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R&D AND GROWTH: THE MISSING
LINK?

ROBERTO M. SAMANIEGO
George Washington University

The presumption that R&D is a key driver of economic growth is difficult to reconcile
with empirical evidence. For example, in most studies, which identify technical change
with total factor productivity (TFP), the link between TFP and measures of knowledge is
found to be weak.

This paper shows that a reconciliation may be possible in a model where R&D
contributes to growth through investment-specific technical change. Such a model predicts
that the empirical link between knowledge and productivty would be weak even if the
generation of knowledge is the predominant factor of economic growth. The paper also
shows that estimates of the production function for knowledge using patent data may be
biased.
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1. INTRODUCTION

An extensive literature links economic growth to increases in technical know-
ledge. Although such models of ideas-based growth are theoretically appealing,
empirical work tends not to support a significant role for R&D in the growth
process. First, the link between measures of knowledge and productivity is weak.
Second, estimates point to the presence of constant or even increasing returns
to the production of ideas, which has the counterfactual implication that rates of
economic growth should increase with the population size.1

This paper proposes that a quantitatively important role for ideas in the process
of economic growth is easily reconciled with these empirical “puzzles” if ideas
are investment-specific. In this case, ideas contribute to economic growth through
the factor accumulation process, and do not enter TFP directly. Measured TFP
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may then display only a weak relationship to indicators of new knowledge, even
if technical knowledge were the predominant factor of economic growth.

Several authors identify investment-specific technical change using the relative
price of capital, which has declined steeply since 1947.2 If ideas lead to growth
through investment-specific technical change, this price is itself an indicator of the
quantity of economically relevant knowledge in use. I use price data to construct an
implicit series for the knowledge stock, and compare it with a measure derived from
a more traditional indicator: patent activity. The two series do indeed co-move.3

However, there is also evidence of a change over time in the relationship between
ideas and patents, suggesting that patent “quality” has varied—or, more broadly,
that patent data may not adequately proxy for the stock of ideas. Once this is taken
into account, the paper shows that mismeasurement can lead to the appearance of
increasing returns in the production function for ideas even if they are not present.
Indeed, the results are supportive of the existence of decreasing returns, with an
elasticity possibly as low as [0.2, 0.6]. In this way, the empirical evidence is in
fact consistent with a simple aggregate framework in which economic growth is
driven by the production and implementation of new knowledge.

Section 2 lays out the empirical findings that the model will address. Section 3
describes the model framework, and Section 4 studies the relationship between
patent data and the relative price of capital. Section 5 discusses the empirical “puz-
zles,” and Section 6 concludes with a discussion of the robustness of the results.

2. EMPIRICAL CONTEXT

Empirical work to identify the macroeconomic relationship between research and
growth has focused on linking measures of research activity either to total factor
productivity or to long-run patterns of economic growth. This work typically
begins by identifying a measure of technical knowledge. Let qt be the measure of
new knowledge in period t . The stock of knowledge Tt then evolves according to
the equation

Tt+1 = (1 − δT )Tt + qt , (1)

where δT is the rate at which ideas “depreciate.”4

The key to ideas-based growth models is that Tt is an important determinant of
macroeconomic variables, and that it changes over time as the result of volitional
research activity by agents. Thus, the aggregate behavior of the economy is given
by two production functions. First, the production function of aggregate output yt

depends upon Tt , in addition to aggregate capital kt and labor nt

yt = ztT
θ
t k

αk

t n
1−αk

t , (2)

where Tt is a factor of TFP, and zt is a productivity residual. Second, the quantity
of new knowledge is given by an ideas production function

qt = stT
φ
t x

ψ
t , (3)
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where xt indicates the input of resources into research, and st is a residual analo-
gous to zt . Empirically, the variable st captures the fact that measures of the input
into research display far less low-frequency variation than measures of the output.
It grows on average by a factor γs .

Estimates of the parameters of equations (2) and (3) tend to yield results
that are challenging for ideas-based growth models. First, using patent appli-
cations as an indicator of knowledge Tt , Porter and Stern (2000) and Abdih and
Joutz (2006) find that the contribution of ideas to total factor productivity is
small. Point estimates of θ lie in the range [0.05, 0.2], and often lack statistical
significance.

The second challenge concerns the parameter φ. A value of φ > 0 implies that
past ideas are useful for the production of new ones, whereas a value of φ < 0
suggests that research uncovers the ideas that are easiest to find, so that discovery
becomes progressively more difficult. These effects are known respectively as
“standing on shoulders” and “fishing-out.” Endogenous growth models of this
class are typically constructed so that φ = 1: for example, this is true of the
model in Romer (1990), in which increases in capital variety drive growth, and
of Krusell (1998), in which ideas lead to growth through investment-specific
technical change as here. However, if φ = 1, then the growth rate depends on the
population size (or, more generally, the size of the economy). Jones (1995) strongly
rejects any empirical growth-population link in postwar U.S. data: population
rises monotonically, whereas growth rates display no upward trend, implying
that φ < 1. Greenwood and Jovanovic (2001) argue that this constitutes a key
empirical shortcoming of ideas-based growth models.5 Direct empirical estimates
of the ideas production function have recently become available—see Porter and
Stern (2000) and Abdih and Joutz (2006). The estimates suggest that returns are in
fact close to constant or even increasing over the postwar period—in other words,
φ � 1. It is unclear how to square this result with the absence of accelerating
growth.

