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While it has been known that an afterbody (i.e. the structural part of a bluff body
downstream of the flow separation points) plays an important role affecting the wake
characteristics and even may change the nature of the flow-induced vibration (FIV)
of a structure, the question of whether an afterbody is essential for the occurrence
of one particular common form of FIV, namely vortex-induced vibration (VIV), still
remains. This has motivated the present study to experimentally investigate the FIV
of an elastically mounted forward- or backward-facing D-section (closed semicircular)
cylinder over the reduced velocity range 2.3 6 U∗ 6 20, where U∗ = U/( fnwD).
Here, U is the free-stream velocity, D the cylinder diameter and fnw the natural
frequency of the system in quiescent fluid (water). The normal orientation with
the body’s flat surface facing upstream is known to be subject to another common
form of FIV, galloping, while the reverse D-section with the body’s curved surface
facing upstream, due to the lack of an afterbody, has previously been reported to be
immune to VIV. The fluid–structure system was modelled on a low-friction air-bearing
system in conjunction with a recirculating water channel facility to achieve a low
mass ratio (defined as the ratio of the total oscillating mass to that of the displaced
fluid mass). Interestingly, through a careful overall examination of the dynamic
responses, including the vibration amplitude and frequency, fluid forces and phases,
our new findings showed that the D-section exhibits a VIV-dominated response for
U∗ < 10, galloping-dominated response for U∗ > 12.5, and a transition regime with a
VIV–galloping interaction in between. Also observed for the first time were interesting
wake modes associated with these response regimes. However, in contrast to previous
studies at high Reynolds number (defined by Re = UD/ν, with ν the kinematic
viscosity), which have showed that the D-section was subject to ‘hard’ galloping that
required a substantial initial amplitude to trigger, it was observed in the present study
that the D-section can gallop softly from rest. Surprisingly, on the other hand, it was
found that the reverse D-section exhibits pure VIV features. Remarkable similarities
were observed in a direct comparison with a circular cylinder of the same mass
ratio, in terms of the onset U∗ of significant vibration, the peak amplitude (only
approximately 6 % less than that of the circular cylinder), and also the fluid forces
and phases. Of most significance, this study shows that an afterbody is not essential
for VIV at low mass and damping ratios.
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1. Introduction
Flow-induced vibration (FIV) of bluff bodies is an important problem encountered

in a variety of engineering applications, such as oil risers and offshore structures
subject to ocean currents, high-rise buildings and bridges in winds, cooling arrays in
nuclear plants, etc. There are two body oscillator phenomena typical of FIV, namely
vortex-induced vibration (VIV) and galloping, which have motivated extensive research
studies that have aimed to fundamentally characterise and provide insights into the
excitation mechanisms. Comprehensive reviews on this subject have been given by
Bearman (1984), Blevins (1990), Sarpkaya (2004), Williamson & Govardhan (2004),
Naudascher & Rockwell (2005) and Païdoussis, Price & De Langre (2010), among
others.

In the past half-century, VIV has been studied extensively through the use of
circular cylinders. They provide an ideal reference model due to their rotational
symmetry (e.g. Brooks 1960; Feng 1968; Khalak & Williamson 1996, 1997, 1999;
Govardhan & Williamson 2000; Carberry, Sheridan & Rockwell 2001, 2005; Zhao
et al. 2014a). This symmetry prohibits the occurrence of FIV that derives from
cross-sectional asymmetry, namely galloping. VIV occurs as vortices are shed from
alternate sides of an elastic or elastically mounted bluff body. These vortices create
a fluctuating pressure distribution on the body that can induce a resonant vibrational
response over certain flow velocity ranges. On the other hand, a structure that lacks
rotational symmetry can vibrate due to a motion-induced unstable aerodynamic force,
which can result in galloping, as opposed to, or in combination with, VIV. Unlike
VIV, which is associated with forces induced by vortex shedding and thus occurs
with limited vibration amplitude (generally of the order of one body diameter) in
discrete flow velocity ranges, galloping, as it is driven by unsteady aerodynamic
force, is characterised typically by body oscillations with an amplitude increasing
with flow velocity and the frequency much lower than that of the vortex shedding.
Of interest to the current study is the transverse (or cross-flow) FIV of a D-section
(closed semicircular) cylinder with low mass ratio (defined as the ratio of the total
oscillating mass to the displaced fluid mass) placed at two particular flow incidence
angles of α = 0◦ (oriented with its flat surface facing upstream) and 180◦ (oriented
with its curved surface facing upstream). The former orientation, as has been shown
in the literature, can exhibit VIV and galloping under certain flow conditions. More
interestingly, on the other hand, the latter, as it has no afterbody (the section of the
bluff body downstream of the flow separation points), raises the question of whether
VIV relies on the existence of an afterbody, which has been suggested as essential
for VIV to occur.

The D-section cylinder is a bluff body that has an afterbody when facing in one
direction but no afterbody when facing in the opposite direction. When a D-section
cylinder is oriented with its flat section facing upstream, then the afterbody is the
whole semicircular cross-section, as the flow separates at the sharp leading edges.
However, when the flat section is facing downstream, then there is no afterbody
following the separation at the corners of the flat section. The rationale for the
view that VIV requires an afterbody stems from the fact that the roll-up of shear
layers occurs after separation, so while there will still be an oscillating pressure field
associated with the alternately shed vortices, this pressure field will act on the vertical
rear surface and thus cannot generate vertical oscillatory motion.

The D-section at zero incidence angle (α = 0◦) has been the focus of considerable
past research. According to Païdoussis et al. (2010), the first description of
galloping with a D-section cylinder may have been provided by Lanchester (1907).
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Cheers (1950) also measured the lift and drag curves for a fixed D-section cylinder
at different angles of attack. In wind-tunnel experiments, Brooks (1960) observed
that a D-section exhibited a VIV response and was subject to galloping only when
given a substantial initial amplitude. On the other hand, however, he reported on the
reversed D-section case, as noted without an afterbody (α = 180◦), that ‘No motion
other than random buffeting was observed over a range of air speeds from Vinf = 0 to
50 frames per second. This section appears to be completely stable’. Later, Parkinson
(1963) found that a D-section experienced VIV response excited from rest in the
reduced velocity range 4.1< U∗ < 7.9, where U∗ = U/( fnD) with U the free-stream
velocity, fn the natural frequency of the system (in quiescent fluid) and D the cylinder
diameter, and that the galloping amplitude response for U∗ > 7.9 could be more
or less predicted by a quasi-steady approach, yet triggering was required to cause
galloping.

