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We investigate the linear stability of a sinusoidal shear flow with an initially uniform
streamwise magnetic field in the framework of incompressible magnetohydrodynamics
(MHD) with finite resistivity and viscosity. This flow is known to be unstable to the
Kelvin–Helmholtz instability in the hydrodynamic case. The same is true in ideal MHD,
where dissipation is neglected, provided the magnetic field strength does not exceed a
critical threshold beyond which magnetic tension stabilizes the flow. Here, we demonstrate
that including viscosity and resistivity introduces two new modes of instability. One of
these modes, which we refer to as an Alfvénic Dubrulle–Frisch instability, exists for any
non-zero magnetic field strength as long as the magnetic Prandtl number Pm < 1. We
present a reduced model for this instability that reveals its excitation mechanism to be the
negative eddy viscosity of periodic shear flows described by Dubrulle & Frisch (Phys.
Rev. A, vol. 43, 1991, pp. 5355–5364). Finally, we demonstrate numerically that this mode
saturates in a quasi-stationary state dominated by counter-propagating solitons.
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1. Introduction

The prevalence of shear in fluids makes it one of the most common sources of turbulence in
nature. As such, interest in the linear and nonlinear stability of shear flows dates as far back
as the 19th century to the early works of Reynolds (1883) and von Helmholtz (1896), and
still continues today. A large class of shear-driven instabilities can loosely be categorized
as Kelvin–Helmholtz (KH) instabilities, which occur in plane-parallel continuous or
interfacial shear flows (Chandrasekhar 1961; Drazin & Reid 1981). Turbulence driven by
KH instabilities can cause substantial mixing of momentum, heat and/or chemicals in fluid
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bodies such as the Earth’s atmosphere, oceans and liquid core, as well as planetary and
stellar atmospheres and interiors. Quantifying shear-induced mixing is therefore a crucial
step towards improving evolutionary models of these large-scale systems.

In fluids that are composed of partially or fully ionized plasma (e.g. stellar interiors,
magnetically confined laboratory plasmas, etc.), or made of liquid metals (e.g. planetary
interiors), magnetic fields and the forces they exert must also be taken into account.
Studies of the stability and mixing properties of parallel shear flows in that context
are often performed using the magnetohydrodynamic (MHD) approximation (see, e.g.
Chandrasekhar 1961; Hughes & Tobias 2001), with a few notable exceptions (Rogers &
Dorland 2005; Henri et al. 2013; Karimabadi et al. 2013; Faganello & Califano 2017;
Fraser et al. 2018; Vogman et al. 2020).

Many of these MHD works additionally use the ideal limit, where both viscosity
and resistivity are neglected (despite the fact that such mixing problems are often
fundamentally ill-posed; see, e.g. Lecoanet et al. (2016)). In ideal MHD, the magnetic field
lines are frozen into the flow and are forced to move with it. Meanwhile, a magnetic tension
proportional to the square of the field amplitude resists the deformation of field lines, and
has a tendency to rigidify the flow, imbuing it with elastic-like properties. As a result, the
presence of a magnetic field parallel to the mean flow can hinder the development of KH
billows. It has been shown that, in the ideal limit, a uniform streamwise magnetic field
stabilizes KH modes provided its Alfvén velocity exceeds the characteristic flow speed by
a factor that depends on the flow profile but is typically of order unity (Chandrasekhar
1961).

Magnetic fields are also known to modify or fully invalidate several important exact
theoretical results on the stability of incompressible, hydrodynamic, parallel shear flows.
For example, Tatsuno & Dorland (2006) showed that magnetized shear instabilities can
exist even when the background flow does not have an inflection point, contrary to the
hydrodynamic case where the latter is necessary (Rayleigh 1879). Similarly, Lecoanet
et al. (2010) provided examples of unstable magnetized stratified shear flows in which
the Richardson number always exceeds 1/4, showing that the Miles–Howard theorem
(Howard 1961; Miles 1961) does not apply in MHD. Finally, Hughes & Tobias (2001)
showed that Howard’s semicircle theorem (Howard 1961) is modified in the presence of
magnetic fields, and that the eigenvalues of the linear stability problem must now lie within
the intersection of two semicircles in the complex plane, whose existence and position
depend on the amplitude and profiles of the background flow and magnetic field.

In non-ideal MHD, the resistivity of the fluid allows the field to partially decouple from
the flow, and reduces its (usually) stabilizing influence. For magnetized KH instabilities,
gradually increasing the resistivity can thus raise the growth rate of unstable modes to
a value between that obtained in the ideal MHD limit and in the hydrodynamic case
(Palotti et al. 2008). It is also worth mentioning that by contrast with the hydrodynamic
case, three-dimensional (3-D) perturbations are sometimes the fastest-growing modes in
non-ideal MHD shear instabilities (Hunt 1966; Hughes & Tobias 2001).

With these general results in mind, we investigate in this paper a very specific problem,
namely the stability and evolution of a sinusoidal, incompressible shear flow with finite
viscosity and resistivity, in the presence of a uniform, streamwise magnetic field. This
problem is highly relevant to a number of applications but has not, to our knowledge,
been studied in detail yet. Sinusoidal shear flows are defined here as unidirectional
plane-parallel flows whose amplitude varies sinusoidally in the transverse direction. There
is a relatively long history of studying sinusoidal shear flows in the hydrodynamic case,
including both unstratified (Meshalkin & Sinai 1961; Gotoh, Yamada & Mizushima 1983;
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Dubrulle & Frisch 1991; Lucas & Kerswell 2014) and stratified (Balmforth & Young 2002)
flows, in part because their periodicity means that they can be studied in the absence of
physical boundaries, thus serving as a simple example of a shear flow whose evolution can
be considered without the effects of boundary layers. They also commonly arise in nature
from the development of a primary instability that results in the exponential growth of
so-called ‘elevator’ modes, as in homogeneous Rayleigh–Bénard convection (Calzavarini
et al. 2006; Garaud et al. 2010), the double-diffusive fingering instability (Baines &
Gill 1969) and the Goldreich–Shubert–Fricke instability (Goldreich & Schubert 1967;
Fricke 1968). In these examples, secondary shear instabilities between elevators flowing
in opposite directions are thought to be responsible for the saturation of the primary
instability and have successfully been used to model it in the hydrodynamic limit (Radko
& Smith 2012; Brown, Garaud & Stellmach 2013; Barker, Jones & Tobias 2019). These
secondary instabilities are almost always studied in the so-called ‘frozen-in’ approximation
(where the elevator mode velocity is assumed to be constant in time for the purpose of the
linear stability analysis) and hence our interest in constant-amplitude sinusoidal flows in
this work as well.

In the MHD case, the presence of a uniform magnetic field aligned with the direction
of the primary elevator mode flow has no effect on its growth rate, but can stabilize
the secondary shearing mode, for the reasons discussed earlier. As such, understanding
the linear stability and nonlinear evolution of magnetized shear instabilities in sinusoidal
shear flows is a key step in quantifying the effects of magnetic fields on homogeneous
Rayleigh–Bénard convection, and on various double-diffusive instabilities (similarly, the
stability of sinusoidal shear flows in MHD has been studied to understand the saturation
of channel modes in the magnetorotational instability; see, e.g. Goodman & Xu (1994),
Latter, Lesaffre & Balbus (2009), Pessah & Goodman (2009), Longaretti & Lesur (2010)
and Pessah (2010)). Finally, recent numerical simulations of double-diffusive fingering
convection show that the effective kinetic and/or magnetic Reynolds numbers of the
saturated nonlinear flow can remain modest over a broad range of parameter space (Brown
et al. 2013). As such, diffusive effects (viscosity and resistivity) should be taken into
account to correctly model the development of the secondary shear instabilities.