A third empirical puzzle also regards equation (3). Estimates of the ideas’
production function generally detect a downward trend in st . This decline is
robust to a diversity of approaches. For example, Caballero and Jaffe (1993) use a
selection of citation-weighted patent grants. Porter and Stern (2000) use aggregate
patent application data, also identifying the effects of international patenting.
Abdih and Joutz (2006) also use patent application data, simultaneously estimating
the aggregate production and ideas’ production functions. The downward trend
is perplexing, as it lacks a theoretical basis. For example, if it is the case that
“easy” ideas are discovered first, so that ideas become progressively harder to
uncover, this is precisely the “fishing out” hypothesis, which should be reflected
in a negative value of φ: it should depend on the number of ideas that have already
been uncovered, not on the date.

To sum up, the empirical evidence on ideas-based growth models is puzzling,
and has difficulty preserving a central role for the production of knowledge in
the process of economic growth. The remainder of this paper asks whether these
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findings can in fact be reconciled with such a role within the context of a simple
aggregate model.6

3. THEORETICAL FRAMEWORK

Consider now an aggregate framework with the same structure as (1), (2), and
(3). The difference is that technical knowledge Tt does not enter the production
function directly. Hence, the production function for output is

yt = ztk
αk

t n
1−αk

t , (4)

where output may be used for consumption ct , investment7 it or research input xt :

yt ≥ ct + it + xt . (5)

Instead, technical knowledge leads to economic growth through investment-
specific technical change. Thus, it appears in the capital accumulation equation:

kt+1 = (1 − δk)kt + Tt it
, (6)

where δk is the rate of physical depreciation.
Investment-specific technical change is a feature of many macroeconomic

models—for example, Greenwood et al. (1997). The hallmark of such models
is that the price of capital relative to final output (denoted pt ) is the inverse of the
extent of technical knowledge dedicated solely to the production of capital:

Tt = p−1
t . (7)

Krusell (1998) develops a model in which investment-specific technical change
is the endogenous result of R&D activity, so that it is the accumulation of new
knowledge that is responsible for the observed decline in pt in postwar U.S. data.

In the remainder of the paper, I refer to the class of ideas-based growth mod-
els in which new knowledge leads to growth through equation (6) rather than
through equation (2) as the embodied knowledge growth framework, or the EKG
framework.8

If, as suggested by equation (7), investment-specific technical change is the
endogenous result of R&D activity, the dynamics of the relative price of capital
pt and the stock of economically useful knowledge Tt should be related.

The long-run properties of the EKG framework are as follows. Let γχ be the
growth factor for any variable χ . Equation (7) implies that, on a balanced growth
path,

γT = γ −1
p . (8)

Combining (4) and (6), the relationship between ideas, TFP, population and
output growth is given by

γy = γ
1

1−αk
z γ

αk
1−αk

T γn, (9)
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as, from (5), investment and R&D input must grow at the same rate as output
along a balanced growth path.

Independently, (3) yields an expression for the growth rate of ideas itself, in
terms of other factors.

γT = γ
1

1−φ

s γ
ψ

1−φ

y . (10)

Eliminating γT using (9) and (10), the growth rate of final output in terms of the
exogenous variables is

γy = (
γ 1−φ

z γ αk

s γ (1−αk)(1−φ)
n

) 1
(1−αk )(1−φ)−αkψ . (11)

Although (11) may appear complicated, it captures the notion that the production
of ideas is an important channel of growth—although ultimately, as in Jones
(1995), long-run growth is driven by exogenous factors such as population change.

A necessary condition for balanced growth assuming that γz ≥ 1, γs ≥ 1 and
γn ≥ 1 is that

ψ <
(1 − αk)(1 − φ)

αk

, (12)

which will be satisfied if either of αk , ψ or φ is sufficiently small. In this event,
there exists a sufficient degree of concavity that the feedback from ideas production
back into output production is limited. Notably, it does not hold as φ → 1, which
is the Romer (1990) model. This result is analogous to that of Jones (1995): if
there is population growth then no balanced growth path exists in an ideas-based
growth model without decreasing returns. Nonetheless, large values of φ may
still be consistent with balanced growth, provided that γz < 1 and/or γs < 1.

Greenwood et al. (1997) do in fact argue that, at least since the 1970s, γz < 1,
whereas Griliches (1990), Porter and Stern (2000), and Abdih and Joutz (2006)
find that γs < 1. Hence, the structure of the model is agnostic as to the value of φ.

4. QUANTITATIVE ANALYSIS

The key trait of the EKG framework is that changes in the relative price of capital pt

reflect the implementation of economically useful ideas. In this case, equation (7)
suggests that there should be an observable empirical relationship between the
relative price of capital pt and indicators of the quantity of economically useful
knowledge.

To put it another way, the model suggests two ways to construct an index of the
quantity of economically useful ideas:

1. using a direct measure of knowledge, such as patent applications,9 as in the related
literature;

2. using the inverse of the relative price of capital, p−1
t .

Constructing the patent-based series for the stock of knowledge uses equation
(3), which requires a value for the depreciation rate for ideas δT . We will examine
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FIGURE 1. Correlation between the growth rates of the two constructed measures of the
knowledge stock, for different values of δT . Data are from the USPTO and Cummins and
Violante (2002).

different values of this parameter, and ask whether the patent-based series and
the price-based series co-move appreciably. If they do, this supports the EKG
framework—provided they do so for reasonable parameter values. Wilson (2002)
finds support in industry cross-section for the identification of capital-embodied
R&D with investment-specific technical change: finding such a link in aggregate
time-series would be significant.

