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Based on some coincident morphological characters and distribution, it was believed for a long time that Mica micula was the
post-larval stage of a species of Bargmannia, a genus having a very wide geographic distribution. Recent studies, however, have
shown that it is much more likely to be the post-larval form of the physonect Pyrostephos vanhoeffeni, which is very common
in both Antarctic and sub-Antarctic waters. Until now, molecular evidence to support this theory has been lacking. In the
present study 34 nectophores of P. vanhoeffeni and four colonies of M. micula collected from three areas in the Southern
Ocean were analysed for the 16S rRNA gene. Five haplotypes were identified, which formed two clearly distinct lineages.
Three haplotypes were found exclusively in Admiralty Bay and were shared between individuals of both studied taxa,
confirming that M. micula is indeed the post-larval stage of P. vanhoeffeni. Two additional haplotypes were found in one
open ocean locality and in Admiralty Bay.
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I N T R O D U C T I O N

Studies on gelatinous zooplankton, particularly cnidarian
siphonophores, have increased in recent years. However, our
knowledge of the biology, ecology and systematics of these
animals, particularly in the Antarctic region, is still poor.
Traditional net studies have often ignored Siphonophora in
favour of more robust invertebrates, such as crustaceans.
Siphonophores can be abundant and ecologically important
oceanic hydrozoans (Totton & Bargmann, 1965; Kirkpatrick
& Pugh, 1984; Mills, 2001; Boero et al., 2008). There are
approximately 180 described species; the group has the
highest division of labour between zooids and the most
precise organization of all colonial animals (Mapstone,
2014). Siphonophores are among the most abundant carni-
vores in the oceanic macroplankton (Pugh, 1984), and
include the longest animals in the world, with colonies of
some species exceeding 40 m in length (Dunn, 2009).

The identification of all parts of the fragile colonies which
are usually separated during net sampling is the greatest chal-
lenge in the study of Siphonophora. Past descriptions of many
species were based solely on damaged and often incomplete
colonies. Species identity within the group is typically based

on the morphology of at least one swimming bell. For other
zooids of the colony, identification can be more problematic,
however the sexual eudoxid stage is known in a number of
calycophorans (Pugh, 1999b). But the evidence of a link
between a eudoxid and an adult colony formerly treated as
separate taxa using molecular markers has so far been
shown in only one case. Using DNA barcoding techniques,
Grossmann et al. (2013a) showed that Eudoxia macra
(Totton, 1954), is the sexual stage of the small diphyomorph
calycophoran Lensia cossack (Totton, 1941).

Pyrostephos vanhoeffeni Moser (1925) was first identified
by Moser (1925) as a large colourful species with unusually
modified palpons on the siphosome, later termed oleocysts
(Totton & Bargmann, 1965). Totton provided the first accur-
ate description and figures of the nectophores and tentilla of
this species, fragments of which were first taken by the
German Southpolar Expedition in 1902, just off the
Antarctic Continent (in the Indian sector of the Southern
Ocean) (Totton & Bargmann, 1965). Pyrostephos vanhoeffeni,
although not abundant, is widely distributed throughout the
Southern Ocean, as well as in sub-Antarctic waters and also
further north (but only as far as 338S to 408S in the Pacific
and Atlantic Oceans respectively) (Palma, 1986, 2006; Pagès
& Kurbjeweit, 1994; Pagès et al., 1994; Pagès &
Schnack-Schiel, 1996; Panasiuk-Chodnicka & Żmijewska,
2010; Guerrero et al., 2013; Lindsay et al., 2014;
Panasiuk-Chodnicka et al., 2014; Palma et al., 2016). It
should be emphasized that P. vanhoeffeni occurs exclusively
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in the southern hemisphere, in contrast to all four
Bargmannia species whose records come mostly from the
North Atlantic (Pugh, 1999a).

Small colonies comprising a single nectophore (2 mm in
length) and stem were collected by Margulis (1982) from
Antarctic waters and introduced as Mica micula. Further spe-
cimens were described later by Pagès & Gili (1989). Mica
micula colonies showed some characteristics associated with
the family Pyrostephidae, such as the presence of stenoteles
and a smaller spherical kind of nematocyst on the tentilla of
the tentacles (Pugh, 1999a; Mapstone, 2009), but stenoteles
also occur in a range of other siphonophore tentilla
(Mapstone, 2014). Other morphological characters were
imprecise. The colonies collected so far indicate that this
species is limited to Antarctic waters. The ill-defined nature
of the pneumatophore (suggesting it is still developing), the
simple structure and singularity of the nectophore and the
presence of a single gastrozooid without any other distin-
guishable siphosomal structures suggest that this taxon is
the post-larval or siphonula stage of a physonect (Pagès &
Gili, 1989). These authors suggested that M. micula might
be a post-larvae of Bargmannia elongata, another representa-
tive of Pyrostephidae in Antarctic waters, although recent
studies undermined this hypothesis (Grossmann et al.,
2013b).

