
Adv. Appl. Prob. 48, 712–725 (2016)
doi:10.1017/apr.2016.24

© Applied Probability Trust 2016

ON THE CAPACITY FUNCTIONAL OF EXCURSION
SETS OF GAUSSIAN RANDOM FIELDS ON R

2

MARIE KRATZ,∗ ESSEC Business School, CREAR

WERNER NAGEL,∗∗ Friedrich-Schiller-Universität Jena

Abstract

When a random field (Xt , t ∈ R
2) is thresholded on a given level u, the excursion set

is given by its indicator 1[u,∞)(Xt ). The purpose of this work is to study functionals (as
established in stochastic geometry) of these random excursion sets as, e.g. the capacity
functional as well as the second moment measure of the boundary length. It extends results
obtained for the one-dimensional case to the two-dimensional case, with tools borrowed
from crossings theory, in particular, Rice methods, and from integral and stochastic
geometry.
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1. Introduction

Let R
2 denote the two-dimensional Euclidean plane with the origin 0, the inner product 〈·, ·〉,

the norm ‖ · ‖, and the unit sphere S1 = {v ∈ R
2 : ‖v‖ = 1}. We will refer to the elements

of R
2 both as points and as vectors. The Borel σ -algebra is denoted R2.

Let X be a stationary random field taking values in R, with continuously differentiable paths
(C1 paths, for short). It will be described by

X = (Xx, x ∈ R
2) or (Xsv, s ∈ [0, ∞), v ∈ S1).

We denote by r its correlation function and by fX0 its one-dimensional marginal density
function, which is a standard normal density function.

Denote by Au the excursion set of the random field X over a threshold u ∈ R, i.e.

Au = {x ∈ R
2 : Xx ≥ u} = {sv : Xsv ≥ u, s ∈ [0, ∞), v ∈ S1}. (1)

Since X is a random field with C1 paths, then, for all u ∈ R, the set Au is a random closed
set (see [14, Section 5.2]) and the topological closure of the complement, denoted by cl(Ac

u), is
also a random closed set (see [18, p. 19 and Theorem 12.2.6.(b)]). The distribution of a random
closed set is fully characterized by its capacity functional T (see [12], or [14], [18]), which
for Au is defined by

T (K) = P(Au ∩ K 
= ∅) for all compact subsets K ⊂ R
2. (2)
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Capacity functional of excursion sets 713

Since T (K) = P(sup{Xx; x ∈ K} ≥ u) the results for the distribution of the supremum of X

over a set K (see, e.g. [2], [4], and [15]) can be applied to the capacity functional.
Often it is too complicated to describe the capacity functional completely. Therefore, one

usually restricts the family of sets K considered in (2) to certain parametric families of sets,
e.g. circles with varying radii or linear segments with a fixed direction and varying lengths,
yielding the spherical or linear contact distributions, respectively (see [6]). Thus, at least partial
information about the distribution of the random set is available. This approach is also used in
spatial statistics.

In this paper we choose k ≥ 2 directions given by unit vectors v1, . . . , vk ∈ S1, and denote
by [0, livi] = {svi : 0 ≤ s ≤ li} the linear segment with one endpoint in the origin 0, length
li > 0, and direction vi . We consider the sets

K =
k⋃

i=1

[0, livi] with li > 0, i = 1, . . . , k. (3)

By Li = sup{l : [0, lvi] ⊂ Ac
u} we denote the random distance—the visibility—in direction vi

from the origin 0 to the next point of the boundary ∂Au, if 0 ∈ Ac
u; otherwise, Li = 0. The

joint survival function of the visibilities can now be related to the capacity functional by either
of the following:

P(L1 > l1, . . . , Lk > lk) = P(K ⊂ Ac
u) = 1 − T (K), (4a)

T (K) = 1 − P

(
X0 < u, sup

s∈[0,li ]
Xsvi

< u, i = 1, . . . , k
)
. (4b)

The event in the last expression means that 0 ∈ Ac
u and that there is no up-crossing of the random

field X on the segments of K .
Besides the capacity functional of a random set, moment measures of some random measures

which are induced by this set are of interest; see [6] and [18].
In [1], [2], [4], and [21] the geometry of excursion sets is studied thoroughly, in particular in

[2] with explicit results for the Lipschitz-Killing curvatures (intrinsic volumes) of the excursion
sets (see also [3]). In this paper we consider the capacity functional of the excursion set for
families of sets K which consist of two or more linear segments, originating from a common
point. This can also be interpreted as the joint distribution of the visibility in different directions
from a certain point to the boundary of the excursion set. On the other hand, it can be seen as an
approximation of the capacity functional of the excursion set for classes of convex polygons.

To study T (K), we extend results obtained for the one-dimensional case (see, e.g. [8]) to
the two-dimensional case and borrow tools from the literature on level crossings (see [2], [7],
and [9]), in particular, Rice-type methods (see [4], [13], [17], and [21]). We also extend an
approach given in [13], that we call the ‘sweeping line’ method, into a ‘growing circle’ method.
It will be developed in Section 2.