Subsequently, Feng (1968) found that for a D-section cylinder, again of high
mass-damping ratio in wind-tunnel experiments, the oscillation amplitudes were
larger, and the wake velocity correlation lengths at near-maximum oscillation were
also much larger than for a circular cylinder. The synchronisation range where the
body oscillation and vortex shedding were locked fell between 78 % and 91 % of the
natural oscillation frequency of the cylinder, with the maximum oscillation amplitude
occurring near the end of this range. Note that, at least for a circular cylinder, the
synchronisation regime has been shown to widen for decreasing mass ratio by Griffin
& Koopman (1982); this effect has been demonstrated by Khalak & Williamson
(1996, 1997, 1999) by comparing the results of Feng (1968) to those for a much
lower mass ratio (≈3 %). Novak & Tanaka (1974) showed that flow turbulence
had considerable effects on galloping with D-section and rectangular cylinders, and
demonstrated that the quasi-steady theory was capable of successfully predicting
these effects and the galloping response in smooth flow as well as in turbulent flow.
Recently, Weaver & Veljkovic (2005) agreed with the findings of Novak & Tanaka
(1974) that a D-section exhibited purely a very narrow regime of VIV resonance;
however, galloping was induced when a significant disturbance from the body’s rest
position was given. These previous studies conducted with high mass-damping ratios
in wind tunnels have indicated that the D-section is susceptible to ‘hard’ galloping
that requires an initial triggering amplitude.

Since the pioneering study of Brooks (1960) having shown that the reversed
D shape did not vibrate significantly due to the lack of an afterbody, many studies
have appeared in the literature on the effect of an afterbody on VIV of bluff bodies.
Bearman (1984) states that ‘These results show that the shape of the afterbody,
the region of a bluff body downstream of its separation points, plays an extremely
important role in determining the response of the flow to body movements’. The
review article of Parkinson (1989) references the finding of Brooks (1960) that the
D-section cylinder undergoes strong galloping and VIV when the flat surface faces
upstream but undergoes neither when the curved surface is facing upstream because
of the lack of an afterbody. This finding is repeated by Naudascher & Rockwell
(2005, p. 207): ‘if the D-section is oriented with its curved surface facing upstream,
it will neither gallop nor vibrate on account of vortex shedding, because it has no
afterbody.’ Meneghini et al. (2005) refer to the results of Bearman & Davies (1977):
‘Bearman and Davies . . . showed that the after-body shape plays an important role
in the phase shift. Bodies with a large after-body, such as a square or rectangular
cylinder, experience a phase shift that is most negative for frequencies of oscillation
around the shedding frequency. Bodies with a small after-body are not subjected to

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

50
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.501


320 J. Zhao, K. Hourigan and M. C. Thompson

VIV under normal conditions.’ Recent studies by Nemes et al. (2012) and Zhao et al.
(2014b) investigating the influence of angle of attack on the FIV response of a square
cylinder with low mass-damping ratios in water flows showed that the FIV response
was dominated by galloping for 0◦ 6 α < 10◦, by VIV for 22.5◦ < α 6 45◦, and by
VIV–galloping interaction for the middle α range. It was suggested that the afterbody
and the flow separations at the sharp corners are the key factors in the mechanisms
of fluid–structure interaction.

Nevertheless, the question whether an afterbody is essential for the occurrence of
VIV still remains. In his concluding remarks, Bearman (1984) writes that ‘A related
unsettled question is the role of the afterbody shape in vortex-induced oscillations of
bluff bodies. Shapes other than the circle need to be studied in detail; bodies with
fixed separation and a significant afterbody, such as D-shape or a triangular section,
could provide useful additional test data to prove prediction methods.’ Interestingly, in
their pressure measurements on a triangular cross-sectional cylinder with a flat surface
facing downstream, Twigge-Molecey & Baines (1974) found that a small transverse
lift fluctuated at the vortex shedding frequency, suggesting in this case that VIV would
be possible in the absence of an afterbody.

Clearly, in the literature over decades, there is still a lack of the information on
characteristics of the FIV response of a D-section cylinder, including the amplitude
and frequency responses, fluid forces and phases, and near-wake flow structures
behind the body. This is particularly so for a system with low mass-damping ratio.
In fact, previous studies of circular and square cylinders (e.g. Khalak & Williamson
1996, 1997; Govardhan & Williamson 2000; Nemes et al. 2012; Zhao et al. 2014b)
have demonstrated a significant effect of the mass and damping ratio on the structural
response and the coupled wake structure. This study therefore aims to gain a deeper
understanding of these aspects and the fluid–structure mechanisms of the D-section
and its reversed case, by experimentally investigating the structural vibration response,
fluid forces and vortex shedding modes in water free-stream flow over a wide U∗
range. In particular, the question whether an afterbody is essential for VIV will also
be investigated.

The article proceeds by describing the fluid–structure system modelling and the
experimental details in § 2. The results and discussion on the structural vibration
response are presented in § 3. Finally, conclusions are drawn in § 4.

2. Experimental method

A schematic of the one-degree-of-freedom (1-DOF) transverse FIV of a D-section
cylinder is given in figure 1, which shows key parameters of the fluid–structure system.
The body dynamics is governed by the linear second-order oscillator equation,

mÿ(t)+ cẏ(t)+ ky(t)= Fy(t), (2.1)

where m is the total oscillating mass of the system, c the structural damping of the
system, k the spring constant, y(t) the body displacement and Fy(t) the transverse fluid
force.

The experiments were conducted in the free-surface recirculating water channel of
the Fluids Laboratory for Aeronautical and Industrial Research (FLAIR) at Monash
University. The test section of the water channel has dimensions of 600 mm in width,
800 mm in depth and 4000 mm in length. In the present experiments, the free-stream
turbulence level was less than 1 %. Details of the water channel facilities can be found
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FIGURE 1. Schematic of the problem studied: a D-section cylinder with variable angle
of attack α, elastically mounted with low mass damping and constrained to oscillate
transverse to the oncoming free stream. Here, U is the free-stream velocity, α the angle
of attack, H the frontal projected width of the body, m the oscillating mass, k the
spring constant, c the structural damping, and Fx and Fy represent the drag force and
the transverse fluid (lift) force acting on the body.

in Nemes et al. (2012) and Zhao et al. (2014a,b). The experimental set-up is shown
in figure 2.

