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An approach is presented that uses velocimetry data to estimate accurately the spatial
distribution of viscosity in steady laminar parallel flows of incompressible linearly
viscous fluids. The approach is generally applicable to Newtonian fluids with spatially
varying viscosity or to particle-suspension flows where a non-uniform distribution of
the particles contributes to spatial variations in the local effective viscosity of the sus-
pension. Emphasis is placed on the application of these methods to steady axisym-
metric blood flow in cylindrical glass capillary tubes and microvessels. In this context,
the spatial variations in viscosity over the vessel cross-section are predicted where it
is assumed that the rheological properties associated with a heterogeneous red blood
cell suspension can be well approximated by a continuous generalized linearly viscous
fluid having a spatially non-uniform viscosity. For such a fluid, an expression for the
viscosity profile over the vessel cross-section is derived that satisfies the conservation
principles of mass and momentum and depends upon the a priori determined velocity
distribution, which is extracted from fluorescent micro-particle image velocimetry data
obtained from microvessels in vivo. These profiles provide useful information about
dynamic, kinematic and rheological properties of the flow that include expressions
for the axial pressure-gradient component, the local shear stress distribution, and the
relative apparent viscosity. In microvessels, the effect of the glycocalyx surface layer
on the vessel wall is also accounted for in the analysis by modelling the layer as a
uniformly thick porous medium. Velocimetry data are presented from in vivo measure-
ments made in venules after the application of a light-dye treatment to degrade the
glycocalyx. Results reveal that these methods are sufficiently sensitive to detect a
reduction in glycocalyx thickness of ∼ 0.3 µm, which represents a fractional decrease
in thickness of ∼ 60–70% when compared with results from a separately published
data set obtained from venules having an intact glycocalyx.

1. Introduction
It is well known that blood, consisting primarily of red cells and plasma, undergoes

a phase separation in these two constituents under steady flow in microvessels and
narrow glass capillary tubes (Cokelet 1999; Pries, Neuhaus & Gaehtgens 1992). This
non-uniform distribution of red cells over the vessel cross-section leads to a cell-rich
core flow and a plasma-rich region near the wall. Fluid drag in the plasma-rich
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2 E. R. Damiano, D. S. Long and M. L. Smith

region gives rise to the so-called F̊ahræus effect, in which the instantaneous volume
fraction of red cells in the vessel, or tube haematocrit, HT , is decreased relative to
the red-cell concentration discharged from the vessel, or discharge haematocrit, HD .
The ratio HT /HD is seen to decrease with decreasing vessel diameter in glass tubes
ranging between ∼ 20 and 1000 µm in diameter (Cokelet 1999). Furthermore, since
disproportionate amounts of the shear-rate and velocity variations over the vessel
cross-section are associated with flow in the less viscous plasma-rich region, the
relative apparent viscosity, ηrel, defined as the ratio of steady volume-flow rates per
unit pressure drop of blood plasma relative to whole blood, is also seen to decrease
with decreasing vessel diameter in glass tubes ranging between ∼ 10 and 1000 µm in
diameter. This phenomenon, known as the F̊ahræus–Lindqvist effect, has been fairly
well established in vitro for blood flow under high shear rates through smooth-walled
glass capillary tubes (Pries et al. 1992).

For steady flow in glass capillary tubes, vessel diameter and discharge haematocrit
are the most important determinants of a variety of flow parameters, including HT , ηrel,
the volume-flow rate, Q, the axial pressure-gradient component, dp/dz, and the local
shear stress, τrz. Owing to the significant heterogeneity in red-cell distributions that
arises within microvascular networks in vivo, HD can typically assume a broad range of
values for the many vessels in a given network, and even a significant variability in its
value for a particular vessel in the network over time. This heterogeneity, coupled with
the inability to measure pressure gradients accurately in vivo (Lipowsky, Kovalcheck &
Zweifach 1978; Lipowsky, Usami & Chien 1980), has confounded attempts at quanti-
tatively characterizing blood flow in the microcirculation.

Here we present a method for easily estimating all of the aforementioned rheological
parameters, in both glass capillary tubes and individual microvessels within a micro-
vascular network, based on an analytical expression for the viscosity profile derived
from the cross-sectional velocity distribution obtained using fluorescent micro-particle
image velocimetry (µ-PIV). Estimation of HT and HD further requires knowledge of
the dependence of blood viscosity on haematocrit as might be obtained from rotational
viscometric studies of red blood cell suspensions in blood plasma. Although our
emphasis is on microhaemofluidics, and the approach will be illustrated in the context
of that example, these methods are generally applicable to any steady laminar parallel
flow of an incompressible Newtonian fluid or particle suspension that has a non-
uniform viscosity variation over the flow cross-section.

One further consideration regarding microhaemofluidics in microvessels pertains to
a macromolecular carbohydrate-rich surface layer on the vascular endothelium known
as the glycocalyx. Recent studies in capillaries and venules estimate the glycocalyx
to be ∼ 0.3–0.5 µm thick in vivo (Vink & Duling 1996; Smith et al. 2003; Long et al.
2004). Microfluidic studies near the vessel wall using high-resolution fluorescent µ-
PIV in post-capillary venules in vivo revealed nearly complete retardation of plasma
flow through the glycocalyx (Smith et al. 2003). Although such a structure accounts
for only ∼ 2–3% of the radius of vessels 30–50 µm in diameter, it happens to reside
in the high-shear-rate low-viscosity plasma-rich region near the vessel wall. As such,
even a relatively thin glycocalyx with sufficiently low permeability could effectively
immobilize a substantial fraction of plasma and therefore be an important determinant
of ηrel and dp/dz (Damiano 1998). In particular, for a Poiseuille flow of a constant-
viscosity fluid, the removal of a 0.5-µm-thick glycocalyx would lead only to an 8
to 14% decrease in apparent viscosity in vessels ranging from 50 down to 30 µm in
diameter. On the other hand, Damiano (1998) showed that, under the same condi-
tions, a 30 to 40% decrease in apparent viscosity could be expected if the fluid were

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

04
00

87
66

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112004008766


Estimation of viscosity profiles in linearly viscous fluids 3

non-uniformly viscous in a way that approximates the viscosity distribution of a
particulate suspension like blood. Therefore, by virtue of the non-uniform distribution
of red cells in microvessels, the glycocalyx can exert a significant influence on
microvascular resistance in vessels as large as 50 µm in diameter. Following methods
of Damiano et al. (1996), we will be treating the glycocalyx surface layer as a porous
medium with a vanishingly small solid-volume fraction.