Furthermore, via our approach, we study the second moment measure of the boundary length
measure of the excursion set, provided that the boundary is smooth enough. If the boundary
∂Au is Hausdorff-rectifiable then with the help of the one-dimensional Hausdorff-measure H1,
we define the random measure L on [R2, R2] by

L(B) = H1(∂Au ∩ B) for all B ∈ R2.

Then the first moment measure, also termed the intensity measure of the random length measure,
is given by

μ(1)(B) = E[L(B)] = E[H1(∂Au ∩ B)] for all B ∈ R2,
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and the second moment measure by

μ(2)(B1 ×B2) = E[L(B1)L(B2)] = E[H1(∂Au ∩B1)H
1(∂Au ∩B2)] for all B1, B2 ∈ R2.

The stationarity of X, and, thus, also of Au, yields that the intensity measure is a multiple of
the Lebesgue measure λ2 on [R2, R2], i.e. μ(1) = LAλ2 with a positive constant LA which is
the mean length of ∂Au per unit area; see [6] and [18].

Furthermore, stationarity allows the following implicit definition of the reduced second
moment measure κ on [R2, R2]:

μ(2)(B1 × B2) = L2
A

∫ ∫
1B1(x)1B2(x + h)κ(dh)λ2(dx). (5)

The value LAκ(B) is the mean length of ∂Au within B ∈ R2, given that the origin is located
at the ‘typical point’ of the boundary with respect to the length measure and the corresponding
Palm distribution; see [6] and [18].

Note that this second moment measure for the length of the boundary has been studied in
[4, Theorems 6.8 and 6.9] using the co-area formula. Here we present an alternative approach,
based on stereology, to provide another expression for the second moment measure. Since
this second moment measure can be determined from intersections of ∂Au with pairs of lines
and from the observation of pairs of intersection points (see [20]), our method of counting
crossings of the random field X on linear segments, developed in Section 2, can be applied to
the estimation of the second moment measure. This will be done in Section 3.

The contact distribution functions as well as the intensity LA and the (reduced) second
moment measure yield established tools for model adaption and goodness-of-fit tests; see [6].

Finally, note, as in [8], that we will not tackle the numerical part, which is a subject in itself,
as attested by the literature dedicated to this approach in recent years; see [5] and [13] or [4,
Chapter 5] and [17].

From now on, let us assume that X is Gaussian, with mean 0 and variance 1.

2. A sweeping line and growing circle methods for an algorithmic computation of the
capacity functional

Sweeping line methods are well established in geometry, e.g. for the definition of the Euler–
Poincaré characteristic of a set, in image analysis (for both, see [19]), in computational geometry
(see [16]), and in probability (see, e.g. [13]). We will apply it together with Gaussian regression
and discretization to set an algorithmic computation of the capacity functional for a pair of
segments. Then we will modify the method in order to calculate the capacity functional for a
bundle of segments, now using circles with growing radii.

Suppose that C ⊂ R
2 is a compact convex set with 0 ∈ C. For s > 0, we denote by s∂C =

{sx : x ∈ ∂C} a homothet of the boundary of C, and we consider the family (s∂C, s > 0) as a
sweeping contour, determined by C. In this paper we will only use C = {x ∈ R

2 : ‖x‖ = 1},
the boundary of the unit circle around the origin.

2.1. The capacity functional for a bundle of two line segments

Consider K defined in (3) with k = 2, so that K = [0, l1v1] ∪ [0, l2v2] with v1 
= v2.
Now we specify the sweeping line method for these sets K using an appropriate parametriza-

tion for the bundle of two line segments.
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We also introduce the C1-diffeomorphism ρ (except in a finite number of points where it
might only be C0) defined by

ρ : [0, l1 + l2] → K, θ �→
{

(l1 − θ)v1 if 0 ≤ θ ≤ l1,

(θ − l1)v2 if l1 ≤ θ ≤ l1 + l2.
(6)

We have, via (4a) and (4b), and noting that P(X0 = u) = 0,

P[L1 > l1, L2 > l2] = 1 − P

[
sup
s∈K

Xs > u
]

= 1 − P

[
sup

θ∈[0,l1+l2]
Yθ > u

]
,

where the process Y = (Yθ , 0 ≤ θ ≤ l1 + l2) is defined by

Yθ = X(ρ(θ)). (7)

Let Y ′
θ = ∂θYθ denote the derivative of Yθ with respect to the parameter θ . Let (e1, e2) be an

orthonormal basis in R
2. The idea is to introduce a sweeping line parallel to the (0e1) axis, and

to translate it along the (0e2) axis until meeting a u-crossing by Xs , s ∈ K .
Here we choose the (0e2) axis in such a way that the vectors v1 and v2 become symmetric

to the (0e2) axis and define

ϕ̃ = 
 (v2, 0e2) ∈
(

0; π

2

]
, v1 = (− sin ϕ̃, cos ϕ̃), v2 = (sin ϕ̃, cos ϕ̃). (8)

We then start with the sweeping line method to express the capacity functional for a bundle
of two line segments.

Noting that X0 
= u almost surely, we have the following result.