There are two ways in which the data lend support to the EKG framework. First,
equation (8) suggests that the values of γT and γ −1

p should be identical. This is
indeed the case. As measured by patent applications at the USPTO (1947–2000)
γT = 1.0261. By contrast, as measured by the relative price of capital in Cummins
and Violante (2002) over the same time period, γ −1

p = 1.0262. Second, the two
time series are positively correlated regardless of δT —see Figure 1. Notably, this
co-movement is the strongest at empirically reasonable values of δT —Nadiri and
Prucha (1996) find that δT = 12%, and Pakes and Schankerman (1984) find values
up to δT = 26%. The correlation is maximized at δT = 14.5%, which is in the
middle of this range. In what follows, we shall assume that δT = 12%: results are
robust to reasonable variations in this value.

Figure 2 displays the growth rates of the two series. The price-based series is
more volatile: this is at least partly because of known sources of measurement
error,10 but also may reflect variations over time in the knowledge content of
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FIGURE 2. Patent stock growth and growth in the (inverse) relative price of capital. Corre-
lation: 35%. Data are from the USPTO and Cummins and Violante (2002).

patents, an issue that has been raised in the literature11 and which we will address
in detail later. Figures 3 and 4 display the growth rates of the two series once more,
this time Hodrick-Prescott filtered with smoothing parameters that are “small” to
remove only very high-frequency movements. Notably, very little smoothing is
necessary to raise the correlations between the two series even further. Observe that
both measures of the knowledge stock accelerate in the 1980s, beginning somewhat
earlier in the price-based series. The rise in patent growth is documented by Kortum
and Lerner (1998); that it coincides with a rise in the growth of the relative price
of capital is consistent with their conclusion that the surge in patenting is not
spurious but rather reflects an actual increase in the rate of innovation in the U.S.
economy.

Figure 5 displays the cross-correlogram of the growth rate of the two knowledge
stocks. There is some co-movement between the patent-based series and the price-
based series, contemporaneously and with a two-year lag. This suggests that
innovation leads to implementation fairly quickly, as found by Caballero and Jaffe
(1993).

5. ON THE EMPIRICS OF IDEAS-BASED GROWTH

This section addresses the empirical “puzzles” described at the beginning of this
paper, and their relationship to the EKG framework.
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FIGURE 3. Patent stock growth and growth in the (inverse) relative price of capital, Hodrick-
Prescott filtered growth rates with smoothing parameter λ = 1. Correlation: 57%. Data are
from the USPTO and Cummins and Violante (2002).

5.1. Knowledge and Productivity

The first challenge confronted by ideas-based models is that the empirical literature
generally finds a weak link between the knowledge stock and TFP. In the EKG
framework, however, this may not be surprising—even if the entirety of economic
growth is driven by the knowledge channel.

Let Tt be a measure of the knowledge stock. Several authors estimate the
following specification:

logyt = θ logTt + αklogkt + (1 − αk)lognt + ηt + εt , Et−1[εt ] = 0, (13)

which, defining zt ≡ eηt+εt , is equivalent to the production function (2). Typically,
estimates of θ are very low, ranging from 0.05 to 0.2 and sometimes lacking
statistical significance.12

Assume that the EKG framework is a correct representation of the world.
Consider an economist who ignores the presence of investment-specific techni-
cal change, and who wishes to identify TFP using a standard aggregate model.
The aggregate production function and law of motion for capital in such a model
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FIGURE 4. Patent stock growth and growth in the (inverse) relative price of capital, Hodrick-
Prescott filtered growth rates with smoothing parameter λ = 10. Correlation: 71%. Data
are from the USPTO and Cummins and Violante (2002).

will be:

yt = ẑt k̂
αk

t n
1−αk

t , (14)

k̂t+1 = (1 − δ̂t )k̂t + it , (15)

where k̂t is the capital stock derived according to (15), δ̂t equals economic depre-
ciation and ẑt is a residual. If economic depreciation is correctly measured, then
the following are the relationships between the aggregates of the standard model
and those of the present framework:13

k̂t = ktpt−1

δ̂t = 1 − (1 − δ)

(
pt

pt−1

)
, (16)

ẑt = zt

(
1

pt−1

)αk

.

Let us refer to ẑt as “measured TFP.” These changes of variables are an
equivalent manner in which to write down the present model, so long as the
relationships between ẑt , zt and pt are kept in mind. By contrast, (16) is the
accounting link that misattributes investment-specific to neutral technical change if

https://doi.org/10.1017/S1365100507060324 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100507060324


700 ROBERTO M. SAMANIEGO

-15 -10 -5 0 5 10 15
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Lag

S
am

pl
e 

C
ro

ss
 C

or
re

la
tio

n

FIGURE 5. Cross-correllogram for growth in the patent-based knowledge stock Tt and in
the price-based stock p−1

t . Horizontal lines represent 95% confidence bounds under the
hypothesis that the two series are uncorrelated. Data are from the USPTO and Cummins
and Violante (2002).

investment-specificity is ignored. To see this, using equation (7), the relationship
between knowledge Tt and measured TFP ẑt becomes

ẑt = ztT
αk

t−1. (17)

Thus, in the current framework, there are several reasons why the empirical
link between ideas and aggregate TFP should be weak. First, there could be
lags between inspiration and implementation, aside from the one-period lag14

in equation (17). Second, there may be measurement error—something we will
address in more detail below. Most importantly, however, if it is true that the stock
of ideas affects growth through investment-specific technical change, then (17)
states that the “true” value of θ equals αk: estimates of the contribution of research
to productivity will be bounded by the capital share. Measured capital shares tend
to be around 0.3 and, depending on the exact methodology, they can be as low
as 0.2 (see Maddison, 1987). To conclude, if research leads to growth through
investment-specific technical change, low estimates of θ are to be expected—even
if the knowledge channel may account for a significant proportion of economic
growth.

