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This paper studies the variability of both series and parallel systems comprised of het-
erogeneous (and dependent) components. Sufficient conditions are established for the star
and dispersive orderings between the lifetimes of parallel [series] systems consisting of
dependent components having multiple-outlier proportional hazard rates and Archimedean
[Archimedean survival] copulas. We also prove that, without any restriction on the scale
parameters, the lifetime of a parallel or series system with independent heterogeneous
scaled components is larger than that with independent homogeneous scaled components
in the sense of the convex transform order. These results generalize some corresponding
ones in the literature to the case of dependent scenarios or general settings of components
lifetime distributions.
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1. INTRODUCTION

Order statistics play a crucial role in statistical inference, reliability theory, life testing,
operations research, and many other areas. In reliability context, the k-th order statistic
Xk:n from random variables X1, . . . , Xn corresponds to the lifetime of a (n− k + 1)-out-
of-n system, which is a very popular structure of redundancy in fault-tolerant systems. In
particular, Xn:n and X1:n represent the lifetimes of parallel and series systems, respectively,
and X2:n characterizes the lifetime of a fail-safe system. For comprehensive discussions on
various properties of order statistics and their applications, one may refer to Balakrishnan
and Rao; David and Nagaraj [3,4,10].

As a powerful tool, stochastic ordering has been generally employed to compare the
magnitude and variability of order statistics from heterogeneous and/or dependent random
variables. Pledger and Proschan [32] pioneered comparisons on the order statistics arising
from heterogeneous independent exponential variables. After that, many researchers have

c© Cambridge University Press 2019 0269-9648/19 $25.00 626

https://doi.org/10.1017/S0269964819000263 Published online by Cambridge University Press

file:zhangyiying@outlook.com
file:mathdwy@hotmail.com
file:zhaop@jsnu.edu.cn
https://doi.org/10.1017/S0269964819000263


ON VARIABILITY OF SERIES AND PARALLEL SYSTEMS 627

paid attention to this research direction and its generalization, to name a few, including
Balakrishnan and Torrado; Cali, Longobardi, and Navarro; Di Crescenzo; Mesfioui, Kayid,
and Izadkhah; Navarro and Spizzichino; Navarro, Torrado, and del Aguila; Proschan and
Sethuraman; Zhang and Zhao; Zhang, Amini-Seresht, and Zhao; Zhang et al. [5,8,11,26,28,
29,33,37–40], and a comprehensive review article by Balakrishnan and Zhao [6].

Recall that a random variable X is said to belong to the proportional hazard rates
(PHR) and scale families if it has the survival function F

λ
(x) and F (λx) with λ > 0,

respectively, where the baseline distribution F is an absolutely continuous distribution func-
tion. The PHR and scale models play an important role in various fields of probability and
statistics. For example, the PHR model, including exponential, Weibull, Pareto, and Lomax
distributions as special cases, describes that the hazard rate functions of concerned compo-
nents are proportional, while the scale model, for which the scale parameter acts to control
the rate at which time passes, is termed “accelerated life” model in the context of life test-
ing. For this reason, many researchers have attempted to find out sufficient conditions for
comparing k-out-of-n systems with heterogeneous PHR or scaled components by various
stochastic orders; see, for example, Cai, Zhang, and Zhao; Kochar and Xu [7,17].

Kochar and Xu [19] studied the effects of heterogeneity among hazard rate parameters
on the skewness of the k-th order statistics arising from two sets of independent multiple-
outlier exponential samples by means of the star order, which was partially strengthened
by Amini-Seresht et al. [2] to the framework of independent multiple-outlier PHR models.
For the case of dependent heterogeneous and homogeneous PHR random variables, Li and
Fang [22] established sufficient conditions for the dispersive ordering between the largest
order statistics. Under this setup, Fang, Li, and Li [14] also discussed the dispersiveness
and skewness of the smallest order statistics. Very recently, Fang, Li, and Li [15] studied
the dispersive ordering between minima from heterogeneous and homogeneous samples with
scale proportional hazards and common Archimedean survival copulas. To the best of our
knowledge, there is no related study on the variability of extreme order statistics arising
from two sets of heterogeneous and dependent random variables. Motivated by this, we
shall establish sufficient conditions for comparing the lifetimes of series and parallel systems
consisting of dependent multiple-outlier PHR distributed components in the sense of the star
and dispersive orderings, which partially extends some corresponding results established in
Amini-Seresht et al. [2] to the dependent setting, and serves as a nice complement to Fang
et al.; Li and Fang; Mesfioui et al. [14,15,22,26].

In the context of reliability theory, the convex transform order is called the more increas-
ing failure rate (IFR) order, and it can be said that one random variable ages faster than
the other one in some sense (see Section 2). Kochar and Xu [18] proved that the largest
order statistics from independent heterogeneous exponential samples is larger than that
from independent homogeneous exponential samples according to the convex transform
order. Along this line, Kochar and Xu [20] established the star order between the largest
order statistics from independent heterogeneous and homogeneous PHR samples. Da, Xu,
and Balakrishnan [9] proved that the k-th order statistics from heterogeneous independent
exponential random variables is always larger than that from homogeneous independent
exponential random variables in the sense of the Lorenz order. Recently, Ding, Yang, and
Ling [12] showed that the skewness of extreme order statistics from independent hetero-
geneous scale samples is larger than that from independent homogeneous scale samples in
terms of the star ordering, which solved the open problem proposed by Kochar and Xu
[20]. In this paper, we shall investigate the convex transform ordering between the lifetimes
of series and parallel systems comprised of independent heterogeneous and homogeneous
scaled components, which not only extends the results of Kochar and Xu [18] to the scale
model but also strengthens the star ordering results of Ding et al. [12].
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The rest of the paper is rolled out as follows. Section 2 collects some pertinent defini-
tions and notions used in the sequel. Section 3 examines the skewness and dispersiveness of
the lifetimes of series and parallel systems consisting of dependent multiple-outlier PHR dis-
tributed components. Section 4 establishes the convex transform ordering between two series
or parallel systems having independent heterogeneous and homogeneous scaled components.
Section 5 concludes the paper with some remarks.