Theorem 1. Let X be a stationary Gaussian random field, mean 0 and variance 1, with C1

paths, and Y be defined as in (7). Furthermore, let K = [0, l1v1] ∪ [0, l2v2] and ϕ̃ be as in (8).
The capacity functional T of Au is given for K as follows.
If l1 ≤ l2 then

T (K) = fX0(u)

∫
[0;l1]

(E[|Y ′
θ |1{Yη≤u for all η∈[θ;2l1−θ ]} | Yθ = u]

− E[|Y ′
2l1−θ |1{Yη≤u for all η∈[θ;2l1−θ ]} | Y2l1−θ = u]) dθ

+ fX0(u)

∫
[2l1;l1+l2]

E[|Y ′
θ |1{Yη≤u for all η∈[0;θ ]} | Yθ = u] dθ. (9)

If l1 ≥ l2 then

T (K) = fX0(u)

∫
[0;l1−l2]

E[|Y ′
θ |1{Yη≤u for all η∈[θ;l1+l2]} | Yθ = u] dθ

+ fX0(u)

∫
[l1−l2;l1]

(E[|Y ′
θ |1{Yη≤u for all η∈[θ;2l1−θ ]} | Yθ = u]

− E[|Y ′
2l1−θ |1{Yη≤u for all η∈[θ;2l1−θ ]} | Y2l1−θ = u]) dθ. (10)

Proof. As already mentioned, we introduce a sweeping line parallel to the (0e1) axis and
translate it along the (0e2) axis until meeting a u-crossing by Xs , s ∈ K . Setting

�t = {s = (s1, s2) ∈ K : s2 ≤ t2}, t = (t1, t2) ∈ R
2,
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where the parameter t2 indicates the position of that sweeping line, we can write

P[L1 > l1, L2 > l2] = 1 − E[#{θ ∈ [0, l1 + l2], Yθ = u, Xs ≤ u for all s ∈ �ρ(θ)}],
where #{θ ∈ [0, l1 + l2], Yθ = u, Xs ≤ u for all s ∈ �ρ(θ)} = 1 if there is a (first) crossing
by X on K , and 0 otherwise.

So, using the Rice formula (fYθ denoting the density function of Yθ ), then the stationarity
of X, we obtain

P[L1 > l1, L2 > l2] = 1 −
∫ l1+l2

0
E[|Y ′

θ |1{Xs≤u for all s∈�ρ(θ)} | Yθ = u]fYθ (u) dθ

= 1 − fX0(u)

∫ l1+l2

0
E[|Y ′

θ | 1{Xs≤u for all s∈�ρ(θ)} | Yθ = u] dθ. (11)

Note that this type of integral can be numerically evaluated as in [13].
Let us go further in the study of the integral appearing in (11), reducing the problem to a

one-dimensional parameter set.
If l1 ≤ l2 then∫

[0;l1+l2]
E[|Y ′

θ |1{Xs≤u for all s∈�ρ(θ)} | Yθ = u] dθ

=
∫

[0;l1]
(E[|Y ′

θ |1{Yη≤u for all η∈[θ;2l1−θ ]} | Yθ = u]
− E[|Y ′

2l1−θ |1{Yη≤u for all η∈[θ;2l1−θ ]} | Y2l1−θ = u]) dθ

+
∫

[2l1;l1+l2]
E[|Y ′

θ | 1{Yη≤u for all η∈[0;θ ]} | Yθ = u] dθ.

If l1 ≥ l2 then∫
[0;l1+l2]

E[|Y ′
θ |1{Xs≤u for all s∈�ρ(θ)} | Yθ = u] dθ

=
∫

[0;l1−l2]
E[|Y ′

θ |1{Yη≤u for all η∈[θ;l1+l2]} | Yθ = u] dθ

+
∫

[l1−l2;l1]
(E[|Y ′

θ |1{Yη≤u for all η∈[θ;2l1−θ ]} | Yθ = u]
− E[|Y ′

2l1−θ |1{Yη≤u for all η∈[θ;2l1−θ ]} | Y2l1−θ = u]) dθ.

Hence, the result follows. �
Let I (θ) denote the following interval (as it appears in the indicator functions of (9) and

(10)), i.e.

I (θ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[θ, 2l1 − θ ] for l1 ≤ l2, 0 ≤ θ ≤ l1,

[0, θ ] for l1 ≤ l2, 2l1 ≤ θ ≤ l1 + l2,

[0, l1 + l2] for l1 > l2, 0 ≤ θ ≤ l1 − l2,

[θ, 2l1 − θ ] for l1 > l2, l1 − l2 < θ ≤ l1.

(12)

The integrands appearing in Theorem 1 as conditional expectations of the form

E[|Y ′
θ |1{Yη≤u for all η∈I (θ)} | Yθ = u]
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will now be treated via an approximation by discretization. We will use a standard method when
working with Gaussian vectors; namely, the Gaussian regression (see, e.g. [11]). This may allow
us to handle numerically the computation of the conditional expectations.

