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Length-scale distribution functions and
conditional means for various fields

in turbulence
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Dissipation elements are identified for various direct numerical simulation (DNS)
fields of homogeneous shear turbulence. The fields are those of the fluctuations of
a passive scalar, of the three components of velocity and vorticity, of the second
invariant of the velocity gradient tensor, turbulent kinetic energy and viscous
dissipation. In each of these fields trajectories starting from every grid point are
calculated in the direction of ascending and descending gradients, reaching a local
maximum and minimum point, respectively. Dissipation elements are defined as spatial
regions containing all the grid points from which the same pair of minimum and
maximum points is reached. They are parameterized by the linear length between
these points and the difference of the field variable at these points.

In analysing the changes that occur during one time step in the linear length
as well as in the number of grid points contained in the elements, it is found that
rapid splitting and attachment processes occur between elements. These processes
are much more frequent than the previously identified processes of cutting and
reconnection. The model for the length-scale distribution function that had previously
been proposed is modified to include these additional processes. Comparisons of
the length-scale distribution function for the various fields with the proposed model
show satisfactory agreement.

The conditional mean difference of the field variable at the minimum and maximum
points of dissipation elements is calculated for the passive scalar field and the three
components of velocity. While the conditional mean difference follows the 1/3 inertial-
range Kolmogorov scaling for the passive scalar field, the scaling exponent differs
from the 1/3 law for each of the three components of velocity. This is thought to be
due to the relatively high shear rate of the DNS calculations.

The conditional mean viscous dissipation shows, differently from all other field
variables analysed, a pronounced dependence on the linear length of elements. This
is explained by intermittency. This finding is used to evaluate the production and the
dissipation term of the empirically derived ε-equation that is often used in engineering
calculations.

1. Introduction
The concept of an energy cascade introduced by Richardson (1922) implies that

there is a sequence of geometric objects of decreasing size in a turbulent flow
over which the kinetic energy ‘cascades’ until it finally is dissipated by viscous effects.
Kolmogorov (1941a, b) made this concept quantitative by rewriting the von-Kármám–
Howarth equation, see von Kármán & Howard (1938), for the two-point correlation
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114 L. Wang and N. Peters

function of velocity fluctuations in terms of structure functions, and by using order-of-
magnitude and dimensional scaling arguments. Deviations from Kolmogorov’s scaling
laws, for instance in terms of higher moments of velocity differences, have been the
subject of extensive research ever since. Reviews are given by Sreenivasan & Antonia
(1997) and Frisch (1995).

Although much valuable insight has been obtained by studying structure functions, it has become

increasingly clear that a deeper understanding of turbulence requires more information about the spatial

organization of the underlying flow than two-point measurements can provide. In fact ‘the structure

function’ tells us virtually nothing about the structure of turbulent fluctuations if the latter term is

interpreted in the geometrical sense . . . .

This quotation from Chertkov & Pumir (2000), where the authors advocate a four-
point approach, illustrates the discontent of many researchers with the present
understanding of the statistical geometry of turbulence (see also Tsinober 2001). The
question that we therefore have posed (Wang & Peters 2006; Peters & Wang 2006) is
whether the flow itself exhibits its structure via well-defined points. We believe that
such points are local minimum and maximum points of a fluctuating field, where
the field variable may be a passive scalar such as temperature, a component of the
velocity vector, a component of the vorticity vector, or the second invariant of the
velocity gradient tensor. The field variable may even be the kinetic energy or its
dissipation since these quantities are of particular interest in turbulence modelling.

In the previous papers, inspired by the analysis of zero-gradient points by Gibson
(1968), we have analysed the fields of the fluctuating passive scalar obtained from
direct numerical simulations (DNS) by gradient trajectories that started from each
grid point in the direction of ascending and descending scalar gradients. These tra-
jectories invariably end at local maximum and minimum points, respectively, if the
scalar field satisfies the conditions for a Morse function. This is a sufficiently smooth
function which can be approximated by a pure quadratic form in the vicinity of its
extremal points. Since the scalars mentioned above are smoothed by viscosity or by
diffusivity, this assumption is likely to be valid. For this reason the method cannot be
used for the pressure field, since this field is not diffusive and does not behave like a
Morse function in the vicinity of extremal points. Once a local minimum and a local
maximum point have been associated with each grid point via the trajectories, finite
spatial regions called dissipation elements can be identified. They cover the ensemble
of grid points from which the same pair of minimum and maximum points have been
reached. These regions are quite irregular in shape and in some cases not even simply
connected. Nevertheless, differently from vortex tubes, which often are viewed as
geometrical objects representing turbulence, they are space-filling and unambiguously
defined by the gradient trajectory algorithm.

This method also provides two parameters that we believe to be the first choice to
parameterize the geometry and the field variable structure of the elements: the linear
distance between the extremal points and the absolute value of the difference of the
field variable at these points. There may be a need to introduce more parameters to
characterize the shape of the elements (see Bermejo-Moreno & Pullin 2008) and the
distribution of the field variable within them as research along these lines proceeds.
On average, however, the elements appear to be elongated structures with a mean
length of the order of the Taylor scale (see Wang & Peters 2006).

The distribution of the length of the elements, represented by the linear distance
between the extremal points, was the main subject of Wang & Peters (2006) for the
passive scalar field. It will be the focus of this paper for the other field variables
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Length scales in turbulence 115

listed above. In addition, certain mean quantities, conditioned on the linear length of
elements, will be examined, because they are thought to be of fundamental interest
for the understanding of turbulence.