In this paper, we therefore investigate the linear stability and nonlinear saturation of a
sinusoidal, incompressible shear flow in the presence of a uniform, streamwise magnetic
field. We present the background state and linearized equations in § 2. Section 3 presents
a linear stability analysis of this flow over a wide range of parameter space, demonstrating
the presence of three distinct branches of instability, two of which have not, to our
knowledge, been discussed before. We then focus on one of the two new branches, which
exists even in the presence of very strong magnetic fields, and takes the form of overstable
Alfvén waves. We derive a heavily truncated model for the unstable modes in § 4, and
use it in § 4.2 to demonstrate that this instability is driven by the anti-diffusive properties
of sinusoidal shear flows discussed by Dubrulle & Frisch (1991). In § 5 we present an
illustrative example of the nonlinear evolution of this system using a direct numerical
simulation, demonstrating a linear growth phase consistent with predictions from the linear
stability analysis, and a saturated state dominated by counter-propagating solitons. We
conclude in § 6 with a short discussion of the potential relevance of this new instability for
natural systems, and of future work.

2. Model and linear stability analysis

We consider a background flow uE directed in the z (streamwise) direction, whose
amplitude varies sinusoidally in the x (shearwise) direction. Units are selected based on
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the flow’s amplitude U∗ and shearwise wavenumber k∗
x , and in these units uE is given by

uE = sin(x)ez (2.1)

(the subscript ‘E’ is used here to denote ‘elevator’, following the motivating example given
in § 1). We assume that the background flow is maintained against viscous decay by an
external force applied to the system, and is therefore a laminar steady-state solution of the
governing equations (see below). We also assume the existence of a uniform background
magnetic field bE oriented in the streamwise direction, whose amplitude B∗ defines the
unit magnetic field strength so that, in these units,

bE = ez. (2.2)

The total flow and field are written as the sum of this background plus a perturbation,
namely

u = uE + ũ, b = bE + b̃, (2.3a,b)

and satisfy the governing equations

∂u
∂t

+ u · ∇u = −∇p + CB(∇ × b)× b + 1
Re

∇2(u − uE),

∂b
∂t

= ∇ × (u × b)+ 1
Rm

∇2b,

∇ · u = 0 ∇ · b = 0.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.4)

Note the viscous term in the momentum equation, where the non-dimensional applied
force has been written as −Re−1∇2uE. The non-dimensional parameters are the usual
viscous and magnetic Reynolds numbers, as well as the ratio of characteristic magnetic and
kinetic energies of the background flow (alternatively, an inverse Alfvénic Mach number
squared), namely

Re = U∗

ν∗k∗
x
, Rm = U∗

η∗k∗
x

and CB = (B∗)2

ρ∗
0μ

∗
0(U

∗)2
, (2.5a–c)

where ν∗ and η∗ are the (constant) kinematic viscosity and magnetic diffusivity of the
fluid, ρ∗

0 is the constant density of the fluid and μ∗
0 is the permeability of the vacuum. Note

that the magnetic Prandtl number, Pm = ν∗/η∗, is the ratio of Rm and Re. It is usually
smaller than one in stellar interiors, but not necessarily asymptotically small (Rincon
2019).

Linearization around the background state yields the evolution equations for the
perturbations ũ and b̃ as

∂ũ
∂t

+ uE · ∇ũ + ũ · ∇uE = −∇p + CB(∇ × b̃)× ez + 1
Re

∇2ũ,

∂ b̃
∂t

= ∇ × (uE × b̃)+ ∇ × (ũ × ez)+ 1
Rm

∇2b̃,

∇ · ũ = 0 ∇ · b̃ = 0,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.6)
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which can be expressed, component-wise, as

∂ ũx

∂t
+ sin(x)

∂ ũx

∂z
= −∂p

∂x
+ CB

(
∂ b̃x

∂z
− ∂ b̃z

∂x

)
+ 1

Re
∇2ũx,

∂ ũy

∂t
+ sin(x)

∂ ũy

∂z
= −∂p

∂y
− CB

(
∂ b̃z

∂y
− ∂ b̃y

∂z

)
+ 1

Re
∇2ũy,

∂ ũz

∂t
+ sin(x)

∂ ũz

∂z
+ ũx cos(x) = −∂p

∂z
+ 1

Re
∇2ũz,

∂ b̃x

∂t
= − sin(x)

∂ b̃x

∂z
+ ∂ ũx

∂z
+ 1

Rm
∇2b̃x,

∂ b̃y

∂t
= − sin(x)

∂ b̃y

∂z
+ ∂ ũy

∂z
+ 1

Rm
∇2b̃y,

∂ b̃z

∂t
= − sin(x)

∂ b̃z

∂z
+ cos(x)b̃x + ∂ ũz

∂z
+ 1

Rm
∇2b̃z,

∂ ũx

∂x
+ ∂ ũy

∂y
+ ∂ ũz

∂z
= 0,

∂ b̃x

∂x
+ ∂ b̃y

∂y
+ ∂ b̃z

∂z
= 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.7)

where we have defined ũ = (ũx, ũy, ũz) and b̃ = (b̃x, b̃y, b̃z).
Next, we assume that the linearized eigenmodes have the same periodicity as that of the

background flow (we have checked that these modes are the fastest-growing for the cases
presented in this paper; see, e.g. Pessah (2010) for a similar system where modes with
longer periodicity sometimes grow faster), and use the ansatz

q̃(x, y, z, t) = exp(ikyy + ikzz + λt)
∞∑

n=−∞
qn einx (2.8)

for q̃ ∈ {ũx, ũy, ũz, p, b̃x, b̃y, b̃z} to obtain the linear system

λux,n + kz

2
(ux,n−1 − ux,n+1) = −inpn + CB(ikzbx,n − inbz,n)− K2

n

Re
ux,n,

λuy,n + kz

2
(uy,n−1 − uy,n+1) = −ikypn − CB(ikybz,n − ikzby,n)− K2

n

Re
uy,n,

λuz,n + kz

2
(uz,n−1 − uz,n+1)+ 1

2
(ux,n−1 + ux,n+1) = −ikzpn − K2

n

Re
uz,n,

λbx,n = −kz

2
(bx,n−1 − bx,n+1)+ ikzux,n − K2

n

Rm
bx,n,

λby,n = −kz

2
(by,n−1 − by,n+1)+ ikzuy,n − K2

n

Rm
by,n,

λbz,n = −kz

2
(bz,n−1 − bz,n+1)+ 1

2
(bx,n−1 + bx,n+1)+ ikzuz,n − K2

n

Rm
bz,n,

nux,n + kyuy,n + kzuz,n = 0,
nbx,n + kyby,n + kzbz,n = 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.9)
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where K2
n = n2 + k2

y + k2
z . Finally, by renaming ipn = πn and ibx,n = βx,n (and similarly

for by,n and bz,n), the system can be cast into a form where all the coefficients are real.
When truncated over a finite number of Fourier modes (so n = −N, . . . , 0, . . . ,+N), the
first seven equations form a generalized 7(2N + 1)× 7(2N + 1) linear eigenvalue problem
with constant real coefficients, which can be solved using standard linear algebra solvers
(such as the LAPACK DGGEV routine). For each input wavenumber (ky, kz), at a given
set of input parameters (Re,Rm,CB), we select the eigenvalue which has the largest real
part and refer to the latter as the growth rate of the mode (ky, kz).

By contrast with the hydrodynamic case, the most unstable modes in MHD shear flows
are not guaranteed to be strictly two-dimensional (2-D; with ky = 0) (Hunt 1966; Vorobev
& Zikanov 2007). However, when considering 3-D perturbations in this system for a broad
range of parameters, we find that the fastest-growing mode is always a 2-D mode (ky = 0).
In Appendix A, we demonstrate this for a select number of physical parameters that sample
different relevant regions of parameter space. In what follows, we therefore only discuss
the properties of the 2-D modes.