2. Microhaemofluidics in cylindrical tubes
The model that forms the basis of our viscosity-profile estimate depends upon the

assumption that in tubes and vessels larger than 20 µm in diameter, the rheological
properties associated with a particulate red blood cell suspension can be well
approximated by a continuous linearly viscous fluid having a spatially non-uniform
viscosity. Cokelet (1999) found support for the continuum approximation in his studies
using physiological concentrations of red blood cells suspended in plasma flowing at
physiological shear rates in glass tubes as small as 20 µm in diameter. Results of the
analysis presented here, when applied to µ-PIV data obtained in glass capillary tubes
and microvessels greater than 20 µm in diameter (Long et al. 2004), add further
support to the validity of this approximation.

Under physiologically typical flow rates in microvessels, results have consistently
shown (Long et al. 2004) that over ∼ 90% of the vessel cross-section, shear rates exceed
∼ 50 s−1. Rotational viscometric data of mouse and human red blood cell suspensions
in Ringer’s solution (Chen & Kaul 1994) or autologous blood plasma (Long, Smith,
Ley & Damiano, unpublished data) have shown that, at shear rates in excess of
∼ 50 s−1, blood viscosity at fixed physiologically typical haematocrits varies by less
than 50% over an order of magnitude change in shear rate. Thus, in such flow
regimes, it might be reasonable to regard a heterogeneous suspension such as blood
as being a generalized linearly viscous fluid in the sense that the Cauchy stress tensor,
σ , is a linear function of the rate of deformation tensor, D, while the viscosity,
µ, is independent of D but may depend on thermodynamic state (as defined, for
example, by the density, ρ, and temperature, T ) and local haematocrit, H , namely
µ = µ(ρ, T , H ). More generally, if a linear relationship exists between σ and D, we
can regard both homogeneous and heterogeneous fluids as linearly viscous so long
as spatial variations in viscosity can come about as a result of variations in variables
such as temperature or particulate concentration (e.g. haematocrit), but not as a result
of variations in shear rate. In this sense, the dependence of blood viscosity on haemato-
crit (as with temperature in a classical Newtonian fluid, for example) enters into the
analysis as a transport relation, which is empirically derived from species-specific
rotational viscometric data. In what follows, we shall limit our attention to generalized
linearly viscous fluids defined in the manner in which they have been described here.

Whereas most two-phase and variable-viscosity models of blood flow in the micro-
circulation that invoke the continuum approximation have started with assumptions
about the viscosity and/or haematocrit distributions that led to predictions of the
velocity profile (Thomas 1962; Nair, Hellums & Olson 1989; Secomb 1995; Damiano
1998; Sharan & Popel 2001), we shall proceed by solving the inverse problem. Taking
the velocity distribution to be known from fluorescent µ-PIV data, we shall derive a
simple analytical expression for the viscosity profile over the vessel cross-section that
satisfies the conservation principles of mass and momentum and depends only upon
the experimentally obtained velocity distribution. Once obtained, these profiles provide
useful information about dynamic, kinematic and rheological properties of the flow.
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4 E. R. Damiano, D. S. Long and M. L. Smith

2.1. The momentum equation

For a fully developed axisymmetric steady flow of a purely viscous isotropic incom-
pressible fluid in a rigid smooth-walled circular cylinder of radius R, the continuity
and axial momentum equations in cylindrical coordinates (r, θ, z) are both integrable
in r , provided that the pressure does not vary over the tube cross-section and that the
viscous normal stress component, τzz, is either independent of z or identically zero (as
would typically arise in fully developed flow). Without any further specificity on the
deviatoric stress tensor, τ , we obtain the general result for this flow regime relating
the viscous shear stress component, τrz, and the pressure, p, given by

1

r

∂

∂r
(rτrz) =

dp

dz
= constant =⇒ τrz =

r

2

dp

dz
(0 < r < R). (2.1)

Therefore, independent of the constitutive behaviour of the fluid, τrz grows linearly
in absolute value from zero at the tube centre to a maximum at the tube wall. Thus
in this flow regime, the shear stress distribution for any purely viscous incompressible
fluid is of the same form as would arise in a Poiseuille flow in the tube.

2.2. The viscosity distribution for a linearly viscous fluid

For a linearly viscous fluid with radially varying viscosity, µ(r), the constitutive
relationship between the local shear rate, γ̇ (r), and τrz is given for this flow regime
by τrz = µ(r)γ̇ (r), which, when combined with the result from the conservation of
momentum given in (2.1), provides

τrz = µ(r)
dvz

dr
=

r

2

dp

dz
(0 < r < R), (2.2)

where vz(r) is the axial velocity component and γ̇ =dvz/dr . Solving (2.2) for µ(r) we
obtain the expression for the viscosity distribution given by

µ(r) =
r

2

(
dvz

dr

)−1
dp

dz
(0 < r < R). (2.3)

Evaluating (2.3) at r = R and solving for dp/dz, we find

dp

dz
=

2µR

R

dvz

dr

∣∣∣∣
r=R

, (2.4)

where µR = µ(R) is the viscosity at the tube wall. Applying L’Hopital’s rule to (2.3)
in the limit as r → 0, we obtain an alternative expression for dp/dz given by

dp

dz
= 2µ0

d2vz

dr2

∣∣∣∣
r=0

, (2.5)

where µ0 = µ(0) is the centreline viscosity. Combining (2.4) and (2.5) provides an
expression for the normalized centreline viscosity given by

µ0

µR

=
(dvz/dr)|r=R

R(d2vz/dr2)|r=0

. (2.6)

Combining (2.3) and (2.4) we find that µ(r) can be expressed independently of dp/dz

and takes the form

µ(r)

µR

=
r

R

(dvz/dr)|r=R

dvz/dr
=

r

R

γ̇ (R)

γ̇ (r)
(0 < r < R). (2.7)
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Estimation of viscosity profiles in linearly viscous fluids 5

For the special case of Poiseuille flow, γ̇ =dvz/dr is linearly proportional to r and the
right-hand side of (2.7) reduces to unity. The general result (2.7) applies equally well
to distributions in dvz/dr that are nonlinear functions of r , providing that the flow
is axisymmetric. This result provides the basis for our local viscosity estimate over
the tube cross-section. From µ-PIV measurements in a steady flow of blood through
glass capillary tubes, the velocity distribution can be obtained and, from it, so can
the viscosity distribution using (2.7).