Such a quantity is the conditional mean dissipation 〈ε|l〉 defined as a volume
average for elements of length l:

〈ε|l〉 =

nl∑
i

∫
Vi,l

ε(x, t) dVi,l

Vf (l)
=

∫
Vf

ε(x, t) dVf (l)

Vf (l)
, (1.1)

where nl is the number of elements in a unit volume having linear length in the range
l − �l/2 � l � l + �l/2, Vi,l is their individual volume, and the fractional volume
within the unit volume occupied by all of them is Vf (l) =

∑nl

i Vi,l . This may be used
to define Vl =Vf (l)/nl as the mean volume of elements of length l and Al = Vl/ l as
the corresponding mean cross-sectional area. In the previous paper it was shown that,
while the length of elements varies, the mean cross-sectional area Al is approximately
constant, of the order of the Kolmogorov scale, and Reynolds number independent.
Similarly to (1.1), the overall mean value of ε may be calculated from

〈ε(t)〉 =

∫ ∞

0

∫
Vf

ε(x, t) dVf (l) dl

V
, (1.2)

where V is the unit volume and the integration over l replaces the summation over
fractional volumes. If the length-scale distribution P (l, t), which is proportional to nl ,
is known, the overall mean can then be calculated using (1.1) and (1.2) as

〈ε(t)〉 =

∫ ∞

0

〈ε|l〉 VlP (l, t) dl∫ ∞

0

VlP (l, t) dl

≈

∫ ∞

0

〈ε|l〉 lP (l, t) dl∫ ∞

0

lP (l, t) dl

, (1.3)

assuming Al as constant. Since we will derive a model equation for P (l, t) for the
various fields we will be able to address certain unresolved fundamental questions
regarding the modelling of the ε-equation often used in engineering applications.

We will modify the Boltzmann-type equation, often referred to as a population
balance equation, for P (l, t) that had been derived in Wang & Peters (2006) for the
scalar field, to include the influence of conditional strain that had previously been
neglected. We will also review the mechanisms of generation and removal of elements.
We will analyse the DNS data with respect to the rapid changes of elements that we
observe during a very small time step. It appears that rapid splitting and attachment
of elements are the dominating processes.

The paper is organized as follows: In the next section we will visualize dissipation
elements at two consecutive times in the numerical simulations and describe the rapid
changes that occur. In § 3 we will derive a modified model equation for the length-scale
distribution function and compare its steady-state solution with those obtained from
DNS of the various fields mentioned above. In § 4 we consider conditional means
of the difference at the minimum and maximum points for the field variables of the
passive scalar field and the fields of the three velocity components. Finally in § 5
we will present unexpected observations concerning the conditional mean dissipation
rate and draw conclusions for the modelling of the ε-equation.
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116 L. Wang and N. Peters

Case 1 2 3

Number of grid cells 5123 5123 10243

Viscosity ν 0.01 0.003 0.002
r.m.s. velocity vrms 2.02 1.32 1.38
Turbulent kinetic energy k 6.13 2.61 2.85
Dissipation ε 2.592 0.974 0.939
Taylor scale λ 0.488 0.284 0.246
Reλ = vrmsλ/ν 98.7 125.0 170.0
Kolmogorov scale η 0.0249 0.0129 0.0096
Resolution �x/η 0.493 0.95 0.638
Normalized velocity gradient S k/ε 3.54 4.018 4.554
Scalar variance 〈φ′2〉 0.0616 0.0287 0.0331
Scalar dissipation 〈χ〉 0.0544 0.0245 0.0236

Table 1. Non-dimensional mean quantities characterizing three cases considered.

Case 1
φ′ v′

1 v′
2 v′

3 ω1 ω2 ω3 Q k ε

lm 0.947 0.995 0.901 0.858 0.604 0.566 0.564 0.471 0.779 0.413
Extr. points 3014 1351 1536 1757 5953 6912 7521 10533 3374 18837
Elements 9673 5214 5836 6903 23202 27581 29120 41811 12547 74977

Case 2

lm 0.476 0.534 0.502 0.503 0.290 0.285 0.285 0.243 0.432 0.212
Extr. points 23712 9204 9771 10230 61307 60114 61205 78930 18066 147804
Elements 85868 40177 42843 45169 259913 249527 251544 332897 76933 615802

Case 3

lm 0.3344 0.4039 0.3763 0.4058 0.1878 0.1863 0.2248 0.1630 0.3357 0.1502
Extr. points 69648 24609 26857 20238 293700 293700 121668 310636 41333 467649
Elements 270180 109752 118926 85224 1271669 1278075 515523 1367515 172319 2025325

Table 2. Mean length scales lm, number of extremal points and number of dissipation
elements obtained for the various fields in the three DNS cases.

2. Splitting and attachment of dissipation elements
We have performed three DNS within a cubic box of 2π side length for homo-

geneous incompressible turbulent shear flow with an imposed velocity gradient S =
d〈v1〉/dx2 = 1.5. These calculations were continued from the first two cases reported
in Wang & Peters (2006) with 5123 grid points in cases 1 and 2 and with 10243 grid
cells in case 3. In addition the field of the passive scalar φ with unity Prandtl number
with an imposed scalar gradient Sφ =d〈φ〉/dx2 = 1/(2π) was calculated. The three
cases, listed in table 1, differ by the choice of the viscosity ν and consequently the
Taylor-scale Reynolds number. In each case the ratio of the grid size �x to the
Kolmogorov scale η is less than unity. This was found to be necessary for grid
independence in terms of the number of extremal points and the number of elements.
Those numbers are given for the various fields in table 2.