The rigid D-section cylinder model used was manufactured from aluminium, using
precision electrical discharge machining (EDM) to manufacture a hollow semicircular
cross-sectional profile with an outer diameter of D = 25 ± 0.010 mm. The cylinder
was hard anodised against water corrosion. The immersed length of the cylinder was
L= 614 mm, giving an aspect ratio range of AR= L/D= 24.6. The total oscillating
mass was m= 901.8 g, and the displaced mass of the fluid was md = 150.1 g, giving
a mass ratio of m∗ = m/md = 6.0. The cylinder was mounted vertically to a low-
friction air-bearing rig, which was clamped above the top water surface of the water
channel, and aligned to allow transverse oscillations. Further details of the air-bearing
system are provided in Zhao et al. (2018). The opposite free end of the cylinder
was positioned with a small clearance above a platform used to reduce end effects.
The natural frequencies of the system were measured by conducting free-decay tests
individually in air and in quiescent water. The natural frequencies of the system in air
and in water were found to be fna = 0.783 Hz and fnw = 0.740 Hz, respectively, and
the structural damping ratio with consideration of the added mass (mA) was determined
by ζ = c/2

√
k(m+mA)= 1.51× 10−3, in which mA = (( fna/fnw)

2
− 1)m. The reduced

velocity, defined by U∗=U/( fnwD), was investigated over the range of 2.36U∗6 20,
encompassing the range in which VIV should be active. The corresponding Reynolds
number range was 10806Re6 9000, where Re=UD/ν with ν the kinematic viscosity
of the fluid.

The body displacement was measured using a non-contact digital optical linear
encoder (model RGH24; Renishaw, UK). This linear encoder had a resolution of
1 µm and a linear range of ±200 mm available. While the drag force (Fx) was
measured by employing a force balance based on semiconductor strain gauges, the
transverse lift force (Fy) acting on the vibrating cylinder was determined based on
(2.1). The measurements were sampled at 100 Hz. More details of the data acquisition
(DAQ) system and validation of the experimental method can be found in previous
related studies by Wong et al. (2017, 2018), Sareen et al. (2018) and Zhao et al.
(2018).
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FIGURE 2. (Colour online) Schematic of the experimental set-up in the test section of the
water channel in different views.

In measurements of the transverse lift for a quasi-steady analysis, the angle of
attack of the cylinder was varied and held still by using a rotation device driven by
a micro-stepping motor (for details, see Wong et al. 2017, 2018; Zhao et al. 2018).
This allowed the alignment measurements to be precisely controlled and automated.

The flow structures in the near wake of the cylinder were measured using the
particle image velocimetry (PIV) technique. The PIV system detailed in Zhao et al.
(2018) was used for this purpose. The flow was seeded with hollow microspheres
(model Sphericel 110P8; Potters Industries Inc.) having a normal diameter of 13 µm
and a specific weight of 1.1 kg m−3. Illumination was provided by a continuous
laser (model MLL-N-532-5W; CNI, China) that produced a 3 mm thick horizontal
planar laser sheet. Imaging was performed using a high-speed camera (model Dimax
S4; PCO AG, Germany) with a resolution of 2016 pixel × 2016 pixel. This camera
was equipped with a 50 mm lens (Nikon Corporation, Japan), giving a magnification
of approximately 7.65 pixel mm−1 for the field of view of interest. For each PIV
measurement location, a set of 3100 image pairs was recorded at a sampling rate of
10 Hz for analysis. To provide an insight into the evolution of the wake structures,
images of each set were sorted into 24 phases based on the cylinder’s displacement
and velocity, yielding at least 120 image pairs for averaging. The PIV data were
processed using validated in-house software developed by Fouras, Lo Jacono &
Hourigan (2008), using 32 pixel × 32 pixel interrogation windows in a grid layout
with 50 % window overlap.
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3. Results and discussion
3.1. VIV and galloping responses at α = 0◦

3.1.1. Amplitude and frequency responses
Figure 3 presents an overview of the normalised cylinder vibration amplitude

(A∗10) and the normalised frequency power spectral density (PSD) contours of the
cylinder vibration ( f ∗y ), the transverse lift ( f ∗Cy

), the vortex force ( f ∗Cv ) and the drag
force ( f ∗Cx

) as a function of reduced velocity for the D-section (α = 0◦). Note that
the A∗10 amplitude response represents the mean of the top 10 % amplitude peaks
normalised by the frontal projected width H = (1+ |cos α|)D/2, i.e. H = D for both
α = 0◦ and 180◦. The frequency responses in figure 3(b–e) represent the frequency
components normalised by the natural frequency fnw. Also, it should be noted that
the drag coefficient used in this study is defined by Cx = Fx/(ρU2DL/2), while the
transverse lift and the vortex force coefficients are defined by Cy = Fy/(ρU2DL/2)
and Cv = Fv/(ρU2DL/2), respectively, where the vortex force is computed based on
Fv=Fy−Fp, with Fp=−mAÿ(t), i.e. the potential force (see Govardhan & Williamson
2000; Morse & Williamson 2009; Zhao et al. 2014a,b).

As can be seen from figure 3(a), three main flow regimes are observed, which
are characterised by a VIV-dominated response for U∗ < 10, a galloping-dominated
response for U∗ > 12.5, and a transition region between these two response types
for 10 < U∗ < 12.5. These regimes are categorised based on an overall examination
of the cylinder vibration amplitude and frequency responses, the fluid forces and
phases, and the vortex shedding modes. At low reduced velocities of U∗ < 2.8, the
vibration amplitude is extremely low (A∗10 ≈ 0). On the other hand, the corresponding
frequency responses of f ∗y , f ∗Cy

and f ∗Cv exhibit two components: one being close to fnw

(i.e. f ∗ ≈ 1) and the other following the trend of the Strouhal frequency (the vortex
shedding frequency of a fixed body case). Note that the Strouhal number was found
to be St= fStD/U' 0.140 (with fSt the Strouhal frequency) for the fixed cylinder case,
in good agreement with previous studies, e.g. St= 0.135 (Brooks 1960) and St= 0.150
(Weaver & Veljkovic 2005). As the reduced velocity is increased to U∗ = 3.0, the
cylinder experiences a minor jump in the oscillation amplitude to A∗10 = 0.18, and
simultaneously the oscillation frequency jumps close to, but lower than, the natural
frequency of the system, indicating that the onset of ‘lock-in’ occurs. It is interesting
to note that this onset reduced velocity of lock-in appears to be much lower than the
theoretically expected value U∗= 1/St' 7.1 for resonance (i.e. the Strouhal frequency
matches fnw), but similar to the study of Parkinson (1963) who observed that VIV
from rest occurred in the range 4.1<U∗ < 7.9, with 1/St= 7.4. This is significantly
different from that of classic VIV of a circular cylinder, where the onset of lock-in
normally occurs at U∗ ≈ 5 (St ≈ 0.21 for a circular cylinder at moderate Reynolds
number (see Zhao et al. 2014b)) when the oscillation frequency locks onto a value
equal to or higher than the system natural frequency, which depends on the mass
ratio (see Govardhan & Williamson 2002). Further discussion on the onset of lock-in
will be presented in § 3.2.3. At this point, the frequencies of the cylinder vibration,
the lift and vortex forces synchronise (i.e. f ∗y ∼= f ∗Cy

∼= f ∗Cv ), while the frequency of
the drag appears to be twice these frequencies. As a result, the body motion exhibits
highly periodic oscillations.