2. PRELIMINARIES

Assume that nonnegative random variables X and Y have distribution functions F and G,
survival functions F = 1 − F and G = 1 −G, and density functions f and g, respectively.
In the sequel, we use r̃F := f/F and r̃G := g/G to denote the reversed hazard rate functions
of F and G, and F−1 and G−1 to denote the right continuous inverses of the distribution
functions F and G, respectively. All random variables are assumed to be continuous and
defined on R+ = [0,+∞). We use ‘

sgn
= ’ to denote that both sides of the equality have the

same sign and In to denote a n-dimensional real vector with all of its components equal to 1.
The terms increasing and decreasing mean non-decreasing and non-increasing, respectively.

Definition 2.1: X is said to be smaller than Y in the

(i) usual stochastic order (denoted by X ≤st Y ), if F (x) ≤ G(x) for all x ∈ R+;
(ii) convex transform order (denoted by X ≤c Y ) if and only if G−1F (x) is convex in

x ∈ R+, or equivalently, X ≤c Y if and only if F−1G(x) is concave in x ∈ R+;
(iii) dispersive order (denoted by X ≤disp Y ) if F−1(v) − F−1(u) ≤ G−1(v) −G−1(u) for

all 0 ≤ u ≤ v ≤ 1;
(iv) star order (denoted by X ≤� Y ) if G−1F (x)/x is increasing in x ∈ R+;
(v) Lorenz order (denoted by X ≤Lorenz Y ) if LX(p) ≥ LY (p) for all p ∈ [0, 1], where

the Lorenz curve LX is defined as LX(p) =
∫ p
0
F−1(u)du/μX , and μX = E[X].

If X ≤c Y then Y is more skewed than X, as explained in Marshall and Olkin; Van
Zwet [23,36]. The convex transform order is also called the more IFR order in reliability
theory, since when f and g exist, the convexity of G−1F (x) means that

f(F−1(u))
g(G−1(u))

=
r̃F (F−1(u))
r̃G(G−1(u))

is increasing in u ∈ [0, 1]. Thus, X ≤c Y can be interpreted that X ages faster than Y in
some sense. It should be also mentioned that this partial order is scale invariant.

The star order is also called the more IFRA (increasing failure rate in average) order in
reliability theory and is one of the partial orders which are scale invariant. It is known that

X ≤c Y =⇒ X ≤� Y =⇒ X ≤Lorenz Y =⇒ γX ≤ γY ,

where γX =
√

Var[X]/E[X] denotes the coefficient of variation of X. For more details on
these stochastic orders, we refer interested reader to Shaked and Shanthikumar [35].

Let x1:n ≤ . . . ≤ xn:n be the increasing arrangement of the components of the vector x =
(x1, . . . , xn). For two vectors x = (x1, . . . , xn) and y = (y1, . . . , yn), x is said to majorize y

(written as x
m� y) if

∑n
i=1 xi:n =

∑n
i=1 yi:n and

∑j
i=1 xi:n ≤∑j

i=1 yi:n for j = 1, . . . , n− 1;

x is said to weakly majorize y (written as x
w� y) if

∑j
i=1 xi:n ≤∑j

i=1 yi:n for j = 1, . . . , n.
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It is known that the majorization order implies the weak majorization order, but the reverse
is not true. The notion of majorization is quite useful in establishing various inequalities. For
more details on their properties and applications, one may refer to Marshall and Olkin [24].

Archimedean copulas have been widely used in reliability theory, actuarial science, and
many other areas due to its mathematical tractability and the capability of capturing wide
ranges of dependence. By definition, for a decreasing and continuous function φ : [0,+∞) �→
[0, 1] such that φ(0) = 1 and φ(+∞) = 0, let ψ = φ−1 be the pseudo-inverse,

Cφ(u1, · · · , un) = φ (ψ(u1) + · · · + ψ(un)) , for all ui ∈ [0, 1], i = 1, 2, . . . , n,

is called an Archimedean copula with the generator φ if (−1)kφ(k)(x) ≥ 0 for k = 0, . . . , n− 2
and (−1)n−2φ(n−2)(x) is decreasing and convex. It is common knowledge that the
Archimedean family contains a great many useful copulas, including the independence
(product) copula, the Clayton copula, and the Ali–Mikhail–Haq (AMH) copula. Accord-
ing to Corollary 8.23(b) of Joe [16], copula Cφ is positive lower orthant dependent (PLOD)
if − log φ(t) is concave, and negative lower orthant dependent (NLOD) if − log φ(t) is con-
vex. For more discussions on copulas and their properties, one may refer to McNeil and
Noslehova; Nelsen [25,30].

3. STAR AND DISPERSIVE ORDERS

In this section, we investigate the skewness and dispersiveness of parallel [series] systems
consisting of dependent multiple-outlier PHR components whose lifetimes are assembled
with Archimedean [survival] copula.

3.1. Parallel System

The following useful lemma, which is originally due to Saunders and Moran [34], is
introduced to prove the main results.

Lemma 3.1: Let {Fλ|λ ∈ R+} be a class of distribution functions, such that Fλ is supported
on some interval (a, b) ⊆ (0,∞) and has density fλ which does not vanish on any subinterval
of (a, b). Then, Fλ ≤� Fλ∗ for λ ≤ λ∗, if and only if ((∂Fλ(x))/(∂λ))/(xfλ(x)) is decreasing
in x, where (∂Fλ(x))/(∂λ) is the partial derivative of Fλ with respect to λ.

Now, we present a star ordering result for comparing the lifetimes of parallel systems
with dependent multiple-outlier exponential distributed components.

Theorem 3.2: Let X1, . . . , Xn [Y1, . . . , Yn] be a set of exponential random variables having
the Archimedean copula with generator φ, where Xi [Yi] has hazard rate λ1 [μ1] for i =
1, . . . , p, and Xj [Yj ] has hazard rate λ2 [μ2] for j = p+ 1, . . . , n. Suppose that[

1 − tψ′′(1 − t)
ψ′(1 − t)

]
ln t is increasing in t ∈ [0, 1].

If (λ1 − λ2)(μ1 − μ2) ≥ 0 and (λ2:2)/(λ1:2) ≥ (μ2:2)/(μ1:2), we have Xn:n ≥� Yn:n.