The numerical method used was a spectral collocation method described in some
detail in Wang & Peters (2006). From the Fourier coefficients not only the values
of the independent variable of the fields mentioned above but also its derivatives in
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Length scales in turbulence 117

the three spatial directions were calculated. In order to identify minima and maxima
points we calculated trajectories starting from every grid point in the direction of
ascending and descending scalar gradients.

The distribution of minimum and maximum points in the cubic box was shown
previously in Wang & Peters (2006). In order to illustrate the size of elements and
their dynamics we show in figure 1 for the passive scalar field of case 1 two projections
of half of the cubic box towards one side plane at two consecutive time steps. For
each dissipation element the (blue) minimum point and the (red) maximum point
are connected by a straight yellow line. At the centre point of that line a light blue
sphere is shown, the volume of which corresponds to the number of grid points of
the dissipation element. It is seen that there are many small elements and only a
few large elements in the box. While the location of many of the extremal points
is nearly the same for the two consecutive snapshots, some of the connecting lines
have switched and, more predominantly in this illustration, the size of the spheres
has changed. There are also new extremal points that have appeared and others that
have disappeared.

These changes cannot be interpreted by the model that we have formulated in the
previous paper (Wang & Peters 2006), where a linear array of dissipation elements
connected at their end points was considered. The length-scale distribution function
in this model resulted from the cutting (and thereby removal) of larger elements to
generate smaller elements and from the reconnection by diffusion (thereby generating
larger elements and removing smaller elements). We see by comparing the two plots
of figure 1 that at many locations there also appears to be a splitting of elements,
illustrated by a decrease of the size of a sphere.

On the other hand, there are also increases of the sizes of some of the spheres,
indicating attachment of previously split elements having the same length. There also
can be generic attachments, like the reverse process of saddle line splitting, which will
be discussed below.

An example illustrating the cutting of a larger element into three pieces (where the
intermediate piece was assumed to disappear rapidly in the previous linear model) is
shown in figure 2. This type of change is a rare event and difficult to identify among
the many elements that fill up the box. The original element in (a) extends between the
red maximum point at the top and the blue minimum point at the bottom. There is a
pronounced saddle line in the light green region. The cutting occurs below this region
in such a way that the lower part of the elements connects with a new maximum
point to which a third element is also connected (the three new elements are shown
at a small separation distance from each other). While the structure of the upper new
element corresponds to that of the original element, there is a change of shape in the
lower and the third element in (a).

More common is the splitting of an element into two smaller ones as shown in
figure 3. This element, like the one in figure 2, is obtained from the field of the passive
scalar. The original element is shown in (a) together with a vortex tube in grey
that touches it on the top. The shape of the vortex tube was obtained by visualizing
contour surfaces of the second invariant of the velocity gradient tensor Q =ω2−SijSij .
The gradient trajectories run between the red maximum point at the top and the blue
minimum point towards the right of the element. The splitting occurs in the region,
where the vortex tube touches the element. The resulting two elements are shown in
figure 3(b). While the volumes of the resulting two elements differ considerably they
have nearly the same linear length and scalar difference.
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118 L. Wang and N. Peters

(a)

(b)

Figure 1. Two projections of dissipation elements from half of the cubic box. They are 0.001
time units apart, where 0.08 time units correspond to one Kolmogorov time. Dissipation
elements are presented by a light blue sphere on a yellow straight line which connects its (blue)
minimum point with its (red) maximum point. Differences in the size of the spheres and the
location of extremal points illustrate the rapid changes that occur even during a small fraction
of the Kolmogorov time.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

08
00

21
39

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112008002139


Length scales in turbulence 119

(a) (b)

Figure 2. An example of the cutting of a dissipation element (a) from the passive scalar
field into three pieces (b). The shapes of dissipation elements are illustrated by showing the
trajectories between the minimum and the maximum point. The colour coding which ranged
from blue for the minimum to red for the maximum in (a) was maintained after cutting.

(a) (b)

Figure 3. An example of splitting of a dissipation element from the passive scalar field into
two pieces. The splitting is initiated by a region of strong vorticity shown in (a).

(a) (b)

Figure 4. An example of splitting of a dissipation element from the v1-velocity field.
A smaller element is split off by the action of vorticity shown in (a).
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The splitting of an element taken from the field of the v1-velocity component is
shown in figure 4. It is surrounded by several regions of strong vorticity as shown in
(a). The interaction with the turbulent motion leads to the split-off of a thin element
that has a smaller linear distance and a scalar difference from the original element.

Figure 5 shows an element taken from the field of the second invariant of the
velocity gradient tensor. The interaction of the element with a vortex tube shown in
(a) hides the region of maximum Q (in red) as it should, since when the vorticity is
large Q should be large. The splitting off of a smaller element shown in (b) apparently
originates from this region.

Figure 6 shows two different elements taken from the field of the kinetic energy k.
The element in (a) is sheet-like and wraps around a vortex tube. The element in (b)
is more voluminous but shows that regions of large vorticity are spatially separated
from those of large kinetic energy. This behaviour was found in all simultaneous
visualizations of elements from the kinetic energy field with vortex tubes. One may
easily demonstrate that this should be so by analysing periodic arrays of counter-
rotating vortices of opposite vorticity at the same magnitude. There, the maximum of
kinetic energy lies half-way between two vortices, whereas the maximum of absolute
vorticity lies at the centre of the vortices.