Further increasing U∗ sees a rapid increase in the amplitude response and also a
slight increasing trend in the frequency responses. Interestingly, when U∗ is increased
to 4.0, the third harmonics of f ∗Cy

and f ∗Cv appear with very weak power; however, their
powers tend to increase with U∗. It should also be noted that the second harmonics of
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FIGURE 3. (Colour online) The amplitude response and the logarithmic-scale normalised
frequency power spectral density (PSD) contours as a function of the reduced velocity
for the case of α = 0◦. In (a): @, measurements with increasing U∗; p, measurements
with decreasing U∗; the VIV-dominated, transition and galloping-dominated regimes are
highlighted in light grey, light blue and dark grey, respectively. In (b–e): the vertical
dashed lines represent the boundaries of the response regimes, and the horizontal dotted
lines highlight the first and the third harmonics.

f ∗Cy
and f ∗Cv are observed over a narrow range of 5.U∗. 6, which is associated with

changes in the total phase (the phase angle between the transverse lift and the cylinder
displacement) and the vortex phase (the phase angle between the vortex force and the
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cylinder displacement) that will be further discussed in § 3.1.2. For the higher range
6<U∗< 12.5, the monotonically increasing trend of A∗10 persists across the transition
regime (10< U∗ < 12.5). While the transition regime cannot be revealed by the A∗10
and f ∗y responses, it is apparent in the fluid forcing frequency responses that the third
harmonics of f ∗Cy

and f ∗Cv gradually become stronger than their first harmonics in this
regime, indicating that the vortex shedding frequency becomes higher than that of the
body oscillation. Meanwhile, significant changes are also observed in the phases of
the fluid forcing components and the wake mode, which will be detailed in § 3.1.2.

For higher reduced velocities of U∗ > 12.5, the body oscillation becomes clearly
dominated by a galloping response. In this regime, the A∗10 amplitude response grows
at a faster rate than seen in the VIV-dominated regime. The maximum A∗10 value in the
present study is observed to be 4.7 at the highest reduced velocity tested (U∗ = 20).
Correspondingly, the transverse lift and the vortex force frequencies are dominated by
their third harmonic, which are three times the body vibration frequency that remains
consistently close to f ∗y = 1 for the entire range. This body vibration frequency is
much higher than that observed for transverse galloping of a square cylinder reported
previously by Bearman et al. (1987), Nemes et al. (2012) and Zhao et al. (2014b). A
further test with decreasing U∗ (see figure 3a) shows that the amplitude response is
identical to the increasing U∗ case, indicating that there is no hysteresis observed for
this orientation. Again, this situation is significantly different from that observed for
square cylinders, which have been reported to show a hysteretic response due to shear
layer reattachment onto the body (see Luo, Chew & Ng 2003). Thus, the difference
could be attributable to the difference in the afterbody geometry. The overall response
is also contrary to previous studies with high mass and damping ratios (e.g. m∗≈ 620
and ζ ≈ 0.01) by Weaver & Veljkovic (2005), who observed no galloping and only
a very narrow VIV resonance regime with a peak amplitude of ≈0.09D at U∗ ≈
1/St, consistent with the findings by Novak & Tanaka (1974). They concluded that a
D-section cylinder was a ‘hard’ oscillator that would not gallop from rest, while the
present results have clearly demonstrated that a D-section of low mass and damping
ratios is a ‘soft’ oscillator that can gallop from rest. To further verify this, the cylinder
was physically held and then released in the U∗ range corresponding to galloping,
noting that cylinder oscillations quickly reached the amplitude shown in figure 3.

3.1.2. The fluid forces and wake modes
The fluid–structure interaction is further characterised by examining the fluid forces

and the wake structure in this subsection. Figure 4 shows the variation of the root-
mean-square (r.m.s.) coefficients of the fluid forces and also the fluid phasing, along
with the A∗10 response for reference. In addition, four wake mode regimes are identified
based on spot PIV measurements.

There are a number of characteristics to note about the parametric variations. From
figure 4(b), it is clear that, when the lock-in occurs at U∗ = 3.0, both Crms

y and Crms
v

start to increase rapidly to reach their peak value (Crms
y ' 1.70 and Crms

v ' 1.15) at
U∗ = 4.0, and the fluid forcing phases, φt and φv, remain consistently at 0◦ over
this U∗ range. As expected, the fluid forcing is highly periodic, as demonstrated by
sample time traces at U∗ = 3.4 and U∗ = 4.0 in figure 5(a,b). It should be noted
that the time trace profiles of Cy and Cv are deformed slightly from a pure sinusoid
(e.g. the body motion profile), which is indicative of the existence of a higher
harmonic frequency component, consistent with the frequency response shown in
figure 3(b,c). Correspondingly, the vortex shedding mode is found to be the 2S mode
in this U∗ range, which consists of two opposite-signed single vortices shed per body
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FIGURE 4. (Colour online) The fluid forces and the fluid forcing phases (in degrees) as a
function of the reduced velocity for α= 0◦. The × markers indicate the PIV measurement
locations, and the boundaries of wake modes are designated by the vertical dashed lines.

oscillation cycle. To illustrate this wake mode, figure 6(a,b) presents two selected
phase-averaged vorticity plots for these two U∗ values, showing that a positive
(anticlockwise in red) vortex is shed in the first cycle as the body moves upwards
towards its top position, and, symmetrically, a negative (clockwise in blue) vortex is
shed near the body’s bottom position in the second half-cycle. Further increasing the
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FIGURE 5. (Colour online) Sample time traces of the cylinder vibration for α = 0◦ at
different reduced velocities: (a) U∗ = 3.4, (b) U∗ = 4.0, (c) U∗ = 8.0 and (d) U∗ = 13.0.
Note that Cv and φv (in degrees) are indicated by dashed lines correspondingly in the
plots. The horizontal axis shows time scaled by the natural system period, i.e. τ = tfnw.

