
Math. Struct. in Comp. Science (1999), vol. 9, pp. 1–20. Printed in the United Kingdom

c© 1999 Cambridge University Press

Full abstraction, totality and PCF

G O R D O N P L O T K I N

Department of Computer Science, University of Edinburgh, King’s Buildings,

Edinburgh EH9 3JZ, UK.

E-mail: gdp@dcs.ed.ac.uk.

Received 10 July 1997; revised 15 July 1998

Inspired by a question of Riecke, we consider the interaction of totality and full abstraction,

asking whether full abstraction holds for Scott’s model of cpos and continuous functions if

one restricts to total programs and total observations. The answer is negative, as there are

distinct operational and denotational notions of totality. However, when two terms are each

total in both senses, they are totally equivalent operationally iff they are totally equivalent in

the Scott model. Analysing further, we consider sequential and parallel versions of PCF and

several models: Scott’s model of continuous functions, Milner’s fully abstract model of PCF

and their effective submodels. We investigate how totality differs between these models.

Some apparently rather difficult open problems arise that essentially concern whether the

sequential and parallel versions of PCF have the same expressive power, in the sense of total

equivalence.

1. Introduction

In the survey article Fiore et al. (1996), Jon Riecke raised the interesting question of the

relationship between full abstraction and divergence

One final question is in order: how good is the original model [of PCF] used by Scott? ..... the model

appears to classify correctly many equations. Indeed the counterexample above due to Plotkin

relies on having divergence built into the terms that are operationally equivalent but denotationally

distinct. Since programmers (hopefully) do not write divergent subterms, are there counterexamples

to full abstraction where divergence is not necessary? At what level of the type hierarchy do such

examples occur? Answers to these questions may tell us where reasoning principles for programs

can be derived from simpler principles.

Taking a literal reading, it is not hard to construct such a counterexample, adapting

the usual one a little. Define (using evident abbreviations) the PCF terms

M = λbo.λfo→o→o. if (ftb) and (fb t) and ¬(ff f) then t else f

and

N = λbo.λfo→o→o. if (ftb) and (fb t) and ¬(ff f) then (b or¬b) else f.

Then M and N do not have any divergent subterms. Indeed, they do not have divergence

built into them, in the sense that they are (hereditarily) total. That is, given (as is

surely fair!) total arguments, they yield total results. On the other hand, M and N are
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operationally equivalent but distinct in Scott’s model, differing when applied to ⊥ and

‘parallel or’. However, one could still object that the notion of full abstraction should

itself be questioned as only total arguments should be considered, and M and N yield

identical results when applied to total arguments.

To make all this precise, we must define what we mean by totality, and then give

a notion of full abstraction appropriate for totality. It turns out that one can define

both operational and semantical notions of totality – as predicates or (equivalently!)

relations – and also of equivalence in total contexts. It would be natural to restrict to total

terms, and take full abstraction for totality to mean that for total terms the semantical

and operational notions of equivalence in total contexts coincide. Unfortunately, the two

notions of totality differ, with counterexamples occurring already at type level 2. So this

definition of full abstraction for totality does not make sense. However, in the cases where

it does make sense, and we restrict to terms total in both senses, it turns out that the two

notions of equivalence coincide.

One is therefore in a somewhat unexpected situation, which can perhaps be better

understood if we generalise our understanding of full abstraction. Given a notion that

has both operational and semantical definitions, we can say that the semantics is fully

abstract for that notion if the operational version of the notion holds for a term iff the

semantical version holds for its denotation. Now we can say that Scott’s model is not

fully abstract for totality, but is for total equivalence (if restricted to terms total in both

senses). This point of view has been investigated in Longley and Plotkin (1998), defining

full abstraction relative to a class of formulae.

One possible objection to our analysis is that programmers might prefer to vary their

notions of totality. They may sometimes be satisfied with less stringent requirements,

requiring that functions be total only for some inputs, say those satisfying a certain

formula in some logical language. However, at a higher type they may then be more

stringent, requiring totality for all such functions. Developing this idea would lead to a

family of notions of totality at each type, linked to a choice of logical language. Presumably

this could still be accommodated within the framework of Longley and Plotkin (1998),

and the contents of this paper would then appear as a kind of idealisation.

Such an investigation might lead, rather directly, to a useful logic of totality, perhaps as

hinted at by Riecke. The logic could perhaps be formulated as a refinement type system

of the kind given in Denney (1998), where refinements are given by logical formulae. A

closely related subject is that of refinement type systems for totality and other program

analyses – see, e.g., Coppo et al. (1997). Here one replaces logic and proof by type

inference procedures performed during compilation. The semantics of such type systems

can be given by assigning to each refinement type a suitable predicate or relation over

its underlying type – indeed totality predicates were already used for totality analyses in

Abramsky (1990).

Finally, one can ask what light is now thrown on notions of equivalence of (possibly)

non-total programs. First, such notions remain interesting even if one is concerned

ultimately only with total programs. For at some stage one will have programs that are

not yet known to be total (say, if they use the recursion operator), and one would like

to prove them total with the aid of equational reasoning, and that may involve working
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with non-total subterms. Now we can still argue for interest in full abstraction in the

traditional sense, as operational equivalence is easily seen to be the largest contextual

equivalence relation on terms that respects (the operational notion of) totality; a related

point can be made for operational inequivalence.

The study of continuous total functionals over the natural numbers was originated

by Kleene and Kreisel. An excellent account can be found in the paper by Gandy

and Hyland (Gandy and Hyland 1977); more recently, Normann has written a brief

survey article (Normann 1998). Ershov (Ershov 1975; Ershov 1977) made the connection

with the hierarchy of continuous functions. This has been pursued further by Normann

and others; they study dependent and inductive types, considering both continuous

and stable domain theory – see, e.g., Kristiansen and Normann (1995), Kristiansen and

Normann (1997) and Berger (1997). One aim of this work is to find models of Martin-

Löf’s type theory (Normann 1996; Waagbø 1998); another is to extend the Kleene–Kreisel

density theorem to transfinite hierarchies and use that to revisit higher recursion theory –

see, e.g., Berger (1997) and Normann (1997b).

Totality is best considered as extra structure on domains, typically a predicate or a

partial equivalence relation. These are naturally defined hereditarily on the type structure,

as pointed out by Ershov, Scott and Hyland (Ershov 1974; Ershov 1977; Scott 1976;

Hyland 1975). Berger has studied another possibility in order to give an abstract treatment

of density: he considers two predicates, one on the domain and one on the continuous

functions from the domain to the booleans – see Berger (1997) and Stoltenberg-Hansen

et al. (1994); see also Loader (1997), Kristiansen and Normann (1995) and Berger (1997).

Finally, one can argue that the study of totality at higher types is a prerequisite to

the study of complexity at higher types; work here has been carried out by Cook and

others (Cook 1989; Kapron and Cook 1996).

