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ABSTRACT. The purpose of this study is to test empirically the hypothesis of the
inverted U-shaped relationship between environmental damage from sulfur emissions
and economic growth as expressed by GDP. Using a large database of panel data con-
sisting of 73 OECD and non-OECD countries for 31 years (1960–1990) we apply for the
first time random coefficients and Arellano-Bond Generalized Method of Moments (A–B
GMM) econometric methods. Our findings indicate that the EKC hypothesis is not
rejected in the case of the A–B GMM. On the other hand there is no support for an EKC
in the case of using a random coefficients model. Our turning points range from
$2805–$6230/c. These results are completely different compared to the results derived
using the same database and fixed and random effects models.

1. Introduction
In this paper we examine the concept of an Environmental Kuznets Curve
in a critical way, aiming to propose policies compatible with sustainable
development. Kuznets (1955) hypothesized an inverted-U shape for the
relationship between a measure of inequality in the distribution and the
level of income. Because of its similarities to the pattern of income
inequality described by Kuznets, the environmental pattern is called an
Environmental Kuznets Curve (hereafter EKC). Various indicators of
environmental degradation such as pollution or deforestation tend to be
lower among most of the developed countries in comparison to higher
indicators among developing countries. At the same time, these indicators
are higher among developing countries compared to those of less devel-
oped countries. The EKC indicates an inverted-U-shaped relation between
degradation and per-capita income (Grossman and Krueger, 1993; López,
1994; Selden and Song, 1994; de Bruyn, 1997; Panayotou, 1997).

Empirical studies have examined whether any additional variables may
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justify the EKC hypothesis and argue that income and income squared are
proxies for the true underlying variables (see Stern, 1998). A number of
additional explanatory variables for electricity tariffs, debt per capita,
trade, political rights, and others have also been added to many of the pro-
posed models in the literature (see Agras and Chapman, 1999), most of
them concluding that income is the most influential variable on environ-
mental quality.

Most EKC studies, except some of carbon emissions, have been esti-
mated using emissions or concentrations data for mostly OECD countries.
For sulfur emissions and concentrations there is evidence that an inverted-
U-shaped EKC exists (Grossman and Krueger, 1995; Shafik, 1994;
Panayotou, 1997; Selden and Song, 1994; Ekins, 1997). Simultaneity issues
should be less important than they might be for energy, CO2, or deforesta-
tion EKCs (Stern et al., 1996; Stern, 1998).

The EKC estimates for any dependent variable (for example SO2, NOX,
deforestation, etc.) peak at income levels which are around the world’s
mean income per capita. In a random sampling, it is usually expected that
the income distribution will be not normally distributed with many coun-
tries below mean income per capita and thus positively skewed. Cropper
and Griffiths (1994) and Selden and Song (1994) conclude that the majority
of countries in their analyses are below their estimated peak levels for air
pollutants and thus economic growth may not reduce air pollution or
deforestation. This implies that estimating the left-hand part of EKC is
easier than estimating the right-hand part. A simple explanation behind
this claim is that manufacturing industries (which are expected to be more
polluting) are concentrated mainly in the less developed countries and the
high-tech and services industries (which are expected to be far less pol-
luting) are concentrated in the rich industrialized countries. Thus, the
rising portion of the EKC could be due to the concentration of manufac-
turing industrial activities in the less developed countries. Similarly, the
declining portion of the EKC could be due to the concentration of less pol-
luting high-tech industrial activities in the developed countries.

In this paper, we make use of a large and globally representative dataset
(A.S.L. and Associates, 1997; Lefohn et al., 1999). The sample consists of 73
countries over a 31-year time period (covering the period 1960–1990). The
number of countries considered is almost proportionally allocated to low-,
middle- and high-income countries. For this dataset we apply for the first
time random coefficients and Arellano-Bond Generalized Method of
Moments (hereafter A–B GMM) econometric methods. Our results are
completely different compared to the results derived in Stern and
Common (2001) using the same database and fixed and random effects
models.

Using the same dataset, Perman and Stern (1999), performing a number
of tests, and Stern and Common (2001) argue that income and pollution
data are not I(0). Regressions among non-stationary variables are spurious
and inference is invalid. A static model is justified either if adjustment pro-
cesses are really very fast or if the static equation represents an equilibrium
relationship. Perman and Stern (1999, p. 7) argue that, even if the static
equation is an equilibrium condition, this relationship can be estimated
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consistently by simple static regressions in special circumstances.
Specifically, if all variables in the regression were covariance stationary,
then the static regression would require that all omitted variables (in our
case omitted lagged values of variables) were uncorrelated with their
current dated levels, a more unlikely condition. As the assumption that the
data are stationary is incorrect, and we are not expecting a very fast adjust-
ment, a statistically sound approach requires estimating a dynamic model
of some form.

Thus, as there is evidence of dynamics in the data it is implied that the
validity of previous studies is questioned as being dynamically misspeci-
fied. This implies that a different formulation for estimating EKCs is
necessary. The only way in which valid inference can be drawn about par-
ameters of long-run relationships is when we specify a complete dynamic
model. Thus, for this balanced panel database, we set up a dynamic model.
One of our concerns is the speed with which emissions adjust to their equi-
librium values from their current values. For this reason we introduce a
model of adjustment in the form of a partial (stock) adjustment model.