Finally, figure 7 shows the splitting of an element taken from the field of the
viscous dissipation ε. Here a vortex tube just touches the original element in (a)
which then splits into two elements of nearly equal linear length and scalar difference
in (b).

While all the examples in figures 3, 4, 5, and 7 show splitting processes, we were
unsuccessful in identifying attachment processes, which would have required analysing
fields at three different consecutive times. That such processes must also occur can
be inferred from the arguments given above. Such an attachment of two elements
would be the inverse of the splitting process and can be imagined as a time reversal
of the processes shown in figures 3, 4, 5 and 7. Physically, this must involve the
disappearance of newly generated extremal points by the combined action of random
motion and molecular diffusion.

3. Modelling
In Wang & Peters (2006) we considered a birth-and-death process for a class

of elements of length l in order to derive an equation for the probability density
P (l, t) (or distribution function) of l. We have shown that, at least on average, the
elements are elongated structures with diameter of a few Kolmogorov scales and
therefore considered a one-dimensional model of linearly connected rod-like elements
which were cut into smaller elements by a random Poisson process. When a very
small element disappears due to diffusion the two adjacent elements reconnect to
a larger element. In a following paper (Peters & Wang 2006), by considering a
random superposition of Gaussian profiles in one dimension as a model problem, we
showed that not all cuttings were successful and that the frequency of the random
cutting process must scale with the integral time scale. Since the integral time and the
molecular diffusivity are the only input parameters in the three-dimensional DNS,
dimensional analysis then shows that, with molecular diffusion coefficient D = ν, the
mean length scale of the three-dimensional DNS data is of the order of the Taylor
scale, rather than any other length scale in the problem.
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Length scales in turbulence 121

(a) (b)

Figure 5. An example of splitting of a dissipation element from the field of the second
invariant Q. A region of high vorticity covers the (red) maximum point in (a). The off-splitting
seems to originate from this region.

(a)
(b)

Figure 6. Two different elements from the field of kinetic energyshowing the interaction with
regions of strong vorticity.

(a) (b)

Figure 7. An example of splitting of an element from the field of viscous dissipation.
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Summarizing the results of both papers, the equation for the normalized probability
density P̃ (x̃, t̃) is

∂P̃ (x̃, t̃)

∂t̃
+

∂[ṽD(x̃) P̃ (x̃, t̃)]

∂x̃
= Λ

[
2

∫ ∞

x̃

P̃ (x̃, t̃) dy − x̃ P̃ (x̃, t̃)

]

+ 8
∂P̃ (x̃, t̃)

∂x̃

∣∣∣∣x̃→0

[∫ x̃

0

ỹ

x̃
P̃ (x̃ − ỹ, t̃) P̃ (ỹ, t̃) dỹ − P̃ (x̃, t̃)

]
. (3.1)

Here the independent variable x representing a class of length l was non-
dimensionalized as x̃ = ρ x, where ρ is the inverse of the mean length scale lm:

ρ =
1

lm
. (3.2)

Likewise y, representing the class from which reconnection occurs, was non-
dimensionalized as ỹ = ρy and P (x, t) was non-dimensionalized as P̃ (x̃, t̃) = P (x, t)/ρ.
Finally, the time t and the drift velocity v were non-dimensionalized as t̃ = t ρ2D and
ṽD = vD/(ρD). In (3.1) the strain term accounting for the axial compression of elements
appearing in Wang & Peters (2006) is no longer considered.

In Peters & Wang (2006) it was shown that the drift velocity vD(x) obtained from
the linear model problem may be approximated well by the ansatz

vD(x) = −4D

x
(1 − cρx exp(−ρx)), (3.3)

where the constant c was determined from the condition that the total length L of
the linear array must not change:∫ ∞

0

vD(x)P (x, t) dx = 0. (3.4)

For convenience and comparison with the previous model we will use the same
ansatz here.† The other model used in Wang & Peters (2006) also was tested. It was
found that the differences in the resulting probability density were negligible. This is
mainly due to the constraint imposed by (3.4).

It is worth mentioning that (3.1) is parameter free since the Péclet number Λ was
determined as

Λ =
λ

ρ3D
(3.5)

from the normalization condition∫ ∞

0

P̃ (x̃, t̃) dx̃ = 1. (3.6)

Furthermore, since the mean length scale was used for normalization, the following
condition for the first moment also must be satisfied:∫ ∞

0

x̃ P̃ (x̃, t̃) dx̃ = 1. (3.7)

† In (3.3), differently from Wang & Peters (2006), there is a factor 4 in front of the diffusion
coefficient. This factor leads to the factor 8 in the second term on the right-hand side of (3.1)
and increases the Péclet number accordingly, but cancels out in the calculation of the normalized
probability density.
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In the following we will add terms to the equation to account for the additional
processes of splitting and attachment. The splitting process will generate shorter
elements without altering the length of those from which they have split. We will call
this is generation by splitting (gs). The attachment process will remove elements of all
classes without generating longer elements. This will be called removal by attachment
(ra). Together with the previously (Wang & Peters 2006) identified processes of
generation by cutting (gc), removal by cutting (rc), generation by reconnection (gr)
and removal by reconnection (rr) we now would have six processes in the birth and
death of elements. However, because the cutting and reconnection processes occur
very rarely, we will neglect them at the end.

