
Robotica (2018) volume 36, pp. 57–77. © Cambridge University Press 2017
doi:10.1017/S0263574717000157

Footstep adaptation strategy for reactive
omnidirectional walking in humanoid robots
Jiwen Zhang†‡§, Zeyang Xia¶, Li Liu†‡§ and
Ken Chen†‡§∗

†Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.
E-mails: jwzhang@mail.tsinghua.edu.cn, liuli@tsinghua.edu.cn, kenchen@tsinghua.edu.cn
‡Beijing Key Lab of Precision/Ultra-precision Manufacturing Equipments and Control, Tsinghua
University, Beijing 100084, China
§The State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
¶Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055,
China. E-mail: zeyang.xia@ieee.org

(Accepted March 8, 2017. First published online: April 12, 2017)

SUMMARY
Stability, high response quality and rapidity are required for reactive omnidirectional walking in
humanoids. Early schemes focused on generating gaits for predefined footstep locations and suffered
from the risk of falling over because they lacked the ability to suitably adapt foot placement. Later
methods combining stride adaptation and center of mass (COM) trajectory modification experienced
difficulties related to increasing computing loads and an unwanted bias from the desired commands.
In this paper, a hierarchical planning framework is proposed in which the footstep adaption task
is separated from that of COM trajectory generation. A novel omnidirectional vehicle model and
the inequalities deduced therefrom are adopted to describe the inter-pace connection relationship.
A constrained nonlinear optimization problem is formulated and solved based on these inequalities
to generate the optimal strides. A black-box optimization problem is then constructed and solved
to determine the model constants using a surrogate-model-based approach. A simulation-based
verification of the method and its implementation on a physical robot with a strictly limited
computing capacity are reported. The proposed method is found to offer improved response quality
while maintaining rapidity and stability, to reduce the online computing load required for reactive
walking and to eliminate unnecessary bias from walking intentions.

KEYWORDS: Humanoid robots; Omnidirectional; Reactive walking; Inverted pendulum model;
Nonlinear optimization; Surrogate model optimization.

Nomenclature

3D-LIPM 3D Linear Inverted Pendulum Model
COM Center of mass
MPC Model predictive control
IPCR Inter-pace connection relationship
ZMP Zero moment point
DACE Design and analysis of computer experiment

1. Introduction
Omnidirectional walking means that a humanoid robot can take a step in any direction with any stride
at will, thus allowing the robot to walk forward/backward, take a step to the side, turn to change
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Fig. 1. An example of a step sequence issued to a joint trajectory generator, with a sharp turn representing a
large stride variation.

direction, or perform any combination of these movements with any magnitude. This type of motion
is important because the environments in which human beings live and work are filled with various
movable objects and unstructured obstacles, and a robot operating in such an environment must be
able to reactively avoid collisions with these obstacles.

There are several key factors that must be considered in a reactive omnidirectional walking engine.
The first and most basic one is stability, which is strictly required for any type of motion planning for
a humanoid robot. Some safety margin is necessary, which should be as large as possible to prevent
the robot from falling over easily. The second factor to be considered is the response quality. The
walking engine should be able to accept an arbitrary sequence of stride commands, either from a
joystick, as in,1 or from some other artificial intelligence module, such as a decision-making and path
planning module,2 and should be capable of generating joint trajectories in real time to follow these
commands. The delay of the trajectory generator and the deviance of the generated motions from the
expected motions must be kept as low as possible. The third factor of concern is rapidity. A slow
walking style does not represent any significant improvement with regard to obstacle avoidance and
navigation, and it reduces the necessity for omnidirectional reactive walking. All these considerations
give rise to a need for additional focus on this specific problem.

Gait planning methods have reached an advanced stage of development over the years, and some
of them can generate joint trajectories that can guarantee stability in real time. The 3D-LIPM (3D
Linear Inverted Pendulum Model)3 and the preview controller4, 5 are the most widely used methods.
Using these methods, joint trajectories can be generated for any predefined foot placement sequence
with very little computation, thereby providing a foundation for realizing higher levels of intelligence
in walking behavior, such as obstacle avoidance and navigation.6, 7 However, the question of whether
each such sequence can be successfully transformed into a stable and rapid walking gait requires
further investigation. Suppose that the footsteps depicted in Fig. 1, which include a sharp turn of 90◦
connecting two sections of straight walking, are issued as the walking intentions. A robot can easily
follow these footsteps at a slow walking speed, e.g., at 2 s/step, but may suffer from a high risk of
falling over when it is forced to complete each stride at 0.2 s/step because, in this case, the robot has
insufficient time to modify its walking velocity to turn 90◦ due to inertial effects. Although human
beings are able to slow down specific individual steps to negotiate large stride changes, it appears
difficult for a present-day gait planner to achieve the same goal because complex dynamics analysis
is required,8 which is unfeasible for real-time computing.