The relative variation in µ(r) over the tube cross-section is determined by (2.6);
however, the absolute value of µ(r) depends on µR . In the case of a particulate
suspension, µR corresponds to the dynamic viscosity of the suspension medium, pro-
vided that the viscosity of that medium is constant. For a homogeneous fluid having
a spatially varying viscosity, µR could be regarded as a calibration constant that
is chosen in such a way as to minimize the difference between the measured and
predicted values of dp/dz. In the case of blood, the suspension medium consists of
plasma, which itself is a suspension containing plasma proteins and glycans. Although
plasma viscosity measured with rotational viscometers appears to be independent of
shear rate (Chien et al. 1966), the method developed here appears to be sensitive
enough to reveal a slightly non-uniform viscosity over the cross-section of glass
tubes 30–50 µm in diameter perfused with pure plasma under physiologically relevant
flow conditions (Long et al. 2004). Calibrating µR to minimize the least-squares
error between measured and predicted values of dp/dz has shown that, in the case
of human blood, µR is approximately 95% of the plasma viscosity that would be
obtained from a capillary viscometer (Long et al. 2004), which is typically found to
be ∼ 0.01 dyn s cm−2 for human plasma at 25 ◦C.

2.3. The velocity distribution

Although the velocity profile is to be extracted from velocimetry data, it is nevertheless
useful to derive an expression for vz(r), as this will be useful later in fitting the µ-
PIV data. The boundary-value problem for vz(r) is obtained in the usual way by
substituting the constitutive relationship for τrz into the momentum equation given
by (2.1) and applying suitable boundary conditions. Thus, we obtain

1

r

d

dr
(rτrz) =

1

r

d

dr

(
µ(r) r

dvz

dr

)
=

dp

dz
(0 < r < R), (2.8)

with the no-slip boundary and axisymmetry conditions given, respectively, by

vz(r = R) = 0,
dvz

dr

∣∣∣∣
r=0

= 0. (2.9)

For unidirectional flow in the axial direction, the radial momentum equation requires
that the pressure, p, is at most a function of z only. In light of this, it is evident from
(2.8) that the axial component of the pressure gradient, dp/dz, must be constant and
therefore p must be a linear function of z. The solution, vz, that satisfies (2.8) subject
to (2.9) for arbitrary µ(r) is given by

vz(r) = vmax

∫ R

r

σ dσ

µ(σ )/µR

(∫ R

0

σ dσ

µ(σ )/µR

)−1

(0 < r < R), (2.10)

where vmax is the magnitude of the axial velocity component along the tube centreline
at r = 0, and σ is a dummy variable of integration.
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6 E. R. Damiano, D. S. Long and M. L. Smith

2.4. The relative apparent viscosity

Integrating (2.10) over the tube cross-section and applying mass conservation, we
obtain the constant volume-flow rate, Q, given by

Q = 8QP

∫ 1

0

∫ 1

r∗

σ ∗ dσ ∗

µ(σ ∗)/µR

r∗ dr∗, (2.11)

where r∗ = r/R, σ ∗ = σ/R, and QP = −πR4(dp/dz)/(8µR) is the volume-flow rate for
Poiseuille flow of a fluid having constant viscosity, µR . We define the relative apparent
viscosity, ηrel as the ratio QP /Q. Using (2.11), we obtain

ηrel =
µapp

µR

: =
QP

Q
=

(
8

∫ 1

0

∫ 1

r∗

σ ∗ dσ ∗

µ(σ ∗)/µR

r∗ dr∗
)−1

, (2.12)

where, upon replacing r by σ ∗R, the normalized viscosity distribution, µ(σ ∗)/µR , is
given by the right-hand side of (2.7). In (2.12), µapp is the apparent viscosity defined
as the viscosity required to satisfy Poiseuille’s law relating pressure drop to volume
flow in a tube of radius R.

2.5. The tube and discharge haematocrits

The mean instantaneous red-cell fraction per unit tube length and the mean red-cell
flux fraction per unit tube length correspond, respectively, to the tube haematocrit,
HT , and discharge haematocrit, HD , defined by

HT =
1

A

∫ ∫
A

H dA, HD =
1

Q

∫ ∫
A

Hvz dA, (2.13)

where Q is given by (2.11), A denotes the tube cross-sectional area, and H is the local
haematocrit at a point in the cross-section. For axisymmetric velocity and haematocrit
distributions, the ratio of tube-to-discharge haematocrits is then given by

HT

HD

=
Q

A

∫ R

0

H (r)r dr

∫ R

0

H (r)vz(r)r dr

. (2.14)

From our predicted viscosity distribution, µ(r), it is possible to infer the haemato-
crit distribution, H (r), using relationships obtained from in vitro species-specific
viscometric data of red blood cell suspensions in plasma (Chien et al. 1966). As men-
tioned earlier, for shear-rate distributions typical of the microcirculation (Long et al.
2004), shear rates often exceed 50 s−1 over ∼ 90% of the vessel cross-section. Under
such conditions, it might be reasonable to neglect variations in blood viscosity with
shear rate at a fixed haematocrit, but nevertheless account for its nonlinear variation
with haematocrit (Chien et al. 1966). Thus, we regard H (µ) as being readily obtainable
from a shear-rate-independent transport relation that can be used in combination
with (2.7) and (2.11) to determine HT and HD as defined by (2.13).

Since dp/dz, HT , HD and ηrel are extremely difficult, if not impossible, to accurately
measure in vivo (Lipowsky et al. 1978, 1980; Desjardins & Duling 1987), the present
approach provides a means of estimating these quantities from measured in vivo
microvascular velocity distributions (Tangelder et al. 1988; Long et al. 2004). Further-
more, since these quantities can be directly measured in vitro, this approach offers
the opportunity to interrogate the validity of the model, and the continuum fluid
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Estimation of viscosity profiles in linearly viscous fluids 7

approximation in particular, through comparison of theoretical predictions with a
variety of quantities that are directly measurable in vitro (Long et al. 2004). We have
therefore established a model that can be thoroughly tested in vitro on the one hand,
and has tremendous predictive potential in vivo on the other.

In order to extend the analysis presented here to blood flow in microvessels in vivo,
a generalization is required to account for the haemodynamic influence of the
glycocalyx surface layer on the luminal vessel wall (Vink & Duling 1996; Pries et al.
1997; 2000; Smith et al. 2003). While the analysis presented in this section applies
throughout the lumen of glass capillary tubes, in microvessels it is limited to the
cross-sectional region extending up to, but not including, the region near the vessel
wall occupied by the glycocalyx. In the following section, we generalize and couple
the preceding analysis to an analysis of plasma flow through the glycocalyx.