Below, we proceed systematically, studying two languages and four models. The lan-

guages are PCF and PCF++, where the latter is PCF extended with two constants,

por :o→o→o for parallel or, and ∃ : (ι→o)→o for (continuous) existential quantification.

The language PCF is adapted to sequential functional computation; PCF++ is adapted to

parallel functional computation. Scott’s model C of continuous functions (Scott 1993) and

Milner’s model S of sequential continuous functions (Milner 1977) are the standard fully

abstract models of PCF++ and PCF, respectively. They have natural submodels Co and

So consisting of those elements definable in, respectively, PCF++ and PCF; equivalently,

these are the submodels of the effective elements. Instead of Milner’s model, we might

have used (the extensional collapse of) the games model (Abramsky et al. 1995; Hyland

and Ong 1994; Nickau 1996). There is little to choose between the two; Milner’s model

is, perhaps, a little more convenient as it is known to be cpo-enriched; the more pressing

issue here is to settle the well-known open question as to whether the collapse of the

games model is cpo-enriched – if so, it is isomorphic to Milner’s.

After presenting the required background material in Section 2, we consider operational

notions of totality in Section 3, showing that, for total terms, operational equivalence

in ground total contexts corresponds to a natural hereditarily defined notion of total

equivalence. After discussing semantical notions of totality in Section 4, we consider

notions of total full abstraction in Section 5, principally showing relative full abstraction
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in Corollary 5.1. We also give a notion that enables the extent to which models of PCF (or

PCF++) agree on totality to be compared. We investigate this notion in detail in Section 6;

it turns out, for example, that disagreements arise already at level 2, as mentioned above.

While, as we have seen, S is not fully abstract for totality for PCF, So is; again,

although C is not fully abstract for totality for PCF++, Co is. If one takes these points

seriously, one is faced with the problem of finding a convenient method of working with

the effective models, and, in particular, of finding a pleasant logic. This can be viewed

as an additional argument for the approach of synthetic domain theory (Fiore et al.

1996), but perhaps a more modest version in which domains can still be considered as

partially ordered sets, if convenient, and one wishes only to avoid the tedium of detailed

considerations of syntax or the handling of indices of effective elements.

Some interesting open problems arise. It is not known whether C and S agree on

totality at all levels, nor whether Co and So do. However, if certain definability questions

have a positive answer, they do. These questions concern whether, in various senses,

PCF and PCF++ have the same expressive power for total functionals; a question of

this kind was first raised by Cook (Cook 1989) and, later, also by Berger (Berger 1993).

The two languages do not, as is well known, have the same expressive power for partial

functionals, and so the questions have a strong independent interest. In turn, they are

related to two other interesting open problems raised by John Longley. One concerns

whether the Kleene–Kreisel total functionals coincide with a sequential analogue, and the

other concerns the analogous question about Kreisel’s hereditarily recursively continuous

functionals.

It would be of interest to understand totality and recursive types. For example, given

a model of the untyped λ-calculus, one might wish for a notion of totality such that an

element is total iff it is when applied to any other total element; however, one then has

the undesirable consequence that (λx.xx)(λx.xx) is total. Again, in the context of games

models there is a natural question, raised by Abramsky, concerning the relationship

between the hereditarily-defined notion of totality and that of being a winning strategy.

Finally, there is a need for a theory of totality for other kinds of programming languages

– for example, consider higher-order imperative languages or languages for concurrency;

operational notions are important and semantical frameworks may be employed other

than variations on cpos. Evident questions of full abstraction arise for these languages, as

do questions of suitable logics.

2. Preliminaries on PCF

Both PCF and PCF++ are applied typed λ-calculi (Barendregt 1984) with two ground

types, o and ι (the booleans and the natural numbers). The constants of PCF are the

recursion combinators Yσ : (σ→ σ)→ σ, one for each type σ, together with boolean and

arithmetical constants, as follows

t, f : o, ⊃γ : o→γ→γ,

0 : ι, +1, −1 : ι→ ι,

Z : ι→o, Ωγ : γ.
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Here, and below, we reserve γ to range over ground types. The constants of PCF++ are

those of PCF together with por : o→ o→ o and ∃ : (ι→ o)→ o. Both of these languages

appear, in essence, in Plotkin (1997). The formulations here differ principally in the use of

a ‘parallel-or’ constant rather than a parallel conditional, for which see Stoughton (1991);

it is also convenient to include constants Ωγ for ‘undefined’ at ground types.

The operational semantics of these languages may be given by rules specifying a bi-

nary relation M ⇒ c of evaluation of programs to canonical form – see, for example,

Plotkin (1997) and Mitchell (1996). Here a program is a closed term of ground type, the

canonical forms of type o are t and f, and those of type ι have the form (+1)n0 (for n > 0).

We employ the usual conventions of the typed λ-calculus, such as omitting parentheses

or type superscripts on variables, as convenient. Other conventions are also useful. We

use α, β, σ, τ to range over types. We use A,B, . . . , L,M . . . to range over terms, but reserve

C for contexts (see below). Vector notation avoids much indexing. Thus, ~α stands for a

list α1, . . . , αm of types (where m = |~α| is the length of ~α), ~A stands for a list A1, . . . , Am
of terms, and ~x for a list xα1

1 , . . . , x
αm
m of variables (which, where necessary, we implicitly

assume to be all distinct). Now we have available several very useful abbreviations. First

~α→ γ abbreviates α1→ . . .→ αm→ γ; every type can be written uniquely in this form.

Next, λ~x.M and M~A abbreviate λxα1

1 . . . . .λx
αm
m .M and MA1 . . . Am, respectively. We write

~A :~α to mean that A1 : α1, . . . , Am : αm (where it is assumed that m = |~A| = |~α|), and

M[~x := ~A] stands for the simultaneous substitution of A1, . . . , Am for x1, . . . , xm in M (and

it is assumed that ~x :~α and ~A :~α for some ~α). We employ definitions by recursion, saying

that M :~α→ σ is recursively defined by M~x = . . .M . . .M . . ., and meaning that M is

defined to be Y~α→σ(λf~α→σ.λ~x. . . . f . . . f . . .).
We give a somewhat more careful treatment of contexts than is usual; our definitions

are intended to apply equally to PCF or PCF++. The σ-contexts are ranged over by C ,

and are given by the abstract grammar

C ::= ·σ|λxα. C|CN|MC

and we write C[M] for the result of replacing ·σ in C by M. We write C :τ if that follows

from the evident adaptation of the usual typing rules to contexts, taking ·σ :σ. Note that

if C :τ is a σ-context and M :σ, then C[M] :τ. We say that C binds xα if that follows from

the following rules

— λxα. C binds xα,

— λyβ. C , CN and MC all bind xα if C does (where yβ 6= xα).