Proof: Without loss of generality, it is assumed that λ1 ≤ λ2 and μ1 ≤ μ2. The distribution
function of Xn:n can be written as

FXn:n(x) = φ[pψ(1 − e−λ1x) + qψ(1 − e−λ2x)], x ∈ R+,

where q = n− p. In this case, the proof can be completed by the following two parts.
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Case 1: λ1 + λ2 = μ1 + μ2. For ease of convenience, we denote Fλ(x) = FXn:n(x) and
assume that λ1 + λ2 = μ1 + μ2 = 1. Let λ2 = λ and μ2 = μ, where λ, μ ∈ [1/2, 1). According
to Lemma 3.1, we need to prove that (∂Fλ(x))/(∂λ)/(xfλ(x)) is decreasing in x ∈ R+ for
λ ∈ [1/2, 1), where

∂Fλ(x)
∂λ

= φ′[pψ(1 − e−(1−λ)x) + qψ(1 − e−λx)]

× [−pxe−(1−λ)xψ′(1 − e−(1−λ)x) + qxe−λxψ′(1 − e−λx)]

and

fλ(x) = φ′[pψ(1 − e−(1−λ)x) + qψ(1 − e−λx)]

× [p(1 − λ)e−(1−λ)xψ′(1 − e−(1−λ)x) + qλe−λxψ′(1 − e−λx)].

Note that

∂Fλ(x)/∂λ
xfλ(x)

=
−pe−(1−λ)xψ′(1 − e−(1−λ)x) + qe−λxψ′(1 − e−λx)

p(1 − λ)e−(1−λ)xψ′(1 − e−(1−λ)x) + qλe−λxψ′(1 − e−λx)

=
(
λ+

pe−(1−λ)xψ′(1 − e−(1−λ)x)
qe−λxψ′(1 − e−λx) − pe−(1−λ)xψ′(1 − e−(1−λ)x)

)−1

=

[
λ+

(
q

p
× e−λxψ′(1 − e−λx)
e−(1−λ)xψ′(1 − e−(1−λ)x)

− 1
)−1

]−1

.

Thus, it suffices to show that, for λ ∈ [1/2, 1),

Δ(x) =
e−λxψ′(1 − e−λx)

e−(1−λ)xψ′(1 − e−(1−λ)x)

is decreasing in x ∈ R+. Taking the derivative of Δ(x) with respective to x gives rise to

Δ′(x)
sgn
=
[
λxe−2λxψ′′(1 − e−λx) − λxe−λxψ′(1 − e−λx)

]× e−(1−λ)xψ′(1 − e−(1−λ)x)

−
[
(1 − λ)xe−2(1−λ)xψ′′(1 − e−(1−λ)x) − (1 − λ)xe−(1−λ)xψ′(1 − e−(1−λ)x)

]
× e−λxψ′(1 − e−λx)

sgn
= (1 − λ)x

[
1 − e−(1−λ)xψ

′′(1 − e−(1−λ)x)
ψ′(1 − e−(1−λ)x)

]
− λx

[
1 − e−λx

ψ′′(1 − e−λx)
ψ′(1 − e−λx)

]

=
[
1 − t2ψ

′′(1 − t2)
ψ′(1 − t2)

]
ln t2 −

[
1 − t1ψ

′′(1 − t1)
ψ′(1 − t1)

]
ln t1, (1)

where t1 = e−(1−λ)x and t2 = e−λx. Since λ ∈ [1/2, 1), we have t1 ≥ t2 and this implies the
right hand of (1) is non-positive based on the condition that

[
1 − tψ′′(1 − t)

ψ′(1 − t)

]
ln t is increasing in t ∈ [0, 1].

Hence, the proof of this part is completed.
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Case 2: λ1 + λ2 �= μ1 + μ2. In this case, one can note that λ1 + λ2 = c(μ1 + μ2), where

c is a scalar. It then holds that (λ1, λ2)
m� (cμ1, cμ2). Let Zn:n be the lifetime of a parallel sys-

tem having n dependent exponential distributed components whose lifetimes are connected
with an Archimedean copula with generator φ, where Z1, . . . , Zp have hazard rate cμ1, and
Zp+1, . . . , Zn have hazard rate cμ2. From the result of Case 1, we have Xn:n ≥� Zn:n. On
the other hand, since the star order is scale invariant, it follows that Xn:n ≥� Yn:n. �

For the case of dependent multiple-outlier PHR distributed components, the following
star ordering result can be derived.

Theorem 3.3: Let X1, . . . , Xn [Y1, . . . , Yn] be a set of PHR variables having the
Archimedean copula with generator φ, where Xi [Yi] has survival function F

λ1(x) [F
μ1(x)]

for i = 1, . . . , p, and Xj [Yj] has survival function F
λ2(x) [F

μ2(x)] for j = p+ 1, . . . , n. Let
R(x) =

∫ x
0
h(t)dt be the cumulative hazard rate function of the baseline distribution F (x).

Suppose that R(x)/xh(x) is increasing in x ∈ R+, and

−tψ′(1 − t) and
[
1 − tψ′′(1 − t)

ψ′(1 − t)

]
ln t are both increasing in t ∈ [0, 1].

If λ1 ≤ μ1 ≤ μ2 ≤ λ2 and (λ1Ip, λ2Iq)
w� (μ1Ip, μ2Iq), we have Xn:n ≥� Yn:n.

Proof: Under the conditions that λ1 ≤ μ1 ≤ μ2 ≤ λ2 and (λ1Ip, λ2Iq)
w� (μ1Ip, μ2Iq), one

can observe that pλ1 + qλ2 ≤ pμ1 + qμ2.

(i) Suppose pλ1 + qλ2 = pμ1 + qμ2. Without loss of generality, it is assumed that pλ1 +
qλ2 = 1. Let λ2 = λ and λ1 = (1 − qλ)/p. Upon using a similar proof method of
Case 1 in Theorem 3.2, we know that, for λ ∈ [1/(p+ q), 1/q),

∂Fλ(x)/∂λ

xfλ(x)
=

R(x)

xh(x)
× −qe−(1−qλ/p)R(x)ψ′(1 − e−(1−qλ/p)R(x)) + qe−λR(x)ψ′(1 − e−λR(x))

(1 − qλ)e−(1−qλ/p)R(x)ψ′(1 − e−(1−qλ/p)R(x)) + qλe−λR(x)ψ′(1 − e−λR(x))

=
R(x)

xh(x)
× Ω(x).