In fact, the contribution of research to economic growth through investment-
specific technical change can be assessed using standard growth-accounting
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TABLE 1. Statistics used in
Growth Accounting

Variable U.S. Data

γp 1.0262−1

γT 1.0261
γy 1.0333
γn 1.0119
δT 12%
αk 0.3

Sources: USPTO, Cummins and Violante
(2002) and NIPA. See Appendix B for
further details.

techniques. Equation (9) and Table 1 imply that, through investment-specific
technical change, the production of knowledge can account for about 55% of U.S.
economic growth over the postwar era. This is very close to the contribution of
investment-specific technical change to growth found by Greenwood et al. (1997)
via growth accounting using only equipment price data, and by Cummins and
Violante (2002) using structures also but with a different methodology.15 That this
number is so robust to different concepts of embodiment is remarkable.

5.2. The Production of Knowledge and Measurement Bias

The second challenge confronted by ideas-based growth models is that the em-
pirical literature generally estimates large values of φ, something that contradicts
the absence of observable “scale effects.” This puzzle can be resolved on the
basis that these estimates are likely to be biased as a result of the use of patent
data.

Let qt be the true flow of new ideas as before, and let bt equal the flow of new
patent applications. Then, qt can be decomposed according to

qt = mtbt , (18)

where mt is a factor that relates the number of patents to the number of ideas,
and captures the extent of measurement error inherent in using patent data as an
indicator of new knowledge. Denote mt as average “patent quality.” It cannot be
distinguished whether a given change in mt is due to patents being of higher or
lower informativeness, or due to changes in the fraction of ideas that are in fact
patented. However, in either case, any variation in mt implies that knowledge has
grown by more (or by less) than is indicated by patent data.

Let γm be the trend in mt . If γm = 1, then patents should serve as a reasonable
index of ideas and mt merely represents noise. There is, however, evidence that
mt may have increased over time. Recall that papers that estimate the ideas’
production function typically use patent applications as an indicator of new ideas,
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including a time trend among their regressors. They estimate variants of the
following equation:

logbt = µt + φlogTt + ψ logxt + εt , (19)

Griliches (1990) and Abdih and Joutz (2006) both find a significant negative time
trend, with µ ranging between −1% and −2.3%. Porter and Stern (2000) also find
a negative time trend for many of their specifications, averaging about −3%.16

Equation (19) is equivalent to the present setup, net of a relabeling of the
variables. In the ideas production function (3), set qt = mtbt . Taking logarithms,
this becomes simply

logbt + logmt = logst + φlogTt + ψ logxt (20)

Combining (19) and (20) yields mt = st e
−(µt+εt ) so that

µ = logγs − logγm. (21)

Thus, the measured time trend µ cannot distinguish between two factors: changes
in the effectiveness of research over time γs , and changes in patent quality γm.
In particular, if γs ≈ 1, then the time trend reflects not a downward trend in the
ideas’ production function but, instead, an upward tendency in patent quality.

If it is true that the patent stock underestimates growth in the stock of ideas
(γm > 1), then estimates of φ using patent data will be biased upward. To see this,
recall that the ideas’ production function and the ideas’ accumulation equation
can be written:

logbt + logmt = logst + φlogTt + ψ logxt , (22)

Tt+1 = btmt + (1 − δT )Tt . (23)

Observe that mt appears in (22) as a time trend, and also in (23) as a “correction”
to measuring the quantity of new ideas using patents.

By contrast, the empirical implementation of these equations is

logbt = µt + φ̂measuredlogBt + ψ logxt + εt , (24)

Bt+1 = bt + (1 − δT )Bt . (25)

Here Bt is the patent stock, and φ̂measured is the estimate of φ obtained when using
patent data as an indicator of ideas.

Writing the long-run forms of equations (22) and (24) and equating their right-
hand sides yields

φlogγT = µ + φ̂measuredlogγb − logγs + logγm,

φ = φ̂measured
logγb

logγT

,
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TABLE 2A. Patent and Trend Data

Source Period γb µ φ̂measured Underlying φ

Porter and Stern 73–93 1.0273 −0.03 0.84–1.2 0.40–0.57
Abdih and Joutz 48–97 1.0212 −0.23 1.4 0.67

γb is the growth rate of patent applications over the relevant sample period.
µ is drawn from the results of each paper. Because γb is somewhat sensitive to the period of measurement,
values are based on data for the sample period.

TABLE 2B. Price and Trend Data

Source Period γ −1
p µ φ̂measured Underlying φ

Porter and Stern 73–93 1.0316 −0.03 0.84–1.2 0.42–0.61
Abdih and Joutz 48–97 1.0247 −0.23 1.4 0.73

γp is the growth rate of the relative price of capital over the relevant sample period.
µ is drawn from the results of each paper.

since µ = logγs − logγm. Finally, γT = γbγm. Hence, the “true” value of φ

underlying their estimates is:

φ = φ̂measured

(
logγb

logγb + logγm

)
. (26)

If γm > 1, then φ̂measured is biased upward.
Table 2A displays patent growth and the measured time trend over the periods

for which each paper uses data, as well as the value of φ that is consistent with
their estimates after being “corrected” with equation (26). The point estimates turn
out to be consistent with values of φ that are well below unity.

Table 2B repeats the same exercise, this time replacing the patent stock measure
with the (inverse) relative price of capital. This implements the premise that
underlies the EKG framework: that the relative price of capital is an indicator of
the quantity of economically useful ideas. Remarkably, the “corrected” values of
φ turn out to be very close to those obtained using patent data in Table 2A—and
all are below unity.