Two terms M,N :σ are operationally inequivalent, written M 6op N iff for every σ-context

C : γ binding all the free variables of M and N, if C[M] ⇒ c, then C[N] ⇒ c (for any

canonical c : γ). We write =op for the corresponding equivalence relation; note that it

contains =β,η .

There are some useful boolean and arithmetical abbreviations. The pure types n (n >
0) are defined by: 0 = ι and n+1 = n → ι. Conditionals ⊃γ BMN are written as

if B then M else N, using multifix notation; postfix notation is employed for +1 and−1;

and (‘left-sequential and’) abbreviates λxo.λyo. if x then y else f, or (‘left-sequential or’) is
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defined similarly, and both are written using infix notation; finally, we use ¬ (‘negation’)

as an abbreviation for the term λxo. if x then f else t.

Set-theoretical models of applied λ-calculi are based on applicative structures A; these are

type-indexed families of sets Aσ together with application functions Appσ,τ :Aσ→τ×Aσ→Aτ.

Such a structure is extensional if

∀f, g ∈ Aσ→τ. f = g ≡ ∀x ∈ Aσ. f · x = g · x
where f · x abbreviates Appσ,τ(f, x). It is a type frame if Aσ→τ ⊂ AAστ and application

is standard function application. Every extensional applicative structure is evidently iso-

morphic to a unique type frame with the same sets at ground type. An environment is a

type-respecting map of variables to the union of the Aσ . A model A over an applicative

structure A consists of A together with an assignment A[[M]](ρ) of elements of Aσ to

terms M :σ (for every σ and any ρ); this assignment is required to satisfy certain standard

conditions; such A model the typed λβ-calculus. In the case of extensional structures

the assignment is uniquely determined by its value on constants, and such A model the

typed λβη-calculus. Vector notation will again prove useful; for example we will write

~a ∈ A~α and a ·~b with evident meanings. For closed terms M, the element a = A[[M]](ρ)

is independent of ρ and we say that M defines a; we may omit ρ writing A[[M]] (or even

just M).

A logical (or hereditarily defined) binary relation between applicative structures A and

B is a family R of relations Rσ ⊂ Aσ × Bσ such that for all f in Aσ→τ and g in Bσ→τ

Rσ→τ(f, g) ≡ ∀x ∈ Aσ, y ∈ Bσ. Rσ(x, y) ⊃ Rτ(f · x, g · y).

Given models A and B, over A and B, the logical relations lemma states that for all

terms M :σ if R(ρ, ρ′) holds (in the sense that Rα(ρ(xα), ρ′(xα)) holds for all variables xα),

then it follows that Rσ(A[[M]](ρ),B[[M]](ρ′)) holds, provided it does for all constants.

All of this generalises to relations of arbitrary degree. In the binary case, if a relation

R over A is a partial equivalence relation at base types, it is at all types, that is ‘being

a partial equivalence relation’ is an inherited property of binary logical relations. In this

case we can define an extensional applicative structure A/R where (A/R)σ consists of the

Rσ equivalence classes and with the induced application functions: [f] · [x] = [fx]; in the

case where R is built up from the equality relations at ground types, A/R is said to be the

extensional collapse or the Gandy hull of A. IfA is a model over A and the denotations of

all constants are in the field of the relevant partial equivalence relations, the unique model

A/R over A/R exists, and, for closed terms M, we have that (A/R)[[M]] = [A[[M]]]. See

Mitchell (1996) for a more detailed treatment of these matters.

The Scott model C of PCF++ – see, e.g., Plotkin (1997) – is based on the type frame Cσ of

all continuous functions over the flat cpos T⊥(= {tt, ff,⊥}) and N⊥ of the booleans and the

natural numbers. (See, e.g., Winskel (1993), Abramsky and Jung (1994) and Stoltenberg-

Hansen et al. (1994) for domain-theoretic background). Milner gave his model S of PCF

by a term model construction (Milner 1977); we prefer to consider Sσ to be the isomorphic

type frame with the same ground types as C. In both cases the applicative structures can

be order-enriched in that they can naturally be considered as a family of partially-ordered

structures with monotonic application functions. They are both order-extensional in that,
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for C, for example,

∀f, g ∈ Aσ→τ. f 6 g ≡ ∀x ∈ Aσ. f · x 6 g · x.
More is true: in both cases the structures are families of ω-algebraic cpos with continuous

application functions; further, the finite elements are definable by closed terms containing

no occurrence of recursion combinators or ∃ (or por in the case of S). Both models

relate well to the operational semantics, in that they are adequate and inequationally fully

abstract. For PCF++ and C adequacy is that for all programs M :γ

M ⇒ c ≡ C[[M]] = C[[c]]

(we omit environments for closed terms), and inequational full abstraction is that for all

terms M,N :σ

M 6op N ≡ ∀ρ.C[[M]](ρ) 6 C[[N]](ρ).

The definitions for PCF and S are similar.

The models Co and So are based on the sub-applicative structures Co
σ and Soσ of

elements definable by closed terms. The elements of the Co can equivalently be seen as

the effective elements of C – see Plotkin (1997); the same holds for So if we take the

effective elements to be those given by recursive strategies in the sense of Abramsky et

al. (1995). These structures are order-enriched, with the inherited partial orders, and order

extensional (since all finite elements of the Cσ and the Sσ are definable). When we refer

below to elements of these structures as finite, we mean when considered as elements of

the corresponding super-structures. We have for all PCF++ terms M that

Co[[M]](ρ) = C[[M]](ρ),

and similarly for So (the standard conditions are equational). It follows that both models

are adequate and inequationally fully abstract.

We use the letters D and E to range over C, S, Co and So (and D, E range over the

corresponding applicative structures).

3. Operational notions of totality

We wish to formalise operational notions of totality, and of the equivalence of total terms

in total contexts. We develop these for PCF, but all of the work goes through just as well

for PCF++, and we will assume that case too. First we extend the operational termination

predicates on programs to totality ones on closed terms (at all types) by setting M ⇓σ→τ iff

whenever N ⇓σ we have MN ⇓τ. These are then extended to open terms by setting M ⇓σ
iff for every list ~A ⇓~α of closed total terms, M[~A/~x] ⇓σ , where ~x :~α is a list of the free

variables of M. One easily sees that the totality predicates are closed under operational

equivalence, and it follows that they are also closed under λ-abstraction, and indeed M ⇓σ
iff λxα.M ⇓α→σ .

We are now in a position to define total contexts. Let C :τ be a closed σ-context. Then

C is total iff for every total term M ⇓σ , all of whose free variables it binds, C[M]⇓τ. (There

is a more general definition for open σ-contexts C : τ, viz that whenever M ⇓σ we have
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C[M]⇓τ.) With this we can then easily define when terms are equivalent in total contexts.