Herdt et al.9 claimed that a means of stride adaptation is needed to eliminate the effect of large
velocity variations and replaced the desired footstep sequence provided as the input to the gait
generator with a reference speed vector, thereby allowing the robot to track such input speed vectors
as closely as possible; however, some bias from the issued commands may remain if they are not
reasonable with regard to walking stability. However, the model predictive control (MPC) method
presented in ref. [9] has certain other shortcomings: the computational burden is much heavier,10

and unnecessary bias from the intended velocity vectors exists,11 which may decrease the response
quality and rapidity of reactive omnidirectional walking.

This paper seeks to provide another solution specifically to the task of tracking walking intentions.
A hierarchical planning framework and an omnidirectional moving vehicle model are used. This
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new model first appeared in ref. [12]; however, the proposal given at that time resorted to invoking
empirical experience without making full use of the generated inequalities, and no well-defined
theoretical solution was provided. Moreover, the hidden model parameters also were not determined.
In this paper, these problems are addressed via two rounds of optimization: the first is a small-scale
nonlinear optimization problem, which is solved online within the time cycle of a single step, and the
second is a surrogate-model-based black-box optimization problem to determine the most suitable
constants for the dynamics model and is solved offline.

The remainder of this paper is organized as follows. Section 2 reviews the state-of-the-art
results related to this research. Section 3 outlines the proposed hierarchical planning framework
and introduces the omnidirectional vehicle model and the obtained constraint inequalities, termed
the inter-pace connection relationship (IPCR); then, in Section 4, the task of footstep determination
is investigated in detail, whereas Section 5 describes the derivation of the model constants via
black-box optimization. Section 6 presents a comparison of footstep adaptation strategies and
analyzes the overall applicability of the proposed strategy. Section 7 reports the application of
the proposed method in simulations and physical robot experiments, and conclusions are presented in
Section 8.

2. State of the Art
The generation of walking gaits for humanoids has been a focus of research for several decades, and
there is already a rich body of literature regarding basic walking skills. In one subset of these studies,
the robot is regarded as a multi-rigid-body dynamic system, as in refs. [13–15]; however, the heavy
computing loads incurred by the optimization and search processes used in these methods prevent
their use in reactive walking.

Another set of studies use simplified dynamics models, such as the 3D-LIPM or the cart-table
model proposed by Kajita et al.3, 4 In this model, the robot’s mass is concentrated at its center of
mass (COM), which is connected to a massless rod representing its leg. The rod is extensible to allow
the COM to move within a plane. Because of the linear dynamics function, the COM trajectory and,
therefore, the joint trajectories can be obtained with much less effort than in the multi-rigid-body
approach. A preview controller based on the 3D-LIPM has been demonstrated in studies by Kajita
et al.,4, 5 and direct analytical solutions to the differential equations of the 3D-LIPM are provided
in ref. [16]. Later, omnidirectional reactive walking was achieved using both approaches, as in
refs. [17–22].

Wieber23 has noted that Kajita’s method does not explicitly consider the satisfaction of the zero
moment point (ZMP) criterion,24 which allows walking stability to be determined by calculating the
point of action of the contact forces exerted by the ground. Instead, Kajita’s method merely minimizes
the deviation between the prescribed and planned ZMP trajectories. The robot tends to fall over when
a large variation in the COM velocity occurs, which can be caused by the action of an external force
as well as by abrupt changes in walking intentions, as in Fig. 1. Wieber23 therefore proposed the MPC
method, a constrained quadratic optimization approach with explicit ZMP constraints for increased
robustness. This method can also perform more advanced online COM trajectory modification because
it can handle uncertain errors and disturbances through dynamic feedback.