Another way to assess the sensitivity of estimates of the ideas production func-
tion to the measurement issues just raised is to use the growth accounting relation-
ships (10) and (11) to obtain bounds on φ that are consistent with the estimates.
Equation (10) does not impose the identification of ideas with investment-specific
technical change, whereas equation (11) does.

First, on a balanced growth path γq = γT , so the long-run version of the ideas
production function (10) can be rewritten:

φ = 1 − ψ logγy + logγs

logγT

. (27)
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TABLE 3A. Predicted and Measured φ

ψ 0.3 0.6

Source φmax φmin φmax φmin φ̂measured

Porter and Stern 1.7 0.83 1.3 0.65 0.84–1.2
Abdih and Joutz 1.6 0.78 1.1 0.55 1.4

γT is measured using the patent stock.

TABLE 3B. Predicted and Measured φ

ψ 0.3 0.6

Source φmax φmin φmax φmin φ̂measured

Porter and Stern 1.7 0.68 1.3 0.37 0.84–1.2
Abdih and Joutz 1.6 0.60 1.1 0.19 1.4

γT is measured using the relative price of capital.

Given ψ , suppose that the patent stock is indeed an accurate index for the ideas
stock—as does the empirical literature. In this case, over the long run, γm = 1,

γT = γb and γs = eµ < 1. Applying equation (27) delivers a value for φ that
assumes that the measured trend represents decreases in st . Denote this value φmax.

On the other extreme, suppose that the entire time trend is attributable to mea-
surement error, so that γT = γbγm, γs = 1 and γm = γ −µ. This delivers a lower
bound on φ that is consistent with the estimates, denoted φmin.

The microeconomic estimates of ψ surveyed by Griliches (1990) range from
0.3 to 0.6, which turns out to be consistent with the estimates of other authors
based on aggregate data.17 We will focus on values within this range.

Results are reported in Table 3A. Again, the column for φmax lists the values
that the model predicts the authors will find by taking the negative time trend
at face value. These values are all larger than one. By contrast, if patent data
systematically underestimate growth in the stock of ideas, the resulting values are
all below unity.18

Table 3B repeats the same exercise, this time replacing the patent stock measure
with the relative price of capital. There is a striking similarity between the results
of Table 3A and Table 3B, the difference being that when the relative price of
capital is used the estimates are consistent with values of φ that are even lower
than when patent data are used.

Second, the same procedure can be applied to equation (11), the long-run
relationship between parameters and aggregates under the EKG framework. It can
be rearranged as follows:

φ = 1 − αkψ logγy + αklogγs

(1 − αk)logγy − logγz − (1 − αk)logγn

(28)
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FIGURE 6. Values of φ consistent with the estimates, given assumptions upon ψ and
γs . Based on equation (28) and on data from the NIPA, the USPTO, and Cummins and
Violante (2002), and on parameter values from Porter and Stern (2000) and Abdih and Joutz
(2006).

Values of φ that are consistent with this equation are displayed graphically in
Figure 6. Once more, when the measured trend is attributed to decreases in st , the
model predicts that measures of φ will be large and exceed unity—exactly as in
the empirical literature. By contrast, when the trend is attributed to measurement
error, the value of φ falls in the range [0.23, 0.62]. Interestingly, this is close to
the range of “corrected” estimates in Tables 2A and 2B.

Aside from the values themselves, the following results should be emphasized.
First, both the estimates and growth accounting point to values of φ > 0. This is
consistent with the “standing on shoulders” effect that prior art is useful for the
generation of current art, whereas the “fishing out” hypothesis is not substantiated.
Second, growth accounting suggests that there are likely to be decreasing returns
in the ideas’ production function: φ < 1. The framework is in fact consistent
with values of φ that exceed unity: however, this hinges on the presence of a
decreasing time trend in the ideas production function. Although such a trend has
been detected, there are several reasons to interpret it as an indicator of bias. Third,
the empirical estimates themselves are also consistent with decreasing returns once
allowance is made for this bias. Clearly, further quantitative work is desirable to
obtain more reliable point estimates. However, “quality bias” appears to be as
important an issue for the measurement of ideas as it is for the measurement
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of capital. This paper shows how taking this into consideration points to values of
φ that tally much better with theory, and that growth accounting within the EKG
framework is consistent with this interpretation.

6. DISCUSSION

6.1. Trend or Mismeasurement?

Does the literature offer any guidance as to whether the measured time trends µ

are best attributed to measurement error or to changes in the ideas’ production
function? To begin, the concern that aggregate patent data may not adequately
proxy for the quantity of ideas has been raised in the literature previously. For
example, Griliches (1990) points out that a potential problem with the use of
patent data is that patents may vary over time in terms of quality. The results
of Hall, Jaffe, and Trajtenberg (2000) suggest that patent quality varies substan-
tially in cross-section, in that citation-weighted patents are more closely related
to the market value of firms than are “raw” patents. Empirical work using the
sum of large numbers of patents as an indicator assumes implicitly that aggre-
gation will eliminate the influence of such heterogeneity: however, the distri-
bution of patent quality (as measured by future citations or other measures of
value) is so highly skewed that this aggregation result may not always hold—see
Griliches (1990), Harhoff et al. (2003), and Leiva (2004). As a result, several
authors conclude that there may be discrepancies between the stock of eco-
nomically useful knowledge and the patent stock over time as well as in cross-
section.