Since ψ′(t) ≤ 0, tψ′(1 − t) is decreasing in t ∈ [0, 1] and (1 − qλ)/p ≤ λ, we have
Ω(x) ≤ 0. Based on the increasing property of R(x)/(xh(x)), we just need to prove
that Ω(x) is decreasing in x ∈ R+. The proof can be completed in a similar way with
that of Theorem 3.2.

(ii) Suppose pλ1 + qλ2 < pμ1 + qμ2. For this case, there must exist some λ′1 such that
λ1 ≤ λ′1 < μ1 and pλ′1 + qλ2 = pμ1 + qμ2. Let Z1, . . . , Zn be a set of PHR ran-
dom variables having the Archimedean copula with generator φ, where Zi has
survival function F

λ′
1(x) for i = 1, . . . , p, and Zj have survival function F

λ2(x)
for j = p+ 1, . . . , n. Then, from (i) we know that Zn:n ≥� Yn:n. On the other
hand, we want to show that Xn:n ≥� Zn:n. Let d = λ2 − λ1 and d′ = λ2 − λ′1.
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Clearly, it follows that d ≥ d′ > 0. According to Lemma 3.1, it is enough to show
that

∂Fd(x)/∂d
xfd(x)

=
R(x)
xh(x)

× −pe−(λ2−d)R(x)ψ′(1 − e−(λ2−d)R(x))
p(λ2 − d)e−(λ2−d)R(x)ψ′(1 − e−(λ2−d)R(x)) + qλ2e−λ2R(x)ψ′(1 − e−λ2R(x))

=
R(x)
xh(x)

× Γ(x)

is decreasing in x ∈ R+. From the analysis in (i), we need to prove that Γ(x) is decreasing
in x ∈ R+, which can be verified easily by following the same method of Theorem 3.2. To
sum up, the desired result can be reached. �

It should be mentioned here that the requirement imposed on the cumulative hazard
rate function, that R(x)/(xh(x)) is increasing in x ∈ R+, is very general and satisfies many
distributions; Amimi-Seresht et al.; Kochar and Xu see [2,20].

The next example provides three specified generators fulfilling the conditions in
Theorems 3.2 and 3.3.

Example 3.4:

(i) For the independent case, the generator becomes φ(t) = e−t, u ≥ 0. Then, we have
ψ(t) = − ln t, t ∈ (0, 1]. It can be calculated that

tψ′(1 − t) =
t

t− 1

is decreasing in t ∈ [0, 1], and

Φ1(t) =
[
1 − tψ′′(1 − t)

ψ′(1 − t)

]
ln t =

ln t
1 − t

, t ∈ (0, 1).

Note that
Φ′

1(t)
sgn
= t ln t− t+ 1 = Φ2(t),

and Φ′
2(t) = ln t ≤ 0 for t ∈ (0, 1]. Thus, we know that Φ′

1(t) ≥ Φ′
1(1) = 0, which

means that Φ1(t) is increasing in t ∈ (0, 1) as stated both in Theorems 3.2 and 3.3.
(ii) Consider the Clayton copula with generator φ(t) = (θt+ 1)−1/θ, where θ ∈ (0, 1].

Through some simplifications, one can see that

Υ1(t) = tψ′(1 − t) = −t(1 − t)−θ−1

and

Υ2(t) =
[
1 − tψ′′(1 − t)

ψ′(1 − t)

]
ln t =

(
1 + θt

1 − t

)
ln t.

Obviously, −tψ′(1 − t) is increasing in t ∈ [0, 1). For Υ2(t), observe that

Υ′
2(t)

sgn
= (θ + 1) ln t+ (1 + θt)

(
1
t
− 1
)

= κ(t).
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Taking the derivative of κ(t) with respective to t gives rise to

κ′(t)
sgn
=

θ + 1
t

+ θ

(
1
t
− 1
)
− θt+ 1

t2
sgn
= (t− 1)(1 − θt) ≤ 0,

which means that κ(t) is decreasing in t ∈ (0, 1] for θ ∈ (0, 1]. Thus, κ(t) ≥ κ(1) =
0, i.e., Υ′

2(t) ≥ 0 for all t ∈ (0, 1) and θ ∈ (0, 1]. Hence, the assumptions given in
Theorems 3.2 and 3.3 are satisfied. Besides, it can be checked that − log φ(t) is
concave, which means that the lifetimes of the components are PLOD and exhibit
positive dependence.

(iii) Consider the Gumbel–Hougaard copula with ψ(t) = (− ln t)θ, θ > 1. One can
compute that

tψ′(1 − t) = − θt

1 − t
[− ln(1 − t)]θ−1 =: −θΛ1(t).

Note that

Λ′
1(t)

sgn
= (1 − t)

[
(− ln(1 − t))θ−1 +

(θ − 1)t
1 − t

(− ln(1 − t))θ−2

]
+ t(− ln(1 − t))θ−1

sgn
= (1 − t)

[
− ln(1 − t) + (θ − 1)

t

1 − t

]
− t ln(1 − t)

= (θ − 1)t− ln(1 − t) ≥ 0,

which means that tψ′(1 − t) is decreasing in t ∈ [0, 1). On the other hand, it can be
calculated that

Λ2(t) :=
[
1 − tψ′′(1 − t)

ψ′(1 − t)

]
ln t =

[ln(1 − t) − (θ − 1)t] ln t
(1 − t) ln(1 − t)

.

Figure 1 plots the function Λ2(t) with respect to t ∈ (0, 1) for different values of
θ = 1.5, 2, 3, 4, 5, 6, from which we can see that Λ2(t) is always increasing in t ∈ (0, 1).
Moreover, one can verify that − log φ(t) is concave, which implies that the lifetimes
of the components are also PLOD.