Recently, Grossman et al. (2013b) published a redescrip-
tion of Mica micula with notes on its distribution and identity.
These samples were obtained during the 2008 Collaborative
East-Antarctic MARine Census (CEAMARC), and all 18
specimens were collected in the area of Mertz Glacier,
within the limits of the Antarctic Convergence. However,
no Bargmannia nectophores or bracts were found amongst
these samples, thus it was concluded that it is much more
likely to be the post-larval form of the physonect
Pyrostephos vanhoeffeni, which is very common in both
Antarctic and sub-Antarctic waters.

In recent years the importance of molecular studies appli-
cation to resolve taxonomical challenges has grown signifi-
cantly. The idea of DNA barcoding, first proposed by
Hebert et al. (2003), is now widely used across many animal
phyla (e.g. Heimeier et al., 2010; Jinbo et al., 2011 and refer-
ences therein). The mitochondrial cytochrome c oxidase
subunit 1 (COI), for which several protocols as well as univer-
sal and also specific primers already exist, is the most com-
monly used gene (e.g. Folmer et al., 1994; Hoareau &
Boissau, 2010; Geller et al., 2013 and references therein).
Several investigations of Hydrozoa using the COI gene have
aided in species identifications and indicated cryptic diversity
in some taxa (e.g. Bucklin et al., 2010; Ortman et al., 2010;
Laakmann & Holst, 2014). However, other authors suggested

that the mutation rate of this gene is too slow for hydrozoans
(Shearer et al., 2002). Moreover, Lindsay et al. (2015b) pointed
out that two COI GenBank siphonophore sequences pub-
lished by Ortman et al. (2010) actually represent ostracod or
protist contaminants so they are misleading. As a result,
another mitochondrial gene 16S rRNA is more frequently
used, works well for most pelagic hydrozoans, and many
more sequences are available for this gene for hydrozoans
on GenBank (Zheng et al., 2014; Lindsay et al., 2015b).
Dunn et al. (2005) used the 16S rRNA gene to study phyloge-
netics within the order Siphonophora, and this mitochondrial
gene also allowed for positive identification of Eudoxia macra
as the eudoxid stage of Lensia cossack (Grossmann et al.,
2013a).

Grossmann et al. (2013b) studied the morphology of Mica
micula colonies and assumed that this siphonophore is most
probably the post-larval stage of Pyrostephos vanhoeffeni, in
contrast to the suppositions of some other authors (Margulis,
1982; Pugh, 1999a; Mapstone, 2009). However, Grossmann
et al. (2013b) also stated that further research applying genetics
to the problem is needed and could give the final answer to this
question. The aim of the present study therefore is to use the
molecular methods to check the genetic affinity of M. micula
with P. vanhoeffeni.

M A T E R I A L S A N D M E T H O D S

Samples for this study were collected from three areas in the
Southern Ocean: on a transect from Cape Town (South
Africa) to the Weddell Sea (1 station – T1), on a transect
from the Antarctic Peninsula to South America through
Drake Passage (2 stations – D1, D2) and in Admiralty Bay,
King George Island, South Shetland Islands (3 stations –
AB1–AB3) (Table 1, Figure 1). Samples from the transects
Cape Town (South Africa) – Weddell Sea and Drake
Passage were collected between December 2009 and January
2010, during the cruise on RV ‘Akademik Ioffe’, while those
from Admiralty Bay were collected during the 33rd Polish
Antarctic Expedition (Austral summer 2008/2009). Sampling
was performed with a WP2 plankton net (200 mm mesh
size) and a Neuston net (500 mm). Thirty-four nectophores
of Pyrostephos vanhoeffeni, and four colonies of Mica micula
after identification to species level were preserved in 99.5%
ethanol (Table 1, Table S1). DNA extraction from all speci-
mens was performed according to a standard phenol-
chloroform method after Hillis et al. (1996). The initial diges-
tion with proteinase K was performed for one hour. Air-dried
DNA pellets were eluted in 100 ml of TE buffer, pH 8.00, stored
at 48C until amplification, and subsequently at 2208C for

Table 1. Characteristics of the samples used for the present work.