However, we are only interested in this notion for total terms, and in that case we have a

characterisation in terms of a binary analogue of the totality predicate.

Let us define (operational) total equivalence relations ≈σ on closed terms of type σ by

putting, at ground types, M ≈γ N iff M and N both terminate and evaluate to the same

canonical form, and on other types, M ≈σ→τ N iff whenever A ≈σ B we have MA ≈τ NB;

each ≈σ is a partial equivalence relation. In Section 4 we prove

M ≈σ M ≡ M ⇓σ, (*)

so there is no ambiguity in the unary notion. It follows that

M ≈σ→τ N iff for every closed A⇓σ,MA ≈τ NA (**)

(also see Section 4). We can again extend to open terms by a substitution process, setting

M ≈σ N iff for all lists ~A :~α, ~B :~α of closed terms, if ~A ≈~α ~B (using an evident vector

notation), then M[~A/~x] ≈σ N[~B/~x], where ~x :~α is a list of the free variables of M and N.

One easily sees that the relations are closed under =op, and it follows that they are also

closed under λ-abstraction: indeed M ≈σ N iff λxα.M ≈α→σ λxα. N. One then has that (*)

and (**) extend to open terms.

The following proposition shows that operational total equivalence is the same as

(ground) operational total equivalence in total contexts. An immediate consequence is

that for total terms, (ground) operational equivalence in total contexts is indeed the same

as operational total equivalence.

Proposition 3.1. For any terms M,N :σ, the following are equivalent:

1 M ≈σ N,

2 for all closed total σ-contexts, C : γ, binding all the free variables of M and N,

C[M] ≈γ C[N].

Proof. Assume 1, and suppose C : γ is a closed total σ-context binding all the free

variables of M and N. Let ~x :~α be a list of all the variables C binds. Then there is a

closed term B : (~α→ σ)→ γ such that for any term L : σ, C[L] =βη B(λ~x. L). We claim

that B ⇓(~α→σ)→γ . For suppose that A ⇓~α→σ . Then A~x ⇓σ , so, as C is total, C[A~x] ⇓γ . But

C[A~x] =βη B(λ~x. A~x) =βη BA, so we have established the claim. We therefore have by (*)

that B ≈(~α→σ)→γ B; we also know that λ~x.M ≈~α→σ λ~x.N, since M ≈σ N. So we have that

C[M] =βη B(λ~x.M) ≈γ B(λ~x.N) =βη C[N], concluding the proof that 2 holds.

Conversely, assume 2. Let ~x :~α be a list of the free variables of M and N. It suffices to

show that λ~x.M ≈~α→σ λ~x.N. To this end we apply (**). Suppose σ = ~β→γ. Then taking

closed ~A ⇓~α and ~B ⇓~β , we have to show that (λ~x.M)~A~B ≈γ (λ~x.N)~A~B. Set C : γ to be

the total σ-context (λ~x. ·σ)~A~B. Then, by 2, (λ~x.M)~A~B ≈γ (λ~x.N)~A~B, and the conclusion

follows.

4. Semantical notions of totality

We wish to find semantical notions ↓Dσ , of totality, and ∼Dσ , of total equivalence, for

each of our four models D. Logical relations naturally suggest themselves; these are
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uniquely determined for all our models by the requirement that the relations agree with

the operational ones at ground types, so we put

x↓Dγ ≡ x 6= ⊥
and

x ∼Dγ y ≡ x = y 6= ⊥
(note the use of postfix and infix notation). In the cases of C and Co, these predicates and

relations have already appeared in Ershov (1974) and Ershov (1977).

All our Dσ ’s are partial orders with binary meets, and we can ask which properties of a

totality predicate ↓ and relation ∼ to take as basic on such partial orders P . We consider

these to be:

(1) for all x in P , x↓ iff x ∼ x,

(2) the relation ∼ is a partial equivalence relation and its equivalence classes are filters

(i.e., are upper-closed and closed under binary meets).

The first property ensures that the unary and binary notions of totality agree. The other

properties are also reasonable candidates for general properties, except, perhaps, closure

under meets; this is a rather useful technical requirement, which happens to hold in the

models we consider. An equivalent formulation is that ↓ is upper-closed, ∼ is a partial

equivalence relation and x ∼ y iff (x∧y)↓; this formulation already appears in Normann’s

definition in Normann (1997a) of his category K2 of domains and totality predicates.

Proposition 4.1. Let P be an applicative type structure, where each P is a partial order

equipped with binary meets, and suppose that application is multiplicative in its first

argument (i.e., that (f ∧ g) · x = f · x ∧ g · x always holds). Let ↓ be a logical property on

P and ∼ be a logical relation on it. Then, if ↓γ and ∼γ have properties (1) and (2) above

for both ground types γ, so do every ↓σ and ∼σ .

Proof. The ∼σ are certainly partial equivalence relations and it is easy to show, by

induction on types, that their equivalence classes are upper-closed. For the rest it suffices

to prove for all σ and x, y in Pσ that x ∼σ y ≡ (x ∧ y)↓σ , which we do by induction on

types. The ground case is immediate, by the above remarks.

For σ→ τ, suppose first that f ∼σ→τ g. Now assume that a ↓σ . Then, by the induction

hypothesis, a ∼σ a, so f · a ∼τ g · a. But then, as (f ∧ g) · a = (f · a ∧ g · a) and, by the

induction hypothesis, (f · a ∧ g · a)↓τ, it follows that (f ∧ g)↓σ→τ.
Conversely, suppose that (f ∧ g) ↓σ→τ, and assume a ∼σ b. Then, by the induction

hypothesis, (a ∧ b) ↓σ , so (f ∧ g) · (a ∧ b) ↓τ. Therefore, by another use of the induction

hypothesis, (f ∧ g) · (a∧ b) ∼τ (f ∧ g) · (a∧ b). It then follows from the upwards closure of

total equivalence that f · a ∼τ g · b, showing f ∼σ→τ g, as required.

The idea of this proof appears already in Longo and Moggi (1984). Our development

of totality and its elementary properties differs a little from that found elsewhere, where

the unary notion is taken as primary. However, as the unary and binary notions are

interdefinable, this is not a point of great mathematical significance. More interestingly,

the connection between the two is usually made in terms of the order-theoretic notion of

consistency rather than that of meets; for example, see Stoltenberg-Hansen et al. (1994,
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p. 208), or below. This works well for the Scott model, but not the Milner model. For the

latter there is another notion of consistency available, which is given below; an abstract

treatment would seem to require taking it as extra structure.

The assumptions needed for Proposition 4.1 hold for the applicative structures under-

lying each of our models. They are evidently partially ordered. They also possess binary

meets with the requisite properties. Indeed, for every type σ there is a PCF term Mσ , say,

which, in each model, defines ∧σ; this is evident at ground types, and at higher types

σ =~α→γ, as order-extensionality holds, one can set Mσ = λfσ, gσ,~x.Mγ(f~x)(g~x).