3. Microhaemofluidics in microvessels
With only slight modifications, many of the equations derived in § 2 can be adapted

to the problem of a cylindrical tube lined with a uniformly thick porous layer. The
glycocalyx-lined microvessel will be modelled as a straight cylindrical tube of radius
R lined, on its luminal surface, with a porous layer having uniform permeability, k,
and uniform thickness, R − a, where a is the radial location of the blood/glycocalyx
‘interface’. We regard the thickness and permeability as being representative of the
mean values associated with a glycocalyx that varies axially in thickness and axially
and radially in permeability. Hereinafter, R − a and k will denote the effective
hydrodynamically relevant thickness and effective permeability, respectively. This
idealization is nevertheless quantitatively useful since it follows, from the mean-value
theorem for integrals of continuous functions, that these parameters are bounded
by the largest and smallest values they would assume in a heterogeneous, spatially
non-uniform glycocalyx.

Invoking this model geometry, we identify two distinct regions, which we refer to
as the free lumen, where 0 � r � a, and the annular porous layer, where a � r � R.
Within the free lumen, as with the in vitro case, we again assume a fully developed
axisymmetric steady tube flow of a linearly viscous incompressible isotropic fluid with
radially varying viscosity, µ(r), where the momentum equation for the axial velocity
component, vl

z(r), is given by (2.8) after replacing vz with vl
z and R with a. We assume

that red cells cannot penetrate the glycocalyx (Vink & Duling 1996) and model flow
in the porous layer with the Brinkman equation (Damiano et al. 1996; 2004; Feng &
Weinbaum 2000). Under these flow conditions, the axial fluid velocity component,
vf

z (r), in the porous layer is governed by

µa

r

d

dr

(
r
dvf

z

dr

)
− K vf

z =
dp

dz
(a < r < R), (3.1)

where µa = µ(a) is the viscosity at the interface between the glycocalyx and plasma
in the free lumen and K is the hydraulic resistivity of the Brinkman medium, which
is inversely proportional to the permeability, k.

Invoking the Brinkman equation (rather than a more general description using
something like mixture theory) as a first approximation to model the glycocalyx is
likely to be reasonable when we consider the very low solid-volume fractions the layer
is thought to have in vivo (Damiano et al. 1996; Feng & Weinbaum 2000). It is not
uncommon for mucopolysaccharide structures devoid of collagen to contain solid-
volume fractions less than 1%. In such a case, the viscosity of the fluid constituent
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8 E. R. Damiano, D. S. Long and M. L. Smith

within these structures is very nearly equal to that of the external fluid. We therefore
assume that the viscosity of the fluid in the Brinkman-medium model is simply equal
to µa . Even with very low solid-volume fractions, the permeability of the porous
layer can nevertheless be sufficiently low (Damiano et al. 1996) that the Darcy term
dominates the left-hand side of (3.1) throughout most of the layer, except very near
solid boundaries and fluid interfaces.

Assuming, as we have, that red cells cannot penetrate the glycocalyx, then H (r) = 0
and µ = µa on a � r � R. In the free lumen, (2.3)–(2.7) apply if vz is replaced by vl

z and
R is replaced by a. The solutions for vl

z and vf
z were given by Damiano et al. (1996)

for a constant-viscosity fluid in the free lumen and later generalized to a spatially
varying fluid viscosity in the free lumen by Damiano (1998). In the limit as the fluid
volume fraction in the porous layer approaches unity, the velocity distributions are
given by

vl
z(r

∗) = vslip

(
1 − 1

2G(α)

∫ α

r∗

σ ∗ dσ ∗

µ(σ ∗)/µa

)
(0 � r∗ � α), (3.2)

and

vf
z (r∗) = vslip

G(r∗)

G(α)
(α � r∗ � 1), (3.3)

where α = a/R, vslip = vl
z(α) = vf

z (α) is the slip velocity at the effective hydrodynamic
interface between the free lumen and glycocalyx,

G(r∗) =
1

κ2

{(
1
2
κ α +

K1(κα)

K0(κ)

)
I0(κr∗) − βK0(κr∗)

I1(κα) + βK1(κα)
+

K0(κr∗)

K0(κ)
− 1

}
(α � r∗ � 1),

β = I0(κ)/K0(κ), and the dimensionless hydraulic resistivity, κ2 = KR2/µa . Here, In

and Kn are the modified, integer-order Bessel functions of the first and second kind,
respectively.

As with flow in glass tubes, we can obtain expressions for dp/dz, ηrel and HT /HD

that depend only on µ-PIV data obtained within the free lumen in vivo. The slip
velocity, vslip, can also be estimated from µ-PIV data, as described in § 4. The total
volume flow, Q, through the microvessel is the sum of the volume flow, Ql , in the free
lumen and the volume flow, Qf , in the porous layer where Ql and Qf are determined
from (3.2) and (3.3) to be

Ql = πR2vslip

∫ α

0

(
2 − 1

G(α)

∫ α

r∗

σ ∗ dσ ∗

µ(σ ∗)/µa

)
r∗ dr∗ (3.4)

and

Qf = πR2(1 − α2)vslipv̄
∗f (3.5)

where v̄∗f , defined as the dimensionless mean velocity of plasma flow through the
porous layer per unit slip velocity, depends only on α and κ and is given by

v̄∗f =
1

C1

(
1

2
+

κ(K1(κ) − αK1(ακ))

K0(κ)(1 − α2)
+

κ C2

1 − α2

(
α − I1(κ) + βK1(κ)

I1(ακ) + βK1(ακ)

))
, (3.6)

where

C1 = 1 − K0(ακ)

K0(κ)
− C2

I0(ακ) − βK0(ακ)

I1(ακ) + βK1(ακ)
, C2 =

α

2κ

µ0

µa

+
K1(ακ)

K0(κ)
.
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Estimation of viscosity profiles in linearly viscous fluids 9

Replacing vz by vl
z and R by a in the expression for dp/dz, given by (2.4), and using

this in QP , we obtain

QP = −πR2

4α

dvl
z

dr∗

∣∣∣∣
r∗=α

.