We will again consider the transition of nl grid cells within a class of elements of
length l. Denoting the number density of elements per unit volume by N , the number
of grid cells per unit volume within a class of elements of length l is nl N P (l, t) dl.
The time rate of change of the number of grid cells leaving and entering class x of
elements is

∂

∂t
[nx NPx(x, t)] dx =

∫
W (x|y) ny NPy(y, t) dy dx −

∫
W (y|x) nx NPx(x, t) dy dx.

(3.8)

Here we have denoted by x the class of elements under consideration, while y stands
for the class of elements from which transitions to x occurs. Furthermore, W (x|y)
and W (y|x) are the transition probabilities per unit time from y to x and from x to
y, respectively. Differently from Wang & Peters (2006) and Peters & Wang (2006) we
have included the number density N in all terms. This will become of interest when
unsteady changes of P (x, t) are considered in future work.

After division by dx (3.1) now has six terms on the right-hand side:

∂

∂t
[nx NPx] =

∂

∂t
[nx NPx]gc +

∂

∂t
[nx NPx]rc +

∂

∂t
[nx NPx]gr

+
∂

∂t
[nx NPx]rr +

∂

∂t
[nx NPx]gs +

∂

∂t
[nx NPx]ra. (3.9)

The first four of these have been derived in Wang & Peters (2006). The generation-
by-splitting term

∂

∂t
[nx NPx]gs =

∫ ∞

x

Wgs(x|y) ny Py(y, t) dy (3.10)

represents the generation of typically smaller elements by the splitting process from
larger elements. The integration runs from y = x to infinity because the newly
generated element of length x is assumed to be smaller than or equal to the element
of length y from which it splits.

The process is similar to the generation by cutting (gc). The transition probability
density per unit time Wgs(x|y) is again proportional to a rate ω times the probability
density Px→y(x, y, t) that such splitting generates elements of class x:

Wgs(x|y) = ω Px→y(x, y, t). (3.11)

However, the rate ω of secondary splitting is not only proportional to the length y of
the element that is cut, as in the model of linearly connected rod-like elements, but
also proportional to the surface of elements, since splitting can occur at any part of
the surface. Therefore we write ω(y) as

ω(y) = λs y2, (3.12)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

08
00

21
39

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112008002139


124 L. Wang and N. Peters

where λs is a splitting frequency per unit time and area which needs to be determined
from the normalization condition. It implicitly contains a factor which accounts for
the average number of elements generated by the splitting. Assuming Py→x to be the
same as in Wang & Peters (2006), namely

Py→x = 2
x

y2
, (3.13)

the integral on the right-hand side of (3.10) will become

∂

∂t
[nx NPx]gs = 2 λs

∫ ∞

x

x ny NPy(y, t) dy. (3.14)

Next we will consider the removal of elements by attachment (ra):

∂

∂t
[nx NPx]ra = − nx NPx

∫ ∞

0

Wra(y | x) dy. (3.15)

This process describes the attachment of two or more elements to larger ones due
to the disappearance of extremal points. The integration here runs from y = 0 to
y = x because all element classes may be removed. The transition probability density
per unit time Wra(y | x) of this removal process is proportional to the rate ω(x). We
assume that this rate is proportional to the length of the circumference of the element
which again is proportional to the element length x. The frequency per unit time
and length is denoted by μa , such that Wra(y | x) =μa x Px→y . Since elements of class
x under consideration are removed by any class y, the corresponding probability
density of transitions Px→y will be independent of y and uniform in 0 � y � x with
the normalization condition ∫ x

0

Px→y dy = 1. (3.16)

Therefore the integral describing the removal of elements by attachment becomes

∂

∂x
[nx NPx]ra = μa nx N x P (x, t). (3.17)

Based on the rod-line nature of the elements we will assume as in Wang & Peters
(2006) that the number nx (or ny) of grid points is proportional to the length x (or
y) of an element.

Dividing (3.8) by nx and the number density N , one therefore obtains, with the
formulation of the (gc), (rc), (gr) and (rr) processes taken from Wang & Peters (2006),

1

N

∂

∂t
[NP (x, t)] = 2 λs

∫ ∞

x

y P (y, t) dy + 2 λβ

∫ ∞

x

P (y, t) dy

− (μa + λβ) x P (x, t) + 2μ β

[∫ x

o

y

x
P (x − y, t)P (y, t) dy − P (x, t)

]
. (3.18)

In (3.18) we have multiplied the cutting and reconnection terms by a weighting factor
β to account for the influence of the terms previously considered. In the following we
will only consider the limit β → 0 because these processes occur very rarely as noted
above.

In addition, we will consider the compression and elongation of elements by the
different velocities at the maximum and minimum points. For this purpose we have
evaluated the conditional mean velocity difference 〈�v · n | l〉, divided by the linear
length l, where n is in the direction of the linear length, for the various fields. This
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0 1 2 3 4
–4

–3

–2

–1

0

1

2

x̃

a
a∞

Figure 8. Conditional mean strain rate, normalized by its value a∞ = 1.85 at l → ∞ between
the minimum and the maximum point of elements obtained from the passive scalar field in
case 3. The solid line is the approximation (3.20).

quantity represents the conditional mean strain rate of the element class l

a =
〈�v · n | l〉

l
. (3.19)

It was normalized as ã = a/a∞ using its value a∞ at l → ∞ and is shown for the
passive scalar field in figure 8 as a function of x̃ = l/ lm. It is approximated by

ã = 1 − 0.4

x̃ + 0.1
. (3.20)

The value of a∞ must be obtained from the numerical analysis of the various DNS
fields. Values of a∞ for the ε-field, as an example, will be given in table 4 in § 5. They
are close to the value S = d〈v1〉/dx2 = 1.5 for three cases presented.