When the system is restricted to 2-D perturbations, the flow and field may more
efficiently be expressed in terms of a streamfunction ψ and flux function A, defined so
that

ũ = ∇ × (ψey) = (−∂ψ/∂z, 0, ∂ψ/∂x), (2.10)

b̃ = ∇ × (Aey) = (−∂A/∂z, 0, ∂A/∂x). (2.11)

With these definitions, the conditions ∇ · ũ = 0 and ∇ · b̃ = 0 are implicitly satisfied, and
the linearized governing equations for ψ and A are

∂

∂t
(∇2ψ)+ sin(x)

∂

∂z
∇2ψ + sin(x)

∂ψ

∂z
= CB∂z∇2A + 1

Re
∇4ψ, (2.12)

∂A
∂t

= ∂ψ

∂z
− sin(x)

∂A
∂z

+ 1
Rm

∇2A. (2.13)

Using ansatz (2.8) as before, the linearized equations become

λψn = kz

2K2
n

[(1 − K2
n−1)ψn−1 − (1 − K2

n+1)ψn+1] + iCBkzAn − 1
Re

K2
nψn (2.14)

and

λAn = −1
2

kz(An−1 − An+1)+ ikzψn − 1
Rm

K2
nAn. (2.15)

This alternative definition of the flow and field, and its corresponding equations, have been
used to cross-check the results of the linear stability analysis for 2-D modes, and will be
useful in §§ 3 and 4. Note that, at fixed N, solving (2.14) and (2.15) is more efficient than
solving (2.9). Therefore, (2.14) and (2.15) should be preferred for larger N.

3. Results of the linear stability analysis and the existence of Alfvénic Dubrulle–Frisch
modes for Pm < 1

For each set of physical parameters CB, Re and Rm (or, equivalently, CB, Re and Pm =
Rm/Re), the stability of the equilibrium flow uE = sin(x)ez and field bE = ez to 2-D
perturbations is assessed by solving (2.14) and (2.15) for the eigenvalues λ, for all possible
wavenumbers kz. If there exists a kz that admits one or more solutions with Re[λ] > 0,
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R
e 

(λ
)

(b)(a) (c)

Figure 1. Growth rate of the fastest-growing mode as a function of CB and Re for three values of Pm: (a) 0.1;
(b) 1.0; (c) 2.0. Regions in white indicate that Re[λ] < 0 for all kz. Black hatches indicate regions where the
sinuous KH mode (hatches going down/to the right) and the varicose KH mode (hatches going down/to the left)
are unstable. The red vertical line is the critical Re for Alfvénic Dubrulle–Frisch modes calculated using (4.3).
Red horizontal lines indicate CB = 0.5, the marginal stability threshold in ideal MHD. Magenta diamonds
indicate physical parameters for which the growth rates of 3-D perturbations are shown in Appendix A. For
Pm < 1, Alfvénic Dubrulle–Frisch modes exist for arbitrarily large CB.

then the system is said to be unstable at these parameters. When this is the case, we define
kmax

z as the value of kz that maximizes Re[λ]. Figure 1 shows Re[λ(kmax
z )] as a function of

CB and Re for three values of Pm. For the parameters explored, we find that there are three
distinct branches of instability, which we describe in the following subsections.

3.1. Sinuous KH modes
The first of these three branches is a simple extension of the hydrodynamic KH instability,
which continues to exist for sufficiently weak magnetic fields (small CB). Regions in
parameter space where this mode is unstable are marked by hatches going down and to the
right in figure 1. We refer to it as the ‘sinuous’ KH mode, because it meanders sideways,
with a non-zero mean flow in the shearwise (x) direction. Mathematically, this translates
into a Fourier expansion (equation(2.8)) where ψ0 /= 0 and (when CB /= 0) A0 /= 0.

The sinuous KH modes exist for sufficiently large Re in the non-resistive case (Rm →
∞) for CB < 0.5, i.e. as long as magnetic tension is small enough to permit the growth
of KH billows. The modes also exist in the resistive case (finite Rm), and in that case can
persist at somewhat larger values of CB as long as Rm is low enough to relax the frozen-in
flux condition and reduce magnetic tension.

The sinuous KH modes have Im[λ] = 0, and generally have a growth rate
Re[λ(kmax

z )] � 0.1 for most of the physical parameters where they are found, except when
they are nearly stabilized by either magnetic tension or dissipation. The wavenumber
where their growth rate peaks is generally in the vicinity of kmax

z ∼ 0.5, as shown
in figure 2. Figure 3(a,b) illustrates the structure of the fastest-growing mode (kz =
kmax

z ) for CB = 0.1, Re = 100 and Pm = 0.1. Figure 3(a) shows the contours of the
streamfunction, representing streamlines of flow, and figure 3(b) shows contours of the
flux function, representing magnetic field lines. Here, ψ and A are the spatial structure
of the eigenmodes, obtained by solving (2.14) and (2.15) for ψn and An, which are then
used to compute ψ = Re[exp(ikzz)

∑
n ψn einx] (and likewise for A). The amplitude is

normalized such that the total energy of the mode (defined below) is 1. The structure of ψ ,
as expected, resembles that of a hydrodynamic KH mode. The perturbations take the form
of alternating clockwise and counterclockwise recirculating eddies tilted against the mean
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Figure 2. (a) Wavenumber of the fastest-growing mode, kmax
z , as a function of Re and CB for Pm = 0.1. (b)

Kinetic energy (KE) as a fraction of total energy (KE + ME) for the fastest-growing mode. Note that the
colourbar ranges from 0.5 to 1 – the fraction never drops below 0.5 for the values shown here. Red horizontal
lines indicate CB = 0.5.
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Figure 3. Mode structures are shown for the fastest-growing sinuous KH mode at Pm = 0.1, Re = 102, CB =
0.1 (a,b) and the fastest-growing varicose KH mode at Pm = 0.1, Re = 103, CB = 0.6 (c,d). (a,c) Contours of
the streamfunction ψ and (b,d) contours of the flux function A. Note that the (streamwise) wavelength of each
mode is 2π/kmax

z , so the true aspect ratio of the modes is not accurately represented here.

shear. The dominant shearwise wavenumbers can be gleaned from the figure and include
n = 0 (driving a mean shearwise flow, as discussed above) and n = ±1; higher-order
wavenumbers are present as well, but not as prominent.

The streamfunction and flux function of the eigenmodes can be used to compute their
kinetic energy (KE) and magnetic energy (ME), given in this non-dimensionalization by

KE = 1
2

∫
dx
∫

dz

[(
∂ψ

∂z

)2

+
(
∂ψ

∂x

)2
]

=
N∑

n=−N

(k2
z + n2)|ψn|2 (3.1)
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and

ME = CB

2

∫
dx
∫

dz

[(
∂A
∂z

)2

+
(
∂A
∂x

)2
]

= CB

N∑
n=−N

(k2
z + n2)|An|2. (3.2)

Using these definitions, we show in figure 2(b) the kinetic energy as a fraction of the total
energy for the most unstable mode as a function of Re and CB for Pm = 0.1. Consistent
with their interpretation as being primarily driven by a fundamentally hydrodynamic
instability, we see that the kinetic energy of sinuous KH modes is significantly more than
half of the total energy across these parameters.

3.2. Varicose KH modes
Another class of unstable modes that also emerges is what we call the ‘varicose’ KH
modes hereafter, where the term varicose here is used by analogy with varicose modes in,
for example, shear instabilities in jets (Mattingly & Criminale 1972; Drazin & Reid 1981;
Mikhaylov & Wu 2020), or the instabilities present in the streaky flows generated as part
of the self-sustaining process in wall-bounded shear flows (Waleffe 1995, 1997). While the
varicose KH modes also have Im[λ] = 0, they can be distinguished from the sinuous KH
modes because they have no x-averaged shearwise flow or field, and thus ψ0 = A0 = 0.