Using this in the definition for ηrel given in (2.12) we obtain

ηrel = − πR2

4αQ

dvl
z

dr∗

∣∣∣∣
r∗=α

= − 1

8 G(α)

(∫ α

0

(
2 − 1

G(α)

∫ α

r∗

σ ∗ dσ ∗

µ(σ ∗)/µa

)
r∗ dr∗ + (1 − α2)v̄∗f

)−1

, (3.7)

where we have used the sum of (3.4) and (3.5) to determine Q. Finally, the expressions
for HT , HD , and the ratio HT /HD , given by (2.13) and (2.14), apply in microvessels if vz

is replaced by vl
z, R is replaced by a, and Q is replaced by the sum of (3.4) and (3.5).

As with the relations in § 2, these relationships satisfy the conservation principles of
mass and momentum in the free lumen and porous layer. Two parameters that do not
appear in the glass tube model are the dimensionless layer thickness, 1−α = 1−a/R,
and the dimensionless hydraulic resistivity of the glycocalyx, κ2 = KR2/µa . While
estimates of both of these quantities are available for skeletal-muscle capillaries
(Vink & Duling 1996; Feng & Weinbaum 2000; Damiano & Stace 2002) and more
recently for post-capillary venules (Smith et al. 2003), the analysis presented here
provides an objective method for obtaining independent estimates of these quantities
from in vivo µ-PIV data as described below (Long et al. 2004).

The viscosity, µa , in the analysis of glycocalyx-lined microvessels is directly
analogous to µR in the smooth-walled-tube analysis of § 2. As such, it is taken
to be equal to the plasma viscosity as measured by a standard capillary viscometer.
However, the very presence of the glycocalyx itself in microvessels could significantly
alter plasma rheology in vivo in such a way as to call into question this similarity
to glass tube studies. In light of the great variety of known binding sites on the
glycocalyx to the numerous plasma macromolecules in blood, a polymerization of
blood plasma might be possible in glycocalyx-lined microvessels that would not occur
in smooth-walled glass tubes. However unlikely it may seem, such a polymerization
cannot and should not be ruled out unless definitive evidence to the contrary can
be established. Methods developed here could be employed to test this hypothesis
if µ-PIV data were collected in microvessels from which red cells, but not particle
tracers, had been diverted. If velocity and viscosity distributions obtained in the free
lumen of such vessels were consistent with those found in capillary glass tube studies
(Long et al. 2004), it would suggest that any polymerization of plasma that might
arise in vivo is of little consequence to the microhaemofluidics described here.

While the preceding analysis has been limited to steady flow conditions, this assump-
tion can be relaxed such that the analytical results developed here can be applied
directly, without modification, to many periodic unsteady microscale flow regimes.
Whereas flow in venules is very nearly steady, by triggering data acquisition of the
particle tracers in the flow with the corresponding peak flow in the cardiac cycle, this
analysis can be applied directly to pulsatile flows in arterioles, since, under normal
physiological conditions, unsteady inertial forces are negligibly small compared with
viscous forces in arterioles less than 200 µm in diameter (El-Khatib & Damiano 2003).
Implicit in this section, therefore, is the understanding that, with careful attention to
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10 E. R. Damiano, D. S. Long and M. L. Smith

data acquisition, the analytical results presented here apply generally to blood flow in
microvessels, including both venules and arterioles, greater than ∼ 20 µm in diameter.

4. Implementation using µ-PIV data
For the laminar, steady, fully developed flow regimes considered here, data sufficient

to extract accurate velocity distributions can be obtained from measurements of the
radial position and axial speed of ∼ 50–100 microspheres randomly distributed over
the vessel cross-section. For flow rates typical of skeletal-muscle venules in vivo, these
data can be collected from digital or video recordings in < 30 s (Long et al. 2004).

4.1. Data analysis

Most microspheres in a given data set lie somewhat out of the midsagittal plane of the
vessel. If such a microsphere has a true radial position, r , its image, when projected
into the midsagittal plane, will have a corresponding measured radial distance, ρ, from
the vessel centreline. In general, r � ρ, where equality holds only for microspheres
lying in the midsagittal plane. For a given data set, an optimal subset of the data can
be found that best reflects the true local fluid velocities in the midsagittal plane by
recognizing that these velocity distributions decrease monotonically with increasing
r so that microspheres nearest to the midsagittal plane travel faster than any others
having the same measured value of ρ or any other measured value of ρ that is further
from the vessel centreline. Therefore, data points that are to be retained must satisfy
this criterion. Accordingly, all of the data are filtered such that the reduced data set
consists of all of the N possible measurements that satisfy

vm
i (ρi) > vm

i+1(ρi+1) for ρi < ρi+1 (i = 1, 2, . . . , N − 1), (4.1)

where vm
i (ρi) is the measured axial speed of the ith microsphere at the measured radial

distance, ρi , from the vessel centreline. Typically, ∼ 20–30% of the microspheres in a
data set will satisfy this criterion (Long et al. 2004).

4.2. Regression analysis

A fit to these N data points, using a standard nonlinear regression analysis, provides
the best possible approximation to the cross-sectional velocity profile in the midsagittal
plane that can be extracted from the data. Rotation of this profile about the z-axis
provides the surface of revolution that best reflects the three-dimensional axisymmetric
velocity profile over the vessel cross-section. The fit itself, however, must satisfy certain
constraints in order to be consistent with various assumptions and conditions laid out
in the analysis. In particular, it must be continuous and axisymmetric. Furthermore,
fits to data from cylindrical tubes must satisfy the no-slip condition, such that vz = 0
at r = R, whereas fits to data from microvessels must satisfy the pseudoslip condition
at the glycocalyx interface, such that vl

z = vslip at r = a. Furthermore, fits to data
from microvessels must also satisfy the condition that the shear stress be continuous
across the glycocalyx interface (Damiano et al. 1996). Functions that satisfy all of
these conditions have already been found and are given by (2.10) and (3.2) to within
the arbitrary function, µ(r). They have the added advantage of satisfying the axial
momentum equations. To simplify implementation, we represent the integrands in
(2.10) and (3.2) with a fitting function, f (r∗) = r∗µa/µ(r∗), which necessarily vanishes
at r∗ = 0 and is α at r∗ = α (where α =1 for glass tubes). A suitable form for f

must satisfy these two conditions and should include both a linear and exponential
dependence on r∗. When integrated, such a function would yield a velocity distribution
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Estimation of viscosity profiles in linearly viscous fluids 11

that contains the necessary quadratic behaviour near the origin to satisfy the symmetry
condition and the nonlinear behaviour necessary to fit the data in regions where the
shear rate varies nonlinearly with radial position. Thus we propose fitting the data
with a function of the form