reduced velocity sees a transition in the wake mode to the 2Po mode. This occurs in
the narrow range of 5.06U∗< 5.6. As shown in figure 6(c), this wake mode consists
of two pairs of opposite-signed vortices shed per cycle, in which one vortex appears
to be relatively much weaker than the other of the pair (see Morse & Williamson
2009; Zhao et al. 2014a). Associated with the appearance of this wake mode, while
the total phase remains stable at 0◦, the vortex phase undergoes a transition from 0◦

to 180◦.
The total phase jumps abruptly from 0◦ to approximately 180◦ at U∗ = 6.0, and

remains there up to U∗= 10.0. This is consistent with the phase relationships seen for
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FIGURE 6. (Colour online) Phase-averaged vorticity contours showing 2S patterns at U∗=
3.4 and 4.0 in columns (a) and (b), respectively, and 2Po pattern at U∗ = 5.0 in column
(c), for α = 0◦. The normalised vorticity range shown here is ω∗ ∈ [−4, 4]. In each plot,
the vertical line between two horizontal bars in grey represents the peak-to-peak vibration
amplitude. For the full oscillation cycles, see supplementary movies 1–3, available at
https://doi.org/10.1017/jfm.2018.501.

the lower branch of VIV of a circular cylinder, indicating that this oscillation range
remains VIV-dominated.

To demonstrate the vibrational dynamics, figure 5(c) shows sample time traces of
the cylinder displacement and the fluid forcing components at U∗= 8.0. Clearly, both
Cy and Cv are out of phase with the cylinder motion, despite exhibiting secondary
peaks in their profiles due to the presence of harmonic frequencies. Interestingly,
the wake mode in this regime is found to be a 2To mode consisting of two triplets
(T) of vortices shed per cycle. Note that two opposite-signed vortices in each triplet
are relatively much weaker than the remaining one, which has led to this mode
being named 2T(o). To illustrate this, figure 7 presents the phase-averaged vorticity
contours measured at U∗= 6.0, 6.3 and 8.0 in columns (a–c), respectively. As shown,
at U∗ = 6.0, two anticlockwise vortices (I and II) are shed around the equilibrium
position as the cylinder moves upwards (figure 7ai), and then one clockwise vortex
(III in figure 7aii) is being formed from the elongated upper shear during the
cylinder’s movement towards its maximum position. On the other hand, the secondary
(weak) vortex II merges quickly with the primary vortex I as it moves downstream.
Symmetrically, in the second half of the cycle when the cylinder moves downwards,
another triplet of vortices with opposite signs to those in the first half-cycle is shed.
As U∗ is increased, the same-signed vortices (i.e. I and II, IV and V) tend to be
separated due to the interaction with the opposite-signed shear layer in each half-cycle.
This can be seen in the case of U∗= 8.0, where vortices I and II are clearly separated
by the influence of the shear layer forming from the top of the cylinder, and then
vortex I dissipates very quickly. From these results, the 2To mode in this regime is
in accordance with the frequency responses in figure 3 in the sense that the third
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FIGURE 7. (Colour online) Phase-averaged vorticity contours showing 2To mode observed
at U∗ = 6.0, 6.3 and 8.0 in columns (a), (b) and (c), respectively, for α = 0◦. See
supplementary movies 4–6 for the full oscillation cycles. For more details, refer to the
caption of figure 6.

harmonic frequency component in f ∗Cy
and f ∗Cv can be attributed to the shedding of

three vortices per half oscillation cycle.
When U∗ is further increased into the transition regime, the third harmonic of f ∗Cy

and f ∗Cv tends to become stronger, resulting in a gradual decreasing trend in both
φt and φv. Correspondingly, a well-defined 2T mode is observed in this regime.
As illustrated by the phase-averaged vorticity measurements at U∗ = 12.0 shown
in figure 8, a triplet of vortices is shed in the first half-cycle, noting that the two
anticlockwise vortices I and III are clearly separated by the opposite-signed vortex II.
Different from the 2To mode, these vortices appear to be relatively even in strength,
and also they are shed in a different order, i.e. the clockwise vortex is shed second.

After the transition regime, the most energetic frequency components of the total
and vortex forces switch to their third harmonics at 3fnw, while the cylinder oscillation
frequency remains close to fnw. From sample time traces at U∗ = 13.0 shown in
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FIGURE 8. (Colour online) Phase-averaged vorticity contours showing the evolution of the
2T mode at U∗= 12.0 for α= 0◦. See supplementary movie 7 for the full oscillation cycle.
For more details, refer to the caption for figure 6.

figure 4(d), it is evident that both Cy and Cv vary with the primary frequency
much higher than that of the cylinder oscillation. As a result, the instantaneous
phases exhibit ‘slipping’ behaviour periodically through 360◦ as time varies. On
the other hand, it is observed via spot PIV measurements that the wake mode still
remains the main pattern of the 2T mode but with elongated shear layers breaking
into coalescences of small vortices, as shown in figure 9 for U∗ = 13.0. Thus, this
mode is named 2T-C. Although both f ∗Cy

and f ∗Cy
exhibit harmonic lock-in, the vortex

shedding no longer synchronises with the cylinder vibration. It therefore can be
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FIGURE 9. (Colour online) Phase-averaged vorticity contours showing the evolution of
2T-C mode at U∗ = 13.0 for α = 0◦. See supplementary movie 8 for the full oscillation
cycle. For more details, refer to the caption of figure 6.

concluded that the vibration amplitude growth with increasing flow velocity in this
regime is due to the galloping instability.

3.2. VIV response at α = 180◦

3.2.1. Amplitude and frequency responses
For α = 180◦, the reverse D-section configuration, in figure 10, the vibration

response in general exhibits pure VIV features. At the low reduced velocities
of U∗ < 3.6, the oscillation amplitudes remain at extremely low values, and the
dominant oscillation frequency follows the trend of the vortex shedding frequency.
As the reduced velocity is further increased to U∗ = 3.6, the onset of lock-in occurs,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

50
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.501


332 J. Zhao, K. Hourigan and M. C. Thompson

2 3 4 5 6 7 8 9 10 11 12 13 14
0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

0.2

0.4

0.6

0.8

0

–0.5

–1.0

–1.5

–2.0

–2.5

–3.0

U

2St

(a)

(b)

(c)

(d)

(e)

FIGURE 10. (Colour online) The amplitude and the logarithmic-scale normalised
frequency PSD contours as a function of the reduced velocity for the case of α = 180◦.
In (a): 6, measurements with increasing U∗; f, measurements with decreasing U∗. The
lock-in region is highlighted by light grey area in (a), and bounded by vertical dashed
lines in (b–e).

and the body oscillations become highly periodic, with the frequency matching
the natural frequency of the system, namely f ∗y = 1. Associated with the onset of
lock-in, the amplitude response experiences an initial jump to A∗10 = 0.17, and then a
secondary sharp jump to A∗10= 0.36 at U∗= 3.8. As shown in figure 10(a), there exists
minor hysteresis in these two jumps. As the reduced velocity is further increased, the
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amplitude response increases gradually to reach a peak value of A∗= 0.72 at U∗= 5.9.
After this, it drops abruptly to A∗10= 0.65 and then follows a gradual decreasing trend
to A∗10 = 0.55 at U∗ = 6.5, prior to a sharp drop into a desynchronisation region for
higher U∗ values. Notable hysteresis is observed in the transition between the lock-in
and desynchronisation regions.