Before stating the main result, let us introduce some further notation.
Let ∂vi denote the directional derivative with respect to vi , for i = 1, 2, which corresponds to

∂v1Xlv1 = lim
h→0

1

h
(X(l+h)v1 − Xlv1) = − sin ϕ̃ ∂10X−l sin ϕ̃, l cos ϕ̃ + cos ϕ̃ ∂01X−l sin ϕ̃, l cos ϕ̃

and
∂v2Xlv2 = sin ϕ̃ ∂10Xl sin ϕ̃,l cos ϕ̃ + cos ϕ̃ ∂01Xl sin ϕ̃, l cos ϕ̃ ,

where ∂ij denotes the partial derivative of order i+j with the ith partial derivative in direction e1,
and the j th partial derivative in direction e2.

Recall that the covariances between the random field X and its partial derivatives, when
existing, are given, for s, t, h1, h2 ∈ R

2, by (see [10])

E[∂jkXs+h1,t+h2∂lmXs,t ] = (−1)l+m∂j+l,k+mr(h1, h2) (13)

for all 0 ≤ j + k ≤ 2, 0 ≤ l + m ≤ 2.

Theorem 2. Let X be a stationary Gaussian random field, mean 0 and variance 1, with C1 paths
and a twice differentiable correlation function r . Furthermore, for all m ∈ N, let η1, . . . , ηm

be equidistant points, partitioning I (θ) (defined in (12)), into m−1 intervals (where η1 and ηm

coincide with the left and right boundary of I (θ), respectively). Then we have

E[|Y ′
θ |1{Yη≤u for all η∈I (θ)} | Yθ = u]
= lim

m→∞

∫
R

|y|Fξ(m)(u(1 − a(ηi; θ)) − y b(ηi; θ); i = 1, . . . , m)fY ′
θ
(y) dy, (14)

where the density fY ′
θ

of Y ′
θ is Gaussian with mean 0 and variance given by

E[Y ′ 2
θ ] = (−∂20r(0, 0) sin2 ϕ̃ − ∂02r(0, 0) cos2 ϕ̃ + 2∂11r(0, 0) sin ϕ̃ cos ϕ̃)1{0≤θ<l1}

− (∂20r(0, 0) sin2 ϕ̃ + ∂02r(0, 0) cos2 ϕ̃ + 2∂11r(0, 0) sin ϕ̃ cos ϕ̃)1{l1<θ≤l1+l2},

with ϕ̃ being defined in (8), and where Fξ(m) is the cumulative distribution function of the
Gaussian vector ξ (m) = (ξi, i = 1, . . . , m) : N (0, 
m). The covariance matrix 
m is given by

var(ξi) = 1 − a2(ηi, θ) − b2(ηi, θ)

and, for ηi, i = 1, . . . , m pairwise different,

cov(ξi, ξj ) = a(ηi, ηj ) − a(ηi, θ)a(ηj , θ) − b(ηi, θ)b(ηj , θ)E[Y ′ 2
θ ],

the coefficients a(·, ·) and b(·, ·) being defined below in (18) and (19), respectively.

Looking for the rate of convergence to the limit in (14) might be of interest for applications
and is an area of investigation for future research. Nevertheless, we can already deduce from
this theorem an approximation that is quite useful for a numerical evaluation of the capacity
functional.
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Corollary 1. The capacity functional T (K) given in Theorem 1 can be numerically evaluated
by approximating, for large m, its integrands as

E[|Y ′
θ |1{Yη≤u for all η∈I (θ)} | Yθ = u]
≈

∫
R

|y|Fξ(m)(u(1 − a(ηi; θ)) − yb(ηi; θ); i = 1, . . . , m)fY ′
θ
(y) dy. (15)

The proof of Theorem 2 is based on the following lemma.

Lemma 1. Under the assumptions of Theorem 2, we have

E[|Y ′
θ |1{Yη≤u for all η∈I (θ)} | Yθ = u] = lim

m→∞ E[|Y ′
θ |1{Yη1≤u,...,Yηm≤u} | Yθ = u].

Proof. Let D
(m)
i = {Cu(I

(m)
i ) ≥ 2} denote the event that the number of crossings in the

interval I
(m)
i , i = 1, . . . , m−1, is greater than or equal to 2, where I

(m)
i is the ith open interval

of the equidistant partition of I (θ) into m − 1 intervals by η1, . . . , ηm.
Noting that

1{Yη1≤u,...,Yηm≤u} − 1⋃m−1
i=1 D

(m)
i

≤ 1{Yη≤u for all η∈I (θ)} ≤ 1{Yη1≤u,...,Yηm≤u},

we can write
E[|Y ′

θ |(1{Yη1≤u,...,Yηm≤u} − 1⋃m−1
i=1 D

(m)
i

) | Yθ = u]
≤ E[|Y ′

θ | 1{Yη≤u for all η∈I (θ)} | Yθ = u]
≤ E[|Y ′

θ | 1{Yη1≤u,...,Yηm≤u} | Yθ = u]. (16)

Moreover, since for all m ∈ N, |Y ′
θ |1⋃m−1

i=1 D
(m)
i

≤ |Y ′
θ |, and |Y ′

θ | is integrable with respect to

the conditional distribution given Yθ = u (the number of crossings in I (θ) having finite mean),
then, using the theorem of dominated convergence, we obtain

lim
m→∞ E[|Y ′

θ |1⋃m−1
i=1 D

(m)
i

| Yθ = u] = E[|Y ′
θ | lim

m→∞ 1⋃m−1
i=1 D

(m)
i

| Yθ = u].
Since limm→∞ 1⋃m−1

i=1 D
(m)
i

= 0 for almost all paths of Y , we deduce that

lim
m→∞ E[|Y ′

θ |1⋃m−1
i=1 D

(m)
i

| Yθ = u] = 0. (17)