Next, we present one numerical example to illustrate Theorem 3.3. Let X be a Weibull
random variable, denoted by X ∼W (a, b), with survival function F (x; a, b) = e−(bx)a

,
where b and a are the scale and shape parameters, respectively. It is east to check that
R(x)/xh(x) = 1/a is increasing in x.

Example 3.5: Suppose that Xi ∼W (a, bi) and Yi ∼W (a, b∗i ), for i = 1, 2, 3. Let a =
2, (b1, b2, b3) = (2, 2, 5) and (b∗1, b

∗
2, b

∗
3) = (3, 3, 4). Note that λi = bai , λ∗i = (b∗i )

a and

(22, 22, 52)
w� (32, 32, 42). According to Example 3.4, we take three kinds of Archimedean

copulas with ψ1(t) = − ln t, ψ2(t) = 2(t−0.5 − 1), and ψ3(t) = (− ln t)5. Figure 2 displays
the density functions of X3:3 and Y3:3 for these three specified situations, from which one
can see that X3:3 is always more skewed than Y3:3, which means that, for a parallel system
comprised of three Weibull distributed dependent components, more heterogeneity among
these two types leads to larger skewness of the system lifetime distribution.

Since the Lorenz order plays an important role in many research areas, the following
result is of independent interest and can be derived from Theorem 3.3.
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Figure 1. Plot of Λ2(t) on t ∈ [0, 1] for different values of θ.

Corollary 3.6: Under the same setup of Theorem 3.3, if λ1 ≤ μ1 ≤ μ2 ≤ λ2 and

(λ1Ip, λ2Iq)
w� (μ1Ip, μ2Iq), we have Xn:n ≥Lorenz Yn:n.

The following theorem studies the dispersiveness of the lifetime of a parallel system
with dependent multiple-outlier PHR components.

Theorem 3.7: Under the same setup of Theorem 3.3, if λ1 ≤ μ1 ≤ μ2 ≤ λ2 and

(λ1Ip, λ2Iq)
w� (μ1Ip, μ2Iq), we have Xn:n ≥disp Yn:n.

Proof: Ahmed et al. [1] proved that, for two continuous random X and Y , if X ≤� Y , then
X ≤st Y implies that X ≤disp Y . According to Theorem 4.1 of Li and Fang [22], it follows
that Xn:n ≥st Yn:n. Then, the desired result can be obtained by applying Theorem 3.3. �

3.2. Series System

In this subsection, we study the skewness and dispersiveness of the lifetime of a series system
with dependent multiple-outlier PHR components. First, we discuss the case of exponential
lifetime distribution.

Theorem 3.8: Under the setup of Theorem 3.2, it is assumed that[
1 +

tψ′′(t)
ψ′(t)

]
ln t is decreasing in t ∈ [0, 1].

If (λ1 − λ2)(μ1 − μ2) ≥ 0 and λ2:2/λ1:2 ≥ μ2:2/μ1:2, we have X1:n ≤� Y1:n.
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Figure 2. Plot of the density functions of X3:3 and Y3:3 under different Archimedean
copulas
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Proof: Without loss of generality, we assume that λ1 ≤ λ2 and μ1 ≤ μ2. The distribution
function of Xn:n is given by

FX1:n(x) = 1 − φ[pψ(e−λ1x) + qψ(e−λ2x)], x ∈ R+,

where q = n− p. Similar to the proof of Theorem 3.2, we can proceed by considering the
following two cases.

Case 1: λ1 + λ2 = μ1 + μ2. Without loss of generality, it is assumed that λ1 + λ2 = μ1 +
μ2 = 1. Let Fλ(x) = FX1:n(x), λ1 = λ and μ1 = μ, where λ, μ ∈ (0, 1/2]. From Lemma 3.1,
it suffices to show that (∂Fλ(x)/∂λ)/xfλ(x) is decreasing in x ∈ R+ for λ ∈ (0, 1/2], where

∂Fλ(x)
∂λ

= −φ′[pψ(e−λx) + qψ(e−(1−λ)x)]

× [−pxe−λxψ′(e−λx) + qxe−(1−λ)xψ′(e−(1−λ)x)]

and

fλ(x) = −φ′[pψ(e−λx) + qψ(e−(1−λ)x)]

× [−pλe−λxψ′(e−λx) − q(1 − λ)e−(1−λ)xψ′(e−(1−λ)x)].

Observe that

∂Fλ(x)
∂λ

xfλ(x)
=

−pe−λxψ′(e−λx) + qe−(1−λ)xψ′(e−(1−λ)x)
−pλe−λxψ′(e−λx) − q(1 − λ)e−(1−λ)xψ′(e−(1−λ)x)

=
(
λ− qe−(1−λ)xψ′(e−(1−λ)x)

qe−(1−λ)xψ′(e−(1−λ)x) − pe−λxψ′(e−λx)

)−1

=

[
λ−

(
1 − p

q
× e−λxψ′(e−λx)
e−(1−λ)xψ′(e−(1−λ)x)

)−1
]−1

.

Thus, it suffices to show that, for λ ∈ (0, 1/2],

Ω(x) =
e−λxψ′(e−λx)

e−(1−λ)xψ′(e−(1−λ)x)

is decreasing in x ∈ R+. By taking the derivative of Ω(x) with respective to x, we have

Ω′(x)
sgn
=
[
(1 − λ)xe−2(1−λ)xψ′′(e−(1−λ)x) + (1 − λ)xe−(1−λ)xψ′(e−(1−λ)x)

]
× e−λxψ′(e−λx) − [λxe−2λxψ′′(e−λx) + λxe−λxψ′(e−λx)

]× e−(1−λ)xψ′(e−(1−λ)x)

sgn
= (1 − λ)x

[
1 + e−(1−λ)xψ

′′(e−(1−λ)x)
ψ′(e−(1−λ)x)

]
− λx

[
1 + e−λx

ψ′′(e−λx)
ψ′(e−λx)

]

=
[
1 +

t1ψ
′′(t1)

ψ′(t1)

]
ln t1 −

[
1 +

t2ψ
′′(t2)

ψ′(t2)

]
ln t2, (2)

where t1 = e−λx and t2 = e−(1−λ)x. Since λ ∈ (0, 1/2], we have t1 ≥ t2. According to
the decreasing property of [1 + (tψ′′(t))/(ψ′(t))] ln t in t ∈ (0, 1], we know that (2) is
non-negative.
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Case 2: λ1 + λ2 �= μ1 + μ2. The proof can be completed by adopting the proof method
of Case 2 in Theorem 3.2. To sum up, the proof is finished. �

For the case of dependent multiple-outlier PHR components, we have the following
comparison result for series systems according to the star order.