Interestingly, on the other hand, the frequency responses in figure 10(b,c) show
that, while the f ∗y response appears to be highly similar to that of a circular
cylinder undergoing VIV (e.g. Zhao et al. 2014b; Wong et al. 2017), the fluid
force components exhibit considerable high harmonic frequency content in the lock-in
region; this is significantly different from the circular cylinder case. However, the
overall amplitude and frequency responses of the reverse D-section are consistent
with previously observed VIV features for other geometries over the U∗ range tested.

The results presented here for the reverse D-section cylinder, showing a strong
VIV response, are quite different from the non-response found by Brooks (1960),
which has been often cited since. A probable explanation might be the three orders
of magnitude difference in mass ratios between the high-mass-ratio cylinder used in
air by Brooks (1960) and the relatively low-mass-ratio cylinder used in water in the
current experiment.

Indeed, the influence of the mass-damping coefficient on the peak amplitude
for VIV has been documented by a number of authors, including Griffin, Skop &
Koopmann (1973), Sarpkaya (2004), Govardhan & Williamson (2006) and Soti et al.
(2018), and is summarised by the modified Griffin plot of Govardhan & Williamson
(2006) (see their figure 14). This plots the peak VIV amplitude as a function of
mass-damping ratio, and takes account of Reynolds-number variations as well. It
shows that a universal collapse of different datasets, for different mass and damping
ratios, and Reynolds numbers, is possible. Broadly, the fit shows that close to the
peak amplitude is observed when the mass-damping parameter, ξ = (m∗ + CA)ζ , is
less than 0.1, while the response amplitude drops to negligible values for ξ & 1. For
the case here, the mass-damping ratio is approximately 10−2, resulting in a peak
amplitude close to the undamped result. On the other hand, increasing the mass
ratio by two orders of magnitude while keeping the same damping would give a
mass-damping ratio of ∼1, so that the expected VIV oscillations should be negligible,
as typically observed in experiments conducted with air as the working fluid.

3.2.2. The fluid forcing and wake structures
To further characterise the dynamic response of the reverse D-section, figure 11

shows the amplitude response, fluid forces and phases as a function of U∗, overlapped
with a direct comparison against a circular cylinder (D= 25 mm) with the same mass
ratio and a similar damping ratio of ζ = 1.38× 10−3.

In this comparison, there are some remarkable similarities in several aspects
between these two cases. At low reduced velocities, the onset of significant vibration
occurs similarly from U∗= 3.6. Although lock-in occurs much earlier than the circular
cylinder case, the reverse D-section sees its A∗10 response in an increasing trend similar
to that of the initial branch of the circular cylinder case for 3.6<U∗< 5.0. The peak
amplitude (A∗10' 0.72) of the reverse D-section is found to be surprisingly comparable
to that (A∗10 ' 0.77) of the circular cylinder case, and they occur at similar reduced
velocities near the middle of the upper branch (UB) of the circular cylinder case.
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FIGURE 11. (Colour online) The amplitude response, fluid forces and phases as a function
of the reduced velocity for α = 180◦ compared against a circular cylinder with the same
mass ratio. The × markers indicate the PIV measurement locations. Note that φt and
φv are in degrees. The vertical lines represent the boundaries of the initial branch (IB),
upper branch (UB), lower branch (LB) and desynchronisation regions of the circular
cylinder case.
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Moreover, similar trends in variation with U∗ are seen in the fluid force coefficients
(figure 11b,d). Of further interest are the similar jumps from 0◦ to 180◦ in both
φt (at U∗ ≈ 5.0) and φv (at U∗ = 6.6), which are indicative of pure VIV response.
Furthermore, the dynamic response in the desynchronisation regime also appears to
be highly similar to that of the circular cylinder case. From this comparison, it is
evident that the reverse D-section can exhibit substantial vibration over a significant
U∗ range where the initial and upper branches occur in the circular cylinder case.
However, due to the lack of an afterbody, the vibration amplitude is attenuated by
desynchronised fluid–structure interaction to very low values (A∗10< 0.1) in the regime
where the circular cylinder exhibits a lower branch; in other words, the lower branch
of a circular cylinder is strongly related to its afterbody.

Perhaps surprisingly, the vortex shedding mode seen in all PIV measurements
indicated in figure 11 was found to be 2S. This is unexpected, as previous studies
on circular cylinders (e.g. Govardhan & Williamson 2000; Zhao et al. 2014a) have
shown that different wake mode transitions are associated with jumps in φt and
φv from 0◦ to 180◦. To clarify the present findings, figure 12 shows sample time
traces at four selected locations from different vibration regimes: (a) U∗= 3.4, where
extremely small vibration amplitude is observed and both φt and φv fluctuate around
0◦ for most of the time duration; (b) U∗ = 4.0 in the early lock-in stage, where
significant vibration is encountered, and with both φt and φv still remaining around
0◦; (c) U∗ = 6.0, where large oscillations are encountered with φt fluctuating around
0◦ and φv fluctuating around 180◦; and (d) U∗ = 8.0 in the desynchronisation region,
where the vibration amplitude is attenuated to very low values with both φt and φv
fluctuating slightly around 180◦. Figure 13 presents the observed 2S wake mode at
selected reduced velocities U∗ = 4.0, 6.0 and 8.0. As can be seen, vortices are shed
directly from the trailing edges of the D-section at both maximum and minimum
positions (see corresponding supplementary movies for full vortex shedding cycles).
These results suggest that the afterbody plays an important role affecting the wake
structure. They show that the vortex shedding mode may not necessarily be related
to φt and φv, as for VIV of circular and ‘diamond-shaped’ (square cross-section
placed at 45◦ flow incidence angle) cylinders that possess an afterbody (see Zhao
et al. 2014a,b).