Combining (16) and (17), we conclude that

E[|Y ′
θ |1{Yη≤u for all η∈I (θ)} | Yθ = u] = lim

m→∞ E[|Y ′
θ |1{Yη1≤u,...,Yηm≤u} | Yθ = u]. �

Proof of Theorem 2. Regressing the random vector Y
(m)
η = (Yη1 , . . . , Yηm), m ≥ 1, on Yθ

and Y ′
θ , which are independent at fixed θ (see, e.g. [7]), we obtain

Y (m)
η = δ(m) ξ (m) + a(m)Yθ + b(m)Y ′

θ ,

where the deterministic vectors

δ(m) = (δ(η1, θ), . . . , δ(ηm, θ)), a(m) = (a(η1, θ), . . . , a(ηm, θ)),

and
b(m) = (b(η1, θ), . . . , b(ηm, θ))

have their components defined respectively by

δ(α, θ) = 1{α 
=θ}, a(θ, θ) = 1, b(θ, θ) = 0,
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and, for α 
= θ ,

a(α, θ) = E[YαYθ ]

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
r((θ − α) sin ϕ̃, (α − θ) cos ϕ̃) if 0 ≤ θ, α ≤ l1,

r((θ − α) sin ϕ̃, (θ − α) cos ϕ̃) if θ, α ≥ l1,

r((2l1 − α − θ) sin ϕ̃, (θ − α) cos ϕ̃) if 0 ≤ θ ≤ l1 ≤ α ≤ l1 + l2,

r((2l1 − α − θ) sin ϕ̃, (α − θ) cos ϕ̃) if 0 ≤ α ≤ l1 ≤ θ ≤ l1 + l2,

(18)

b(α, θ)

= E[YαY ′
θ ]

= E[Yα∂v1Yθ ]1{θ∈[0,l1]} + E[Yα∂v2Yθ ]1{θ∈(l1,l1+l2]}

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− sin ϕ̃∂10r((θ − α) sin ϕ̃, (α − θ) cos ϕ̃)

+ cos ϕ̃∂01r((θ − α) sin ϕ̃, (α − θ) cos ϕ̃) if 0 ≤ θ, α ≤ l1,

sin ϕ̃ ∂10r((α − θ) sin ϕ̃, (α − θ) cos ϕ̃)

+ cos ϕ̃∂01r((α − θ) sin ϕ̃, (α − θ) cos ϕ̃) if θ, α ≥ l1,

sin ϕ̃∂10r((α − θ) sin ϕ̃, (α + θ − 2l1) cos ϕ̃)

− cos ϕ̃∂01r((α − θ) sin ϕ̃, (α + θ − 2l1) cos ϕ̃) if 0 ≤ θ ≤ l1 ≤ α ≤ l1 + l2,

sin ϕ̃∂10r((θ − α) sin ϕ̃, (α + θ − 2l1) cos ϕ̃)

+ cos ϕ̃∂01r((θ − α) sin ϕ̃, (α + θ − 2l1) cos ϕ̃) if 0 ≤ α ≤ l1 ≤ θ ≤ l1 + l2,

(19)

and where the random vector ξ (m) = (ξ1, . . . , ξm) is independent of (Yθ , Y
′
θ ), Gaussian (Fξ(m)

denoting its cumulative distribution function), mean 0, covariance matrix 
m with

var(ξi) = 1 − a2(ηi, θ) − b2(ηi, θ), i = 1, . . . , m,

and, for η1, . . . , ηm pairwise different,

cov(ξi, ξj ) = E[ξiξj ] = a(ηi, ηj ) − a(ηi, θ)a(ηj , θ) − b(ηi, θ)b(ηj , θ)E[Y ′ 2
θ ]

since E[Y 2
θ ] = var(Xρ(θ)) = 1. On the one hand, using (13), we obtain, if 0 ≤ θ < l1,

E[Y ′ 2
θ ] = E[(∂v1X(l1−θ)v1)

2]
= E[(− sin ϕ̃ ∂10X−(l1−θ) sin ϕ̃, (l1−θ) cos ϕ̃ + cos ϕ̃∂01X−(l1−θ) sin ϕ̃, (l1−θ) cos ϕ̃ )2]
= −∂20r(0, 0) sin2 ϕ̃ − ∂02r(0, 0) cos2 ϕ̃ + 2∂11r(0, 0) sin ϕ̃ cos ϕ̃,

and, on the other hand, if l1 < θ ≤ l1 + l2,

E[Y ′ 2
θ ] = −∂20r(0, 0) sin2 ϕ̃ − ∂02r(0, 0) cos2 ϕ̃ − 2∂11r(0, 0) sin ϕ̃ cos ϕ̃.