Due to the presence of the lagged dependent variable as a regressor,
obtaining unbiased and consistent estimates requires the application of an
instrumental variables estimator or Generalized Method of Moments
(hereafter GMM), using orthogonality conditions based on linear functions
of the lagged values of the dependent variable (Anderson and Hsiao, 1981,
1982; Arellano, 1988; Arellano and Bond, 1991; Arellano and Bover, 1995;
Schmidt et al. 1992; Ahn and Schmidt, 1995). As Baltagi (1995, p. 143) has
shown, which one of the proposed estimators does give the best results is
quite uncertain.

We adopt here the estimator proposed by Arellano and Bond (1991)
who argue that additional instruments can be obtained in a dynamic
model from panel data if we utilize the orthogonality conditions between
lagged values of the dependent and the disturbances. This is a GMM esti-
mator, which is a non-linear instrumental variables estimator. It relies on
the assumption that the disturbances in the equation are uncorrelated with
a set of instrumental variables. This GMM estimator is robust, as it does
not require information of the exact distribution of the disturbances. The
estimators considered in this paper exploit optimally all the linear
moment restrictions that follow from particular specifications and offer
significant efficiency gains compared to simpler instrumental variables
alternatives.

We also apply for the first time a random coefficients model assuming
that each parameter is a random variable. Countries are heterogeneous
with different stochastic regression coefficients, which arise from a k-
variate normal distribution. In this way we find out if there is a
cross-country variation in the parameters and if this variation is so large
that aggregate summarization is not useful at all.

The remainder of the paper is organized as follows: section 2 reviews the
literature on sulfur EKCs with particular attention to estimated turning
points. The data are presented in section 3 and section 4 discusses the
econometric models proposed in the study. The empirical results are
reported in section 5 while the final section concludes the paper.
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2. Previous work
The existing empirical evidence suggests that EKCs exist for pollutants
with semi-local and medium-term impacts (Arrow et al., 1995; Cole et al.,
1997; Ansuategi et al., 1998). The empirical analysis of the EKC has focused
on whether a given index of environmental degradation shows an
inverted-U-shaped relationship when it is related with income per capita.
As a result the ‘turning point’ can be calculated by the level of per capita
income at which the EKC peaks.

A number of recent EKC studies consider the factors, which cause an
inverted-U-shaped pattern, such as:

• the improvement in environmental quality as a result of the change in
the technological mode of production (de Bruyn, 1997; Han and
Chatterjee, 1997) or of the exportation of ‘dirty industry’ to less devel-
oped or developing countries (Rock, 1996; Suri and Chapman, 1998;
Heerink et al., 2001);

• the role of preferences and regulation on the emissions profile of pol-
luters (López, 1994; McConnell, 1997; Stokey, 1998);

• the better institutional set up in the form of credible property rights,
regulations, and good governance, which may create public awareness
against environmental degradation (Dinda et al., 2000);

• the technological link between consumption of a desired good and the
abatement of its undesirable by-products in the form of pollution
(Andreoni and Levinson, 2001);

• distribution issues in the sense that the greater equality of incomes
results in a lower level of environmental degradation (Torras and
Boyce, 1998).

The regressions used in EKC studies typically show that the turning point
is well within the sample. This is not the case for carbon EKCs, where the
estimated turning points are usually significantly above the maximum
GDP in the sample. This is because carbon has not been regulated as it has
a global pollution impact. In contrast, sulfur emissions have been subject
to regulation due to their localized impact (Shafik, 1994). Dijkgraaf and
Vollebergh (1998) estimated a carbon EKC with fixed time and country
effects for OECD countries and found a turning point at 54 per cent of
maximum GDP in the sample.

Stern and Common (2001) question the distinction between local and
global pollutants and argue that the differences in turning points found by
various studies for different pollutants may be partially due to the dif-
ferent samples used. They also claim that higher turning points are found
from regressions using purchasing power parity (PPP) exchange rates and
emissions in comparison to regressions using market exchange rates and
concentrations.

Table 1 presents a review of sulfur emissions EKC studies. As can be
observed, the turning points range from $3,137–$101,166/c. Most EKC
studies have used panel data and either fixed or random effects estimators;
only a minority use cross-sectional or time series data and there are still
misspecification problems with these models (Stern et al., 1996).

All turning point estimates using concentration data from the GEMS
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Table 1. Sulfur emissions EKC studies

Authors Estimation Source of Time Additional Turning point Countries/cities
technique sulfur data period variables

Selden and Random WRI – 1979–87 Population $10,391–10,620 22 OECD and 
Song, 1994* and fixed primarily OECD density 8 developing

effects OLS source countries

Panayotou 1993,** OLS Own estimates 1987–88 $3,137 55 developed 
1995 from fuel use and developing 

data countries

Cole et al., 1997 Random and OECD 1970–92 Country $8,232 11 OECD 
fixed effects, dummy, countries
OLS technology level

Stern and Common Random and ASL 1960–90 Time and $101,166 73 developed 
(2001) fixed effects country effects and developing 

countries

This study GMM, random ASL 1960–90 Time and $2,805–$6,230 73 developed 
coefficients country and developing 

effects countries

Notes: * Selden and Song used data for 23 OECD countries plus China, Hungary, India, Israel, Kuwait, and Yugoslavia.
** Panayotou (1993) used data for a large number of countries to estimate a sulfur EKC. However, this turning point estimate is
biased downwards because he used ordinary exchange rates in place of PPP data and a cross-section data set in place of a panel data
set.
Source: Modified from Stern and Common (2001).
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database are less than $6,000. The only exception is the Kaufmann et al.
(1997) estimates as they used an unusual specification, including GDP per
area and GDP per area squared variables. Their cross-section data are
based on consumption of various fuels under the demanding assumption
that the coefficients of emissions for each fuel are the same in all
countries.