3.2.3. Analysis of galloping instability using quasi-steady approach
In this section, the potential for galloping based on quasi-steady theory is assessed

for the two α cases by evaluating the transverse lift force acting on the ‘static’
body with varying relative angle of attack (α′). This quasi-steady approach is based
on the assumption that the fluid force is in phase with the body velocity and the
instantaneous driving force acting on the moving body is nearly equal to the static
force evaluated at the instantaneous angle of flow incidence (Naudascher & Rockwell
2005).

Based on (2.1), the governing equation of the cylinder motion can be rewritten as

mÿ+ 2mζnωnẏ+mω2
ny= 1

2ρU2DLCy, (3.1)

where ζn is the structural damping ratio and ωn = 2πfn the natural angular frequency
of the system in vacuum. (Note that these parameters are assumed to be very
nearly equal to those determined through free-decay test in air in the present study.)
According to the quasi-steady theory developed by Parkinson & Smith (1964), the
driving force can be expressed as
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FIGURE 12. (Colour online) Sample time traces of the cylinder vibration for α= 180◦ at
different reduced velocities: (a) U∗= 3.4, (b) U∗= 4.0, (c) U∗= 6.0 and (d) U∗= 8.0. For
more details, see the caption of figure 5.

Cy =

∞∑
j=1

aj

(
ẏ
U

)j

= a1
ẏ
U
+ a2

(
ẏ
U

)2

+ a3

(
ẏ
U

)3

+ · · · , (3.2)

where aj is the jth polynomial coefficient. By considering only small-amplitude
disturbances to the system (Blevins 1990; Naudascher & Rockwell 2005), equation
(3.1) can be approximated by

Cy = a1
ẏ
U
. (3.3)
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FIGURE 13. (Colour online) Phase-averaged vorticity contours showing 2S patterns at
U∗ = 4.0, 6.0 and 8.0 in columns (a), (b) and (c), respectively, for α = 180◦. For more
details, refer to the caption of figure 6. See supplementary movies 9–11 for the full
oscillation cycles.

Substituting (3.3) for (3.1) gives

ÿ+
(

2ζnωn −
1

2m
ρUDLa1

)
ẏ+ω2

ny= 0. (3.4)

The term in parentheses in this equation is the net damping factor as the sum of the
structural and aerodynamic components. The system is stable if the net damping factor
is larger than zero. Thus, the critical flow velocity for possible onset of galloping can
be evaluated by

Ucr =
4mζnωn

ρDLa1
=

4mζn(2πfna)

ρDLa1
, (3.5)

and the critical reduced velocity by

U∗cr =
Ucr

fnwD
=

4mζn(2πfna)

ρDLa1(fnwD)
=

π2m∗ζn

a1

(
fna

fnw

)
. (3.6)

According to the criterion of transverse galloping given by Den Hartog (1932,
1956), a system with no structural damping is potentially unstable if

β =
∂Cy

∂α′
=−

∂CL

∂α′
−CD > 0, (3.7)

where CL is the lift coefficient acting perpendicularly to the relative flow (Urel =√
U2 + ẏ2) and CD is the drag coefficient parallel to the relative flow. Figures 14

and 15 show the mean lift (CL) and drag (CD) coefficients as a function of the relative
angle of attack α′, together with the β = ∂Cy/∂α

′ variation for the two orientation
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FIGURE 14. (Colour online) The mean lift and drag coefficients as a function of the
relative angle of attack in (a,b) and the β variation in (c) for the orientation case of α=0◦
at Re= 4880. The solid lines in (a,b) represent the third-order polynomial fitting curves.
In (c), the dashed line represents |∂CL/∂α

′
|. Note that α′ is increased in the clockwise

direction.

cases of α = 0◦ and 180◦, respectively. Note that the measurements were conducted
at a representative Reynolds number Re = 4880 (corresponding to U∗ = 10 close to
the middle of the U∗ range tested in the FIV cases). The polynomial coefficient a1

in (3.2) is given by a1 = β|α′=0◦ . Thus, in theory, U∗cr can be determined using (3.6)
for the two α cases.

As can be seen from figure 14, a1 = β|α′=0◦ ' 0.13 is slightly positive, which
implies that the D-section is potentially susceptible to galloping with respect to soft
excitation (from rest) in the present study, as has been confirmed by the structural
vibration response shown in § 3.1. Note that there are some differences between
measured values of β|α′=0◦ previously reported in the literature. For example, Harris
(1948) found that the D-section was unstable, Cheers (1950) found that β was small
and negative, while Brooks (1960) reported that β remained very close to zero for
α′ up to 25◦, suggesting that Den Hartog’s criterion was not satisfied and thus the
D-section should not gallop from rest. The value of β|α′=0◦ is also slightly different
from that of previous studies conducted at higher Reynolds numbers (e.g. Re= 9× 104

in Novak & Tanaka (1974), and Re= 8.2× 104 in Weaver & Veljkovic (2005)) where
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FIGURE 15. (Colour online) The mean lift and drag coefficients as a function of the
relative angle of attack in (a,b) and the β variation in (c) for the orientation case of α=0◦
at Re= 4880. For more details, see the caption of figure 14.

the Cy versus α′ curve exhibited a zero or very small value with a negative slope
at α′ = 0◦, and an initial amplitude was thereby required to trigger a hard galloping
response. These discrepancies are thus likely to be mostly attributable to a difference
in Re, although other factors (e.g. the flow turbulence level) may also play a role.
In any case, β is a small difference between two relatively much larger terms: the
lift curve slope (∼−2.7) and the damping due to drag (∼2.6). Thus, small variations
in either of these terms will alter whether soft galloping will occur according to the
Den Hartog criterion.

On the other hand, given a1 ' 0.13 from figure 14, the (critical) onset reduced
velocity for galloping response is evaluated using (3.6) to be U∗cr ' 0.73. Apparently,
this U∗cr value is much lower than the reduced velocity expected for VIV resonance,
U∗r = 1/St ' 7.1. In fact, negligible structural vibration is observed prior to the
VIV resonance occurring at U∗ = 3.0 (or 0.42U∗r ) in the present experiments. This
phenomenon seems to be due to the so-called ‘quenching effect’ of the vortex system
on the galloping instability as explained by Corless & Parkinson (1988). However,
the galloping-dominated response observed in the experiments occurs at reduced
velocities higher than 1.76U∗r . Of course, at very low U∗, the vortex shedding period
is very long compared with the natural system oscillation period, so the use of
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the mean lift variation with incidence angle derived from averaging the effect of
shedding over many cycles is not a reasonable approximation. One would expect that
this approximation should only become reasonable well beyond the resonant reduced
velocity of U∗ = 1/St = 7.1. Interestingly, in this case, the lift curve slope remains
strongly negative to high incidence angles, which is also qualitatively consistent with
large galloping oscillations.