We also need to consider the drift process due to molecular diffusion. The factor
4D in (3.3) was derived for the linear model problem and does not take three-
dimensional effects with a random geometry of the small elements into account.
In order to account for this we will multiply the ansatz (3.3) by an enhancement
coefficient ce. We normalize the time in (3.18) as t̃ = ta∞, and the velocity in (3.3) as
ṽD = vD/(lma∞) to obtain in the limit β → 0 the non-dimensionalized equation for a
time-independent number density N:

∂P̃ (x̃, t̃)

∂t̃
+

∂

∂x̃

[
ṽD(x̃) P̃ (x̃, t̃)

]
+

∂

∂x̃

[
ãx̃P̃ (x̃, t̃)

]
= Λs

∫ ∞

x̃

ỹP̃ (ỹ, t̃) dỹ − Λa x̃ P̃ (x̃, t̃),

(3.21)
where Λs =2 λs/(ρ

2a∞) and Λa = μa/(ρa∞) are non-dimensionalized numbers whose
values will be determined from the normalization and the first moment during the
solution of the equation. Numerically obtained values are shown in table 3. The
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De Λs Λa c

0.6 3.13 3.33 3.90
1.0 3.77 3.66 3.74
1.5 4.41 3.94 3.62

Table 3. Parameters in (3.21) obtained as eigenvalues of the solution.
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x̃

x̃

P̃(x̃)

P̃(x̃)

1 2 3 4 5
10–3

10–2

10–1

100

Figure 9. Distribution function of the linear length of elements for three values of the
modelling parameter De defined in (3.23) as given in table 3.

non-dimensional drift velocity is

ṽD = −De

x̃
(1 − c x̃ exp(−x̃)), (3.22)

where

De =4Dce/
(
l2m a∞

)
(3.23)

is an effective non-dimensional diffusivity. Since l2m is proportional to the square of the
Taylor scale, which itself is proportional to the viscosity ν, the molecular transport
coefficients cancel out for D = ν in this definition. It then follows that the model
equation (3.21) is Reynolds number independent.

For three different values of De to be used below, the resulting probability densities
are shown in figure 9 in a linear plot, with a log-linear plot in the inset. There is a
shift of the maximum value to larger x̃ for increasing De. The slope of the exponential
tail is also reduced.

In order to understand the balance between the different terms in (3.21) we have
plotted them for the case De = 0.6 as a function of x̃ in figure 10. It is seen that for
small x̃ there is a balance between the generation-by-splitting (gs) term and the drift
term. This illustrates that small elements generated from large elements by splitting
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0 1 2 3 4 5
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3

4

drift
strain
gs
ra

x~

Figure 10. Different terms in the steady-state solution of the model equation (3.21) for the
length-scale distribution function. To show the balance, the sign of the drift and the strain term
has been changed.

eventually disappear due to molecular diffusion. The strain term changes sign twice.
The compressive strain close to x̃ = 0 generates smaller elements, while the extensive
strain generates larger elements for large x̃. Both are removed from an intermediate
region where P̃ (x̃, t̃) has a maximum. Finally, the removal-by-attachment (ra) term
balances the other three terms.

The comparison of the model with probability densities calculated for the various
fields from the DNS are shown in figures 11–16. Plotted are the three cases for the
fluctuating passive scalar field φ′ (figure 11), the fluctuating velocity components v′

1, v
′
2

and v′
3 (figure 12) as well as the components of the vorticity ω1, ω2 and ω3 (figure 13),

and the second invariant Q (figure 14), respectively. Also shown are those for the
kinetic energy k (figure 15) and its dissipation ε (figure 16). It is seen that for the
passive scalar φ′ the DNS data agree best for De = 0.6, in particular in the log-linear
inset. For all other fields except the velocities v′

2 and v′
3 the value De = 1 shows a

much better agreement. The difference of DNS data for the probability densities of
the v′

2 and v′
3 fields with that of v′

1, for instance, is not large but, nevertheless, a value
of De =1.5 was chosen to approximate these p.d.f.s. There is little difference between
the three DNS cases in each of the plots, not enough to suspect a Reynolds number
dependence of the shape of the distributions. This was taken into account in the
formulation of the model equation.

4. Conditional mean scalar differences
In this section we explore the scaling laws for the conditional means of the

scalar difference between the value at the minimum and the maximum points of
the dissipation elements and compare them with those for the structure functions.
As shown in Wang & Peters (2006) for the passive scalar field the joint probability
density of the linear distance between the minimum and the maximum points and the
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Figure 11. Comparison of the length-scale distribution function from the DNS data for the
fluctuations of the passive scalar with the present model. De = 0.6.

absolute value of the difference of the field variable at these points can be obtained for
the various fields considered here. From these the length-scale distribution functions
considered above can be determined as marginal probability densities, and also the
conditional mean can be evaluated.