The varicose KH modes are only found at sufficiently large Re, but did not appear in
ideal MHD in any of the cases we tested, nor do they exist in the hydrodynamic limit CB →
0. In figure 1, the region of parameter space where varicose modes are unstable is marked
by hatches going down and to the left. For CB < 0.5, they are generally subdominant to
sinuous modes; for CB ≥ 0.5, by contrast, varicose modes persist while sinuous modes
are typically stabilized (for sufficiently large Rm, as described in § 3.1). They are always
eventually stabilized for sufficiently large magnetic field, however. Their most unstable
wavenumber, shown in figure 2(a), is generally of the order of kmax

z ∼ 0.1, slightly smaller
than for the sinuous KH modes. Figure 2(b) also shows that varicose modes are much
closer to equipartition between kinetic and magnetic energy than are sinuous modes.

Figure 3 shows that the structure of varicose modes differs significantly from sinuous
modes. In particular, we see that the shearwise length scale of the perturbations is smaller,
and dominated by the n = ±2 mode for the streamfunction, and the n = ±1 mode for the
flux function. The flow contains convergent and divergent regions, consistent with varicose
modes in other systems (Mattingly & Criminale 1972; Drazin & Reid 1981; Mikhaylov &
Wu 2020). While these modes appear (to our knowledge) to be unnoticed in the literature,
they are not the focus of this paper, and will be discussed in greater detail in future work.

3.3. Alfvénic Dubrulle–Frisch modes
Contrary to the other modes discussed so far, the third type of unstable modes, called
Alfvénic Dubrulle–Frisch modes hereafter, exist for arbitrarily large field strength CB.
They are found for Pm < 1 and for Re above a critical value that depends on Pm. Unlike
KH modes, they have non-zero frequencies Im[λ], and appear in complex-conjugate pairs
at each unstable kz. Their phase velocity Im[λ]/kz scales roughly with the Alfvén velocity√

CB, as shown in figure 4. Figure 1 shows that their growth rates are much smaller than
those of KH modes, and decrease with increasing CB. Meanwhile, figure 2 reveals that the
fastest-growing modes have much smaller values of kmax

z than KH modes, and that most
of the energy is kinetic when Pm 
 1.
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Figure 4. (a) Phase velocity |Im[λ]|/kz of the fastest-growing mode at Pm = 0.1 as a function of CB and Re,
with the horizontal red line indicating CB = 0.5. (b) Phase velocity versus CB for Re = 100, Pm = 0.1. Also
shown is the non-dimensional Alfvén velocity
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Figure 5. Mode structures are shown for the fastest-growing pair of Alfvénic Dubrulle–Frisch (ADF) modes
at Pm = 0.1, Re = 102, CB = 1, showing (a,c) contours of ψ and (b,d) contours of A as in figure 3. (a,b) The
mode with Im[λ] > 0, and thus travelling in the −z direction; (c,d) the mode with Im[λ] < 0 and travelling
in the z direction. Note that the aspect ratio of the plots does not reflect the aspect ratio of the modes, whose
streamwise wavelength 2π/kz is much longer than 2π, the wavelength of the background flow.

The structure of the fastest-growing Alfvénic Dubrulle–Frisch modes for Pm = 0.1,
Re = 102 and CB = 1 is shown in figure 5. We see that, contrary to both the sinuous
and varicose KH modes, these unstable waves are highly asymmetric with respect to the
background flow profile and behave differently depending on whether Im[λ] > 0 (i.e. the
wave travels downward in the −z direction) or Im[λ] < 0 (i.e. the wave travels upward).
More specifically, we see that the downward-travelling perturbations are localized in the
upward-moving region of the mean flow, and the upward-travelling perturbations are
localized in the downward-moving region of the flow.

To our knowledge, the Alfvénic Dubrulle–Frisch modes have not been studied elsewhere
in the literature. In what follows, we now present a reduced model of these new unstable
modes in an effort to characterize them and clarify their origin.
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Figure 6. Growth rate Re(λ) (a,c) and wavenumber kz (b,d) of the fastest-growing mode of instability as a
function of CB, for Re = 100 (a,b) and Re = 1000 (c,d), for N = 1 (dotted line), N = 5 (dashed line) and
N = 20 (solid line). In all cases Pm = 0.1. The N = 1 truncation is an excellent approximation to the true
system for the Alfvénic Dubrulle–Frisch modes (CB � 0.5).

4. Characterizing the Alfvénic Dubrulle–Frisch modes

4.1. A reduced analytical model for the instability
We begin by noting that Alfvénic Dubrulle–Frisch modes have a relatively simple spatial
structure (especially at moderate Reynolds numbers) that is well approximated by the
most dramatic truncation of (2.9), namely that for N = 1 (where the perturbations only
contain a total of three Fourier modes, for n = −1, n = 0 and n = 1). This is illustrated in
figure 6, which compares the growth rate and wavenumber of the fastest-growing mode for
truncations at N = 20, N = 5 and N = 1, respectively, for Re = 100 and Re = 1000. In all
cases, Pm = Rm/Re = 0.1, and CB varies between 0.01 and 1000. We see that in general,
the N = 1 truncation captures most of the physics of the problem, including the overall
amplitude of the growth rate Re(λ) and wavenumber kz of the fastest-growing mode, and
the clear regime transition that happens around CB = 0.5. However, we also see that the
properties of the Alfvénic Dubrulle–Frisch modes (which are the only modes that exist for
CB � 0.5) are particularly well captured by the N = 1 truncation.

With this in mind, we now consider the N = 1 truncation only, and restrict our analysis
to 2-D modes (so that in (2.8) the sum ranges from n = −1 to n = 1, and ky = ũy = 0). In
Appendix B, we demonstrate that in the limit where (1) CB is large and (2) kz is small then

Re(λ) � −k2
z

2

(
1

Re
+ 1

Rm

)
+ k2

zψ
2
E

K2
Re − Rm

1 + CBk2
z

K4 (Rm + Re)2
, (4.1)
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Figure 7. Growth rate as a function of kz in the reduced model, for Re = 100 and Rm = 10 (a) and Re = 1000
and Rm = 100 (b). The exact solution (solid line) is obtained numerically by solving the N = 1 truncation of
(2.9), while the dashed line is the analytical expression given in (4.1).

where here K2 = 1 + k2
z , and where ψE = 1/2 is the amplitude of the streamfunction

associated with the elevator mode uE. This expression is only valid when CB � 1, and
kz 
 min(Re−1,Pm,

√
CBRm) (see Appendix B for detail), and as a result, does not apply

in the inviscid limit (Re−1 = 0). Figure 7 compares the prediction of (4.1) with the exact
numerical solution of (2.9) for the N = 1 truncation. We see that (4.1) is a good asymptotic
approximation to Re(λ) for small kz 
 Re−1 in the limit of large CB.

This analytical expression can be used to deduce some of the salient properties of the
instability. Crucially, we see that Re(λ) can only be positive when Re > Rm, or in other
words, when Pm < 1, a result that is consistent with our findings from § 3. Furthermore, a
criterion for instability can be obtained by requiring that Re(λ) > 0 as kz → 0, and noting
that K2 � 1 in that limit, we find that unstable modes exist provided

ReRm
Re − Rm
Re + Rm

> 2, (4.2)

or equivalently,

Re >

√
2

Pm
1 + Pm
1 − Pm

( for Pm < 1). (4.3)

This criterion correctly accounts for the mininum Reynolds number needed for the
Alfvénic Dubrulle–Frisch modes to exist in figure 1 (vertical red line). It also shows that
the instability is suppressed as Pm → 1 from below.