Therefore, using this Gaussian regression for any vector Y
(m)
η of any size m, and the indepen-

dence of (Yθ , Y
′
θ , ξ ), we can write, for the interval I (θ), ξ = (ξη) denoting the Gaussian process

defined by its finite-dimensional distributions of ξ (m),

E[|Y ′
θ |1{Yη≤u for all η∈I (θ)} | Yθ = u]
= E[|Y ′

θ |1{b(η,θ)Y ′
θ≤u(1−a(η,θ))−δ(η,θ)ξη for all η∈I (θ)}]

= E[E[|Y ′
θ |1{b(η,θ)Y ′

θ≤u(1−a(η,θ))−δ(η,θ)ξη for all η∈I (θ)}] | ξ ].
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To compute this last expression, we proceed by discretization, working on vectors. We have,
for a given vector (η1, . . . , ηm),

E[|Y ′
θ | 1{Yη1≤u,...,Yηm≤u} | Yθ = u]
=

∫
Rm

E[|Y ′
θ |1{b(ηi ;θ)Y ′

θ≤u(1−a(ηi ;θ))−zi ; i=1,...,m} | ξ (m) = z]fξ(m)(z) dz

=
∫

Rm

E[|Y ′
θ |1{b(ηi ;θ)Y ′

θ≤u(1−a(ηi ;θ))−zi ; i=1,...,m}]fξ(m)(z) dz

=
∫

R

|y|
∫

Rm

1{zi≤(1−a(ηi ;θ))u−b(ηi ;θ)y; i=1,...,m}fξ(m)(z) dzfY ′
θ
(y) dy

=
∫

R

|y|P[ξi ≤ u(1 − a(ηi; θ)) − yb(ηi; θ); i = 1, . . . , m]fY ′
θ
(y) dy

=
∫

R

|y|Fξ(m)(u(1 − a(ηi; θ)) − yb(ηi; θ); i = 1, . . . , m)fY ′
θ
(y) dy

using the independence of ξ and Y ′
θ in the second equality.

Taking the limit as m → ∞ in the previous equations and applying Lemma 1 provides the
result (14). �
Example 1. Let us consider a stationary and isotropic Gaussian random field X, with correla-
tion function r defined on R

2 by r(x) = e−‖x‖2/2. Then, for x = (x1, x2), we have

∂10r(x) = −x1r(x), ∂01r(x) = −x2r(x), ∂11r(x) = −x2∂10r(x) = −x1∂01r(x),

∂20r(x) = (x2
1 − 1)r(x), ∂02r(x) = (x2

2 − 1)r(x);
hence, the variance of Y ′

θ becomes

E[Y ′ 2
θ ] = 1 for all θ ∈ [0, l1 + l2],

and the coefficients a(·, ·) and b(·, ·) satisfy

a(α, θ) = a(θ, α)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
exp

{− 1
2 (α − θ)2

}
if 0 ≤ θ, α ≤ l1

or if θ, α ≥ l1,

exp
{− 1

2 (α − θ)2 − 4|(l1 − α)(l1 − θ)| sin2 ϕ̃
}

if 0 ≤ θ ≤ l1 ≤ α ≤ l1 + l2,

or if 0 ≤ α ≤ l1 ≤ θ ≤ l1 + l2,

b(α, θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(θ − α) exp
{− 1

2 (α − θ)2
}

if 0 ≤ θ, α ≤ l1, or if θ, α ≥ l1,

(θ − α + 2(α − l1) cos2 ϕ̃)

× exp
{− 1

2 [(α − θ)2 + 4(α − l1)

×(2α − l1 − θ) cos2 ϕ̃]} if 0 ≤ θ ≤ l1 ≤ α ≤ l1 + l2,

−(θ − α + 2(α − l1) cos2 ϕ̃)

× exp
{− 1

2 [(α − θ)2 + 4(α − l1)

×(2α − l1 − θ) cos2 ϕ̃]} if 0 ≤ α ≤ l1 ≤ θ ≤ l1 + l2.

Therefore, (15) can be computed numerically when replacing fY ′
θ

by a standard normal density
function and ξ (m) = (ξ1, . . . , ξm) by a Gaussian N (0, 
m) with the covariance matrix 
m
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given by
var(ξi) = 1 − a2(ηi, θ) − b2(ηi, θ), i = 1, . . . , m,

and, for 1 ≤ i 
= j ≤ m, for ηi 
= ηj ,

cov(ξi, ξj ) = a(ηi, ηj ) − a(ηi, θ)a(ηj , θ) − b(ηi, θ)b(ηj , θ).

2.2. Joint distribution for k line-segments via a growing circle

We can extend to k segments what has been previously developed for two segments, consid-
ering a growing circle of radius t > 0, with center in 0, under the same assumptions on X. Let
v1, . . . , vk ∈ S1, denoting k directions, and ϕj be the angle between (oe1) and (ovj ), i.e.

ϕj = 
 (oe1, ovj ), j = 1, . . . , k.

Then Xtvj
= Xt cos ϕj ,t sin ϕj

.
For l1, . . . , lk > 0, we define the union of segments K = ⋃k

i=1[0, livi]. The method consists
of introducing a circle and making it grow with t until meeting a u-crossing by Xs for s ∈ K .