Species Station code No. of nectophores/colonies used Depth (m) Date Sampling location

Lat. Long.

P. vanhoeffeni T1 1 300–0 10.12.2009 43816′S 8816′E
P. vanhoeffeni D1 14 200–0 03.01.2010 62819.769′S 63848.37′W
P. vanhoeffeni D2 4 100–0 05.01.2010 60820.87′S 64830.59′W
P. vanhoeffeni AB1 15 470–0 20.12.2008 62808.90′S 58829′40′W
Mica micula AB2 3 1–0 28.11.2008 62808.90′S 58829’40′W
M. micula AB3 1 1–0 31.12.2008 62808.90′S 58829’40′W
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long-term storage. A fragment of 16S ribosomal RNA (16S
rRNA; �580 bp fragment) was amplified using ‘primer 1’
and ‘primer 2’ from Cunningham & Buss (1993) with
DreamTaq Green PCR Mastermix (Thermo Scientific). The
protocol for the PCR reaction was 948C for 5 min, 35 cycles
(948C for 60 s, 518C for 60 s, 728C for 90 s); finally fragments
were elongated at 728C for 5 min. Sequences were obtained
using the BigDye sequencing protocol (Applied Biosystems
3730xl) by Macrogen Inc., Korea. The sequences were
aligned with MAFFT v7.308 algorithm (Katoh et al., 2002) in
Geneious 10.1.2, leading to 38 sequences of 561 bp each.

The uncorrected p-distance and the Kimura 2-parameter
(K2P) model (Kimura, 1980) were used to determine sequence
divergence in MEGA V7.0.18 (Kumar et al., 2016). A
Neighbour-joining (NJ) tree was built based on the p-distance
with both transition and transversion substitutions included
and pairwise deletion chosen. Node support was inferred
with a bootstrap analysis (1000 replicates). The sequences of
Bargmannia amoena and B. elongata, the only representatives
of the family Pyrostephidae with available 16S data, were also
used in the analysis (GenBank accession numbers AY935292
and AY935321, respectively). The sequence of Apolemia rubri-
versa, another representative of Physonectae, was used to root
the tree (GenBank accession number KF214713). All
sequences were deposited in GenBank with the accession
numbers KY370929–KY370966 (Table S1). Relevant voucher
information, taxonomic classifications, and sequences are

accessible through the public data set ‘DS-PVSO’ on the
Barcode of Life Data Systems (BOLD; http://www.boldsys-
tems.org) (Ratnasingham & Hebert, 2007).

R E S U L T S

Among the 38 sequences obtained, five haplotypes were dis-
tinguished. One of them, represented by a single sequence, dif-
fered from the others by only one insertion and in the NJ tree
was not treated as a separate entity. Due to the fact that some
nectophores from the same samples shared haplotypes, it was
assumed that they belonged to the same colony fragmented
during collection. In further analyses they were not treated
as separate units. This resulted in final examination of six col-
onies of P. vanhoeffeni and four colonies of M. micula. The
values of overall uncorrected p-distance and the K2P distance
between haplotypes were very similar (0.041 and 0.043,
respectively). The haplotype divergence ranged from 0 to
0.063 in case of p-distance and from 0 to 0.066 for K2P dis-
tance (Table 2). The NJ tree showed that all sequences from
the present study constituted a single branch further divided
into two distinct clades with high support (bootstrap 100%)
(lineages A, B) (Figure 2). The lineage A consisted of three
haplotypes of both Mica micula and Pyrostephos vanhoeffeni,
present exclusively in Admiralty Bay. The individuals belong-
ing to the second Molecular Operational Taxonomic Unit

Table 2. Comparison of the genetic distance between haplotypes found calculated using uncorrected p-distance (above diagonal – grey tint) and Kimura
2-parameter (K2P) (below diagonal).

Haplotype 1 Haplotype 2 Haplotype 3 Haplotype 4 Haplotype 5

Haplotype 1 0.002 0.004 0.059 0.059
Haplotype 2 0.002 0.002 0.061 0.061
Haplotype 3 0.004 0.002 0.063 0.063
Haplotype 4 0.062 0.064 0.066 0
Haplotype 5 0.062 0.064 0.066 0

The distance between haplotype 4 and 5 is zero due to one insertion in the latter that is not recognized as a mutation in both measures.