In figures 17 and 18 we present compensated plots for the conditional means
〈�φ′|l〉, 〈�v′

1|l〉, 〈�v′
2|l〉 and 〈�v′

3|l〉. For the three cases considered. As in Wang &
Peters (2006) the mean conditional difference of the passive scalar 〈�φ′|l〉 scales
in the inertial range for over more than one decade as 1/3 ( = − (−5/3 + 1)/2),
corresponding to the Kolmogorov −5/3 scaling. It starts again at approximately 7η

which is much smaller than values quoted in the literature for classical structure
functions. This favourable behaviour of dissipation element analysis was explained in
Wang & Peters (2006) with the higher two-point correlation in the vicinity of extremal
points, which contaminates classical structure function analysis when relatively small
Reynolds-number DNS data are used. Dissipation element analysis avoids the high
correlation regions in the vicinity of extremal points by construction.

On the other hand, the conditional means of the velocity differences at the minimum
and maximum points 〈�v′

1|l〉, 〈�v′
2|l〉 and 〈�v′

3|l〉 (figure 18) do not follow the
1/3-scaling. Larger deviations from the Kolmogorov scaling exponents for velocity
components than for the scalar were also reported by Mydlarski (2003) for quasi-
isotropic grid turbulence. For the present shear flow situation, the imposed strain rate
S = ∂〈v1〉/∂x2 appears to be too large for the assumption of isotropic turbulence to be
valid (S. Sarkar 2006, personal communication). In figure 19 we plot the conditional
mean difference of the v′

1-velocity component divided by l, 〈�v′
1|l〉/l, over x̃. This

quantity differs fundamentally from the conditional mean strain rate defined in (3.19),
which was the velocity difference in the direction of the linear length. When compared
with the imposed mean strain rate S = ∂〈v1〉/∂x2 = 1.5, it is seen that for large x̃ this
quantity is only a factor 2 larger than the imposed strain rate. Another criterion for
isotropic turbulence was put forward by Saddoughi & Veeravalli (1994). It states that
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Figure 12. Comparison of the length-scale distibution function from the DNS data for the
fluctuation of (a) the v1-velocity field (b) the v2-velocity field and (c) the v3-velocity field, with
the present model for De =1.0, 1.5, 1.5 respectively.
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Figure 13. As figure 12 but for (a) the ω1-vorticity field, (b) the ω2-vorticity field and (c) the
ω3-vorticity field, with the present model for De = 1.0.
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Figure 14. As figure 12 but for the second invariant of the velocity gradient tensor
Q for De = 1.0.

0 1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5
10–3

10–2

10–1

100

case 1
case 2
case 3
model

x̃

x̃

P̃k(x̃)

P̃k(x̃)

Figure 15. As figure 12 but for the turbulent kinetic energy k for De =1.0.

the product S (ν/ε)1/2 should not be more than about 0.01, whereas it is 0.03 for case
1, 0.083 for case 2 and 0.069 for case 3 in our computation.

5. The special case of the conditional dissipation rate
In view of the particular importance of dissipation in turbulence we explore how

it is distributed over the different classes of dissipation elements. We have calculated
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Figure 16. As figure 12 but for the viscous dissipation ε for De = 1.0.
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Figure 17. Compensated conditional mean difference of the fluctuating passive scalar at the
minimum and the maximum points of dissipation elements. The exponent of 1/3 for l in all
cases corresponds to Kolmogorov’s inertial image scaling.

the conditional mean 〈ε|l〉 for each class x̃ of length scales taken from the ε-field for
the three cases considered. Here ε was weighted by the number of grid points in the
dissipation element. These results are plotted in a log-log plot in figure 20 showing
that the conditional mean decreases. This may be explained by the intermittent
nature of dissipation. In figure 21 we show the local dissipation from case 2 taken
along a line within the box. Even at this relatively low Reynolds number we observe
intermittency, characterized by very high local peaks together with regions of very
low activity. Dissipation elements calculated from the ε-field would extend between a
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Figure 18. Compensated conditional mean difference of (a) the fluctuating v1-velocity, (b) the
fluctuating v2-velocity and (c) the fluctuating v3-velocity at the maximum and minimum points
of dissipation elements. The exponents n for l/η used in the compensation differ from the
expected Kolmogorov scaling.
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Figure 19. Conditional mean strain rate 〈�v′
1|l〉/l calculated from case 2 in figure 18(a)

compared with the imposed mean strain rate S = ∂〈v1〉/dx2.
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Figure 20. Conditional mean dissipation 〈ε/l〉 within elements.

local maximum point on a peak and a minimum in the low-activity region. Elements
having a large linear length naturally will contain a larger portion of the low-activity
region where ε is low. Therefore the mean value of ε for large elements is smaller
than for small elements.

Ever since Obukhov’s and Kolmogorov’s third hypothesis (Obukhov 1962;
kolmogorov 1962) the intermittency of ε has been viewed as the key to the un-
derstanding of the fine-scale structure of turbulence. Meneveau & Sreenivasan (1991)
as well as Frisch (1995) have provided multifractal analyses which shed new light on
the early log-normal model for ε(r). In that model there is no length-scale dependence
of the mean dissipation but there is one for the variance. The length scale r in the
log-normal model corresponds to the radius of the sphere over which the dissipation
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Figure 21. Dissipation along a line within the box illustrating intermittency.
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Figure 22. Mean and variance of log ε as a function of the normalized length
of elements for case 2.

is averaged (see Pope 2000, p. 259). This differs from the present definition of a length
scale determined from dissipation elements which is not independent of the ε-field
itself. Figure 22 shows that if we take the log of ε and determine its variance σ 2

lnε as
a function of the element class, it turns out to be nearly independent of the length
scale, while the mean of log ε decreases as the mean itself. The exponent in figure 20
varies for the three cases shown which suggests a Reynolds number dependence of
this exponent at the relatively small Reynolds numbers of the simulation.