vfit(r
∗) = vmax

(
2G(α) −

∫ α

r∗
f (σ ∗) dσ ∗

)(
2G(α) −

∫ α

0

f (σ ∗) dσ ∗
)−1

(0 � r∗ � α),

(4.2)

using the fitting function f (r∗) = r∗(1 − c1 sinh c2 α) + αc1 sinh c2r
∗, where c1 and c2

are found through nonlinear regression analysis that uses (4.2) to minimize the
least-squares error in the fit to the N data points identified above. The parameter
vmax, corresponding to the axial centreline velocity, is found by replacing (r∗, vfit)
in (4.2) with (ρi/R, vm

i ) from the reduced µ-PIV data set, solving for vmax for each
i = 1, 2, . . . , N − 1, and taking the average of all computed vmax values. It should be
noted that the first term on the right-hand side of (4.2) represents the slip velocity at
r = α. For flow in a glass tube, α =1, and since G(1) = 0, the slip velocity in (4.2)
vanishes and (4.2) satisfies the no-slip condition at the tube wall. The function vfit

and its derivatives are continuous on 0 � r∗ � α.

4.3. Implementation in glass tubes

Performing the regression analysis described above on µ-PIV data obtained from
blood flow in glass tubes, the parameters c1 and c2 can be determined and vfit, given
by (4.2), can then be substituted for vz in (2.7) to extract the viscosity profile given by

µ(r)

µR

=
r

R

(dvfit/dr)|r=R

dvfit/dr
(0 � r � R). (4.3)

This result can then be used in (2.12) to determine ηrel. It can also be used to
determine H (r∗), provided there exists a correlation function of the form H (µ(r∗))
that can be derived from a transport relation obtained from high-shear-rate rotational
viscometric data for red blood cell suspensions in plasma (Chien et al. 1966). With the
distribution H (r∗) determined, substitution of (4.2) for vz in (2.13) provides estimates
of HT and HD . Furthermore, vfit can be substituted for vz in (2.4) to estimate dp/dz.

4.4. Implementation in microvessels

The regression analysis used to determine the parameters c1 and c2 based on µ-PIV
data obtained from blood flow in microvessels parallels the methods described above
in glass tubes with the notable exception that the fit obtained for a given data set must,
in some sense, correspond to the best possible fit in the two-dimensional parameter
space (α, κ). One approach might be to choose a particular value of κ and then
iteratively search for the corresponding value of α that results in vfit, given by (4.2),
minimizing the least-squares error in the fit to a particular data set for all possible
choices of α. Once the value αmin corresponding to this minimum is found for a given
κ , the quantities G(r) and v̄∗f are both determined, as is the velocity distribution,
vf

z (r), throughout the layer. The average value of 1 − αmin across many vessels would
provide an estimate of the dimensionless mean thickness of the layer for a given κ . A
similar minimization involving the parameter κ could also be performed. For a given
pair (αmin, κ), the corresponding parameters c1 and c2 are determined as is vfit given
by (4.2). The viscosity distribution is then obtained from (4.3) after substituting a for
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12 E. R. Damiano, D. S. Long and M. L. Smith

R. With vfit and µ(r) determined, all other properties of the flow follow from (2.13)
and (3.4)–(3.7).

4.5. Near-wall microfluidics

When µ-PIV is used to extract the velocity distribution, careful consideration must be
given to the role of near-wall microfluidics on the motion of microspheres closest to
the tube or vessel wall. Throughout most of the flow field, the tube or vessel wall exerts
very little influence on the motion of microspheres relative to the fluid, and thus most
of the microspheres essentially reflect the local fluid–particle velocity that would arise
in the absence of particle tracers in the flow. However, the enhanced drag exerted
on near-wall microspheres due to the presence of the tube or vessel wall should
be accounted for in the analysis. In particular, since the microspheres themselves
influence near-wall microfluidics, the problem becomes how to use particle-tracer
data to extract the true fluid velocity distribution that would arise in the absence of
microspheres.

Detailed three-dimensional analyses have been carried out on the translational and
rotational motions of a sphere in a Stokes flow travelling near a smooth planar
confining boundary (Dean & O’Neill 1963; O’Neill 1964) and near a Brinkman half-
space (Damiano et al. 2004). Results of these analyses were used to study the particular
case of the free motion of a neutrally buoyant sphere in a uniform shear field travelling
parallel to a smooth planar confining boundary (Goldman, Cox & Brenner 1967) and
a Brinkman half-space (Damiano et al. 2004). In the case of the former, the disparity
between the translational speed of a sphere, with its centre located at a distance of
one or more sphere diameters away from a smooth planar confining boundary, and
a fluid particle located at this distance from the plane if the sphere were not present
in the flow, is less than 5% (Goldman et al. 1967). This disparity is even smaller
when the sphere centre is one or more sphere diameters from a Brinkman half-space
(Damiano et al. 2004). In the context of microvascular haemodynamics, it is implied
that all reference to µ-PIV data in foregoing and subsequent discussions is made with
the understanding that these data have been transformed to fluid–particle velocities
using either the results of Goldman et al. (1967), for blood flow in glass capillary
tubes, or the results of Damiano et al. (2004), for blood flow in glycocalyx-lined
microvessels. Detailed methods for systematically transforming µ-PIV data into local
fluid–particle velocities are given by Smith et al. (2003).

5. Application to microvascular haemodynamics
The development of the analytical tools presented here was motivated by their

particular application to the study of microhaemofluidics in microvessels. By way
of illustrating their usefulness in this context, we present in this section an example
of how these tools can be used to extract relevant quantitative information on the
haemodynamics in microvessels that has otherwise been inaccessible in vivo.