Theorem 3.9: Under the same setup of Theorem 3.3, it is assumed that R(x)/xh(x) is
increasing in x ∈ R+, and

−tψ′(t) and
[
1 +

tψ′′(t)
ψ′(t)

]
ln t are both decreasing in t ∈ [0, 1].

If λ1 ≤ μ1 ≤ μ2 ≤ λ2 and (λ1Ip, λ2Iq)
w� (μ1Ip, μ2Iq), we have X1:n ≤� Y1:n.

Proof: Based on the conditions that λ1 ≤ μ1 ≤ μ2 ≤ λ2 and (λ1Ip, λ2Iq)
w� (μ1Ip, μ2Iq),

we know that pλ1 + qλ2 ≤ pμ1 + qμ2.

(i) If pλ1 + qλ2 = pμ1 + qμ2. Without loss of generality, it is assumed that pλ1 + qλ2 =
1. Let λ1 = λ and λ2 = (1 − pλ)/q. Upon using a similar proof method of Case 1 in
Theorem 3.8, we know that, for λ ∈ (0, 1/(p+ q)],

∂Fλ(x)/∂λ
xfλ(x)

=
R(x)
xh(x)

× pe−λR(x)ψ′(e−λR(x)) − pe−(1−pλ/q)R(x)ψ′(e−(1−pλ/q)R(x))
pλe−λR(x)ψ′(e−λR(x)) + (1 − pλ)e−(1−pλ/q)R(x)ψ′(e−(1−pλ/q)R(x))

=
R(x)
xh(x)

× Λ(x).

Since ψ′(t) ≤ 0, tψ′(t) is increasing in t ∈ [0, 1] and (1 − pλ)/q ≥ λ, we have Λ(x) ≤ 0.
Based on the increasing property of R(x)/xh(x), we just need to prove that Λ(x)
is decreasing in x ∈ R+. The proof can be completed in a similar way with that of
Theorem 3.8.

(ii) If pλ1 + qλ2 < pμ1 + qμ2. There must exist some λ′1 such that λ1 ≤ λ′1 < μ1 and
pλ′1 + qλ2 = pμ1 + qμ2. Let Z1, . . . , Zn be a set of PHR random variables having the

Archimedean copula with generator φ, where Zi have survival function F
λ′

1(x) for
i = 1, . . . , p, and Zj have survival function F

λ2(x) for j = p+ 1, . . . , n. Then, from (i)
we know that Z1:n ≤� Y1:n. On the other hand, we want to show that X1:n ≤� Z1:n.
Since λ1 ≤ λ′1, according to Lemma 3.1 it is enough to show that

∂Fλ1(x)/∂λ1

xfλ1(x)
=

R(x)
xh(x)

× −pe−λ1R(x)ψ′(e−λ1R(x))
pλ1e−λ1R(x)ψ′(e−λ1R(x)) + qλ2e−λ2R(x)ψ′(e−λ2R(x))

=
R(x)
xh(x)

× Θ(x)

is decreasing in x ∈ R+. According to (i), we need to prove that Θ(x) is decreasing
in x ∈ R+, which can be ensured by conducting the same method of Theorem 3.8.
To sum up, the proof is finished.

�
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Corollary 3.10: Under the same setup of Theorem 3.9, if λ1 ≤ μ1 ≤ μ2 ≤ λ2 and

(λ1Ip, λ2Iq)
w� (μ1Ip, μ2Iq), we have X1:n ≤Lorenz Y1:n.

The following result is a direct consequence of Theorems 3.9 and 4.1(i) of Fang et al. [14],
whose proof is similar to that of Theorem 3.7 by noting that log-convex of φ is equivalent
to the decreasing property of −tψ′(t) and thus omitted here.

Theorem 3.11: Under the same setup of Theorem 3.9, if λ1 ≤ μ1 ≤ μ2 ≤ λ2 and

(λ1Ip, λ2Iq)
m� (μ1Ip, μ2Iq), we have X1:n ≤disp Y1:n.

In Theorem 3.4 of Fang et al. [15], the dispersive ordering is studied between minima
from heterogeneous and homogeneous samples with scale proportional hazards and common
Archimedean survival copulas, while Theorem 3.11 here establishes sufficient conditions for
the dispersive ordering between the minima arising from two sets of dependent multiple-
outlier PHR samples with common Archimedean survival copulas. It is of natural interest
to extend Theorem 3.11 to the case of multiple-outlier scale proportional hazards models.

The next example illustrates the assumptions on the generator in Theorem 3.9.

Example 3.12:

(i) For the independence case, ψ(t) = − ln t for t ∈ (0, 1]. Thus, we have tψ′(t) = −1
and [1 + (tψ′′(t)/ψ′(t))] ln t = 0, which satisfy the conditions in Theorem 3.9.

(ii) For the Clayton copula with generator φ(t) = (θt+ 1)−1/θ, where θ ∈ (0, 1], it can
be calculated that

−tψ′(t) = t−θ and
[
1 +

tψ′′(t)
ψ′(t)

]
ln t = −θ ln t,

which are both clearly decreasing in t ∈ (0, 1].
(iii) For the Gumbel–Hougaard copula with ψ(t) = (− ln t)θ, θ > 1, it can be calculated

that

−tψ′(t) = θ(− ln t)θ−1 and
[
1 +

tψ′′(t)
ψ′(t)

]
ln t = θ − 1,

which agrees with the conditions given in Theorem 3.9.

The next example shows the effectiveness of Theorem 3.9.