Later, in Herdt’s research,9 the elimination of larger velocity variations was achieved using a
modified version of the MPC method in which the deviation between the foot placement and the
reference speed vector is minimized by adding a term representing it, weighted by a coefficient, to the
objective function, which initially contained only the COM state variable, as formulated by Wieber.23

Herdt25 also extended the method by including turning steps.
The MPC scheme appears quite versatile, and it has even been used in visual servoing by

incorporating percept information directly into the optimization objective, as done by Garcia et al.;26

however, its computational burden is heavier than that of the previous strategy. Dimitrov et al.27

developed an efficient solver specifically for the MPC optimization problem that offers valuable
improvements. Moreover, Dimitrov et al.11 found that coupling the tasks of generating the foot
landing positions and the COM trajectories may always introduce an unnecessary bias from the
intended velocity vectors. Therefore, he proposed the modified l1-norm and l∞-norm objective
functions, which reduce this effect to some extent but seem unable to eliminate it.
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Fig. 2. Comparison of two model abstractions and the corresponding hierarchical planning schemes: the
decoupling of the generation of the COM trajectories and joint trajectories via the 3D-LIPM (upper part)
and the decoupling of the foot placement adaptation and the COM trajectory generation via the omnidirectional
vehicle model (lower part).

3. The Omnidirectional Vehicle Model and the Inter-Pace Connection Relationship

3.1. The hierarchical planning strategy
The two key factors for joint trajectory generation are the footstep locations and the COM trajectories.
The preview controller based on the 3D-LIPM that has previously been proposed by Kajita4 requires
predefined footsteps for the planning of COM trajectories, but rational predefined footsteps cannot
be obtained if a stride adaptation problem arises as a result of the dynamics of the generated COM
trajectories; consequently, these two factors are coupled. This problem is severe when the walking
speed is high and the walking intentions are arbitrary. The entire problem can be directly solved
using the MPC method by combining both factors into a single optimization objective, or, as an
alternative approach, the problem can be hierarchically split to address these two factors separately,
as in ref. [26].

A new model called the omnidirectional vehicle model provides guidance for building such a
hierarchical framework. This concept originates from an abstraction and simplification of a humanoid
robot. The 3D-LIPM is used to relieve the heavy computational burden of the multi-rigid-body
approach, such as in Huang et al.,13 because this model allows the COM trajectory to be obtained
directly before any joint movements are considered. This is helpful for splitting the coupled problem
of trajectory planning into a layered framework, as illustrated in the upper part of Fig. 2, although the
dynamics of the 3D-LIPM differs considerably from that of a real robot.

Following a similar approach as before, we then attempt to further simplify the 3D-LIPM to create
a new model to relieve the heavy computing burden of achieving footstep adaptation and COM
coordination in a coupled approach via the 3D-LIPM. In this new model, the upper layer is dedicated
to separately adapting the footstep locations, whereas the 3D-LIPM and the preview controller remain
unchanged in the bottom layer. The process and the corresponding planning framework are illustrated
in the lower part of Fig. 2.

3.2. The omnidirectional vehicle model
The omnidirectional vehicle model (see Fig. 3) has following features: A ball of radius r and evenly
distributed mass m is fixed on a massless rod with a height of h from the flat ground, and this rod
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Fig. 3. Omnidirectional vehicle model and the corresponding force analysis.12

is also mounted on a massless omnidirectional moving vehicle at its other end; the overall moment
of inertia is Jc, which originates from the mounted ball. Suppose that the vehicle is equipped with
an internal engine and can move by itself, just like a car, without any external driving system.
The vehicle must not tip over; this represents the stable motion of the corresponding humanoid
robot.

Several considerations arise with this simplification. First, side-swinging movements and
oscillations in the velocity of the robot’s body tend to decrease when the walking velocity and
step frequency increase. This phenomenon can be observed in human beings. A comparison of
different step periods using the 3D-LIPM to generate COM trajectories also reveals a similar trend.
As a result, when a humanoid robot is walking rapidly, its body movements can be approximated as
steady rather than periodically oscillating. The body of a legged robot then appears similar to that
of a moving vehicle, and its legs can be regarded as just another specialized driving system, such as
wheels.

Second, this model is essentially an inverted pendulum model, and models of this type have
previously been proven to be effective in motion planning and stabilization for bipedal robots. The
vehicle model is unique because its base is constantly moving: accelerating, decelerating, and turning
at will, which can be used to model continuous walking. By contrast, in other inverted pendulum
models, the base is always assumed to be stationary. These models, therefore, are good at modeling a
single walking step, but several such steps must then be consecutively connected to analyze continuous
walking, which adds complexity.