Finally, we can use (4.1) to find the fastest-growing mode for fixed input parameters Re,
Rm and CB, by maximizing Re(λ) with respect to kz. We obtain

kmax
z � ± 1√

CB(Rm + Re)

(√
ReRm

2
Re − Rm
Re + Rm

− 1

)1/2

, (4.4)

after assuming that K2 � 1 on the basis that kz is small (which can be verified a posteriori).
We see that for moderate Re, kmax

z = O(C−1/2
B Re−1/2). Since (4.1) is valid for any kz 


1/Re (see Appendix B), (4.4) is then expected to be valid only when CB � Re. When CB
is of order Re or less, (4.4) is not valid, and we must instead rely on numerical tools to find

949 A43-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

78
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.782


Non-ideal instabilities in sinusoidal shear flows

10010–110–2
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10–1
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Max kz, exact

Max kz, (4.4)

CB

kz

103

Figure 8. Fastest-growing mode wavenumber (in the reduced model) at Re = 100, Rm = 10. The solid line
shows the numerically determined kmax

z , while the dashed line shows the approximate value estimated from
(4.4). The latter is a good approximation to the former for CB > Re, as discussed in the main text.

kmax
z . Figure 8 compares the wavenumber of the fastest-growing mode obtained from (4.4)

with Re = 100 and Rm = 10 with the one found by maximizing the growth rate obtained
numerically over all possible values of kz. We see that the approximation is quite good as
long as CB > Re, as expected from the analysis above.

4.2. Interpretation of the results
When written non-dimensionally, (4.1) obfuscates the physics that drive the instability.
Dimensionally, however, and using the fact that ψE = 1/2, we have

Re(λ)∗ � −(k
∗
z )

2

2
(ν∗ + η∗)+ (k∗

z )
2(Ψ ∗)2

4ν∗
(1 − Pm)

1 + (B∗)2(k∗
z )

2

ρ∗
0μ

∗
0(K

∗)4

(
1
ν∗ + 1

η∗

)2 , (4.5)

where Ψ ∗ = U∗/k∗
x and the asterisk here denotes dimensional quantities. When k∗

z is
sufficiently small (i.e. when the denominator in the second term of (4.5) is approximately
equal to 1), then Re(λ)∗ � −D∗

eff (k
∗
z )

2, with an effective diffusivity given by

D∗
eff = 1

2
(ν∗ + η∗)− (Ψ ∗)2

4ν∗ (1 − Pm). (4.6)

This expression is strongly reminiscent of the results obtained by Dubrulle & Frisch (1991)
who demonstrated that a purely hydrodynamic sinusoidal flow has an effective viscosity
of amplitude

ν∗
eff = ν∗ − (Ψ ∗)2

2ν∗ , (4.7)

when it acts on a large-scale cross-stream flow, which is exactly the situation we have here,
albeit in the magnetized case. Note how ν∗

eff is negative when Ψ ∗ >
√

2ν∗, or equivalently,
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when Re >
√

2. In other words, a purely sinusoidal flows has anti-diffusive properties that
can serve to amplify a large-scale cross-stream flow. The obvious similarities between
(4.6) and (4.7) therefore show that the instability is simply caused by the well-known
anti-diffusive properties of the background sinusoidal flow, acting in our case on the slowly
decaying Alfvén mode.

As k∗
z increases, the denominator of the second term in (4.5) begins to deviate from 1,

which causes the function Re[λ∗(k∗
z )] to flatten (see figure 7) when

v∗
Ak∗

z � ν∗(k∗
x )

2

1 + Pm
(4.8)

(where v∗
A is the Alfvén velocity associated with B∗) or equivalently, when the oscillation

frequency of the mode becomes of the same order of magnitude as the dissipation rate of
n = ±1 component of the mode (although note that the latter is not exactly the right-hand
side of this expression, but is of the same order of magnitude). Then, as k∗

z continues to
increase, the second term in (4.5) tends to a constant, and the first term in (4.5), which is
negative, gradually takes over to stabilize the mode when

v∗
Ak∗

z � k∗
x U∗

√
Pm(1 − Pm)
2(1 + Pm)3

, (4.9)

or in other words, when the oscillation frequency of the mode becomes of the order of
the background sinusoidal flow shearing rate (assuming Pm is not too small). These two
thresholds show that (4.6) is only valid in the limit where the oscillation frequency of the
mode is much slower than any other characteristic frequency of the system – demonstrating
that the oscillatory nature of the shearing Alfvén mode is ultimately detrimental to the
Dubrulle–Frisch mechanism. As a result, one can interpret the fastest-growing Alfvénic
Dubrulle–Frisch mode (whose non-dimensional wavenumber is approximately given by
(4.4)) to be the one whose wavenumber is as large as possible without completely
suppressing the Dubrulle–Frisch mechanism.

Realizing that the Dubrulle–Frisch mechanism is at the heart of this magnetized
instability also explains why it relies on having a low magnetic Prandtl number. Indeed,
in the hydrodynamic limit, long-wavelength cross-stream perturbations are amplified by
the Reynolds stresses they create as they distort the background sinusoidal flow. In the
magnetized limit, however, Maxwell stresses are necessarily also created by the distortion
of the background field, and oppose the Reynolds stresses. A sufficiently large resistivity
is therefore needed to soften the effect of the field, so the two kinds of stresses do not
cancel out.

Finally it is worth noting that the B∗ → 0 limit of (4.6) does not recover the
hydrodynamic limit of Dubrulle & Frisch (1991). This is not an inconsistency, as (4.1), and
therefore (4.6) as well, are only valid for CB � 1. However, it is reasonably straightforward
to show that

Re(λ∗) � −(k∗
z )

2ν∗
eff (4.10)

in the reduced model of § 4 when CB = 0 and kz → 0, where ν∗
eff is given by (4.7), as

expected.

5. Numerical simulations

While linear stability analyses can predict the initial response of a fluid in equilibrium to
infinitesimal perturbations, they provide no immediate insight into its nonlinear evolution.
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In this section, we present results from a direct numerical simulation of this system for
one set of physical parameters. It is not our intention to perform a comprehensive scan
of parameter space, but instead to provide some validation of the linear stability analysis
of § 3, and to find out, at least qualitatively, how the Alfvénic Dubrulle–Frisch modes
saturate. For this reason, we use the physical parameters CB = 1, Re = 100 and Pm = 0.1,
ensuring that they are the only unstable modes present in the system (see figure 1).

We use the pseudospectral code Dedalus (Burns et al. 2020) to evolve a 2-D version
of (2.4) (expressed in terms of a streamfunction ψ and flux function A) in time. The
simulation is initialized with a unit-amplitude sinusoidal shear flow u = uE and a uniform
magnetic field b = bE = ez, i.e. (2.1) and (2.2). We note that this is an equilibrium
solution, as the forcing term −Re−1∇2uE in (2.4) balances the viscous dissipation of uE.
We perturb this equilibrium by adding small-amplitude white noise to the streamfunction,
which seeds the instability. The simulation uses a domain size of (Lx, Lz) = (4π, 170π),
where the dimensions are chosen to accommodate two wavelengths of the sinusoidal
equilibrium in the x direction and approximately two wavelengths of the fastest-growing
mode, according to the linear stability analysis, in the z direction. We note that, even in the
hydrodynamic case, the quantitative details of the saturated state of 2-D Kolmogorov flow
are expected to depend on domain size and aspect ratio (see, e.g. Lucas & Kerswell (2014)
and references therein). However, for sufficiently large domains, the qualitative properties
of the solution ought to be unaffected (a statement which is verified below). The domain is
doubly-periodic, with a resolution of 64 Fourier modes in the x direction and 256 modes
in the z direction (for the domain size of (Lx, Lz) = (4π, 170π) – in simulations where the
box size is doubled along an axis, the number of modes in that direction is also doubled to
maintain the same resolution). Nonlinear terms are dealiased using the standard 3/2-rule,
meaning that nonlinearities are calculated on a 92 × 384 grid in physical space, and we
use a four-stage, third-order, implicit–explicit Runge–Kutta timestepping scheme to evolve
the solution in time (Ascher, Ruuth & Spiteri 1997, § 2.8).