The relation with total functionals can be given in terms of the totality equivalence

relations. That of the Kleene–Kreisel continuous functionals is isomorphic to C/∼C; that

of Kreisel’s hereditarily recursively continuous functionals is isomorphic to Co/∼Co and

also to HEO, the hereditarily extensional operations (Berger 1993; Ershov 1975; Ershov

1976; Ershov 1977; Gandy and Hyland 1977; Troelstra 1973). As already mentioned

above, there are two interesting open problems here: whether C/∼C and S/∼S are

isomorphic, and whether Co/∼Co and So/∼So are isomorphic (and see the discussion in

Section 6 for further information).

Note that all constants of PCF++ (other than the Ωγ , the Yσ and ∃) define total elements

in each of the models; it follows from the logical relations lemma that closed terms not

involving those constants do so too. We can now see that a certain (well-known) density

property holds in each of our models: that there is a total element above every finite

element. This is because, as remarked above, in each of the models, every finite element is

definable by some term (of PCF or PCF++ as appropriate) containing no occurrences of

the Yσ or ∃; replacing every occurrence of an Ωγ by t or 0 (as appropriate) we obtain the

required total element. This property of definable density already appears in Loader (1997),

and, as remarked there, is implicit in previous proofs of density.

Proposition 4.1 implies a characterisation of total equivalence for total elements. Suppose

that x, y↓σ , where σ =~α→γ. Then

x ∼σ y ≡ ∀~a↓~α . x ·~a = y ·~a.
The implication from left to right is obvious; the other direction is essentially just the

extensionality of P/ ∼. It then follows that, in all our models D we have x ∼Dσ y iff for

any γ and f ↓Dσ→γ , fx ∼Dγ fy; that is, we can indeed identify ∼Dσ as the semantical notion of

equivalence in total ground contexts if we treat ‘semantical contexts’ simply as functions.

The characterisation of total equivalence can be usefully strengthened for our D.

Proposition 4.2. Suppose that x, y↓Dσ , where σ =~α→γ. Then x ∼Dσ y iff for all ~a definable

in PCF without using any of the Ωγ or the Yσ , it holds that x ·~a = y ·~a.
Proof. Only the implication from right to left is in question. By the above remarks, it is

enough to show that for all~a↓D~α , x ·~a = y ·~a. If this is not the case, there are finite elements
~b such that x ·~b and y ·~b are distinct and total (as some x ·~a and y ·~a are with~a↓~α). Now,

as in the argument for density, we can increase the~b to total~c, definable in PCF or PCF++

(as appropriate) without using Ωγ , Yσ or ∃. This contradicts the assumption in the cases

of S and So. In the cases of C and Co, the definitions may contain occurrences of por.
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However, since there we have that por ∼Do→o→o or, we may replace all such occurrences of

por by ones of or, and again obtain a contradiction.

The models provide some interesting examples. Left-sequential or is always total.

However in C and Co it is not maximal, as por is greater. On the other hand, in S
and So it is maximal, but not maximum, in its equivalence class, as right sequential or

is incomparable (and also maximal). In those models, another version is total but not

maximal, ‘strict or,’ defined by: λxo.λyo. if x then (if y then t else t) else y. Conversely, ∃
defines a maximal element of both C and Co, but one that is total in neither. In the cases

of S and So, there is a related term ∃s : (ι→ o)→ o, which can be shown to define a

maximal but non-total element. (The term is λfι→o. f(Sf0), where the term S is recursively

defined by: Sfx = if fx then x else Sf(x+1). Note that ∃sf is ff if f⊥ is, and is tt if fn is tt

for some n > 0, and fm is ff for m < n.) Neither ∃ nor ∃s are finite, and this is necessarily

so since, by density, all finite maximal elements are total.

We may also learn a little more about the filters of total elements of C andCo. First,

in all four models D, if x ∼Dσ y, then x and y are consistent in the sense that for any

~a ∈ D~α (where σ =~α→ γ) x ·~a and y ·~a have an upper bound. If this were not the case,

there would be a counterexample with all the ai finite, so, by density, there would be a

counterexample with all the ai total, contradicting the assumption that x ∼Dσ y. In the

cases of C and Co, it follows that x and y are consistent in the order-theoretic sense (i.e.,

they have an upper bound), so the filters there are directed; we also then have that for

any x, y ↓Dσ that x ∼Dσ y iff x and y are consistent. In the case of C, it follows further

that filters have a greatest element, as one can take their supremum. This is not true for

Co: consider the least function f in Co
ι→ι→o such that fmn is tt, if the mth Turing machine

terminates in n steps on the empty input, and is ff otherwise (m, n 6=⊥). This is total but

can have no effective maximal extension.

It is also interesting to note that in all four models, filters need have no minimal

element. An example is provided by the filter containing the ‘constantly true’ functional

λfι→o. t. Of course, for types with finitely many elements, that is those σ containing no

occurrence of ι, filters have least elements as well as maximal ones, the latter of which, in

the cases of C and Co, are in fact maximum.

5. Full abstraction for totality

In order to compare operational and denotational notions, some notation is convenient.

We write M ↓Dσ for a term M : σ of PCF to mean that D[[M]](ρ) ↓Dσ for every total

environment ρ (where ρ is total iff for every xα, ρ(xα) ↓Dα ). Similarly, we write M ∼Dσ N

for PCF terms M,N : σ to mean that D[[M]](ρ) ∼Dσ D[[N]](ρ′) for every ρ ∼D ρ′. It is

straightforward to show that M ↓Dσ iff (λxα.M)↓Dα→σ and that M ∼Dσ N iff (λxα.M) ∼Dα→σ
(λxα. N). Now, following the discussion in the introduction, we say that a model D is

fully abstract for totality for PCF iff for all σ and M : σ, M ⇓σ holds iff M ↓Dσ does (for

whichever language is under consideration). We define full abstraction for total equivalence

for PCF similarly. Similar definitions can be made for PCF++.

We have, perhaps unsurprisingly, the following proposition.
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Proposition 5.1.

1 So is fully abstract for both totality and total equivalence for PCF.

2 Co is fully abstract for both totality and total equivalence for PCF++.

Proof. A straightforward induction on types σ proves that M ⇓σ iff M ↓So

σ for closed

PCF terms M: the base case is an immediate consequence of adequacy; at higher types

one uses the fact that all elements are definable. The result then follows for open terms

via the above remarks on λ-abstraction. The proof that M ≈σ N iff M ∼So

σ N is similar,

as, then, are the proofs for PCF++.

With this we have operational analogues of the results of the previous section. In particular,

statements (*) and (**) of Section 2 follow; it is also worth noting that Proposition 4.2

even yields a strengthening of (**).