Third, the dynamics of the concentrated mass at the COM plays a key role in defining the footsteps.
Many previous studies have relied on such considerations, including studies on push recovery28 and
footstep adaption using the MPC method. The final outcome can be regarded as a set of carefully
planned footsteps that track the desired COM motions while satisfying stability constraints. In the
omnidirectional moving vehicle model, the dynamics of this concentrated mass is simulated by the
mounted ball, whereas the stability constraints are approximated by the shape of the supporting
vehicle. If we place such a vehicle into the scenario specified by Fig. 1, it must decelerate before
taking the specified sharp turn to avoid tipping over. This process can be translated into the adaption
of the footsteps by decreasing the stride, as expected.

The set of dynamics functions, the set of force synthesis functions and the geometric relationships
that exist in the model are expressed by Eqs. (1)–(3), respectively:

ax = v̇x + ω · vy ,

ay = v̇y + ω · vx ,

ε = ω̇ ;

(1)
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Fx = m · ax ,

Fy = m · ay ,

Mz = JC · ε ;

(2)

Fz = N + G ,

Mx = N · yN + Fy · h ,

My = N · xN + Fx · h ,

(3)

where (vx, vy) represents the translational velocity; ω is the angular velocity; ε is the derivative
of the angular velocity; (ax, ay) represents the acceleration of the COM in the forward and lateral
directions, described in the inertial reference system O–xyz; Fx , Fy , and Mz together denote the
equivalent net force acting on the model in the horizontal direction, whereas Fz, Mx , and My denote
the equivalent net force in the vertical direction; G is the gravity acting on the vehicle; and N denotes
the reaction force from the supporting ground, which is considered to act on the point (xN, yN ), where
the net moments Mx = 0 and My = 0 hold. Because there is no translational motion in the vertical
direction, Fz = 0 also holds. When (xN, yN ) is located within the supporting area of the vehicle, the
necessary reaction force N can be supplied and the model moves stably; otherwise, the model begins
to tip over because the contact with the ground can provide only a pushing force.

If the vehicle is assumed to be rectangular in shape for simplicity of calculation, then the constraints
will be expressed as in Eq. (4):

xmin
N < xN < xmax

N ,

ymin
N < yN < ymax

N .
(4)

The evolution of the above set of functions will yield constraints on the translational and rotational
movements of the system when Jc is ignored; however, the rotational acceleration must also be limited
by the finite force that the ground can supply to increase the self-spin. Therefore, μ is defined as the
ratio of the spin moment to the gravitational force, as shown in Eq. (5), and μ should lie below a
certain threshold, as also indicated in Eq. (5), to avoid slippage on the ground:

μ =
∥∥∥ �Mz

∥∥∥/∥∥∥ �G
∥∥∥ ,

μ < μmax .

(5)

Although the COM trajectory of a robot cannot have a constant acceleration during a step, the
vehicle is assumed to move with a piecewise constant acceleration and angular acceleration for
mathematical simplicity. This is an acceptable simplification because we are interested in the total
translation distance and turning angle within the time duration of a walking step (i.e., a stride) rather
than the detailed motion trajectory of the robot.

Analytical integration and approximation of the above set of functions, constraints, and
assumptions ultimately yield inequalities related to the IPCR, as shown in Eq. (6); further details of
the derivation are presented in Appendix A:

gxmin
N (tk+1 − tk)2

/
h < − (2�χ + ϕγ ) < gxmax

N (tk+1 − tk)2
/
h ,

gymin
N (tk+1 − tk)2

/
h < − (2�γ + ϕχ ) < gymax

N (tk+1 − tk)2
/
h ,

‖�ϕ‖ <
5g

4r2
μmax(tk+1 − tk)2 ,

(6)

where (tk+1 − tk) is the time duration of one step, h is the height of the COM, g is the gravitational
constant, (χ, γ ) represents the forward and lateral components of the translational stride, ϕ is
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Fig. 4. Strides and their variations between consecutive steps.

the bearing angle of a turning stride, and (�χ, �γ, �ϕ) represent the corresponding variations
between consecutive steps. A stride is essentially a transformation of parameters between two sets of
coordinates, defined with reference to an origin point at an offset from the landing foot of half the
distance between the two feet when the robot is standing still. Figure 4 illustrates the definition of
strides and the variation using two consecutive footsteps as examples.

When consecutive strides satisfy the IPCR defined in Eq. (6), they are considered to be reasonable;
otherwise, they may cause the robot to tip over.

4. Omnidirectional Foot Placement Adaptation
When a humanoid robot is walking omnidirectionally, a footstep cannot be placed in the desired
location if the constraints of Eq. (6) are not met; instead, it must be altered with respect to the
previous stride to achieve the smallest possible deviation from the intentions. All these considerations
together form an optimization problem.