The results are summarized in figure 9. We decompose the flow according to u =
〈u〉z + u′, where 〈·〉z denotes an average in z, and refer to 〈u〉z as the mean flow and u′
as the fluctuating flow, with analogous definitions for the mean and fluctuating magnetic
field. Note that the mean flow remains purely z-directed, i.e. 〈u〉z = 〈uz〉zez. The kinetic
and magnetic energies of the fluctuations are shown alongside the kinetic energy of the
mean flow in figure 9(a). As expected, the fluctuations grow early in the simulation at a
rate that is consistent with the linear stability results of § 3, shown by the dashed green
line. Also consistent with § 3 is the dominance of kinetic energy over magnetic energy of
fluctuations in the linear growth phase (see figure 2). Finally, snapshots of the flow and
field perturbations at this stage (not shown) are also consistent with those of the unstable
modes shown in figure 5.

The exponential growth phase of the Alfvénic Dubrulle–Frisch modes ends around
t = 10 000, when their amplitudes become commensurate with that of the mean flow.
Nonlinear interactions then cause a rapid decrease in the amplitude of the mean sinusoidal
flow, from an original value of U = 1 down to an average of about U = 0.181; see
figure 9(b) (note that repeating the simulation with doubled Lx or with doubled Lz changes
this value to 0.180 or 0.191, respectively). The shape remains almost exactly sinusoidal,
however. One may therefore wonder whether, by reducing the mean flow amplitude, the
system has simply adjusted itself in such a way as to become marginally stable to all modes
of instability, which is a common route towards saturation. To test this idea, we use the
new flow amplitude U to compute effective Reynolds numbers Reeff = URe � 18.1 and
Rmeff = URm � 1.81, and an effective magnetic parameter Ceff = CB/U2 = 30.7. Using
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Figure 9. (a) Kinetic and magnetic energies of perturbations about the mean are shown alongside the kinetic
energy of the mean flow for a simulation with CB = 1, Re = 100 and Pm = 0.1, with the green dashed line
showing the growth rate of the most unstable mode that fits into this domain size according to § 3, demonstrating
consistency with the results of that section. (b) The mean flow, averaged in both z and t (where the time average
is taken over the second half of the simulation), is shown with a sine wave overplotted to demonstrate how
nearly sinusoidal the flow remains. (c) The dispersion relation based on the initial values of Re and CB (orange)
is shown alongside the dispersion relation based on the values of Reeff and Ceff achieved in saturation (green,
see text), with the black vertical line showing the wavenumber corresponding to a wavelength that equals the
domain height, demonstrating that even in saturation, the mean flow profile remains linearly unstable. (d) A
snapshot of uz (left) and ux (right) is shown at t ≈ 87 000 (indicated by the vertical dashed line in a). At this
time, the system is dominated by two counter-propagating solitons that look like dislocations of the mean flow.

these effective parameters, we can compute the growth rate of unstable modes on the new
background flow, and the results are shown in figure 9(c) (green curve), together with a
dashed vertical line indicating the wavenumber of a mode whose wavelength equals the
domain height. We clearly see that the system remains unstable to domain-size Alfvénic
Dubrulle–Frisch modes, showing that the path to saturation suggested above is not relevant
for this simulation.

Furthermore, inspection of the shape and relative amplitude of the flow and field
perturbations in the nonlinear state reveals that they are profoundly different from those
of linear modes computed in § 3. Indeed, figure 9(d) shows uz and ux (including mean
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Non-ideal instabilities in sinusoidal shear flows

and fluctuations) at t ≈ 86 480, as indicated by the dashed vertical line in the top-left
panel. While the unstable modes calculated in § 3 are sinusoidal in z, the saturated state
is dominated by fluctuations that are localized to narrow structures in the z direction.
These structures appear to be two pairs of counter-propagating solitons, most easily seen
in terms of the localized shearwise flows shown in the ux snapshot. The positive-ux
fluctuations propagate in the +z direction, while the negative-ux fluctuations propagate
in the −z direction at the same speed, with each soliton unperturbed as it travels through a
counter-propagating soliton. We find that the number of solitons remains unchanged when
Lx is doubled, but that twice as many solitons appear when Lz is doubled. Solitons in
general have been studied in a range of plasma physics contexts (see, e.g. Ivanov et al.
(2020) and references therein). However, the solitons we find here resemble more closely
the ‘kinks’ and ‘antikinks’ identified in 2-D hydrodynamic Kolmogorov flows by Lucas &
Kerswell (2014).

Finally, note that we have run many other nonlinear simulations of the Alfvénic
Dubrulle–Frisch modes for a variety of input parameters (not shown here). Similar solitons
appeared in all cases. The simplicity of these dynamics suggests they may be well
described by a low-order dynamical model, similar to that of Lucas & Kerswell (2014).
Such a model, as well as an exploration of how these solitons vary for different physical
parameters, domain sizes and 3-D systems, is left to future work.

6. Discussion and conclusion

We have investigated the linear stability of a sinusoidal shear flow with an initially
uniform, streamwise magnetic field in 2-D, incompressible MHD with finite viscosity and
resistivity. We found three modes of instability, unlike the single KH mode present for this
flow in ideal MHD or in the absence of a magnetic field. One of these modes corresponds
to the usual KH mode, while the other two modes, to our knowledge, have not been
identified elsewhere in the literature. This paper focused on understanding the dynamics
of one of these new modes, which we refer to as Alfvénic Dubrulle–Frisch modes. These
modes appear as pairs of counter-propagating unstable waves and exist for all magnetic
field strengths, but only when the magnetic Prandtl number Pm < 1. By deriving a reduced
model for this particular mode of instability, we were able to show that it is amplified
by the negative eddy viscosity of periodic shear flows identified by Dubrulle & Frisch
(1991). Finally, we presented a direct numerical simulation of the nonlinear evolution
of these waves, demonstrating that they saturate in a quasi-stationary state dominated
by counter-propagating solitons similar to the ‘kinks’ and ‘antikinks’ identified in the
hydrodynamic case by Lucas & Kerswell (2014).

The physical parameters for which this new mode of instability exists lead to two
significant consequences worth stressing. First, while the Alfvénic Dubrulle–Frisch modes
require finite dissipation (with Re and Rm above a certain threshold), we found that
they remain unstable no matter how large Re and Rm become, provided Pm < 1. As
a consequence, even when modelling astrophysical plasmas with extreme Reynolds
numbers, calculations that employ ideal MHD may erroneously neglect this instability.
Second, unlike the ordinary KH mode found in ideal MHD (or its counterpart in
this system) which becomes stable for sufficiently strong magnetic fields, the Alfvénic
Dubrulle–Frisch modes are unstable for all non-zero magnetic field strengths. Thus,
counter to common intuition that shear-flow instabilities are stabilized by parallel magnetic
fields of sufficient strength (Chandrasekhar 1961), our results demonstrate that, at least for
the flow profile considered here, instability can persist for arbitrarily large magnetic field
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strengths. We also note that the Dubrulle–Frisch mechanism applies to periodic shear flows
more broadly, not just sinusoidal flows. Thus, we anticipate that these instabilities can be
found in other periodic shear flows as well.