5.1. Data acquisition in microvessels using intravital µ-PIV

The µ-PIV technique (Santiago et al. 1998; Smith et al. 2003) that we employ uses
stroboscopic double-flash epi-illumination to visualize systemically injected, fluor-
escently labelled, neutrally buoyant polystyrene microspheres (∼ 0.5 µm diameter)
circulating in microvessels in vivo. Transillumination is maintained to keep the vessel
wall visible so that the radial position of each microsphere can be measured relative
to the vessel wall. The radial distribution in the velocity of ∼ 50–100 microspheres
is recorded on videotape over a period of ∼ 10–20 s (see figure 1). Detailed methods
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Figure 1. (a) Typical bright-field images of a microvessel in the mouse cremaster muscle
showing dual images of (i) one near-wall microsphere and (ii) one near-centre microsphere.
The dual images of each microsphere (encircled in white upstream and black downstream)
are separated in time by the double flash interval (5–16.67ms apart). (b–d) Raw µ-PIV data
collected over the cross-section of a 21.8 µm-diameter venule in the mouse cremaster muscle
after light-dye treatment to degrade the glycocalyx surface layer. (b) The complete µ-PIV data
set shows the translational speed of each microsphere as a function of its measured radial
position relative to the vessel centreline. Since velocity profiles are assumed to be axisymmetric,
all µ-PIV data collected over the entire vessel cross-section were folded over to one side of the
vessel centreline, as shown in (c). Only monotonically filtered data (d), obtained using (4.1) on
the complete data set in (c), were used to extract the velocity profile.

describing the intravital microscopy protocols and the µ-PIV technique are given by
Smith et al. (2003) and Long et al. (2004).

Whereas it is necessary to correct for the optical artefact that arises in the measured
radial position of microspheres in glass capillary tubes, this is not the case for µ-PIV
data in microvessels in vivo (Smith et al. 2003; Long et al. 2004). Results have shown
(Smith et al. 2003) that there is no statistically significant difference in the length of
radially versus axially aligned erythrocytes in mouse cremaster-muscle venules after
flow cessation with a blunt micropipette. On the other hand, a statistically significant
difference in the length of radially versus axially aligned erythrocytes has been shown
to exist in a quiescent red-cell suspension in glass capillary tubes. This difference was
found to be in excellent agreement with the difference predicted using Snell’s law
(Smith et al. 2003). Therefore, while a slight difference in refractive indices certainly
does exist between plasma and the surrounding tissue, as evidenced by the fact that
the endothelium is visible under brightfield microscopy, this difference produces a
negligibly small optical artifact in vivo. No optical correction of intravital µ-PIV data
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Figure 2. Results from (a) a 34.5 µm-diameter control venule and (b) a 21.8 µm-diameter
venule after light-dye treatment to degrade the ESL in the mouse cremaster muscle. (i)
Intravital fluorescent µ-PIV data (symbols) and predicted axisymmetric velocity profiles, vfit,
extracted from the µ-PIV data using (4.2). (ii) Predicted distributions in shear-rate, γ̇ = dvfit/dr
(dashed, right axes), and shear-stress, τrz (solid, left axes), which was obtained from (2.2). (iii)
Predicted viscosity profiles, µ(r), obtained from (2.7) and normalized with respect to water
viscosity at the animal’s body temperature (µwater =0.007 dyn s cm−2 at 37 ◦C). The shaded
region near the vessel wall shows the predicted thickness of the glycocalyx surface layer.
Insets in (i) show the predicted velocity distribution through the layer assuming a hydraulic
resistivity, K , of 109 dyn s cm−4. Tabulated values shown below the distributions for each vessel
are calculated based on this value of K . Data shown in (b) (i) correspond to those shown in
figure 1(d). Results in (a) are taken from Long et al. (2004) and are included here only for the
sake of comparison with results of the light-dye treated vessel shown in (b).

is therefore necessary and velocity profiles can be extracted directly from a raw data
set, such as that shown in figure 1.

5.2. Analytical results in microvessels in vivo

Typical examples of the haemodynamically and physiologically relevant information
that can be obtained from microvessels in vivo using this approach are shown in
figure 2 before and after light-dye treatment to degrade the glycocalyx surface
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layer. (Detailed methods describing the light-dye treatment technique to degrade the
glycocalyx are given by Vink & Duling (1996) and Smith et al. (2003).) In particular,
using the velocity profile extracted from the monotonically filtered µ-PIV data, we
have obtained distributions, similar to those shown in figure 2, in shear rate, shear
stress and viscosity over the cross-section of nine light-dye treated venules (19–31 µm
i.d.) in the cremaster muscle of three wild type (WT) mice. From these distributions, we
used the analytical results described above to estimate, in each of the light-dye treated
vessels, the axial pressure gradient component, dp/dz (ranging in absolute value from
8807 to 37985 dyn cm−3 with a mean absolute value of 23864 ± 2838 dyn cm−3 for
K = 109 dyn s cm−4), and the relative apparent viscosity, ηrel (ranging from 2.66 to
4.21 with a mean value of 3.43 ± 0.17 for K = 109 dyn s cm−4). Since flow through the
glycocalyx surface layer is so significantly attenuated for K � ∼109 dyn s cm−4 (see
figure 2), there was very little difference in these results for the higher values of K we
considered.

Validation experiments in glass capillary tubes (50–80 µm i.d.) perfused with human
red cell suspensions in blood plasma have established the accuracy of this approach in
terms of its ability to predict dp/dz and ηrel (Long et al. 2004). Since comprehensive
haematocrit-dependent rotational viscometric data do not yet exist for mouse blood,
haematocrit distributions, and therefore HT and HD , cannot be reported for the results
shown in figure 2. Owing to inter-species differences in the mean corpuscular volume
of red blood cells, species-specific rotational viscometric data at high rates of shear are
required in order to extract the full range of information possible using these methods.
As these rotational viscometric data become available for other species, these methods
will find uses in a broad range of applications where tube and discharge haematocrits
are required.

Another quantity that is often of interest in studies of the microcirculation is the
wall shear rate, γ̇ (R). It has recently become clear, however, that this quantity is not
particularly meaningful in the light of new evidence confirming the presence of
a hydrodynamically relevant glycocalyx on the walls of microvessels (Pries et al.
1997; Smith et al. 2003). This structure effectively eliminates plasma flow near the
vessel wall and results in a vanishing small wall shear rate (see figure 2). A more
relevant quantity for characterizing the prevailing flow conditions in microvessels,
first introduced by Smith et al. (2003), is the interfacial shear rate, γ̇ (a), defined
as the shear rate evaluated at the effective hydrodynamic interface between the
glycocalyx and the plasma in the free lumen. In each of the light-dye treated
vessels considered here, γ̇ (a) (absolute value in the range 416–1833 s−1 with a mean
absolute value of 1237 ± 158 s−1 for K = 109 dyn s cm−4) was estimated as was the
corresponding wall shear rate, γ̇P (R), that would arise in a Poiseuille flow having a
maximum velocity equal to the centreline velocity found in a given vessel. Results
showed that, over all of the light-dye treated vessels analysed, γ̇ (a) was 3.3 to
5.4 times greater than γ̇P (R) (with a mean of 4.2 ± 0.2). The variation in the
ratio of γ̇ (a)/γ̇P (R), which was reported to be even greater in the control vessels
analysed by Long et al. (2004), is attributable to normal physiological variation in
the red cell concentration that individual microvessels receive within a microvascular
network.