We now follow a policy of proving results on totality for pairs of models D, E, and

then deducing corresponding results on full abstraction via Proposition 5.1.

Proposition 5.2. For any PCF terms M,N :σ, if M ↓Dσ , M ↓Eσ , N ↓Dσ and N ↓Eσ , then M ∼Dσ N
holds iff M ∼Eσ N does. The same holds for PCF++ and Co and C.

Proof. We can reduce to the case where M and N are closed by the previous remarks

on λ-abstraction. The result then follows immediately from Proposition 4.2 and adequacy.

Corollary 5.1. (Relative Full Abstraction.) Let M,N :σ be PCF terms, and suppose that

M ⇓σ , M ↓Cσ , N ⇓σ and N ↓Cσ . Then M ≈σ N iff M ∼Cσ N.

Thus, as long as there is no ambiguity concerning totality, Scott’s model is indeed fully

abstract for total equivalence. The corresponding results hold for PCF and Co or S, and

for PCF++ and C. In Loader (1997), Loader proves an analogous result for a strongly

normalising calculus with a richer type system, including certain inductive types. He

considers an operational congruence and two models; one of these models is similar to

Girard’s qualitative domains and the other uses the category PER of partial equivalence

relations on the natural numbers. His proof technique for the former model is very much

the same as ours, and employs a lemma closely related to Proposition 4.2.

We now give a finer analysis of the full abstraction properties, dividing them into

restricted implications, parameterised by types. Full abstraction for totality breaks down

into two implications: the first is that for all σ and M : σ, if M ⇓σ holds, then so does

M ↓Dσ ; the other is its converse. By the previous remarks on totality and λ-abstraction,

each of these implications is equivalent to its restriction to closed terms. A similar analysis

can be made of full abstraction for total equivalence. It turns out that the unary and

binary implications over closed terms are even equivalent at each type. Indeed we have

the following result of this kind for pairs of models.

Proposition 5.3. Let D, E be any two of C, Co,S orSo. Then the following two statements

are equivalent:

1σ For all closed PCF terms M :σ, if M ↓Dσ then M ↓Eσ .

2σ For all closed PCF terms M,N :σ, if M ∼Dσ N then M ∼Eσ N.

The same holds for PCF++ and C and Co.
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Proof. Assume 1, and suppose M ∼Dσ N. Then M ↓Dσ and N ↓Dσ , so, by 1, M ↓Eσ and

N ↓Eσ . Therefore, by Proposition 5.2, M ∼Eσ N. That 2 implies 1 is immediate, as, if M ↓Dσ ,

then M ∼Dσ M, and so on. The variation for PCF++ is proved similarly.

We now have the basis for a fine-grained comparison of models. Let us say, of two

given models D and E, that D is σ-PCF-correct for E (for totality) if 1σ of the proposition

holds (or, equivalently, 2σ); we say it is PCF-correct if that holds for all σ, and that it

is l-PCF-correct if that holds for all σ of order l (and we omit ‘PCF’ when it can be

understood from the context). Then, for PCF, full abstraction for totality of D is just that

So and D are PCF-correct for each other.

Retracts provide a convenient tool to relate correctness at different types. Fixing two

models D and E, write σ <D,Et τ to mean that there are closed PCF terms F :σ→ τ and

G : τ→ σ, each total in both D and E and such that λxσ. G(Fx) ∼Eσ→σ λxσ. x. Clearly,

if σ <t τ <t γ (omitting superscripts), then σ <t γ, and also if σ <t τ and σ′ <t τ
′, then

(σ→σ′)<t (τ→ τ′); it follows that if l 6 m, then l <t m. It is also not hard to show that

if σ has level l, then σ <t l. (Given the previous remarks, this follows once we know that

(l→ l+1) <t l+1. This is shown using ‘total pairing and projection combinators at level

l,’ by which we mean terms Pair : l→ l→ l and Fst, Snd : l→ l total in any of our models

E and such that λxl.yl .Fst (Pair xy) ∼El→l→l λxl .yl . x, and similarly for Snd; such terms are

straightforwardly defined in PCF.)

What makes this relation useful to us is that if σ <t τ and D is τ-PCF-correct for E,

then it is also σ-PCF-correct for E. It follows from the discussion that if l 6 m and D is

m-PCF-correct for E, then it is also l-PCF-correct, and that to show correctness for all

types of a given level l it is enough to consider l.

Similar definitions and remarks obtain for PCF++.

6. Comparing models

We now consider to what extent our four models agree on totality for PCF, or for PCF++.

Some (anonymous) logical relations will prove helpful: namely those induced between any

two of the models D, E by the equality relation at ground types. All constants are related;

this is easy to see for all of them except, perhaps the fixed-point combinator. For this one

notes that in any of the models, D, one has (Yσ · F) ·~x ↓Dγ iff for some k, (Y(k)
σ ·F) ·~x ↓Dγ ,

where Y(k)
σ is λFσ→σ. Fk(λ~x.Ωγ) (where σ =~α→γ and ~x ∈ D~α). Because of the definability

of finite elements, one easily sees that the logical relation between Co and C is equality at

every type, as is that between So and S .

At ground types γ, the Dγ are all the same, as are the totality predicates, and each

logical relation is equality. At level 1 the types are related by the following inclusions

Co
σ ⊂ Cσ

∪ ∪

Soσ ⊂ Sσ
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Furthermore, for σ = 1, we even have equalities, Co
1 = So1 and C1 = S1. At this type, the

models agree on the totality of their common elements (here, functions), and each logical

relation is equality. It follows that all four models are 1-PCF-correct for each other, and

that C and Co are 1-PCF++-correct for each other. For example, for PCF we have, for any

closed M : 1, that D[[M]] = E[[M]] by the logical relations lemma and so, by the remark

on totality, M ↓D1 iff M ↓E1 .

At level 2, we have the following relations for the pure type 2

Co
2 ⊂ C2

∪ ∪

So2 ⊂ S2

At this type each logical relation is (again) equality, because of the definability of finite

functions. Furthermore, C and S agree on the totality of common elements of S2 (here,

functionals), so they are 2-PCF-correct for each other; the same holds for Co and So.

Any functional in Co
2 that is total in C2 is total in Co

2 , so C is 2-PCF++-correct for

Co; similarly, S is 2-PCF-correct for So. However, the converses do not hold. The

counterexamples are provided by using Kleene’s singular tree K. This is a recursive

prefix-closed set of finite binary sequences containing arbitrarily long finite sequences but

no recursive infinite path. To construct an explicit term, let d−e be an effective coding

of finite binary sequences as natural numbers with dεe = 0, and let C : ι→ ι→ ι and

T : ι→ o be closed PCF terms coding concatenation and K, in that C · dse · ds′e = dss′e
and T · dse = tt (if s ∈ K) and = ff otherwise. Now A : ι→ ι→ (ι→ o)→ o is recursively

defined by

Awmf = if Tw then A(Cw(fm))(m+1)f else f,

and we define Kl to be Adεe0 : τ, where τ = (ι → o) → o is the ‘binary tree’ type.

