−x̄ε|>C, y∈ε−1X

∂1d(εx̄ε, εy)uε(y) dy

∣∣∣∣.
We estimate the first term using a Taylor expansion of y �→ ∂1d(εx̄ε, y) around
y = εx̄ε (assuming that d ∈ W 2,∞), and we estimate the second term using (4.13).
Then, keeping assumption 4.3 in mind,∣∣∣∣

∫
ε−1X

∂1d(εx̄ε, εy)uε(y) dy

∣∣∣∣
�

∣∣∣∣
∫

|y−x̄ε|�C

[∂1d(εx̄ε, εx̄ε) + ∂2
12d(εx̄ε, εx̄ε)ε(y − x̄ε)

+ O(ε2|x̄ε − y|2)]uε(y) dy

∣∣∣∣
+ ‖∂1d‖∞

∫
|z|>C, z∈R

‖m‖∞‖uε‖L1(ε−1X)
1
2δz2

dz

�
∣∣∣∣ε∂2

12d(εx̄ε, εx̄ε)
∫

|y−x̄ε|�C

(x̄ε − y)uε(y) dy

∣∣∣∣ + O(ε2C2)‖uε‖L1(ε−1X)

+ O(C−1). (4.20)

To estimate ∫
|y−x̄ε|�C

(x̄ε − y)uε(y) dy,
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we use (4.11) as (with θ ∈ (y, x̄ε) if y � x̄ε, or with θ ∈ (x̄ε, y) otherwise, and, in
particular, |θ − x̄ε| � C)∫

|y−x̄ε|�C

(x̄ε − y)uε(y) dy

=
∫

|y−x̄ε|�C

(x̄ε − y)(
∫

ε−1X
m(εy, εz)uε(z) dz)

Qε + (−∂2
xxsε[uε](θ))(y − x̄ε)2/2ε2 dy

=
∫

|y−x̄ε|�C

(x̄ε − y)(
∫

ε−1X
m(εy, εz)uε(z) dz)

Qε + (−∂2
xxsε[uε](x̄ε))(y − x̄ε)2/2ε2 dy

−
∫

|y−x̄ε|�C

(x̄ε − y)[∂2
xxsε[uε](x̄ε) − ∂2

xxsε[uε](θ)]/2ε2

[Qε + (−∂2
xxsε[uε](θ))(y − x̄ε)2/2ε2]

×
(y − x̄ε)2(

∫
ε−1X

m(εy, εz)uε(z) dz)
[Qε + (−∂2

xxsε[uε](x̄ε))(y − x̄ε)2/2ε2]
dy

=: I1 + I2. (4.21)

We use symmetry arguments to estimate I1:

I1 =
∫

|y−x̄ε|�C

(x̄ε − y)[
∫

ε−1X
(m(εx̄ε, εz) + O(ε(x̄ε − y)))uε(z) dz]

Qε + (−∂2
xxsε[uε](x̄ε))(y − x̄ε)2/2ε2 dy

= 0 +
∫

|y−x̄ε|�C

(x̄ε − y)O(ε(x̄ε − y))
Qε + (−∂2

xxsε[uε](x̄ε))(y − x̄ε)2/2ε2 dy

∫
ε−1X

uε(z) dz

= O(εC2)
∥∥∥∥ 1

Qε + (−∂2
xxsε[uε](x̄ε))(y − x̄ε)2/2ε2

∥∥∥∥
L1(ε−1X)

= O(εC2).

To estimate the term I2 of (4.21), we note that (recalling that |θ − x̄ε| � C)

|∂2
xxsε[uε](θ) − ∂2

xxsε[uε](x̄ε)| � ‖∂3
xxxsε[uε]‖∞(θ − x̄ε)

� ε3(‖aε‖W 3,∞ + Cst‖d‖W 3,∞)(θ − x̄ε)

� Cstε3C,

and that, due to step 1 (see (4.12)),

(y − x̄ε)2

Qε + (−∂2
xxsε[uε](θ))(y − x̄ε)2/2ε2 <

1
δ/2

. (4.22)

We can thus estimate the second term of (4.21) using step 1:

|I2| �
∫

|y−x̄ε|�C

C[Cstε3C]/2ε2

δ/2
‖m‖∞Cst

[Qε + (−∂2
xxsε[uε](x̄ε))(y − x̄ε)2/2ε2]

dy

� CstεC2
∫

R

dy

[Qε + δy2/2]
� O(εC2).
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Using these estimates in (4.20), we obtain∣∣∣∣
∫

|y−x̄ε|�C

(x̄ε − y)uε(y) dy

∣∣∣∣ � O(εC2),

and then x̄ε can be estimated, due to (4.20), as

|x̄ε| � 1
ε|a′′

ε (εθ)|

∣∣∣∣
∫

ε−1X

∂1d(εx̄ε, εy)uε(y) dy

∣∣∣∣
=

1
ε|a′′

ε (εθ)|

[∣∣∣∣ε∂2
12d(εx̄ε, εx̄ε)

∫
|y−x̄ε|�C

(x̄ε − y)uε(y) dy

∣∣∣∣
+ O(ε2C2) + O(C−1)

]

� 1
ε
[εO(εC2) + O(ε2C2) + O(C−1)]

� O(εC2) + O(ε−1C−1).

If we choose C := ε−2/3, then, for ε > 0 small enough, the assumption [x̄ε −C, x̄ε +
C] ⊂ ε−1X (assumed on C at the beginning of this proof) is satisfied since, by
step 2,

[x̄ε − C, x̄ε + C] ⊂ B(0, |x̄ε| + ε−2/3)

⊂ B(0, O(ε−1/2) + ε−2/3)

⊂ ε−1X.

Our estimates then apply to this specific choice of C, and yield the following esti-
mate on x̄ε:

x̄ε = O(ε−1/3).

This last result ends the proof of the theorem.
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