5.3. Viscosity distributions

The predicted viscosity distributions shown in figure 2 reflect the non-uniform
distributions in red blood cells that were present in these microvessels. As proposed
earlier, these viscosity profiles can be used to infer haematocrit profiles, and thus
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HT and HD using (2.13), once comprehensive species-specific rotational viscometric
data become available. In the absence of such data for mouse blood, we confine
our discussion here to qualitative observations about the haematocrit profile and
its implications for HT and HD . If viscometric data for human blood were used to
estimate H (r) in both the control and light-dye treated vessels shown in figure 2,
the predicted values of HT and HD would be < ∼55% and < ∼62%, respectively.
However, based on recently obtained rotational viscometric data of mouse and human
red blood cells suspended in autologous blood plasma (Long, Smith, Ley & Damiano,
unpublished data), we would expect these values to be somewhat lower if correlation
functions for mouse blood were used. Discharge haematocrits of 50–60% are at the
high end of the physiological normal range that we might expect in these microvessels
(Desjardins & Duling 1987).

5.4. Estimation of the glycocalyx thickness in vivo

A remarkable result of this analysis is its ability to predict the hydro-dynamically
effective thickness of the glycocalyx surface layer in vivo. For each light-dye treated
vessel and particular value of K , we determined the layer thickness that corresponded
to the minimum least-squares error in the fit to the µ-PIV data as described earlier.
We found that glycocalyx thickness estimates in light-dye treated vessels ranged
between 0.1 and 0.3 µm with a mean value of 0.2 ± 0.02 µm for K = 109 dyn s cm−4.
Long et al. (2004) reported thickness estimates in the control vessels in the range of
0.3–0.7 µm with a mean value of 0.5 ± 0.03 µm for K = 109 dyn s cm−4. A statistically
significant decrease of 0.3 µm in the estimated mean thickness of the glycocalyx was
observed after light-dye treatment to degrade the layer. These results are summarized
in figure 3 for two finite values of K and for the limiting case of no flow through the
layer (i.e. as K → ∞). Estimates of the mean and standard deviation for the control
and light-dye treated vessels were insensitive to the value of K over the range of
values considered.

Smith et al. (2003) considered a subset of the data used here and in Long et al.
(2004) to investigate the velocity distribution in the plasma-rich region near the vessel
wall in both control and light-dye treated microvessels. They considered only those
microspheres that were within ∼ 2 µm of the vessel wall and assumed that a uniform
shear rate existed throughout the plasma-rich region of the vessel up to the glycocalyx
interface. Neglecting the effect of red cells and assuming that the fluid viscosity was
constant throughout the plasma-rich region and equal to that of blood plasma, their
analysis revealed the presence of a strongly exponential rather than linear velocity
distribution throughout a region adjacent to the vessel wall, which they proposed was
occupied entirely by the glycocalyx surface layer. From these distributions, they were
able to provide the first direct estimates of the effective haemodynamically relevant
thickness of the layer in vivo. Furthermore, they found a statistically significant
decrease in their estimate of the layer thickness after light-dye treatment to degrade
the glycocalyx.

We regard the results here as being slightly more accurate than those reported by
Smith et al. (2003), principally because the shear rate distribution in these microvessels
is not uniform throughout the plasma-rich region as they had assumed. In fact, in
all of the light-dye treated vessels analysed here, and in all of the control vessels
reported in Long et al. (2004), most of the variation in the shear rate distribution
occurs in the plasma-rich region of the vessel (see figure 2). Fitting a linear velocity
distribution to the near-wall µ-PIV data, as was done by Smith et al. (2003), slightly
underestimates the absolute value of the interfacial shear rate. Since the shear rate
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Figure 3. (a) Variations, relative to the estimated glycocalyx surface-layer thickness, in the
normalized least-squares error, E∗, associated with the fits to the µ-PIV data in the 34.5 µm-
diameter control venule shown in figure 2(a), (black curves) and in the 21.8 µm-diameter
light-dye treated venule shown in figure 2(b), (grey curves). Each set of three curves shows
results for K = 109 dyn s cm−4 (dotted curves), K =1010 dyn s cm−4 (dashed curves), and the
case of no flow through the layer, K → ∞ (solid curves). Estimated glycocalyx surface-layer
thickness for each value of K considered in these two venules corresponds to the value of R−a
associated with the local minimum in each of these curves. (b) Mean layer thickness of control
venules (black; 10 vessels, 24–41 µm diameter, in 4 WT mice) and of light-dye treated venules
(grey; 9 vessels, 19–31 µm diameter, in 3 WT mice) obtained from the average of individual
estimates of R − a, such as those found in (a), for two finite values of hydraulic resistivity
(109 and 1010 dyn s cm−4) and for the case of no flow through the layer (K → ∞). *, significant
difference via two-tailed t-test (p < 0.05).

increases monotonically in absolute value with increasing radial position through the
plasma-rich region (up to the glycocalyx interface), the local velocity gradient is a
maximum at r = a and will slightly exceed the average gradient corresponding to
the slope of a linear regression to all of the µ-PIV data in the plasma-rich region.
Extrapolation of the local velocity gradient at r = a would result in a more negative
intercept at the vessel wall than the linear regression analysis would predict. This, in
turn, would correspond to a slightly thicker and more accurate glycocalyx estimate
for each value of K than the estimates Smith et al. (2003) were able to provide
using a linear regression analysis. One advantage of the near-wall µ-PIV approach
presented by Smith et al. (2003) is that, if flow through the glycocalyx were neglected,
the method is not limited to axisymmetric velocity distributions and can therefore be
applied near vessel bifurcations or adherent leukocytes where significant asymmetric
flow regimes may arise.

6. Summary
Typically, rheological data are extracted from force measurements, which do not

provide the detailed spatial distributions that this approach offers. The idea advanced
here, of using a velocity field to extract rheological data, has applications beyond
microvascular haemodynamics to a variety of generalized linearly viscous fluids and
particle-suspension flows, including polymer melts, emulsions, extrusion and polymeric
drag reduction. To those fluids and particulate suspensions for which the Cauchy stress
can be expressed as a linear function of the strain rate tensor, and for which a suitable
shear-rate-independent transport relation is available, this method can generally be
applied.
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