Then, regarding total f in Cι→o as infinite binary sequences, C[[Kl]] · f is ⊥ if f is a

path in K and is ff otherwise. Thus Kl is total in Co but not in C. We therefore

have that Co is not 2-PCF++-correct for C. Furthermore, since all the terms are in PCF,

neither is it 2-PCF-correct for C. Finally, we also have that So is not 2-PCF-correct for

S. Consequently, Scott’s model is not fully abstract for totality for either one of PCF or

PCF++ and, moreover, Milner’s model is not fully abstract for totality for PCF. The role

of Kleene’s singular tree in distinguishing between the continuous and effective models

has already been pointed out by Gandy and Hyland in Gandy and Hyland (1977). It

would be interesting to find models, other than the effective ones, that are fully abstract

for totality for PCF and PCF++.

Let us carry our considerations as far as level 3. As S2 ⊂ C2, with the inclusion

respecting totality, we can see that C is 3-PCF-correct for S. For, suppose that M :3 is a

closed PCF term such that M ↓C3 , in order to show that M ↓S3 . Choose F ↓S2 . Then F ↓C2 , so

C[[M]](F)↓C0 . But by the logical relations lemma, S[[M]](F) = C[[M]](F), so S[[M]](F)↓S0 .
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Similarly, Co is 3-PCF-correct for So. It turns out that the converses hold too, but first

we need a lemma.

Lemma 6.1. For every total element G of C2 there is an F in S2 such that F 6 G and

F ∼C2 G. The same holds for Co and So.

Proof. The functional G has the form
∨
i>0 ai ⇒ mi, where the ai are finite functions in

C1 and the mi are natural numbers, using the notation of Plotkin (1997). We can assume

without loss of generality that the ai are all strict (for, if they are not, we can omit all the

non-strict ones from the lub, obtaining a G′ such that G > G′ ∼C2 G).

Now, for every strict finite function a in C1 there is a closed PCF term Da : 1→o such

that C[[Da]]f = tt (if f > a) and = ff (if f and a are inconsistent). Define PCF terms Mi :2

by M0 = λf1.Ωι and Mi+1 = λf1. if Daif then mi else Mif.

Then we can take F =
∨
i>0 C[[Mi]]. This is because, first, F ∈ S2 as C[[Mi]] = S[[Mi]],

by the logical relations lemma, and S[[Mi]] is increasing and the inclusion S2 ↪→ C2 is

continuous. Next we have that F 6 G as C[[Mi]] 6 G. Finally, let f in C1 be total. Then

for any strict a either f > a or f and a are inconsistent. But, since f > some ai (as

Gf ↓Cι ), we therefore have that Ff ↓Cι . So F is total, and it follows that F ∼C2 G. The proof

for Co and So (the ‘effective case’) is a straightforward adaptation of that for C and S
(the ‘continuous case’).

With this one can show that S is 3-PCF-correct for C. Suppose that M : 3 is a closed

PCF term such that M ↓S3 , and choose G↓C2 . Then, by the lemma, there is an F 6 G in S2

such that F ∼C2 G. It follows that F ↓C2 , so F ↓S2 , by the remarks made above. Therefore,

as M ↓S3 , we have that S[[M]]F ↓S0 . Using the logical relation between S and C, we then

have that C[[M]]F ↓C0 , and since F 6 G, we obtain C[[M]]G↓C0 , concluding the proof that

M ↓C3 . In the same way, we can show that So is 3-PCF-correct for Co.
From the previous discussions we know that Co is not 3-PCF-correct for C and neither

is So for S, as the failures already occur at level 2. We now show that the level 2 failures

also result in the failures of the converses at level 3.

To any F in Cτ, still with τ = (ι→o)→o, we can associate the tree of ‘non-past secured

binary sequences’ {w ∈ T ∗|Fw = ⊥}. Here, for any binary sequence w = b0 . . . bn−1, w

stands for the function {(0⇒ b0)∨ . . .∨ (n−1⇒ bn−1)}. Clearly, F is total iff its associated

tree has no infinite branches, i.e., by König’s lemma, iff it is finite. We now define a

term ∆ : τ→o, which, intuitively, performs a depth-first search of such trees, terminating

iff they are finite. It is defined using a recursively defined term B1 : τ→ (ι→ o), which,

intuitively, yields a branch that keeps going right as long as the corresponding left subtree

is finite. We need terms Left,Right : τ→ τ for finding left and right subtrees. The first is

defined to be λT , f. T (λm. if Zm then t else f(m−1)) and the second similarly (we associate

‘left-branching’ with ‘tt’). A ‘definedness’ term ∂ :o→o is also useful, and is defined to be

λbo. if b then t else t. Now B1 is recursively defined by

B1(T ) = λmι. if ∂(T (B1(LeftT )))

then (if Zm then f else B1(RightT )(m−1))

else Ωo
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and then ∆ is defined to be λT τ. ∂(T (B1(T ))). Now one can show by induction on the

height of the associated tree that for a total F in Cτ, C[[B1]](F) = λmι. f and C[[∆]](F) = tt.

So we have that ∆↓Cτ→o. The kth iterate B(k)
1 of B1 is obtained by replacing the occurrence

of Yτ→(ι→o) in its definition by Y(k)
τ→(ι→o). One can show by induction on k that for a

non-total F in Cτ, F(C[[B(k)
1 ]](F)) =⊥ and so C[[∆]](F) = ∂(F(C[[B1]](F))) =⊥. It follows

that Co[[∆Kl]] =⊥, and so ∆ 6 ↓Coτ→o. We therefore see that C is not 3-PCF-correct for Co,
and therefore neither is S for So (recall that C and S are 3-PCF-correct for each other

as are Co and So). Thus, in all cases, full abstraction for totality fails in both directions by

level 3.

It is interesting to note that this search technique can be extended to obtain a PCF

term Φ : τ → ι, yielding the modulus of (uniform) continuity of a total F in Cτ; the

associated Kleene–Kreisel functional is (essentially) the fan functional – see Gandy and

Hyland (1977). The modulus of continuity is defined to be the least number n such that if

two total functions f and g in Cι→o have the same values for 0, . . . , (n− 1), then Ff = Fg.