Fig. 1. Sampling points. T1, D1, D2, AB1–AB3 – station codes; see Table 1 for details.
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(MOTU) identified (lineage B), represent two haplotypes of P.
vanhoeffeni and were found in localities in the open sea in the
Southern Ocean and in Admiralty Bay. The haplotype from
Admiralty Bay differs from that in the open ocean by a
single insertion. The average distance of the sequences
forming lineage A was 0.002 (both p-distance and K2P),
while that between the lineages A and B was 0.060 of
p-distance and 0.063 of K2P (Table 3). The distance
between both Bargmannia species and the two discovered
clades ranged from 0.272 to 0.280 for p-distance. In the case
of K2P the values were from 0.345 to 0.357. Similar values
of sequence divergence were observed between the two discov-
ered lineages and Apolemia rubriversa. Nucleotide differences
between sequences from clades A and B were 6.5–6.8%.

D I S C U S S I O N

In our study molecular techniques were used to investigate two
species of Southern Ocean siphonophores, namely the

enigmatic taxon Mica micula (Figure 3a), and a taxon which
is quite common and abundant in these waters –
Pyrostephos vanhoeffeni (Figure 3b).

Analysis of the biogeographic distribution of Pyrostephos
vanhoeffeni, Mica micula and Bargmannia elongata showed
that the distribution of the two first is limited to the southern
hemisphere (Figure 4). In contrast, the distribution of B. elon-
gata is much broader, with individuals occurring in Canadian
Pacific waters (Mapstone, 2009), off California and San Diego
and in the NE Atlantic (Pugh, 1999a; Dunn et al., 2005), in the
Gulf of Mexico (Pugh & Gasca, 2009) as well as in Japanese
waters (Lindsay & Hunt, 2005; Lindsay, 2006) and in the
Indo-Pacific (Lindsay et al., 2015a) (Figure 5). Both P. van-
hoeffeni and B. elongata have been observed in the east and
west Antarctic regions (Margulis, 1982; Pugh et al., 1997;
Toda et al., 2010; Grossmann et al., 2013b), but overall
there are many more records for P. vanhoeffeni in this area
than for B. elongata. Mica micula has been recorded in the
East Antarctic region (Grossmann et al., 2013b), Admiralty
Bay (King George Island, South Shetlands Archipelago) and
in the Atlantic sector of the Southern Ocean (Pagès & Gili,
1989) (Figures 4 and 5). The last authors collected one necto-
phore of B. elongata and two colonies of M. micula, but no
associated specimens or nectophores of P. vanhoeffeni.
Summarizing, the records for B. elongata in the Southern
Ocean show very little correlation with the areas of distribu-
tion of M. micula, whereas the distribution of Pyrostephos
vanhoeffeni overlaps well with that of M. micula.

A study of 16S rRNA sequences clearly show that Mica
micula is the post-larval stage of Pyrostephos vanhoeffeni
(Figure 2). Similar studies resulted in the recognition of
another enigmatic siphonophore taxon – Eudoxia macra –
as the eudoxid stage of the small diphyid Lensia cossack
(Grossmann et al., 2013a). Some authors have suggested that
M. micula might be a post-larva of Bargmannia elongata, the
only other representative of family Pyrostephidae identified
in Antarctic waters (Pagès & Gili, 1989; Pugh, 1999b), but
this has been questioned due to the non-coincidence of distri-
bution records of these two pyrostephid taxa (Grossmann
et al., 2013b). Our study also shows that the genetic distance

Fig. 2. Neighbour-joining (NJ) tree of 16S rRNA sequences representing each studied colony based on uncorrected p-distance; the numbers in front of the nodes
indicate bootstrap support (1000 replicates, only the values higher than 50% are presented); T1, D1, D2, AB1–AB3 – station codes – see Table 1 for details.
Sequences of Bargmannia amoena, B. elongata and Apolemia rubriversa retrieved from GenBank.

Table 3. Genetic distance calculated using p-distance and Kimura 2-
parameter (K2P) within and between distinguished lineages and

outgroups.

p-distance K2P

Mean SD Mean SD

Lineage A 0.002 0.002 0.002 0.002
Lineage B 0 0 0 0
Lineage A vs Lineage B 0.060 0.002 0.063 0.002
Lineage A vs B. elongata 0.280 0.001 0.356 0.003
Lineage B vs B. elongata 0.280 0.002 0.357 0
Lineage A vs B. amoena 0.272 0.002 0.345 0.002
Lineage B vs B. amoena 0.275 0 0.349 0
Lineage A vs A. rubriversa 0.283 0.002 0.361 0.003
Lineage B vs A. rubriversa 0.275 0 0.347 0
B. elongata vs B. amoena 0.033 – 0.034 –
B. elongata vs A. rubriversa 0.103 – 0.111 –
B. amoena vs A. rubriversa 0.090 – 0.096 –

Mean - mean value, S.D. - standard deviation.
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between sequences of M. micula and B. elongata is greater than
the inter-family distances within some other hydrozoans
(Zheng et al., 2014).