Example 3.13: Under the setup of Example 3.5, we only consider the Archimedean copula
with ψ(t) = 2(u−0.5 − 1) since the function [1 + tψ′′(t)

ψ′(t) ] ln t is constant as demonstrated in
Example 3.12 for the other two cases. The density functions of X1:3 and Y1:3 are displayed in
Figure 3, based on which it is not easy to conclude whether X1:3 is more skewed than Y1:3.
Instead, we can compare their coefficients of variation. It can be computed that γX1:3 =
0.556 < γY1:3 = 0.599, which supports the result of Theorem 3.9.
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Figure 3. Plot of density functions of X1:3 and Y1:3 for ψ(t) = 2(t−0.5 − 1).

4. CONVEX TRANSFORM ORDER

Kochar and Xu [18] showed that a parallel system with homogeneous exponential compo-
nents ages faster than a system with heterogeneous exponential components in the sense of
the more IFR property (convex transform order). Due to the unique memoryless property
of the exponential distribution, exponential lifetime distributions imposed on the compo-
nents do not conform to reality in general. As a unity study on the scale model, we shall
give some sufficient conditions under which a parallel (series) system with homogeneous
components ages faster than a system with heterogeneous components in the sense of the
convex transform order.

To begin with, the well-known Cauchy–Schwarz inequality is introduced in the following
to obtain our main result.

Lemma 4.1 ([27]): Let (a1, a2, . . . , an) and (b1, b2, . . . , bn) be two sequences of real numbers.
Then, it must hold that (

n∑
i=1

a2
i

)(
n∑
i=1

b2i

)
≥
(

n∑
i=1

aibi

)2

,

with equality if and only if the sequences (a1, a2, . . . , an) and (b1, b2, . . . , bn) are proportional,
i.e., there is a constant λ such that ak = λbk for each k ∈ {1, 2, . . . , n}.

Now, the main result of this section is presented as follows.

Theorem 4.2: Let X1, . . . , Xn be independent random variables with Xi having distribution
function F (λix), i = 1, . . . , n, and let Y1, . . . , Yn be a independent random sample from a
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distribution with the common distribution function F (λx). Let r̃(x) and h(x) be the reversed
hazard rate function and hazard rate function of F (x), respectively.

(i) If r̃(x) is decreasing in x ∈ R+ and (r̃′′(x)r̃(x)/(r̃′(x))2) is decreasing in x ∈ R+,
then Xn:n ≥c Yn:n.

(ii) If h(x) is decreasing in x ∈ R+ and (h′′(x)h(x)/(h′(x))2) is decreasing in x ∈ R+,
then X1:n ≥c Y1:n.

Proof: (i) The distribution functions of Xn:n and Yn:n can be written as, for x ∈ R+,

Hn:n(x) = P(Xn:n ≤ x) =
n∏
i=1

F (λix) and Gn:n(x) = P(Yn:n ≤ x) = Fn(λx).

From Proposition 21.A.7 of Marshall and Olkin [23], it is sufficient to show that
G−1
n:nHn:n(x) is concave in x ∈ R+. Note that, for x ∈ R+,

G−1
n:nHn:n(x) =

1
λ
F−1

(
n∏
i=1

F
1
n (λix)

)
.

Taking the derivative with respective to x, we get

[
G−1
n:nHn:n(x)

]′ ∝ ∏n
i=1 F

1
n (λix) × 1

n

∑n
i=1 λir̃(λix)

f
[
F−1

(∏n
i=1 F

1
n (λix)

)]

=
1
n

∑n
i=1 λir̃(λix)

r̃
[
F−1

(∏n
i=1 F

1
n (λix)

)]
=: Δ(x).

It boils down to showing that Δ(x) is decreasing in x ∈ R+. Note that

Δ′(x)
sgn
=

1
n

n∑
i=1

λ2
i r̃

′(λix) × r̃

[
F−1

(
n∏
i=1

F 1/n(λix)

)]

−
(

1
n

n∑
i=1

λir̃(λix)

)2

× r̃′
[
F−1

(∏n
i=1 F

1/n(λix)
)]

r̃
[
F−1

(∏n
i=1 F

1/n(λix)
)] .

Thus, Δ′(x) ≤ 0 equals to show that

1
n

n∑
i=1

λ2
i r̃

′(λix) × r̃2

[
F−1

(
n∏
i=1

F 1/n(λix)

)]

≤
(

1
n

n∑
i=1

λir̃(λix)

)2

× r̃′
[
F−1

(
n∏
i=1

F 1/n(λix)

)]
. (3)

Let F (x) = e−S(x), for x ≥ 0, where S(x) =
∫∞
x
r̃(u)du = − logF (x) denoting the

cumulative reversed hazard rate function. Thus, we have F−1(u) = S−1(− log u) for
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u ∈ (0, 1). Based on the above relationship and the decreasing property of r̃(x),
inequality (3) can be rewritten as

1
n

n∑
i=1

[(
S−1(S(λix))

)2
r̃′
(
S−1(S(λix))

)]× r̃2

[
S−1

(
1
n

n∑
i=1

S(λix)

)]

≤
{

1
n

n∑
i=1

[
S−1(S(λix))r̃

(
S−1(S(λix))

)]}2

× r̃′
[
S−1

(
1
n

n∑
i=1

S(λix)

)]
,

i.e.,

∑n
i=1

[(
S−1(S(λix))

)2
r̃′
(
S−1(S(λix))

)]× r̃2
[
S−1 (1/n

∑n
i=1 S(λix))

]
r̃′ [S−1 (1/n

∑n
i=1 S(λix))]

≥ 1
n

{
n∑
i=1

[
S−1(S(λix))r̃

(
S−1(S(λix))

)]}2

. (4)

Based on the the classical Cauchy–Schwarz inequality in Lemma 4.1, it can be seen
that {

n∑
i=1

[λixr̃ (λix)]

}2

≤
n∑
i=1

[
(λix)

2
r̃′ (λix)

]
×

n∑
i=1

r̃2 (λix)
r̃′ (λix)

. (5)

By making use of (5), (4) is equivalent to showing that

r̃2
[
S−1 (1/n

∑n
i=1 S(λix))

]
r̃′ [S−1 (1/n

∑n
i=1 S(λix))]

≤ 1
n

n∑
i=1

r̃2
(
S−1(S(λix))

)
r̃′ (S−1(S(λix)))

.