Shafik and Bandyopadhyay (1992) estimated EKC for ten different indi-
cators of environmental degradation (lack of clean water, ambient sulfur
oxides, annual rate of deforestation, etc.). The study uses three different
functional forms (log-linear, log-quadratic in income, logarithmic cubic
polynomial in GDP per capita, and a time trend). GDP was measured 
in PPP and other variables included were population density, trade,
electricity prices, dummies for locations, etc.

Stern et al. (1996) used data from the Human Development Report for
1992, the greenhouse index for 1988–1989, and income per capita in PPP
($1989) and fitted a quadratic to these data with the addition of the
national average annual temperature as a regressor. Fitting a quadratic in
income gave them a significant negative coefficient for the squared income
term with an R2-adjusted equal to 0.8081. Energy consumption peaked at
$14,600. The authors claim that the results depend on the income measure
used. If income in PPP is used, the coefficient on squared income was posi-
tive but small and insignificant. If income per capita was measured using
official exchange rates, the fitted energy income relationship was an
inverted-U-shaped with squared income coefficient negative and signifi-
cant (with an R2-adjusted � 0.6564). Energy use per capita peaked at an
income of $23,900.

Holtz-Eakin and Selten (1995) confirmed Shafik’s (1994) results by esti-
mating a quadratic EKCs for CO2 emissions using panel data and finding
high turning points of $35,000 in terms of levels regression and $8 million
in a logarithmic regression. Schmalensee et al. (1995) found a turning point
for carbon well within the sample using a more extensive version of the
Holtz-Eakin and Selden (1995) dataset and relying on a spline regression.
Dijkgraaf and Vollebergh (1998) found a turning point for carbon, within
the sample mainly due to the use of data on OECD countries only.

Stern and Common (2001) using the same database as we do in this
paper, find that sulfur emissions per capita is a monotonic function of
income per capita in the case of a global sample and an inverted-U-shaped
function of income per capita when we use a sample of high-income
countries. The global emissions–income relation is monotonic with the
estimated turning point far above all countries’ income levels. They also
find that the income–emissions relation is monotonically increasing in
income in both OECD and non-OECD samples.

3. Data
A large data set on sulfur emissions is used here (A.S.L. and Associates,
1997; Lefohn et al., 1999) which includes sulfur emissions from various
fuels (hard coal, brown coal, and petroleum) as well as sulfur emissions
from mining and smelting activities for most of the countries from 1850 to
1990. Emissions are based on the use of these fuels, their sulfur content, the
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level of smelting activity, and the sulfur retention factors.1 GDP per capita
(in real 1990 dollars) and population data are used from the Penn World
Table (Summers and Heston, 1991).

Our sample consists of 73 countries2 which have a full set of sulfur and
PPP GDP per capita information for the period 1960–1990. These countries
account for 81 per cent of the world population in 1990. The database used
has 2,263 observations per variable. In terms of the raw data, it is observed
that emissions increase with income, but there is some sign of a decrease
at high-income levels.3

Before we proceed to the proposed econometric methods it should be
noted that sulfur could be removed using before-, during-, and after-
combustion technologies. Halkos (1995) presents the applicability 
requirements, the abatement efficiencies, and the capital and operating
and maintenance costs of each possible abatement option, as well as an
estimate of the cost effectiveness.

4. Panel data econometric methods
As already mentioned, for this balanced panel data we set up a general
dynamic model. If, instead, we consider a static model of emissions on
GDP per capita and GDP per capita squared, then all adjustment to any
shock takes place within the same time period in which this occurs. We
may justify this if we have either an equilibrium relationship or if the
adjustment processes are really very fast (Perman and Stern, 1999). As the
authors claim it is inconceivable that the adjustment process in this
relationship is ‘instantaneous’ and, on the contrary, ‘the stories to explain
the EKC suggest slow adjustments’. Relying on this, a statistically prefer-
able approach requires a dynamic model formulation, which has not been
done before for panel data in this area of research. Even if all variables in
a static regression were covariance stationary, the static regression would
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1 Stern and Common (2001) provide a comparison of the ASL’s estimated emis-
sions for some developed countries. Countries like Canada, West Germany,
Japan, and Sweden differ substantially from the better-known OECD estimates
while the data for countries like the UK and the USA are similar.

2 Data are for the following countries:
OECD: Australia, Austria, Belgium, Canada, Denmark, Finland, France, Greece,
Ireland, Italy, Japan, Luxembourg, Netherlands, Norway, New Zealand,
Portugal, Spain, Sweden, Switzerland, Turkey, UK, USA, West Germany.
Non-OECD: Algeria, Argentina, Barbados, Bolivia, Brazil, Chile, China,
Colombia, Cyprus, Czechoslovakia, Egypt, Ghana, Guatemala, Honduras, Hong
Kong, India, Indonesia, Iran, Israel, Kenya, Korea, Madagascar, Malaysia,
Mexico, Morocco, Mozambique, Myanmar, Namibia, Nicaragua, Nigeria, Peru,
Philippines, Romania, South Africa, Saudi Arabia, Singapore, Sri Lanka, Syria,
Taiwan, Tanzania, Thailand, Trinidad & Tobago, Tunisia, Uruguay, U.S.S.R.,
Venezuela, Yugoslavia, Zaire, Zambia, Zimbabwe.