Second, it is difficult to see a theoretical basis for the existence of a downward
time trend in the ideas production function. One might propose that a downward
trend reflects the fact that R&D digs up ideas that are progressively more difficult
to find. However, in this event, the volume of new ideas should depend on the
quantity of ideas that have already been discovered, not on the date: this is precisely
the “fishing out” hypothesis, and should be reflected in a negative estimate of φ,
not in a time trend.

Third, empirically, a downward trend in the ideas production function seems at
odds with the evidence of Kortum and Lerner (1998), who argue that innovative-
ness has increased over time, particularly since the 1980s. It is also at odds with
Griliches (1986) and (1990), who finds no evidence of a decline in the returns
to R&D. Cohen et al. (2000) find that there has been a tendency away from
patenting and toward secrecy as a means of protecting intellectual property among
U.S. manufacturing firms. Lanjouw and Schankerman (1999) find that adjusting
patent data for forward citations and other measures of “quality” eliminates the
apparent downward trend in the productivity of research spending. All of this
points to the interpretation of µ as reflecting not changes in the productivity
of ideas as such but, rather, changes in the empirical link between patents and
ideas.
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FIGURE 7. Patent quality mt , as derived from equation (29). δT = 0.12. Data are from the
USPTO and Cummins and Violante (2002).

Finally, the EKG framework can be used to derive a series for the discrepancy
between patents and new ideas mt . From equations (1) and (18), it follows that

mt = p−1
t+1 − p−1

t (1 − δT )

bt

. (29)

Iterating on (29) with bt as new patent applications yields the desired series, which
is displayed in Figure 7. Patent quality is highly variable and does indeed display
an upward trend, increasing on average by 1.0% each year. This provides further
support for the interpretation of a time trends µ as the extent of measurement error
underlying the use of patent data.

6.2. Ideas and Sector-Neutral Technical Change

The paper assumes that all ideas are investment-specific, and that none result
in sector-neutral technical change. This contrasts with the empirical literature
that assumes that all ideas result in neutral technical change. Nonetheless, it is
reasonable to ask, what are the implications of assuming that only a fraction of
knowledge is investment-specific?

Suppose in what follows that a fraction ζ of knowledge Tt is investment-specific,
and that a fraction (1 − ζ ) leads to sector neutral technical change:
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1. Regarding the quantitative results of section 4, this simply multiplies the knowledge
series by a constant, so that the results of the correlation analysis of growth rates that
follows are not affected.

2. The results concerning measurement bias in estimates of φ are not affected either,
for the same reason and because most of those results are independent of whether
Tt and p−1

t are identified. Consequently, none of the above results in fact depend on
whether all knowledge is investment-specific: they all continue to hold so long as
part of knowledge is investment-specific.

3. What of the puzzle regarding the link between TFP and ideas? Suppose there is a
one-period lag between innovation and implementation as far as neutral technical
change is concerned.19 Then, equation (17) becomes

ẑt = zt [(1 − ζ )Tt−1]θ [ζTt−1]αk (30)

⇒ logẑt = Z + logzt + (θ + αk)logTt (31)

where Z is a constant. In this case, a log regression of the measured residual ẑt on a
lagged measure of knowledge Tt−1 will yield a coefficient θ + αk . If αk = 0.3, the
low empirical estimates of the relationship between ideas and TFP point to values of
θ close to zero.

In any case, if neutral technical change is a channel through which knowl-
edge affects growth, one would expect a correlation between the residual zt in
equation (17) and the patent series Tt . Figure 8 does not display any significant

-15 -10 -5 0 5 10 15
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Lag

S
am

pl
e 

C
ro

ss
 C

or
re

la
tio

n

FIGURE 8. Cross-correllogram for growth in the patent-based knowledge stock Tt and in
the residual zt+k . 95% confidence bounds under the hypothesis that the two series are
uncorrelated. Data are from the USPTO, the NIPA, and Cummins and Violante (2002).
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correlation. This contrasts with Figure 5, which displays a clear correlation be-
tween Tt and p−1

t , as the EKG framework would suggest.
To sum up, the results are robust to allowing only part of the ideas stock

to lead to growth through investment-specific technical change. In addition,
the sector-neutral channel is not supported by the aggregate data presented
herein.

Perhaps this is to be expected. If firms have a choice between performing neutral
or investment-specific R&D, they might prefer to conduct the latter if it is more
easily appropriable. Investment-specific knowledge should be embodied in the
capital goods that it is used to produce, and this detectability may make patent
enforcement easier. The decision of whether or not to embody knowledge could
be an interesting avenue for future research.

6.3. Concluding Remarks

This paper proposes a view of economic growth that is consistent with several em-
pirical paradoxes regarding the link between knowledge and TFP, while preserving
the centrality of the accumulation of knowledge as a factor of economic growth.
The key is to identify the implementation of economically useful knowledge with
investment-specific technical change. In this case, the absence of a strong rela-
tionship between measures of knowledge and TFP is to be expected: instead, it is
co-movement among measures of knowledge and measures of investment-specific
technical change that provides evidence of a link between ideas and growth. This
identification, in combination with the issues raised involving the measurement of
ideas, suggest that there may be positive but decreasing returns to old knowledge
in the production of new ideas.

NOTES

1. See Romer (1990), Jones (1995), Porter and Stern (2000), and Abdih and Joutz (2006).
2. See Greenwood et al. (1997), Krusell (1998), and Cummins and Violante (2002).
3. Also in support of this account, Wilson (2002) finds cross-sectional evidence linking measured

industry-level capital price declines to accumulated R&D in upstream capital goods.
4. Ideas may be superseded by others; certain avenues of research may be exhausted so that they

cease to be important for the production of new ideas and goods; or they may simply be forgotten.
That this occurs empirically is seen in that patent maintenance fees are not always paid—see Griliches
(1990).