Setting �t = {s = (s1, . . . , sk) ∈ K : ∑k
i=1 s2

i ≤ t2}, we can write (analogously to (11),
using the Rice formula)

P[L1 > l1, . . . , Lk > lk] = 1 −
k∑

i=1

∫ li

0
E[|∂vi

Xtvi
|1{Xs≤u for all s∈�t } | Xtvi

= u]fXtvi
(u) dt.

(20)
Now let us compute the conditional expectation, denoted by Ei (t), appearing as an integrand
in (20). We can write, for fixed i and t ≤ li ,

Ei (t) = E[|∂vi
Xtvi

|1{Xs≤u for all s∈�t } | Xtvi
= u]

= E[|∂vi
Xtvi

|1{Xhvi
≤u for all h≤t}1{Xhvj

≤u for all h≤min(lj ,t), j 
=i} | Xtvi
= u]

= E[|∂vi
Xtvi

|1{Xhvj
≤u for all h≤min(lj ,t), j=1,...,k} | Xtvi

= u] (21)

since, for j = i, min(li , t) = t .
Once again, we proceed by standard Gaussian regression, regressing Xhvj

on (Xtvi
, ∂vi

Xtvi
)

at given h, i, and t , for any j = 1, . . . , k. So we consider

Xhvj
= Zh,j + α

j
hXtvi

+ β
j
h ∂vi

Xtvi
(22)

with α
j
h = r(tvi − hvj ), β

j
h = cos ϕi ∂10r(tvi − hvj ) + sin ϕi ∂01r(tvi − hvj ), and Zh,j :

independent of (Xtvi
, ∂vi

Xtvi
), Gaussian, mean 0, var(Zh,j ) = 1 − (α

j
h)2 − (β

j
h)2, and

E[Zh,jZl,n] = E[Xhvj
Xlvn ] − α

j
hαn

l − β
j
hβn

l = r(hvj − lvn) − α
j
hαn

l − β
j
hβn

l .

Note that we took Zh,j = Z
i,t
h,j , αj

h = α
i,j
h , and β

j
h = β

i,j
h to simplify the notation when working

at given i and t .
The conditional expectation (21) can be written as

Ei (t) = E[|∂vi
Xtvi

|1{Zh,j +α
j
hXtvi

+β
j
h∂vi

Xtvi
≤u for all h≤min(lj ,t), j=1,...,k} | Xtvi

= u]
= E[|∂vi

Xtvi
|1{Zh,j +β

j
h∂vi

Xtvi
≤u(1−α

j
h) for all h≤min(lj ,t), j=1,...,k}]

= E[E[|∂vi
Xtvi

|1{Zh,j +β
j
h∂vi

Xtvi
≤u(1−α

j
h) for all h≤min(lj ,t), j=1,...,k}] | (Zh,j )h≤t, 1≤j≤k]

using the independence of (Xtvi
, ∂vi

Xtvi
, (Zh,i)).
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Now we can evaluate Ei (t) via discretization and using once again the above mentioned inde-
pendence. We discretize equidistantly the interval [0, max1≤i≤k li] as [0, h1]∪(

⋃n−1
i=1 (hi, hi+1])

with hn = max1≤i≤k li and introduce the corresponding Gaussian vector Z(n) = (Zhm,j ; 1 ≤
m ≤ n, 1 ≤ j ≤ k) with density function fZ(n) and cumulative distribution function FZ(n) .
Note that we apply the same discretization in any direction vi , i = 1, . . . , k.

Then Lemma 1 can be applied to the k segments, substituting I (θ) by [0, livi], and η1, . . . , ηm

by 0, h1vi, . . . , hmi
vi , with hmi

≤ li < hmi+1 for i = 1, . . . , k. We obtain

Ei (t) = lim
n→∞

∫
Rn×k

E[|∂vi
Xtvi

|1{βj
hm

∂vi
Xtvi

≤u(1−α
j
hm

)−zhm,j for all hm≤min(lj ,t), j=1,...,k}]
× fZ(n) (z) dz

= lim
n→∞

∫
R

|y|
(∫

Rn×k

1{zhm,j ≤u(1−α
j
hm

)−yβ
j
hm

for all hm≤min(lj ,t), j=1,...,k}fZ(n) (z) dz

)
× f∂vi

Xtvi
(y) dy

= lim
n→∞

∫
R

|y|FZ(n)(w(y, u, α, β, t))f∂vi
Xtvi

(y) dy,

where f∂vi
Xtvi

denotes the density function of ∂vi
Xtvi

, and

w(y, u, α, β, t)

is an (n × k) matrix having components (wmj ; 1 ≤ m ≤ n, 1 ≤ j ≤ k) given by

wmj =
{

u(1 − α
j
hm

) − yβ
j
hm

if hm ≤ min(lj , t),

+∞ otherwise.
(23)

We conclude with the following result.

Theorem 3. Let X be a stationary Gaussian random field, mean 0 and variance 1, with C1

paths and a twice differentiable correlation function r . Then

P[L1 > l1, . . . , Lk > lk]

= 1 − lim
n→∞

k∑
i=1

∫ li

0

(∫
R

|y|FZ(n)(w(y, u, α, β, t))f∂vi
Xtvi

(y) dy

)
fXtvi

(u) dt,

where w is defined in (23).