As shown in § 4.2, the underlying mechanism for this instability stems from the negative
eddy viscosity of periodic shear flows described by Dubrulle & Frisch (1991), which
amplifies the shear Alfvén waves present in this system in the absence of the background
shear flow. The simplicity of this mechanism suggests it might be quite general, and
exist in other scenarios where a sinusoidal shear flow is added to a system that naturally
supports waves transverse to the mean flow. Indeed, Garaud, Gallet & Bischoff (2015)
similarly found low-wavenumber oscillatory modes when studying sinusoidal shear flow
in a stratified fluid, which only exist when viscosity is taken into account. While a detailed
investigation of these modes was beyond the scope of that work, they appear similar to the
ones reported here, with internal gravity waves in that system playing the role of Alfvén
waves in the MHD system. We speculate that similar modes might exist in reduced plasma
models that permit zonal flows and drift waves (e.g. Zhu, Zhou & Dodin 2018).

We envision two primary directions for future work based on these results. The first is a
thorough investigation of the nonlinear evolution of this instability. We have demonstrated
for one set of parameters that this system saturates in a quasi-stationary state that supports
counter-propagating solitons. Additional simulations performed over a broad range of
physical parameters will be needed to characterize how the speed, number and shape of
these solitons vary with input parameters. Furthermore, the simple nature of this saturated
state invites efforts to develop reduced nonlinear models of the solitons that can be
compared against simulations. Finally, even though we demonstrated that 2-D modes of
instability are the fastest-growing ones in the linear regime, it is likely that the saturation
of the instability will be profoundly different in two and three dimensions, and it is unclear
whether these solitons will persist.

The second direction for future work is to explore the physical implications of
these Alfvénic Dubrulle–Frisch modes in magnetized plasmas. As described in § 1, the
double-diffusive fingering instability drives ‘elevator’ modes that flow in the vertical
direction and vary sinusoidally in the horizontal directions. Their saturation is traditionally
modelled by requiring a balance between the finger growth rate, and the growth rate
of parasitic shear instabilities (Radko & Smith 2012; Brown et al. 2013). Harrington
& Garaud (2019) (hereafter HG19) recently studied the effect of an added vertical
magnetic field, demonstrating both numerically and theoretically that the latter decreases
the shear instability growth rate and therefore strongly affects the saturation of the
fingering instability. However, all of their simulations were performed with Pm = 1,
and their parasitic stability analysis assumed ideal MHD; thus, the effects of Alfvénic
Dubrulle–Frisch modes were not present in their simulations or in their reduced model.
Since the stellar interiors where fingering convection occurs generally satisfy Pm < 1, it
is possible that the newly discovered modes have an effect on the saturation of magnetized
fingering convection that is not accounted for by HG19.

Finally, note that all of the results presented in this paper were obtained for a sinusoidal
flow that varies in only one of the two horizontal directions – a planar shear flow – which is
the geometry for which the Dubrulle & Frisch (1991) mechanism was originally discussed.
However, in many of the instabilities discussed above, the primary elevator modes vary
sinusoidally along both horizontal axes, as seen in figure 1 of HG19 or discussed in
§ 3.2 of Radko & Smith (2012). Furthermore, we have neglected the temperature and
compositional fluctuations associated with elevator modes, which likely modify the
quantitative details of this instability and its saturation (see Radko & Smith (2012) for
an example where these fluctuations were not neglected). It will therefore be important to
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Non-ideal instabilities in sinusoidal shear flows

establish in future work whether the instability mechanism discovered here remains active
for MHD shear flows where the shear varies along two axes, e.g. for flows with structure
uE = sin(x) sin( y)ez, and how it is affected by the temperature and compositional structure
of elevator modes when applied to model fingering convection.
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Appendix A. Linear growth rates of 3-D perturbations

Here we demonstrate, for a sample of physical parameters, how the linear growth rate
of 3-D perturbations varies with ky and kz. Figure 10 shows the growth rate Re[λ] of
3-D perturbations over a range of ky and kz for Pm = 0.1 and (Re,CB) = (10, 0.2),
(500, 0.2), (10, 1) and (500, 1), while figure 11 shows the growth rate of 3-D perturbations
for Pm = 2 and (Re,CB) = (10, 0.2), (500, 0.2) and (500, 0.6), corresponding to the
magenta diamonds in figure 1. For each set of parameters, we see that the mode with the
largest growth rate is a 2-D mode with ky = 0. However, we note that the (Pm,Re,CB) =
(0.1, 10, 0.2) case presents an example where, for some values of kz (in this case, for
kz ≈ 0.2), there are 3-D modes that grow faster than the corresponding 2-D mode – though
it remains true that the fastest-growing mode is 2-D.

Appendix B. Asymptotic approximation of the growth rate of Alfvénic Dubrulle–
Frisch modes

To gain a better understanding of the nature of the Alfvénic Dubrulle–Frisch modes,
we now seek approximate analytical solutions of (2.9) in the limit of large CB. For this
purpose, we choose a new non-dimensionalization for the governing equations that better
accounts for the mode dynamics. In what follows, and for the rest of this appendix, we now
use the Alfvén velocity

v∗
A = B∗√

ρ∗
0μ

∗
0

(B1)

as the unit velocity, and continue to use (k∗
x )

−1 as the unit length and B∗ as the unit
magnetic field. The unit time is then (v∗

Ak∗
x )

−1. In this new set of units, the governing
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Figure 10. Growth rates Re[λ] of 3-D perturbations across a range of ky and kz for Pm = 0.1. The 2-D modes
considered in the majority of the main text correspond to ky = 0. Each panel shows growth rates for a different
set of physical parameters as indicated by the magenta diamonds in figure 1. For each set of physical parameters,
the fastest-growing mode is 2-D.
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Figure 11. As in figure 10, but for Pm = 2. Once again, in each case, the fastest-growing mode is 2-D for
each set of physical parameters.

equations are

∂u
∂t

+ u · ∇u = −∇p + (∇ × b)× b + PmS−1∇2(u − uE),

∂b
∂t

= ∇ × (u × b)+ S−1∇2b,

∇ · u = 0, ∇ · b = 0,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(B2)
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Non-ideal instabilities in sinusoidal shear flows

and the background sinusoidal flow is

uE = U∗

v∗
A

sin(x)ez = C−1/2
B sin(x)ez. (B3)

We see that this choice of units has introduced a new non-dimensional number, namely
the Lundquist number:

S = v∗
A

η∗k∗
x

=
√

CBRm, (B4)

which is usually interpreted as the ratio of an Alfvénic oscillation frequency k∗
xv

∗
A with a

magnetic diffusion rate η∗(k∗
x )

2.
The N = 1 truncation of the Fourier mode expansion discussed in § 4 is equivalent to

seeking solutions for the streamfunction ψ and the flux function A of the kind

ψ(x, z, t) = eλt+ikzz(ψ0 + ψ1eix + ψ−1e−ix), (B5)

A(x, z, t) = ieλt+ikzz(a0 + a1eix + a−1e−ix). (B6)

Note that the added factor of i in the expression for A (so ian = An for all n) makes
the coefficients in the resultant system shown below real, which is both convenient and
without loss of generality. The first term in each definition (terms in ψ0, a0) corresponds to
x-invariant modes, sometimes referred to as ‘shearing modes’ hereafter, while the second
and third terms correspond to inclined modes that have structure in both shearwise (x) and
streamwise (z) directions.