Our results also revealed two clearly separated genetic
lineages of Pyrostephos vanhoeffeni in the Antarctic
(Figure 2). Lineage (A) represented by three haplotypes was
restricted solely to Admiralty Bay, whereas specimens
assigned to the other lineage (B) came from several regions
including Drake Passage, Admiralty Bay, and also the South
African region of the Atlantic Ocean. Apart from the sequence
from Admiralty Bay (differing by one insertion), this wide-
spread lineage (B) is represented by a single haplotype,
which suggests constant gene flow. What is more, the
colony from the South African region was collected north of
the Antarctic Convergence. That indicates that the differences
in water temperature observed north and south of it do not
prevent mixing of the populations. This is in contrast to the
findings by Grossmann et al. (2013a) who recorded the exist-
ence of two genetically distinct populations of another

siphonophore, Lensia achilles associated with different water
masses. It is also worth noting that genetic diversity observed
in Admiralty Bay is noticeable as four out of five haplotypes
recorded in this study were present only in this small embay-
ment. The diversity expressed by K2P within both lineages
was very low, whereas between them it amounted to 0.063
(Table 3). This value falls well within the intra-species dis-
tances observed in different Lensia species (Lindsay et al.,
2015b). Grossmann et al. (2013a, 2015) have observed also
the cryptic diversity within this genus. In this case, the
genetic distances between populations of several morphospe-
cies were distinctly higher (up to 0.25), compared with usually
recorded intraspecific values of 0.01 to 0.16 (Lindsay et al.,
2015b). However, one must take into account that in the
case for Lensia, the nominal species with large intra-species
genetic distances were sampled in different geographic loca-
tions that are not expected to exhibit gene flow in modern
times, namely Japan and Antarctica, so the geographic dis-
tance between sampling localities is much greater than in

Fig. 3. Mica micula – young colony: a1 – from Pagès & Gili (1989), a2 – A. Panasiuk, Pyrostephos vanhoeffeni – nectophore: b1–from Alvarino et al. (1990), b2
– A. Panasiuk.

Fig. 4. Distribution/records of Pyrostephos vanhoeffeni and Mica micula based on available data (from Hardy & Gunther, 1935; Alvarino, 1971; Pagès & Gili, 1989;
Alvarino et al., 1990; Margulis, 1992; Pagès & Kurbjeweit, 1994; Pagès et al., 1994; Pakhomov et al., 1994; Pagès & Schnack-Schiel, 1996; Palma & Rosales, 1997;
Pugh et al., 1997; Pagès & Orejas, 1999; Palma & Aravena, 2001; Fuentes et al., 2008; Panasiuk-Chodnicka & Żmijewska, 2010; Toda et al., 2010, 2014; Grossmann
et al., 2013b; Guerrero et al., 2013; Lindsay et al., 2014; Panasiuk-Chodnicka et al., 2014); size of the circle indicates the frequency of records.
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the present study (Grossmann et al., 2013a). Higher genetic
diversity (0.12) was also recorded for L. achilles specimens
from two different water masses – one sub-arctic and one
sub-tropical (Grossmann et al., 2013a). On the other hand,
it is worth noting that the genetic distance between sequences
of two species of Bargmannia used in the present study is con-
siderably lower than the one between the two lineages of P.
vanhoeffeni (Table 3). Also Zheng et al. (2014) who studied
pelagic Hydrozoa from the order Leptothecata found that
the intra-specific variation of the 16S rRNA gene was consid-
erably lower in these cnidarians than in the siphonophores
studied here (with a maximum value of K2P reaching
0.016). At the same time the interspecies distances of this par-
ameter observed by these authors varied from 0.062 to 0.642.

The phylogeography of the recognized lineages remains an
open issue. Lineage B has a wide geographic range and may
represent the population of circum-Antarctic distribution,
extending also north of the Antarctic Convergence. On the
other hand lineage A may indicate a population of limited dis-
tribution. The study of further material from additional
Antarctic localities, including both detailed morphological
investigations and additional molecular analyses, could
address this question.
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