3 We have used emissions rather than concentrations as the latter depend on both
emissions and geographic location and atmospheric conditions in the form of
wind velocity, etc. We may justify the use of emissions, as there is no reason to
expect that developing countries differ in any systematic manner in the disper-
sion of pollutants.
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require that all omitted lagged values of variables were uncorrelated with
their current dated levels, a most unlikely condition (see Perman and
Stern, 1999, p. 7).

Our initial general model was an autoregressive-distributed lag formu-
lation (AD (p, q)) with the dependent variable lagged p times and the
independent variables lagged q times. The main direction of generalization
is in the order of dynamics. The correct model specification was based on
the widely used likelihood-based selection criteria like the Bayesian
Information Criterion (BIC) and the Akaike Information Criterion (AIC).
However, the GMM selection was based on the J statistic for testing over-
identifying restrictions.

After testing the order of dynamics on each of the variables we reduced
the general AD (1,1) to an AD (1,0) model, omitting the insignificant
dynamics (as shown in table 4), and having only the dependent variable
lagged and the log of GDP and log GDP squared as regressors. The issue,
which arises, is to specify how a country adjusts to the long-run equilib-
rium level of emissions. The most widely used approach is to adopt a
partial adjustment model

� � �
�

(1)

where SEC*t, SECt and SECt�1 are the desired, the actual and the lagged by
one period actual levels of emissions. Taking the logarithms

1nSECt � 1nSECt�1 � �(1nSEC*t � 1nSECt�1) (2)

Where � is the adjustment coefficient (0 � � � 1). In this way and by setting
up an autoregressive-distributed lag formulation we aim to show that the
partial adjustment model AD(1,0) best identifies the dataset used. In this
type of models the SR elasticities capture the change in use of existing
stock and allow us to see how quickly each of these changes takes place.

That is, in our paper, a logarithmic quadratic EKC model is estimated by

1n(S/c)it � �0� �1 1n(GDP/c)it � �2 (1n(GDP/c))2
it � �31n(S/c)i,t�1� �it (3)

where countries are indexed by i and time periods by t. S/c is sulfur emis-
sions per capita in tons of sulfur and �it is a disturbance term. Both
dependent (emissions per capita) and independent (PPP GDP per capita
and lagged emissions per capita) variables are in natural logarithms. The
turning point (TP) level of income is calculated as4

TP � e� � (4)

4.1. Generalized method of moments
As many economic relationships are dynamic in nature, panel data allow

��1
�2�2

SEC*t
�
SECt�1

SECt
�
SECt�1
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4 The partial adjustment model (Yt � ��0 � ��1 Xt � (1 � �) Yt�1 � �ut) is a SR func-
tion as in the SR the existing emission stock may not necessarily be equal to its
LR level. To derive the LR function we divide the SR function by � and drop the
1nSECt�1 term.
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us to better understand the dynamics of adjustment when we have a
lagged dependent variable among the explanatory variables, that is

Yit � 	 Yi,t�1 � � X
it � uit i � 1, …, 74 t � 1, …, 31 (5)

Again the first subscript (i) denotes the cross-section part (country) while
the second indicates time (t). 	 is a scalar and � is k � 1 vector of coeffi-
cients. We assume that the uit follow a one-way error component model
with

uit ��i � vit �i ~ IID (0, 2
�
)

vit ~ IID (0, 2
v) (6)

where �i indicates the unobservable individual effect and vit the remainder
disturbance. �i and vit are independent of each other and among them-
selves. As Yit is a function of �i, Yi,t�1 (the regressor in 5), is correlated with
the error term, as it is also a function of �i. This implies that the OLS esti-
mator is biased and inconsistent, even if the vit are not serially correlated.5

The general equation estimated with dynamic models from panel data is
one with individual effects like

Yit � �t � �i � �
q

k�1
�kYi(t�k) � �
(L)Xit � vit t � q � 1, …, Ti i � 1,2,…,N (7)

where �t and �i are time specific and individual effects respectively, Xit is
a vector of explanatory variables, �(L) is a vector of associated polynomials
in the lag operator, and q is the maximum lag length. Identification of the
model requires restrictions on the serial correlation of the error term vit and
on the properties of the independent variables Xit, allowing only for MA or
white noise errors. If the error term was originally autoregressive, the
model is transformed.6

The (Ti � q) equations for individual unit i can be written as

Yi � 	wi � di�i � vi (8)

where 	 is a parameter vector including �k , �, and � and wi is a data matrix
containing the time series of the lagged endogenous variables, x, and the
time dummies. di is a (Ti � q) � 1 vector of ones.

Following Arellano and Bond (1998), linear GMM estimators of 	 may be
computed by
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5 The literature has provided solutions to the problem with the within transform-
ations, the random effects Generalized Least Squares (GLS) estimator, and the
first difference (FD) transformation. The within estimator is biased and inconsis-
tent and only if T → � will the within estimator of 	 and � be consistent for the
dynamic error component model. Similar problems occur with the GLS. The third
way that clears the individual effects is the first difference transformation.
Differencing the model leads to the release from the �i.