Conditional means of all the other non-intermittent fields which fluctuate between
positive and negative values were found to be zero as expected. The conditional mean
turbulent kinetic energy, calculated from its field, is found to have positive slope of
0.1 for case 1, of 0.05 for case 2 and is almost constant and equal to its overall mean
for case 3.
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We will use the finding for 〈ε|l〉 to shed some light on the form of the ε-equation
often used in engineering models, and its empirical coefficients. For the present case
of homogeneous shear flow this equation is

d〈ε〉
dt

= cε1 〈−v′
1v

′
2〉 〈ε〉

〈k〉
d〈v1〉
dx2

− cε2

〈ε〉2

〈k〉 , (5.1)

where the coefficients are typically chosen as cε1 = 1.44 and cε2 = 1.9. Approximating
the conditional mean dissipation by

〈ε|l〉 = ε∗x̃−n (5.2)

and using the definition of 〈ε〉 given in (1.3) one obtains

〈ε〉 = ε∗
∫ ∞

0

(x̃)1−nP̃ (x̃, t̃) dx̃. (5.3)

In order to evaluate the production and dissipation terms in the ε-equation we
multiply both sides of the non-dimensional model equation (3.21) by ε∗x̃1−n and
integrate. Then we obtain for the derivative with respect to the dimensional time t

∂〈ε〉
∂t

= a∞ ε∗ (Is − Ia + Istrain + Idrift), (5.4)

where the integrals result from the respective terms in (3.21).
We will associate the drift term, which is the only one to contain the molecular

diffusivity, with the dissipation term in the ε-equation. Consequently, the splitting and
attachment terms which model the rapid changes due to turbulent motion and the
strain term should sum to the production term. Since (3.21) was evaluated for the
steady-state case the sum of these three terms must be equal to the drift term

Is − Ia + Istrain = −Idrift. (5.5)

Therefore, in order to calculate both the production term and the dissipation term in
(5.1) we need only evaluate the drift integral

Idrift = De

∫ ∞

0

x̃1−n ∂

∂x̃

(
1

x̃
(1 − c x̃ exp(−x̃)) P̃ (x̃, t̃)

)
dx̃. (5.6)

The production term in (5.1) then is equal to a∞ε∗Idrift. Equation (5.6) was evaluated
with the value De = 1.0 used for the ε-field for the three different cases. The numbers
are given in table 3. Likewise the value a∞, which was numerically evaluated for the
ε-field, and the ratio ε∗/〈ε〉, equal to the inverse of the integral in (5.3), are shown
in that table. By using the empirical relation 〈−v′

1v
′
2〉 =0.3 〈k〉, valid for shear flow

(Bradshaw, Ferris & Atwell 1967), we may write the coefficient cε1 as

cε1 =
ε∗

〈ε〉
a∞

d〈v1〉/dx2

(−Idrift)

0.3
. (5.7)

From table 4 it is seen that the values of cε1 slowly increase with increasing Reynolds
number towards the empirical value cε1 = 1.44.

In a similar way we may evaluate the coefficient cε2 in the dissipation term in (5.1)
which also is equal to a∞ ε∗Idrift. Here we need to relate the mean length lm of the
ε-field given in table 2 to the Taylor scale λ as lm = α λ, where λ2 can be written as

λ2 = 10D
〈k〉
〈ε〉 , (5.8)
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case 1 case 2 case 3 Empirical value

Reλ 98.7 125.0 170.0 −
n 0.33 0.4 0.5 −
Idrift −0.23 −0.30 −0.40 −
a∞ 0.8 1.1 1.3 −
ε∗/〈ε〉 1.04 1.04 1.04 −
ce 3.42 4.12 3.67 −
α2 0.716 0.557 0.372 −
cε1 0.425 0.763 1.20 1.44
cε2 0.457 0.923 1.64 1.90

Table 4. Numbers needed for the evaluation of the coefficients in the ε-equation.

since ν = D in the calculation. The diffusivity in the definition of De then cancels and
the coefficient cε2 becomes

cε2 = 0.4
ce

α2

ε∗

〈ε〉
(−Idrift)

De

, (5.9)

where (3.23) has been used to evaluate the enhancement coefficient ce. With the values
for α2 obtained from table 1 and table 2 one may then calculate the coefficient cε2

for the three cases. Again, these values increase with increasing Reynolds numbers
towards the empirical value cε2 = 1.9.

We may conclude that the proportionality between lm and λ and the Reynolds
number independence of the model equation (3.21) translate into the form of the
empirically derived ε-equation. The coefficients cε1 and cε2, however, show a Reynolds
number dependence.

6. Summary
We have shown that the concept of dissipation elements, previously demonstrated

for passive scalars only, can be extended to many other fields in turbulence. The
length-scale distribution functions obtained from the DNS then show a similar shape.
They were modelled by an equation that contains a single free parameter, De, which
is used as a modelling constant accounting for differences in the various fields. In the
modelling different processes were assumed to be active, namely drift due to diffusion
and strain as continuous processes, and splitting and attachment as rapid Poisson-like
processes. There seems to be no Reynolds number dependence of the distribution
functions but there is for the conditional dissipation rate. This finding is exploited to
analyse the modelling assumptions of the empirically derived ε-equation.

There also is a difference between the scalar and the velocity fields in the scaling
exponents of the conditional mean differences. It is argued that this is due to the
imposed shear and that the velocity field is not really isotropic.
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