4.1. Derivation of the optimization problem
The objective function of the optimization problem is expressed as the weighted sum of the squares
of the deviations between the planned and commanded strides (see Eq. (7)). A lower value of δ in
Eq. (7) indicates that the robot is exhibiting less error in tracking the commands it has been issued:

δ = λχ (χc − χk)2 + λγ (γc − γk)2 + λϕ(ϕc − ϕk)2 , (7)

where χc, γc, and ϕc represent the commanded stride; χk , γk , and ϕk represent the corresponding
planned stride to be optimized; and λχ , λγ , and λϕ are the weights specifying the relative preferences
for the individual components, where a higher value of λ implies that less error is desired for that
component. The λ values are fixed and determined beforehand to prioritize either translational or
turning movement.

In addition to the IPCR described by Eq. (6), the new stride must also satisfy certain geometric
and kinematic constraints. A combined elliptical boundary is assigned for the forward/backward
and lateral components, and an absolute threshold is imposed on the orientational variation; these
constraints are collectively expressed in Eq. (8):

|ϕk| � ϕmax ,

χ2
k

χ2
max

+ γ 2
k

γ 2
max

≤ 1 ,
(8)
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where χmax, γmax, and ϕmax are the maximum possible values of χ , γ , and ϕ, respectively, and act as
stride limits. The resulting nonlinear optimization problem is summarized in Eq. (9):

min λχ (χc − χk)2 + λγ (γc − γk)2 + λϕ(ϕc − ϕk)2

s.t. 2χk − 2χk−1 + ϕkγk + 2k1χmax ≤ 0 ,

− 2χk + 2χk−1 − ϕkγk − 2k2χmax ≤ 0 ,

2γk − 2γk−1 + ϕkχk + 2k3γmax ≤ 0 ,

− 2γk + 2γk−1 − ϕkχk − 2k3γmax ≤ 0 ,

χ2
k

χ2
max

+ γ 2
k

γ 2
max

− 1 ≤ 0 ,

max(ϕk−1 − k5ϕmax, −ϕmax) ≤ ϕk ,

ϕk ≤ min(ϕk−1 + k5ϕmax, ϕmax) ,

− χmax ≤ χk ≤ χmax ,

− γmax ≤ γk ≤ γmax .

(9)

The first through fourth constraint functions arise from the first two inequalities in Eq. (6), where
k1, k2, and k3 are expected to be known prior to optimization:

k1 = gxmin
N (tk+1 − tk)2

h
· 1

2χmax
,

k2 = gxmax
N (tk+1 − tk)2

h
· 1

2χmax
,

k3 = gymin
N (tk+1 − tk)2

h
· 1

2γmax
.

(10)

Notably, humanoids are always assumed to exhibit the same motion capabilities for sidestepping
left and right but may not have the same capabilities for stepping forward and backward. For this
reason, the first pair of constraint functions contains two parameters, k1 and k2, to represent different
forward and backward motion capabilities, but the second pair contains only one, k3, to represent a
symmetric sidestepping capability (i.e., gymin

N = −gymax
N ). This also reflects the shape of the vehicle

in Fig. 3, which is symmetric about the x axis but asymmetric about the y axis.
The sixth and seventh constraints on ϕk originate from the third inequality of Eqs. (6) and (8); they

are combined because both limit the range of the next turning step. The parameter k5 that appears in
these two constraints is described by the following expression:

k5 = 5g

4r2
μmax(tk+1 − tk)2 · 1

ϕmax
. (11)

The eighth and ninth constraints arise naturally from the valid ranges of the fifth constraint function.
Thus, the next footstep that best conforms to the desired stride is obtained by solving a quadratic

optimization problem with five nonlinear inequality constraints, as expressed in Eq. (9). The
optimization problem considered here involves only three variables, and the gradients for both
the objective function and the constraints can be easily obtained despite their nonlinearity. There are
several techniques that can be used to solve this problem with high efficiency, such as penalty-function-
based methods, Sequential Quadratic Programming (SQP) or the Method of Moving Asymptotes
(MMA).29 The Augmented Lagrange Method,30 a penalty-function-based approach, was chosen for
our simulations and experiments because of the availability of its source code.
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Fig. 5. Framework of the black-box optimization problem for determining the model constants.32

4.2. Discussion of the model constants
As is evident from Eq. (9), we obtain a new set of constants, namely, k1, k2, k3, k5, γmax, χmax, and
ϕmax, through transformation from the physical quantities that appear in the omnidirectional vehicle
model. This mathematical procedure is done for the following reason: although the virtual height
of the centralized mass can be simply set equal to the height of the COM, and the radius can be
calculated from the inertia of the centralized mass around the COM as described by Orin,31 the size
of the vehicle is extremely difficult to determine. It has no direct physical correspondence with a
robot; as mentioned before, it is only a representation of the robot’s vulnerability to stride variations.
By contrast, the new constants after transformation can be more easily determined from walking
experiments, as discussed in Section 5.