6 Orthogonal deviations as proposed by Arelano (1988) express each observation
as the deviation from the average of future observations in the sample and
weight each deviation to standardize the variance

X*it � [xit � (xi(t�1) � … � �iT)/(T � t)]√(T � t)/√T � t � 1 t � 1, …, T � 1
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	̂ � ���i
w*i
Zi� . . ��Z
iw*i���1 . ��i

w*i
Zi� ��i
Z
iY*t� (9)

where w*i and Y*i denote some transformation of wi and Yi such as first dif-
ferences, orthogonal deviations or levels. Zi is the matrix of instrumental
variables and Hi is an individual-specific weighting matrix.7

Using the Dynamic Panel Data 98 (DPD98) program in GAUSS and
according to Arellano and Bond (1998) we have the one-step estimates,
which use some known matrix as the choice for Hi. For a first-difference
procedure, the one-step estimator uses Hi, while for orthogonal deviations
or for a levels procedure the one-step estimator sets Hi to an identity
matrix. If the vit are heteroskedastic, a two-step estimator is used.

4.2. The random coefficient model
Random coefficient model, known as Swamy’s (1970) model, relies on the
idea that the cross-section coefficient vectors are ‘drawn’ from a distri-
bution with a common mean (Hildreth and Houck, 1968; Judge et al., 1988).
Let us now assume random parameter variation in the following formu-
lation

Yt � �t0 � �t1 Xt1 � … � �tkXtk t � 1, …, T (10)

That is the random coefficient model is given by the following

Yit �Xit
�i � �it i � 1, …, N, t � 1, …, T (11)

Where Yit is the value of the dependent variable for country i and year t,
Xit is a k � 1 vector of explanatory variables, �i is a k � 1 vector of coeffi-
cients for country i, and �it is a disturbance term. We assume that

�it ~ IN(0, i
2) (12)

In this formulation, countries are heterogeneous in the sense that they
have different regression coefficients. These coefficients are stochastic, and
arise from a k-variate normal distribution with moments as above. This
formulation differs from the usual model in that the unknown parameters
have a time subscript, implying that for each observation all the coeffi-
cients may change. That is, we assume that each parameter is a random
variable. This assumption may be presented as

�tk � �k � utk k � 1, …, K (13)

where �k is a k � 1 vector of mean coefficients; it is non-stochastic and a
mean response coefficient. utk is a random disturbance with E[utk] � 0 and
var(utk) � �k

2. Then the model in (10) can be written as

1
��
�
N
1
��

i
Z
iHiZi

1
��
�
N
1
��

i
Z
iHiZi
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7 If the number of columns of Zi equals the number of columns of W*i, then the ratio 

becomes irrelevant and 	̂ � ��i
Z
iwi*��1 . ��i

Z
iYi*�. If Zi � wi* and the

transformed wi and Yi are deviations from individual means of orthog-
onal deviations then 	 is the within groups estimator.

1
��
�
N
1
��

i
Z
iHiZi
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Yt � �0 � ut0 � �
K

k�2
(�k � utk) Xtk � �0 � �

K

k�2
(�k � utk) Xtk � ut0 (14)

In this form the random term ut0 plays the role of this equation’s error
term. We are interested in calculating the mean response vector � � (�1,…,
�k) and the covariance matrix of the error vector vt � (ut1,…, utK)
 which is
given by E(vtvt
). If Xt
 � (1, Xt1, Xt2, …, Xtk) then (11) can be expressed as

Yt � Xt
(� � vt) � Xt
� � Xt

vt� Xt
� � et (15)

Which is the usual linear model formulation with a heteroskedastic error
term et with variance t

2 � Xt
�Xt. So the model may be estimated using a
two-step generalized least squares (GLS) procedure.8

5. Empirical results
For reasons of comparison we first present the results of Stern and
Common (2001) who, using the same database and fixed and random
effects formulation, obtained the results shown in table 2. Both the fixed
and random effects models indicate the presence of a Kuznets Curve, and
parameter estimates as well as t-statistics are quite similar. As we observe,
the implied turning points are extremely high for both the fixed and
random effects for the whole dataset (n � 2,263) and they are equal to
$101,166 per capita and $54,199 per capita respectively. Thus using the
ASL database and fixed and random effect models produces a monotonic
EKC for the total sample.

Stern and Common (2001) also derived the turning points for OECD and
non-OECD countries. In the case of the 23 OECD countries, the country
and time effects are not correlated with the explanatory variables and the
random effects estimator is consistent, although there is still serial corre-
lation. It is worth mentioning that the turning points for the OECD
countries are inside the sample. Specifically for the fixed and random
effects models they are equal to $9,239 and $9,181 respectively. This result
is similar to that of Selden and Song (1994) implying that differences
between the ASL and OECD databases are not the cause for the very high
estimated turning points.

Stern and Common (2001) find that sulfur emissions per capita are a
monotonic function of income per capita, when they use a global sample
and an inverted U-shaped function of income when they use a sample of
high-income countries only. Similarly, the turning points for non-OECD
countries and for the fixed and random effects models are much higher
($908,178 and $343,689 respectively). They calculate a much larger in size
turning point ($908,178) compared with the total sample, again implying a
monotonic EKC.