We begin by recursively defining B2 :τ→ (ι→o) by

B2(T ) = λmι. if Zm then TrueBranch(Left T )

else if TrueBranch(Left T ) then B2(Left T )(m−1)

else B2(Right T )(m−1)

where TrueBranch abbreviates λT τ→o. T (B2T ). Then Φ is recursively defined by

Φ = λT τ. if (FalseBranch T ) and (TrueBranch T )

then max(Φ(Left T ))(Φ(Right T ))+1

else 0

with FalseBranch T understood in a similar way to TrueBranch T . The idea is that

TrueBranch has value tt if there is a branch of T with value tt, and correspondingly

for FalseBranch. The PCF definability of the fan functional was already known to

Gandy (personal communication: Martin Hyland); Berger gave a definition in his thesis

Berger (1990). As the idea is not so well known, it seemed worthwhile repeating it here.

Beyond level 3 the remaining questions are the relations between Co and So, and be-

tween C and S. While these questions are, perhaps, academic, they are related to interest-

ing expressibility questions including one raised by Cook (Cook 1989) and Berger (Berger

1993), as well as to some significant open problems. Cook and Berger asked whether for

every term of PCF++ that is total in C, there is a PCF term that is totally equivalent in

C (Berger conjectured this is indeed so). Using Φ, we can obtain a positive answer for

all types not containing ι negatively: one shows that τ <C,Ct ι, and it easily follows that

σ <
C,C
t ι if σ does not contain ι negatively, and σ <

C,C
t (ι→ o), if σ does not contain ι

positively. However, this all rests on König’s lemma and does not even allow one to settle

the question at type 3.

A similar expressiveness question is whether for every PCF++ term M, total in Co, there

is a PCF term N, totally equivalent to M in Co and, moreover, below M in the operational

ordering. It is easy to see that a positive answer implies that Co and So agree on the
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totality of PCF terms. The proof is by induction on n, the level of the pure type n. So, for

one direction, suppose A : n+1 is a closed PCF term, total in So. Let M : n be a closed

PCF++ term total in Co. By the assumption, there is an N :n as above. Since N is total in

Co, by the induction hypothesis, it is also total inSo, so AN : ι is total inSo, and so in Co.
But then AM is total too, as N 6op M, so we have shown that A is total in Co. The proof

in the other direction is straightforward. It is worth noting a further (straightforward)

consequence of the expressiveness hypothesis, that the applicative structures Co/∼Co and

So/∼So are isomorphic.

A corresponding question exists regarding C and S. First we need the notion of

infinitary PCF. Let �σ be the least type-indexed family of contextually-closed preorders

on terms such that for all M :γ it holds that Ωγ �γ M. Then the terms of infinitary PCF

of type σ are defined to be the directed �σ-ideals of PCF terms of type σ; the denotation

function S[[·]](ρ) is extended to such terms by taking the evident directed lub. Infinitary

PCF++ is defined in the analogous way. Every element of any Cσ can be defined by a

closed infinitary PCF++ term. It is an open question if the same holds for PCF. (Indeed

that is equivalent to the open question as to whether the extensional collapse of the games

model is S, since the elements of this collapse, under their identification with elements of

the Sσ , are precisely those definable by closed infinitary PCF terms.)

We may now ask whether for every total x in any Cσ there is a closed infinitary PCF

term, N :σ, such that C[[N]] is totally equivalent to x and below it in the partial order on

Cσ . If this holds, then C and S agree on totality for infinitary PCF, and so also for PCF.

To show this, we need a lemma. Let R be the logical relation between C and S considered

above (the one which is the identity at ground types).

Lemma 6.2.

1 For any closed infinitary PCF term, M :σ, Rσ(C[[M]],S[[M]]).

2 The relation Rσ is surjective, for all σ.

3 Suppose Rσ(x, y) and Rσ(x′, y′). Then x ∼Cσ x′ iff y ∼Sσ y′.

Proof.

1. We have already noted this for PCF. For infinitary PCF it follows from the easily

proved fact that each Rσ is closed under directed lubs.

2. We employ closed PCF ‘projection terms’ Ψn
σ :σ→σ, (n > 0) following Milner (1977)

and Berry et al. (1985). They are defined by setting Ψn
o = λb. b, Ψ0

ι = Ωι→ι and then,

inductively, Ψn+1
ι = λm. if Zm then 0 else Ψn+1

ι (m − 1) + 1. The terms Ψn
σ are such that

S[[Ψn
σ]] is an increasing sequence of projections, each with finite range and with lub the

identity, and similarly for C. In what follows it is convenient to confuse Ψn
σ with its

denotation S[[Ψn
σ]] (and similarly for C).

Define Xn ⊂ Sσ by

Xn = {Ψn
σC[[M]] |M is a closed PCF term and S[[M]] = Ψn

σy}.
Each Xn is finite. It is also non-empty, as Ψn

σy is finite and so has a PCF definition. Since

we have Ψn
σ

oΨn+1
σ = Ψn

σ , one can show that Ψn
σ(Xn+1) ⊂ Xn. It follows by König’s Lemma

that there is a sequence xn in Xn such that xn = Ψn
σxn+1. But then xn is increasing and
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Rσ(xn,Ψ
n
σy). Since Rσ is closed under directed lubs, we get that Rσ(

∨
n>0 xn, y), showing

that Rσ is surjective, as required.

3. The proof is by induction on types. The ground case is evident. For σ → τ we

assume Rσ→τ(f, g) and Rσ→τ(f′, g′). Suppose, first, that f ∼Cσ→τ f′. Assume y ∼Sσ y′. By Part

2, there are Rσ(x, y) and Rσ(x′, y′), so, by the induction hypothesis, we get x ∼Cσ x′, so

f ·x ∼Cτ f′ ·x′, and so, again by the induction hypothesis, g ·y ∼Sτ g′ ·y′, since Rτ(f ·x, g ·y)

and Rτ(f
′ · x′, g′ · y′). This shows that g ∼Sσ→τ g′.

Conversely, assume that g ∼Sσ→τ g′. Assume x ∼Cσ x′. Under the assumption that the

answer to the question is positive, there are closed infinitary PCF terms M and M ′ such

that, setting u = C[[M]] and u′ = C[[M ′]] , u, u′ ↓Cσ , u 6 x and u′ 6 x′. Furthermore, setting

y = S[[M]] and y′ = S[[M ′]], we get that Rσ(u, y) and Rσ(u′, y′). So, by the induction

hypothesis, y ∼Sσ y′ (as u ∼Cσ u′). Therefore g · y ∼Sτ g′ · y′, so we have that, again using

the induction hypothesis, f · x > f · u ∼Cτ f′ · u′ 6 f′ · x′. Therefore f · x ∼Cτ f · x′, and we

have shown that f ∼Cσ→τ f′.

That C and S agree on totality for infinitary PCF is an immediate consequence of the

third part of this lemma. Another, straightforward, consequence is that the applicative

structures Cσ/∼Cσ and Sσ/∼Sσ are isomorphic. We should remark that, still assuming a

positive answer to the above question, the analogous results are easily shown for the

games model.
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