Hence, it is enough to prove that (r̃2(S−1(u)))/(r̃′(S−1(u))) is convex in
u ∈ (0, 1), i.e., [

r̃2
(
S−1(u)

)
r̃′ (S−1(u))

]′
=
r̃′′
(
S−1(u)

)
r̃
(
S−1(u)

)
[r̃′ (S−1(u))]2

− 2

is increasing in u ∈ (0, 1), which can be obtained immediately from the assumption
that r̃′′(x)r̃(x)/(r̃′(x))2 is decreasing in x ∈ R+ and the observation that S−1(u) is
decreasing in u ∈ (0, 1).

(ii) Observe that F (x) = e−R(x), for x ∈ R+ and F−1(u) = R−1(− log(1 − u)), for u ∈
(0, 1), where R(x) =

∫ x
0
h(u)du denotes the cumulative hazard rate function. The

proof is easily completed by adopting a similar proof method of (i).
�

Under the same setup of Theorem 4.2, the results will be reversed if the decreas-
ing properties of the given functions are all replaced by the corresponding increasingness
assumptions.

Kochar and Xu [18] proved that the maximum order statistics from a set of hetero-
geneous exponential variables is larger than that from a set of homogeneous exponential
variables according to the convex transform order, which means that the lifetime of a paral-
lel system with heterogeneous exponential components ages slower than that of any parallel
system with i.i.d. exponential components. Suppose X is an exponential random variable
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Figure 4. Plot of density functions of X3:3 and Y3:3.

with hazard rate λ > 0, then we know that r̃(x) = (λ/(eλx − 1)) is decreasing in x ∈ R+.
It can be calculated that (r̃′′(x)r̃(x))/((r̃′(x))2) = e−λx + 1, which is also decreasing in
x ∈ R+. Thus, the assumptions are satisfied in Theorem 4.2(i) and this in turn implies the
result of Theorem 3.1 in Kochar and Xu [18].

The following example provides another explanation of Theorem 4.2.

Example 4.3: Take the baseline distribution as Burr distribution with F (x) = 1 − (1 + x)−λ

(denoted as X ∼ Burr(λ)), λ ≥ 1, x ≥ 0. Through some calculation, we have

r̃(x) =
λ

(x+ 1)λ+1 − x− 1
, r̃′(x) = −λ[(λ+ 1)(x+ 1)λ − 1]

[(x+ 1)λ+1 − x− 1]2
≤ 0

and

r̃′′(x) =
λ(λ+ 1)(λ+ 2)(x+ 1)2λ + λ(λ+ 1)(λ− 4)(x+ 1)λ + 2λ

[(x+ 1)λ+1 − x− 1]3
.

Then,

Ψ(x) :=
r̃′′(x)r̃(x)
(r̃′(x))2

=
(λ+ 1)(λ+ 2)(x+ 1)2λ + (λ+ 1)(λ− 4)(x+ 1)λ + 2

[(λ+ 1)(x+ 1)λ − 1]2
.

Observe that

Ψ′(x)
sgn
= [2λ(λ+ 1)(λ+ 2)(x+ 1)2λ−1 + λ(λ+ 1)(λ− 4)(x+ 1)λ−1][(λ+ 1)(x+ 1)λ − 1]

− 2λ(λ+ 1)(x+ 1)λ−1[(λ+ 1)(λ+ 2)(x+ 1)2λ + (λ+ 1)(λ− 4)(x+ 1)λ + 2]

= −[λ(λ+ 1)2(λ− 4) + 2λ(λ+ 1)(λ+ 2)](x+ 1)2λ−1 − λ2(λ+ 1)(x+ 1)λ−1

sgn
= −(λ− 1)(x+ 1)λ − 1 ≤ 0,
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which means that Ψ(x) is decreasing in x ≥ 0 for λ ≥ 1. Hence, the conditions in Theorem
4.2(i) are satisfied. On the other hand, it is easy to check that h(x) = λ(1 + x)−1 is decreas-
ing in x ∈ R+, and (h′′(x)h(x))/((h′(x))2) = 2. Thus, the conditions in Theorem 4.2(ii) are
also satisfied.

As an illustration, we suppose that Xi ∼ Burr(λi) and Yi ∼ Burr(λ), for i = 1, 2, 3. Let
λ1 = 1, λ2 = 2, λ3 = 4, and λ = 3. Figure 4 presents the figures of density functions of X3:3

and Y3:3. As observed, X3:3 is more skewed than Y3:3 and thus the result of Theorem 4.2(i)
is validated.

5. CONCLUDING REMARKS

We study the effect of the heterogeneity among components on the variability of the life-
times of series and parallel systems comprised of PHR or scaled components. Sufficient
conditions are presented to compare the skewness and dispersiveness of the lifetimes of
series and parallel systems with multiple-outlier PHR distributed components. It is also
proved that, without any restriction on the scale parameters, the lifetime of a series or par-
allel system with heterogeneous scaled components is larger than that with homogeneous
scaled components according to the convex transform order.

It should be mentioned that these results can be also applied in the field of auction
theory to study the revenue of the first-price sealed-bid auction, which is a common type of
auction in practice [c.f. 13,21,31]. Assume that all bidders submit their bids simultaneously
and no bidder knows the bidding price of any other participant. The highest bidder pays
the price he/she submitted, which can be characterized by the largest order statistics. To
this regard, the results developed in this paper can provide insights into analyzing the
effects of heterogeneity and dependence among bidders on the revenue of the first-price
sealed-bid auction. For example, Theorem 4.2(i) suggests that, under appropriate conditions
on the baseline distribution of the bidding prices, the revenue of the bidding group with
heterogeneous bidding prices possesses more variation than that from a group of bidders
having homogeneous bidding prices.

As a further study, it is of interest to generalize the results of Section 3 to the case
where the components have scaled distributions or exhibit negatively dependent lifetimes
(both the Clayton copula and the Gumbel–Hougaard copula merit PLOD as displayed in
Example 3.4). Besides, it is worth studying the convex transform ordering for the series and
parallel systems with heterogeneous and homogeneous PHR components.
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