The Hausman test shows that country intercepts and income are corre-
lated in the global model. The test shows that the random effects
formulation cannot be consistently estimated. This suggests that there are

Environment and Development Economics 591

8 The computations of the random coefficients model were performed in RATS by
modifying the example file SWAMY.PRG. The computations of the A–B GMM
were performed in GAUSS using DPD98 (Arellano and Bond, 1998).
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Table 2. Fixed and random effects results

Region World n � 2,263 OECD n � 713 Non-OECD n � 1,550
Model Fixed Random Fixed Random Fixed Random 

effects effects effects effects effects effects

Constant �24.2750 �59.3599 �19.7937
(�13.6096) (�18.2329) (�7.8174)

In GDP/P 3.7091 3.8040 12.1102 12.1660 2.7918 2.6668
(8.6340) (8.7734) (15.5903) (16.4930) (4.4050) (4.1693)

(1n GDP/P)2 �0.1609 �0.1745 �0.6631 �0.6666 �0.1017 �0.1046
(�6.0056) (�6.4747) (�14.2225) (�15.9407) (�2.5345) (�2.5676)

Adjusted R2 0.1371 0.1459 0.3033 0.3221 0.1353 0.1402
Turning point 101,106 54,199 9,239 9,181 908,178 343,689
Chow F test 10.6587 4.0256

(0.0156) (0.0399)
Hausman test 10.7873 0.3146 14.1904

(0.0045) (0.8545) (0.0008)

Note: GDP may be an integrated variable (Nelson and Plosser, 1982) at least in the case of the Western European countries (Stern,
2000; Perman and Stern, 1999). The Hausman tests reported in table 2 show that there may be omitted variables correlated with GDP.
If the EKC regressions do not cointegrate the estimates may be spurious and non-cointegration is very possible. The very high
reported autocorrelation coefficients in Stern and Common (2001) imply this conclusion. Thus the regression results reported above
may be spurious. Differencing the data will eliminate potential stochastic trends in the series.
Source: Stern and Common (2001).
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omitted variables, which are correlated with GDP. The Chow test shows
that there are differences in the estimated parameters between high- and
low-income countries. The reported tests for serial correlation show that
there is significant residual serial correlation in the individual countries,
even after common time effects have been removed.9

Doing our own calculations, the Lagrange multiplier statistic for dis-
criminating between the fixed and random effect models, and the model
with common intercepts in 21918.32, so there is heterogeneity. The
Hausman test statistic is 3.85 with p-value 0.133, so the random effect
model is favoured.

The fixed and random effect models allow for variation only in the inter-
cept and impose slope homogeneity, whereas the random coefficients
models allow for random countrywide variation in all slope coefficients.
Considering now the empirical results derived for the random coefficients
model we see a quite different picture. The parameter estimates for the full
data set and for the random coefficients models are presented in table 3.
We have tried a number of random coefficients models that differ in two
dimensions: whether the variables are used in logs, and whether a qua-
dratic income term is included. Income and income squared (in levels or
logs) are not statistically significant. The reason is that there is huge cross-
country variation in �i implying that even if Kuznets Curves do exist, their
parameters are so extremely heterogeneous across countries that an aggre-
gate summarization is not very useful at all.

Our contribution in this study is the use of Generalized Method of
Moments (GMM) in testing the existence of an EKC hypothesis. In table 4
we report GMM estimates of the dynamic equation for the sample in total
(World), for the OECD countries and for the non-OECD countries. It must
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9 A model estimated in first differences reduces statistical problems but results in
a monotonic EKC when estimated on both high- and low-income samples. Stern
and Common (2001) provide the results in first differences where the turning
points again differ substantially. They equal $53,590, $586,965 and $21,545 for the
global, OECD, and non-OECD samples respectively.

Table 3. Parameter estimates for the random coefficient models (t-statistics in
parentheses)

Random coefficients

I II III IV

Constant 0.013 0.0105 �11.43 �85.09
(3.547) (1.919) (�0.944) (�1.39)

GDP 0.28 10�5 0.481 10�5

(0.947) (1.144)
GDP2 �0.838 10�9

(�0.3882)
LogGDP 0.748 20.953

(0.396) (1.2154)
LogGDP2 �1.382

(�1.118)
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be noted that in our analysis the assumption of uncorrelated vit is
important, so that tests for first-order and second-order serial correlation
in the residuals are reported. These tests are asymptotically distributed as
normal variables under the null of no serial correlation. The tests for first-
and second-order serial correlation are related to the residuals from the
estimated equation. The Wald test of joint significance is asymptotically
distributed as �2 variables with the degrees of freedom presented in paren-
theses. Sargan tests of over-identifying restrictions are reported which are
also aysmptotically distributed as �2 (see Arellano, 1990).

In table 4, the first column refers to the most general dynamic specifica-
tion of an AD(1,1) formulation for the two-step estimates and for the whole
of the database, though the one-step estimates were quite similar. The rest
of the columns refer to the preferred AD(1,0) formulation and omit insig-
nificant dynamics with little change in the long-run properties of the
previous model. Specifically, the second, fourth, and sixth columns of the
results correspond to the one-step results while the third, fifth, and seventh
columns to the two-step results. Two cross sections are lost in constructing
lags and the estimation period is 1962–1990 with 2,117 usable obser-
vations. Here we assume that all variables except the lagged dependent
variable are assumed to be strictly exogenous. Neither of the tests for
second-order serial correlation and the two-step Sargan test statistics
provide evidence to suggest that the assumption of serially uncorrelated
errors is inappropriate. It is worth noting that the asymptotic standard
errors corresponding to two-step estimates are in general approximately
30 per cent lower than those corresponding to the one-step estimates with
the discrepancy even larger in some cases (Arellano and Bond, 1991,
p. 291).10 The one-step Sargan statistic rejects the over-identifying restric-
tions only in the case of OECD and the one-step estimates.11 Hausman test
also rejects (except in the case of OECD and the one-step estimates) but it
also shows a tendency to over-reject. One possibility is that the instability
across different instrument sets comes from the failure of the strict exo-
geneity assumption for the regressors, rather than serial correlation per se.