5. The implication was that ideas-based growth models should have weaker policy implications,
because taxation or subsidy schemes could not affect growth rates, although in a richer framework
Howitt (1999) demonstrates that this need not be the case. Independently of this debate, Jones (1995)
argues that the extent of returns remains an important determinant of other model properties, such as
transition dynamics.

6. Of course, one interpretation of the results is that patent data do not accurately reflect the
aggregate quantity of technical knowledge. I defer a discussion of such measurement questions until
Section 5.

7. The term “investment” here refers to foregone consumption goods that are used to make new
capital goods.
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8. Although the Krusell (1998) model articulates the key EKG relationships (7) and (6), it does
not aggregate to the empirical equations (1) and (3). The Appendix describes a generalization of the
Krusell (1998) model, which satisfies this property.

9. See Appendix B for further comments on the use of patent data.
10. In particular, the sharp dip in 1974 is related to price controls at the time—see Cummins and

Violante (2002).
11. See, for example, Griliches (1990), Hall, Jaffe, and Trajtenberg (2000), Harhoff et al. (2003),

and Leiva (2004).
12. See Griliches (1990) for a survey of microeconomic estimates, and Porter and Stern (2000)

and Abdih and Joutz (2006) for macroeconomic estimates.
13. See Greenwood et al. (1997) and Krusell (1998).
14. Aware of this, empirical work often assumes such a lag. For example, Porter and Stern (2000)

assume a three-year lag between patent applications and TFP. As for the empirical consistency of
the assumed lag, in related models that also satisfy equation (16), Greenwood et al. (2000) and
Fisher (2006) find that 30% of business cycle fluctuations and 50% of time-series variation in labor
productivity can be attributed to variations in pt , respectively.

15. Interestingly, in a calibrated model of the establishment life-cycle, Samaniego (2006) finds a
broadly similar value for plant-embodied technical change.

16. Porter and Stern (2000) find annual trends between +3% to −10%, depending on the exact
method and time period of analysis. I adopt a value of −3%, which is around the middle of the range
and that is not very different from the values found by other authors.

17. It is simple to show that the model of ideas’ production is equivalent to one in which each
sector uses labor and capital rather than the numeraire. The corresponding specification is:

Q(Tjt , T̄t , kt , nt ) =
(
T 1−σ

jt T̄ σ
t

)φ

k
η
jt n

λ
jt

for the special case in which η = αkψ and λ = (1 − αk)ψ , this restriction being consistent with
the absence of a trend in factor shares. Abdih and Joutz (2006) estimate an equation of the form
qt = eµtT

φ
t k

η
t nλ

t , estimating λ = 0.21. Setting ψ = λ
1 −αk

implies that ψ = 0.3. Porter and Stern
(2000) obtain values of λ between 0.21 and 0.45 when there is a year control present, which corresponds
to the range ψ ∈ [0.3, 0.64].

18. Growth in reported R&D spending has amounted to over 4% per year: if this is replaced for γy

in equation (27) then the values of φ obtained are even lower.
19. If there is no lag, results are essentially the same but more complicated to derive.
20. Henceforth, let γχ denote the average growth factor for any variable χt .

21. Alternatively, define the opportunity cost of new capital goods in terms of the numeraire to be
pjt . Then, (7) emerges from this definition.

22. Positive population growth is necessary in order to address the question of scale-effects. the
Krusell (1998) assumes that φ = 1 and does not have population growth: if there were, that model
would not have a balanced growth path.
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APPENDIX A: DECENTRALIZED MODEL

This section describes a decentralized economy that fits within the EKG framework. As
in Krusell (1998), in this framework the production of ideas generates economic growth
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through investment-specific technical change and, with some minor modifications, the
Krusell (1998) model aggregates to a production function and law of motion for ideas
that is the same as those estimated in the empirical literature—equations (1) and (3). The
interested reader may refer to that paper for further theoretical analysis.

A.1. OUTPUT

Time is discrete. There are two sectors, one that produces the numeraire (final) good and
another that produces new capital goods. Output yt is produced according to a Cobb-
Douglas technology that uses labor nt and a continuum of different types of capital kjt ,
j ∈ [0, 1].

yt = zt

(∫
k

αk

jt dj

)
n

1−αk
t , (A.1)

where sector-neutral technical change zt is stochastic, and grows by a factor γz on average
each period.20 Capital of type j commands a rental rate rjt , and labor a wage wt . Define
aggregate capital kt = ∫

kjtdj.

Output has three uses in this model. It may be used for household consumption (ct ), as
investment (ijt ) for transformation into capital goods of any type j, or used as an input into
R&D (xjt ). The feasibility constraint is

yt ≥ ct +
∫

ij t dj +
∫

xjtdj. (A.2)

A.2. RESEARCH AND INVESTMENT-SPECIFICITY

Each type of capital j is produced by a monopolist, who also may perform R&D in order to
increase her productivity. Let Tjt denote the quantity of investment-specific ideas relevant
for the production of capital type j . Capital is accumulated according to the equation

kj,t+1 = (1 − δk)kjt + Tjt ij t . (A.3)

where δk is the rate of physical depreciation. Ideas evolve according to

Tj,t+1 = (1 − δT )Tjt + qjt . (A.4)

Define Tt = ∫
Tjtdj to be the average level of knowledge across sectors, and let qjt be

the quantity of new ideas generated in sector j in period t , which is given by a production
function

qjt = stQ(Tjt , Tt , xjt ).