Substituting this ansatz into (2.12) and (2.13), expressed in the new units, and projecting
onto the relevant Fourier modes, yields the linear system

(
λ+ Pm

k2
z

S

)
ψ0 − 1

2
√

CB
kz(ψ1 − ψ−1) = −kza0,

(
λ+ Pm

K2

S

)
ψ1 − 1

2
√

CB
kz

1 − k2
z

K2 ψ0 = −kza1,(
λ+ Pm

K2

S

)
ψ−1 + 1

2
√

CB
kz

1 − k2
z

K2 ψ0 = −kza−1,(
λ+ k2

z

S

)
a0 = kzψ0 − 1

2
√

CB
kz(a−1 − a1),

(
λ+ K2

S

)
a1 = kzψ1 − 1

2
√

CB
kza0,(

λ+ K2

S

)
a−1 = kzψ−1 + 1

2
√

CB
kza0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B7)

where K2 = 1 + k2
z .
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Note that if we look at the limit of extremely strong field and negligible diffusivity (i.e.
CB, S → ∞), the system reduces to

λψ0 = −kza0, λa0 = kzψ0,

λψ1 = −kza1, λa1 = kzψ1,

λψ−1 = −kza−1, λa−1 = kzψ−1,

⎫⎪⎬
⎪⎭ (B8)

so that λ2q = −k2
z q for q ∈ {ψ0, ψ1, ψ−1, a0, a1, a−1}. Each of these leads to λ = ±ikz,

which is the non-dimensional version of the dispersion relationship for non-dissipative
Alfvén waves travelling on a constant streamwise magnetic field, which is as expected in
the limit considered. But we also see that in this limit, the modes do not grow.

Going back to (B7) for finite values of CB and S, and taking the sum of the ψ1 and ψ−1
equations, and the sum of the a−1 and a1 equations, we obtain the reduced system

(
λ+ Pm

K2

S

)
(ψ1 + ψ−1) = −kz(a1 + a−1),(

λ+ K2

S

)
(a1 + a−1) = kz(ψ1 + ψ−1).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(B9)

This shows that, for modes with a1 + a−1 /= 0 and ψ1 + ψ−1 /= 0, λ satisfies the simple
quadratic equation (

λ+ Pm
K2

S

)(
λ+ K2

S

)
= −k2

z , (B10)

whose solutions are

λ = −K2

2S
(Pm + 1)± ikz

√
1 − K4

4S2k2
z
(Pm − 1)2. (B11)

These correspond to viscously and resistively damped Alfvén waves that decay on the
time scale of order S/K2 (in the selected units), with K of order unity. This result implies
that the system dynamics relaxes to the subset of eigenmodes for which a1 = −a−1, and
ψ1 = −ψ−1, on a relatively short time scale (unless S is very large).

To look outside of this strictly decaying subspace (since we are looking for growing
modes), we then assume a1 = −a−1, andψ1 = −ψ−1 in (B7), and obtain the new reduced
system (

λ+ Pm
k2

z

S

)
ψ0 = 1√

CB
kzψ1 − kza0,

(
λ+ Pm

K2

S

)
ψ1 = 1

2
√

CB
kz

1 − k2
z

K2 ψ0 − kza1,(
λ+ k2

z

S

)
a0 = kzψ0 + 1√

CB
kza1,

(
λ+ K2

S

)
a1 = kzψ1 − 1

2
√

CB
kza0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B12)
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It can be shown with a little algebra that this yields a quartic equation for the eigenvalue
λ: (
λ+ Pm

K2

S

)(
λ+ Pm

k2
z

S

)(
λ+ K2

S

)(
λ+ k2

z

S

)

+ k2
z

[(
λ+ K2

S

)(
λ+ Pm

K2

S

)
+
(
λ+ Pm

k2
z

S

)(
λ+ k2

z

S

)]

− 1
2CB

k2
z

1 − k2
z

K2

(
λ+ K2

S

)(
λ+ k2

z

S

)
+ 1

2CB
k2

z

(
λ+ Pm

K2

S

)(
λ+ Pm

k2
z

S

)

= k4
z

[
−1 + 1

CB

k2
z

K2 + 1
4C2

B

1 − k2
z

K2

]
. (B13)

Since we are looking for solutions at large magnetic field strengths (CB � 1), we now
introduce the small parameter ε = C−1

B , and assume an asymptotic expansion of the kind
λ = λ0 + ελ1 (which will be verified a posteriori to be correct). In the limit ε = 0, (B13)
reduces to two possible quadratic equations in λ0, namely the equations for the decay rates
of diffusive Alfvén waves:(

λ0 + K2

S

)(
λ0 + Pm

K2

S

)
+ k2

z = 0,(
λ0 + Pm

k2
z

S

)(
λ0 + k2

z

S

)
+ k2

z = 0.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(B14)

The first one is identical to (B10), and was discarded on the basis that the corresponding
modes decay too rapidly. We continue to discard it here, as it would lead to modes that do
not grow. The second one has solutions that decay on the time scale O(S/k2

z ), which can
be very long provided kz is sufficiently small. These are given by

λ0 = − k2
z

2S
(Pm + 1)± ikz

√
1 − k2

z

4S2 (1 − Pm)2. (B15)

The corresponding modes are pure ‘shearing’ Alfvén modes in the terminology introduced
earlier, i.e. at lowest order their velocity field is invariant in the shearwise direction. As we
demonstrate, it is the interaction of these modes with the background shear that drives the
growth of Alfvénic Dubrulle–Frisch modes.

Expanding (B13) to first order in ε, and using (B14) and (B15), we find that the
first-order correction λ1 satisfies the linear equation

λ1

(
2λ0 + (Pm + 1)

k2
z

S

)[(
λ0 + Pm

K2

S

)(
λ0 + K2

S

)
+ k2

z

]

= k6
z

K2 + 1
2

k2
z

1 − k2
z

K2

(
λ0 + K2

S

)(
λ0 + k2

z

S

)
− 1

2
k2

z

(
λ0 + Pm

K2

S

)(
λ0 + Pm

k2
z

S

)
.

(B16)

Every term in this equation is known, so λ1 can easily be calculated. Unfortunately, even
though this expression is analytical, it is not particularly illuminating. In what follows,
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we now aim to obtain a much simpler analytical expression, at least in some region of
parameter space, that will allow us to gain a better understanding of the nature of the
instability. To do so, we capitalize on the fact that the Alfvénic Dubrulle–Frisch modes
have a very small wavenumber (see § 3), and further expand both λ0 and λ1 in the limit of
kz → 0. Keeping only terms of lowest order in kz, we have

λ0 � − k2
z

2S
(Pm + 1)± ikz, (B17)

and after some cumbersome but otherwise straightforward algebra,

λ1 � S(1 − Pm)k2
z

4PmK2

[
1 + S2 k2

z

K4

(
Pm + 1

Pm

)2
] [1 ∓ iS

kz

K2
Pm + 1

Pm

]
, (B18)

where we have had to assume that kz 
 S, kz 
 Pm and S2 � Pm.
For the Taylor expansion of the complex growth rate λ in the small parameter ε to

be meaningful, one needs to ensure that ε|λ1| 
 |λ0|, which is equivalent to requiring
that both ε|Re(λ1)| 
 |λ0| and ε|Im(λ1)| 
 |λ0|. With |λ0| ∼ O(kz), and noting that the
second constraint turns out to be more stringent than the first, we obtain the condition

k2
z 
 CB

4Pm2

S2(1 − Pm2)
→ kz = o(Re−1), (B19)

noting that Pm2CB/S2 = 1/Re2, and assuming that Pm is not too close to 1. For values of
kz approaching O(Re−1) the expansion is no longer strictly valid, but remains adequate,
which explains the trends seen in figure 7 in the main text. Finally, we can substitute this
expression and the one for λ0 into λ = λ0 + ελ1 to obtain an approximate expression for
the real part of λ:

Re(λ) � − k2
z

2S
(Pm + 1)+ 1

CB

S(1 − Pm)k2
z

4PmK2

[
1 + S2 k2

z

K4

(
Pm + 1

Pm

)2
] , (B20)

which, once expressed in the units of the main body of the paper, becomes (4.1). This
expression is valid provided

• CB � 1,
• kz 
 min(Re−1,Pm, S) and
• S2 � Pm,

which incidentally shows that it does not apply in the inviscid limit. A similar derivation for
the true inviscid case (Pm = 0, or equivalently Re−1 = 0 with finite Rm) yields negative
values for both Re(λ0) and Re(λ1), revealing that the long-wavelength (small kz), large-CB
limit is only unstable in the presence of viscosity.
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