In table 4 it can be seen that the A–B GMM estimates indicate the pres-
ence of a Kuznets curve, and, as indicated by the t-statistics, parameter
estimates are statistically significant. The coefficients of [log(GDP)]2 for the
World, the OECD and the non-OECD samples are �0.4229, �0.3096, and
�0.6861 in the one-step and �0.3348, �0.2884, and �0.3672 in the two-step
estimates with t-statistics of �2.775, �3.886, and �2.248 and �3.488,
�4.949, and 2.319 respectively. Our results confirm the results derived in
Panayotou (1993) who, using cross-sectional data, found the lowest esti-
mated turning points.

Table 5 presents the diagnostic tests for our model estimated in
levels/OLS, levels/IV, differences/OLS, and differences/IV. Test 1 is a

594 George E. Halkos

10 This implies that caution is advisable in making inferences based on the two-step
estimator alone.

11 Arellano and Bond (1991, p. 291) claim that their simulation results showed a
strong tendency for this test to reject too often in the presence of heteroskedas-
ticity.
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Table 4. GMM regression results (levels/TV)

World World OECD Non-OECD
(n � 2,263) (n � 2,263) (n � 713) (n � 1,550)

Model Two-step One-step Two-step One-step Two-step One-step Two-step

Constant �21.8403 �30.8484 �25.77 �49.436 39.167 �44.471 �26.062
(�3.1585) (�2.8097) (�3.829) (�3.112) (�3.886) (�2.208) (�2.69)

1n GDP 6.744 7.092 5.7035 5.41 4.983 10.894 5.972
(1.959) (2.785) (3.5909) (3.922) (5.07) (2.235) (2.414)

(1n GDP)2 �0.3278 �0.4229 �0.3348 �0.3096 �0.2884 �0.6861 �0.3672
(�1.978) (�2.775) (�3.488) (�3.886) (�4.949) (�2.248) (�2.319)

1n SECt � 1 0.5827 0.6949 0.6176 0.6488 0.6449 0.6881 0.6129
(7.233) (4.784) (8.540) (10.212) (16.286) (3.95) (8.6849)

1n GDPt � 1 �2.1089
(�0.5781)

(1n GDP)2
t � 1 0.0606

(0.277)
RSS 641.46 20.493 805.52
TSS 6671.81 360.05 5263.55
Test for 1st order 4.302 3.251 �2.224 �2.883 3.501 3.439

serial correlation
Test for 2nd order �1.277 1.005 1.274 0.655 0.384 �1.267 �1.222

serial correlation
Turning point 4,381 5,003 6,230 5,648 2,805 3,401

Wald test 759.44 (5) 752.3 (3) 442.84 (3) 786.3 (3) 667.88 (3) 227.38 (3) 161.91 (3)
Sargan test 25.71 (22) 32.79 (25) 15.08 (25) 40.81 (25) 22.56 (25) 34.41 (25) 29.73 (25)
Hausman 7.3 (1) 17.6 (1) 2.6 (1) 6.1 (1) 5.1 (1) 9.8 (1)

Notes: Critical values for the test of 1st- and 2nd-order serial correlation: N(0,1), e.g. 95% (two-tail) � 1.96 and 99% � 2.58.
Critical value for the Wald test of overall significance of the explanatory variables: �2

0.05,3 � 7.815.
Critical values of the Sargan test for over-identifying restrictions: �2

0.05,25 � 37.6525 and �2
0.025,25 � 40.6465.

Critical values for the Hausman test: �2
0.05, 1 � 3.8415 and �2

0.025, 1 � 5.02389.
Year dummies included in all cases.
Figures in parentheses are t statistics for regression coefficients and degrees of freedom for the Wald and Sargan tests. Turning points are

in real 1990 purchasing power parity US dollars.
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regression of the squared residuals on X and rejects the existence of het-
eroskedasticity. Test 2 is essentially a Glejser test, which does not indicate
the existence of significant heteroskedasticity of the form specified by the
test. The same conclusion emerges from the heteroskedasticity tests 3–5.
The results of the RESET tests imply that the equations of our model are
misspecified (although not to a high degree) except in the case of instru-
mental variables on levels. This was expected, as the OLS method is not the
proper technique for this model. Finally, we have performed a test on nor-
mality of the errors.

Apart from the main results, it is worth mentioning that the speed with
which emissions adjust to their equilibrium values (in the sense of the
assimilative capacity of the environment) is slow. The lag coefficient in the
estimated equation shows that the adjustment of emissions proceeds at a
rate of around 38 per cent per annum (1–0.6176). This implies that 38 per
cent of the discrepancy between the desired and the actual levels of emis-
sions are eliminated in a year. We may also say that the adjustment of
emissions is effected within almost three periods. The causes of this slow
adjustment of sulfur emissions should be sought mainly in the institutional
(firms/industries) characteristics of the industrial markets in the countries
under consideration as well as the fuels used and the existing regulations
and perhaps the wind velocities.