Q depends on the quantity of ideas in sector j , as well as Tt and physical input xjt . Thus,
there may be cross-industry spillovers. Krusell (1998) adopts the following functional form
for Q:

Q(Tjt , T̄t , xt ) = (
T 1−σ

jt Tσ
t

)φ
x

ψ

jt . (A.5)

The parameter σ indicates the extent of cross-sectoral spillovers, whereas φ and ψ

govern the return to old ideas and to research input in the production of new knowledge.
This formulation is a generalization of the function in Krusell (1998), which assumes that
φ = 1. As mentioned earlier, the value of φ has been the subject of much debate, and as a
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result the current model does not restrict it. Krusell (1998) also differs in that it sets δT = 1.
To strengthen the connection of the model to the related empirical literature, the paper does
not restrict δT either. The value of σ is interesting for theoretical reasons, but does not affect
the long run growth properties of the model. A third generalization of the Krusell (1998)
model concerns population growth: see later.

The monopolists earn profits from renting their capital to the final goods’ sector.
Hence, the first-order condition of the final goods firms with respect to capital rjt (kjt ) =
αkk

αk−1
j t n

1−αk
t represents an inverse demand function for each investment firm. Let V be

the value function of a monopolist, which depends on the idiosyncratic and aggregate state
variables. Then,

V (kjt , Tjt , kt , Tt ) = max
it ,xt

{
rjt (kjt )kjt − ij t − xjt + 1

1 + ι
EtV (kj,t+1, Tj,t+1, kt+1, Tt+1)

}
,

(A.6)

subject to the production functions and laws of motion of capital and ideas.
The first-order condition of this problem with respect to investment is

1 = Tjt

1

1 + ι
EtV1(kj,t+1, Tj,t+1, kt+1, Tt+1).

Define the price of capital pjt as the marginal benefit of creating a new unit of capital, so
that21

pjt = 1

1 + ι
EtV1(kj,t+1, Tj,t+1, kt+1, Tt+1).

Then the first-order conditions can be reformulated in terms of pjt to yield the decentralized
equivalent of (7):

Tjt = p−1
j t . (A.7)

A.3. HOUSEHOLDS

Closing the model requires a formulation of the household sector.
The population at date22 t is Nt = γ t

n . There is a unit continuum of households charac-
terized by the following dynastic utility function:

E0

∞∑
t=0

βtNt {logct + ηloglt }, 0 ≤ lt ≤ �, (A.8)

where lt is leisure and � is their time endowment. Consumption and labor are in per capita
terms. Households own the capital stock and all firms. Their budget constraint is

ct ≤ w(� − lt ) + �t, (A.9)

where �t represents any dividends they earn from firms that they own.
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A.4. SYMMETRIC EQUILIBRIUM

Let us focus on an equilibrium in which all capital types are treated equally, so that Tjt = Tt

and kjt = kt ∀j . From inspection of (A.3) and (A.5), it is easy to show that the real sector
and the knowledge sector aggregate to yield equations (2) and (3). Simply put, a recursive
competitive equilibrium for this economy is a set of prices, allocations and decision rules
that jointly satisfy the optimization, market-clearing, feasibility and rational expectations
conditions at every date. The equilibrium definition is standard and is the same as in Krusell
(1998), mutatis mutandis.

APPENDIX B: NOTES ON THE DATA

Patent data are from the United States Patent and Trademark Office (USPTO). Price pt

is the quality-adjusted price of capital relative to consumption of Cummins and Violante
(2002), which encompasses both equipment and structures. Output and investment data
are from the National Income and Product Accounts. Labor hours are from the Bureau of
Labor Statistics, and population data are from the United States Census Bureau. The years
covered are 1947–2000: all series are annual.

There are two alternative measures of the output of research activity: patent grants,
and patent applications. The paper uses patent applications for the following reasons.
The “application-to-grant” lag is about two years but varies widely over time, sometimes
taking considerably longer. In fact, grants are strongly correlated with the number of
patent examiners at the USPTO—see Griliches (1990). As a result, they are inadequate as
contemporaneous indicators of ideas’ production activity. Moreover, at the point in time in
which the patent is applied for, the applicant must have conceived of an innovation that,
although possibly in need of further development and marketing, is close to the point of
implementability. The model allows for a one-year lag at this stage.

Another option is R&D spending. The drawback is that it is a measure of the input into
the ideas production function, not the output, and as such displays very little short-term
variation. R&D spending may not constitute an accurate measure even of the input into the
production of ideas: managers and other workers whose positions are not nominally con-
nected with R&D may have patentable or otherwise economically useful ideas. Kortum and
Lerner (1998) argue that there has been an acceleration of innovative activity in the United
States in recent decades, attributed to increasingly active management of knowledge at the
establishment level. A likely effect of such a change would be an increase in the proportion
of business expenditures that are classified as R&D, as managers distinguish and target
R&D activities. Hence, measured aggregate R&D growth may overestimate ideas growth.

Another alternative is the share of employment made up by scientists and engineers in
R&D. Again, this is a measure of the input into R&D—not the output—and will suffer from
some of the same problems as R&D spending, such as the fact that managers and other
nonscientists may have economically useful ideas. It, too, displays very little high-frequency
variation.

To initialize the two knowledge stocks (Tt and p−1
t ), I assume that the economy was on

the balanced growth path in 1947: small deviations in this assumption do not affect results.
Patent data are available as far back as the late 18th century: constructing patent data based
on the entire series does not change results.
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