For a particular U∗, assuming that the body is oscillating at the natural frequency,
the amplitude variation can be approximated as a sinusoidal variation, i.e.

y/D= (A/D) sin(2πfnwt). (3.8)

Differentiating this gives

ẏ
U
(= tan α′)=

2π(A/D)Dfnw

U
cos(2πfnwt) ⇒ α′max = tan−1

(
2πA∗

U∗

)
. (3.9)

Taking the value of A/D= 4.7 at U∗ = 20, where the body is still undergoing strong
galloping, gives α′max ' 55◦, i.e. as the body moves past its equilibrium position, the
flow incidence angle seen by the body is 55◦. This indicates that galloping does occur
over a wide range of angles of attack, extending a long way from α′ = 0◦.

For the reversed-D case of α= 180◦ shown in figure 15, β is found to be −1.81 at
α′=0, which is considerably lower than the reported value of −1.15 for high-Re wind-
tunnel experiments (Cheers 1950), and it remains significantly negative over the α′
range tested. Both the lift slope and the drag contribute to damping in this case. This
implies that the reversed D-section is not susceptible to a soft galloping instability,
which is consistent with the observed response over the entire reduced velocity range
investigated.

In summary, the quasi-steady theory predicts that soft galloping will occur for
the D-section but not the reversed D-section, consistent with the experimental
results. Perhaps also of interest is that the critical reduced velocity for galloping
is proportional to m∗ through (3.6), hence the onset values for galloping in air will
typically be very much greater than the calculated values here (for water), placing the
onset of galloping beyond the U∗ range for VIV. This may result in cleaner physical
behaviour with a greater separation between the underlying physical processes causing
the different forms of FIV.

4. Conclusions
The transverse flow-induced vibration of a D-section cylinder with low mass and

damping ratios has been experimentally investigated at two different angles of attack,
α = 0◦ and 180◦, corresponding to forward- and reverse-facing D-sections, over a
reduced velocity range of 2 6 U∗ 6 20.

At α = 0◦, the structural vibration response is dominated by VIV for U∗ 6 10.0,
while after a transition regime over 10<U∗< 12.5 it becomes galloping-dominated at
higher U∗ values. The onset of VIV lock-in was observed to occur at U∗= 3.0, which
was much lower than U∗ = 1/St ' 7.1 expected for the vortex shedding resonance.
Interestingly, while the body oscillation frequency remained close to fnw, the exciting
fluid forces Fy and Fv exhibited a third harmonic (3fnw), which tended to become
stronger gradually as U∗ was increased in the VIV-dominated regime. Also, in this
regime, the vortex shedding mode was found to undergo a transition from 2S to 2Po at
U∗ = 5.0, which was associated with a transition in φv from 0◦ to 180◦, and then
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another transition from 2Po to 2To at U∗= 5.6, which was associated with a transition
in φt from 0◦ to 180◦. As the body movement is opposed by the exciting fluid forces
with φt and φv remaining at 180◦ up to U∗= 10, galloping is prohibited and the FIV
response is characterised as VIV over this U∗ range. In the VIV-galloping transition
regime, the third harmonic frequency component of the transverse lift and the vortex
force gradually overwhelmed their fundamental frequency components. As a result,
both φt and φv were found to decrease gradually from 180◦. Strikingly, the vortex
shedding was found to be in a clear 2T mode, consisting of two well-defined triplets
of vortices shed per cycle.

In the galloping-dominated regime at higher reduced velocities, it was found that
the dominant frequency content of the transverse lift and the vortex force switch to
their third harmonics at 3fnw, while the body oscillation frequency still remains at
fnw. Meanwhile, the amplitude response growth with increasing U∗ is found to be
faster than that in the VIV-dominated and transition regimes, noting that the peak
amplitude observed is A∗10 = 4.7 at the highest reduced velocity tested (U∗ = 20). A
further test with decreasing U∗ showed that there is no hysteresis in the vibration
response, which is different from that previously reported for square cylinders, which
exhibit a hysteretic amplitude response due to flow reattachment to their afterbodies.
Furthermore, both measurements with increasing and decreasing U∗ revealed that the
galloping response can be softly excited from rest, which is distinctly different from
the hard galloping often reported in the literature that requires an initial triggering
amplitude to occur at much higher Reynolds numbers and mass ratios.

For the reverse-facing D-section, with α= 180◦, the vibration response exhibits pure
VIV features. By comparing directly against circular cylinder VIV with the same m∗
and a similar ζ , it was found that the onset of significant vibration in the reverse
D-section case occurs at a similar reduced velocity U∗= 3.6; the peak amplitude was
observed to be A∗10 = 0.72, only approximately 6 % lower than that observed for the
circular cylinder; also observed were remarkable similarities in the jumps of φt and φv
from 0◦ to 180◦. However, these jumps are not necessarily correlated with clear wake
mode transitions, as variants of the 2S mode were found to persist across the entire
U∗ range tested. This is different from the different modes observed for circular and
diamond-shaped cylinders that possess an afterbody. Furthermore, the lock-in regime is
somewhat narrower, only covering the reduced velocity range 3.6 6 U∗ 6 6.6, which
corresponds to that covering the initial and upper branches of the circular cylinder
case. This suggests that the lower branch of circular cylinder VIV is dependent on
its afterbody. Of most significance, nevertheless, our study shows that an afterbody is
not essential for the occurrence of significant-amplitude VIV, although it can play an
important role affecting characteristics of the wake flow structure and the structural
vibration response.

In terms of the flow physics for the VIV of a reverse D-section, the findings
imply that, even though the oscillatory pressure forcing associated with the alternate
shedding of vortices cannot contribute to the fluctuating lift through the straight
surface of the reverse D-section, nevertheless, the longer-range pressure variation
acting on the cross-stream-facing surfaces of the body (i.e. adjacent to the separation
points) is still sufficient to cause VIV. It would be of further interest to investigate
this aspect through numerical simulations and extended experiments.

The present results indicate that there exists a transition to a VIV–galloping response
with variation of the angle of attack. This warrants further work to characterise
the fluid–structure mechanisms and categorise FIV response regimes in the U∗–α
parameter space.
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