The hypothesis of an inverted-U-shaped curve for the relationship
between sulfur emissions and income per capita is not rejected. At the
minimum income level of $303 per capita in our sample (corresponding to
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Table 5. Diagnostics tests

TESTS Levels/ Levels/ Differences/ Differences/ Critical 
OLS IV OLS IV values

Heteroskedasticity 1.27 1.40 1.002 1.39 2.60
Heteroskedasticity 1.69 2.05 1.832 0.945 2.60
Heteroskedasticity 2.34 2.65 3.69 3.12 3.841
Heteroskedasticity 8.17 6.14 11.87 12.342 5.991
Heteroskedasticity 9.14 5.71 11.94 11.42 7.815
RESET1 4.234 2.78 5.98 5.991 3.841
RESET2 7.68 7.42 10.221 9.76 5.991
RESET3 11.036 9.38 14.45 15.29 7.815
Normality 6.74 7.16 9.32 6.998 5.991

Test 1: Regression of the squared residuals on X. That is, u2
t � x
t�1 � vt, 1.

Test 2: Regression of absolute residuals on X. That is, |ut|� x
t�2 � vt, 2 (a 
Glejser test).

Test 3: Regression of the squared residuals on Ŷ.
Test 4: Regression of the squared residuals on Ŷ and Ŷ2.
Test 5: Regression of the log of squared residuals on X (a Harvey test).
Test 6: Regression of residuals on Ŷ2.
Test 7: Regression of residuals on Ŷ3.
Test 8: Regression of residuals on Ŷ4.
Test 9: Normality test.
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Tanzania) the elasticity of emissions with respect to income is 1.88. This
means that if income per capita increases by 1 per cent then emissions
increase by 1.88 per cent. As income rises the elasticity of emissions is
reduced, reaching zero elasticity at about $5,000 per capita (Ireland). At the
median income per capita of $13,116 (Luxembourg) the emissions elasticity
is �0.6454, which implies that, an increase of 1 per cent in income per capita
results in 0.65 per cent decrease in emissions. Finally, at the maximum
income per capita of $18,095 (USA) the emissions elasticity is �0.8586.

The inverted-U-shaped relationship between sulfur emissions per capita
and income per capita derived according to AB GMM are presented in
figure 1.

6. Conclusions
In this paper, we have used a widely representative database in order to
test the EKC hypothesis applying for the first time in this area of research
two different econometric methods and comparing the results with those
derived by the use of fixed and random effect models. In contrast to Stern
and Common (2001), our results show that even when data for a large
number of developing countries are used the magnitude of turning points
depends on the econometric methods used. Our main findings are the fol-
lowing:

1. Using this panel database and fixed and random effect models pro-
duces a monotonic EKC for global and non-OECD samples with
extremely high turning points and an inverted U-shaped with within
sample turning points for the case of OECD countries.

2. Using a random coefficients method does not support an EKC hypoth-
esis. The main message from the random coefficients model is that
income and its square (in levels or logs) do not appear to be statistically
significant. The reason is that there is enormous cross-country variation
in �i. This result implies that, even if Kuznets curves do exist, their par-
ameters are so extremely heterogeneous across countries that an
aggregate summarization is not very useful at all.

Environment and Development Economics 597

Figure 1. An EKC between sulfur emissions per capita and income per capita
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3. The A–B GMM supports the EKC hypothesis and produces turning
points well within the sample for each case (global, OECD, non-OECD).
The turning point for the OECD sample, in contrast to fixed and
random effects is higher than these points for the global and non-OECD
samples.

4. Estimating an EKC using data for only the OECD countries leads to esti-
mates where the turning point is not biased downwards relative to that
estimated using data for the World as a whole.

5. The speed with which emissions adjust to their equilibrium values is
approximately 38 per cent per annum implying that the adjustment of
emissions is effected within almost three periods.

The above findings imply that the econometric technique adopted is
crucial in the extraction of turning points and the associated policy impli-
cations. Thus, if we allow for a dynamic adjustment in our model then we
may see that we derive quite different results. The tests reported in the
paper show that the global EKC model is fundamentally misspecified
except in the case of Levels/IV.

The acceptance of an EKC hypothesis means that there is an inevitable
level of environmental damage that follows up a country’s development at
the earlier stage but with a significant improvement at a later stage of this
country’s economic growth. Thus, an EKC is the result of structural change
that follows economic growth, but this may not be optimal if environ-
mental critical loads are crossed irreversibly. The positively sloped part of
an EKC where growth is worse may take a long time to cross. This implies
a present value of higher future growth and cleaner future environment
may be offset by high current rates of environmental damage. At the same
time it may be cheaper to abate today than in the future.

The decomposition of the EKC into its main determinants shows that
economic growth increases pollution levels due to scale and industrializa-
tion but ignores the abatement effect of richer countries (Panayotou, 1997).

Acceptance of an EKC may seem a temporary phenomenon and we may
seek ways to stimulate growth, such as trade liberalization, price reform,
economic restructuring, etc. Some of the steepness of an inverted U-shaped
relationship between environmental damage in the form of pollution and
economic growth is caused by various policy distortions, such as protec-
tion of industry, energy subsidies, etc. Developing countries can flatten out
their EKCs by defining and applying property rights over natural
resources, eliminating any policy distortions and internalizing environ-
mental costs to the sources that generate them (Panayotou, 1993).
Additionally, the improper allocation of property rights may result to
market failure.
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