Note that we can deduce from this result a way to evaluate numerically the joint distribution
P[L1 > l1, . . . , Lk > lk], as carried out in Corollary 1.

3. The second moment measure

Now we describe a method to determine the second moment measure of the length measure
of the boundary ∂Au, as defined in (5). It is based on the classical Crofton formula of integral
geometry which is widely used in stereology. It allows the determination of the length of a
planar curve by an integral of the number of intersection points of the curve with ‘test’ lines,
and the integration goes over all lines of the plane with respect to a motion invariant measure
on the set of lines. Note that this second moment measure has been studied in [4, Theorem 6.9
and the associated comment p. 181], using another approach, namely the co-area formula.
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Denote by G the set of all lines in the plane. The σ -algebra G on G is induced by an
appropriate parametrization and the Borel σ -algebra on the parameter space. Furthermore, dg

denotes the element of the measure on (G, G) which is invariant under translation and rotation
of the plane, and normalized such that

∫
1{g∩A
=∅} dg = 2π for the unit circle A ⊂ R

2.
Let C(g ∩ B) denote the number of crossings of u by X on the line g within a set B ⊂ R

2.

Theorem 4. Let X be a stationary Gaussian random field, mean 0 and variance 1, with C1

paths. Assume ∂Au to be smooth (in the sense that it can be parametrized by a C1 mapping).
Then, for bounded Borel sets B1, B2 ⊂ R

2, for which g1 ∩ B1 and g2 ∩ B2 consist of finitely
many line segments for all pairs (g1, g2) of lines, we have

μ(2)(B1 × B2) = 1

4

∫ ∫
E[C(g1 ∩ B1)C(g2 ∩ B2)] dg1dg2. (24)

For g1 
= g2 and not parallel, denote p ∈ R
2 such that {p} = g1 ∩g2, and consider v1, v2 ∈ S1

with v1 
= v2 such that g1 = Rv1 + p, g2 = Rv2 + p. Then the expectation appearing as the
integrand in (24) is given by

E[C(g1 ∩ B1)C(g2 ∩ B2)] =
∫ ∫

E[|∂v1Xsv1 · ∂v2Xtv2 | | Xsv1 = Xtv2 = u]
× fXsv1 ,Xtv2

(u, u)1B1−p(sv1)1B2−p(tv2) dsdt,

where fXsv1 ,Xtv2
denotes the density function of (Xsv1 , Xtv2).

Comments. (i) The product ∂v1Xsv1 · ∂v2Xtv2 may again be treated, using Gaussian regres-
sion given in (22), but it will not provide as simple a covariance matrix to the one of (∂v1Xsv1 ,

∂v2Xtv2 ) that we computed using (13).

(ii) Sufficient conditions can be given on X and u for ∂Au to be smooth. We refer the reader to
[4, Section 6.2.2] or [2, Section 6.2].

Proof of Theorem 4. The proof is based on two main steps.

(i) We apply the second-order stereology for planar fibre processes proposed in [20]. App-
lying [20, Theorem 3.1] for ∂Au yields

μ(2)(B1 × B2) = 1

4
E

(∫ ∫ ∑
y∈∂Au∩g1

∑
z∈∂Au∩g2

1B1×B2(y, z) dg1dg2

)

= 1

4

∫ ∫
E[C(g1 ∩ B1)C(g2 ∩ B2)] dg1dg2.

Note that integrating on the restricted domain {g1 = g2} ∪ {g1 ‖ g2} would give 0 for
the double integral and, therefore, we consider integration only on {g1 
= g2} ∩ {g1 not
parallel to g2}.

(ii) We use the approach developed in Theorem 1. According to the assumption on the Bis,
we can write gi ∩ Bi = ⋃ni

j=1 Iij for i = 1, 2, and ni ∈ N, where the Iij are pairwise
disjoint intervals. Then, we obtain

E[C(g1 ∩ B1)C(g2 ∩ B2)] =
n1∑

j=1

n2∑
k=1

E[C(I1j )C(I2k)].
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Let us compute each term of the double sum. For fixed j, k, first shift and rotate
g1, g2, B1, B2 such that the lines have a representation gi = Rvi , i = 1, 2, with v1, v2
as in (8). Let B̃i and Ĩ1j , Ĩ2k denote the adequate transformations of Bi and I1j , I2k ,
respectively. Then, using the diffeomorphism ρ analogous to (6), which may also be
applied if the intervals do not intersect, and applying a Rice-type formula for the second
moment (see [4, Equation (6.28)]), provides

E[C(I1j )C(I2k)] =
∫

Ĩ1j ×Ĩ2k

E[|∂v1Yθ1 · ∂v2Yθ2 | | Yθ1 = Yθ2 = u]

× fYθ1 ,Yθ2
(u, u)1{B̃1×B̃2}(ρ(θ1), ρ(θ2)) dθ1dθ2.

Note that the rotation has been introduced only to apply (6); what does matter is the shift
by p, the intersection point of g1 and g2.

Combining those results provides the theorem. �
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