Moreover, the dimensionless ratios k1, k2, k3 and k5 in Eq. (9) have specific physical meanings.
For example, the first constraint function in Eq. (9) simplifies to Eq. (12) if the robot does not take
any turning steps:

χk − χk−1 � −k1χmax . (12)

When −1 < k1 < 0, the robot is not able to reach its maximum stride, i.e., χmax, within a single step
and must instead accelerate over several steps. By contrast, when k1 < −1, the robot is able to reach
χmax within a single step. Similar conditions apply for k2, k3, and k5. Therefore, these transformed
constants are essentially equivalent to the ratios between the maximum stride and the translational
acceleration limits.

These constants are essential for the omnidirectional vehicle model because they serve as the
bounds that define valid consecutive steps. The robot will either lose its stability or adopt an over-
conservative strategy during rapid reactive motion if the values of these constants are not chosen
appropriately.

5. Determination of the Model Constants
An optimization problem must be solved to determine the best configuration to achieve the best
reactive omnidirectional tracking quality within the robot’s motion capabilities. However, this is a
complex task for several reasons.

First, no well-defined criteria exist for evaluating the quality of reactive omnidirectional walking;
such criteria must consider at least the response quality, stability and walking speed, as mentioned
in Section 1, and should reflect the trade-off relationship among these three factors. Additionally,
the relationships between the seven model constants and the robot’s walking capability are also
unavailable. These two facts imply that the objective function to be optimized cannot be determined.

Second, it is also difficult to obtain the constraint functions for the specific problem at hand. The
relevant constraints must include at least the kinematic feasibility and dynamic stability. However,
the constraint functions are not scalable before the completion of the entire task of omnidirectional
walking, which is arbitrary and unpredictable.

Instead of struggling to express the problem explicitly, we can attempt to empirically derive these
parameters by performing specific experiments, in which the robot is continuously run through the
walking process using the same sets of velocity commands but different parameter configurations. By
recording the results and comparing them with each other, the optimal parameters can ultimately be
selected. The entire process can be summarized as a black-box optimization process, as illustrated in
Fig. 5, which contains no mathematical expressions for either the objective or the constraints. Hemker
et al.32 have previously presented an example of black-box optimization for humanoid walking speed
enhancement.
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Fig. 6. Stride commands issued in a standard experiment and the results of following these commands.12

5.1. Evaluation of reactive walking
The tracking error incurred during a particular experiment is a potential measure of performance
in reactive omnidirectional walking. The experimental process considered in Zhang et al.,12 which
comprises the series of desired stride commands depicted in Fig. 6, is adopted as the standard
experiment; the robot is expected to walk at its maximum forward stride; then to directly shift to
its maximum backward stride, its maximum leftward turning stride, and its maximum rightward
turning stride, in sequence; and finally to sidestep to its left- and right-hand sides, one after the other.
This standard process cannot replicate every possible omnidirectional condition, but it includes sharp
transitions in all three stride components (i.e., χ , γ , and ϕ) and thus can indicate the response quality
during such transitions. The tracking error with respect to the independent maximum stride commands
χ , γ , and ϕ tends to drive a compromise between the response quality and the maximum walking
speed. Finally, the evaluation is effective only if the entire walking experiment represented in Fig. 6
can be stably completed, which reflects the stability consideration. Therefore, this standard experiment
accounts for all three basic requirements of omnidirectional reactive walking while remaining simple
to perform using a robot.

The errors on all three components are squared, weighted and summed, as shown in Eq. (7), to
serve as the objective function in Eq. (9), and these errors are then summed over every step and
normalized, as shown in Eq. (13). A lower value of this measure indicates better tracking of the
walking intentions:

� =
∑

δk∑(
λχχ2

c + λγ γ 2
c + λϕϕ2

c

) , (13)

where δk for each step during the standard experiment is expressed as in Eq. (7). The denominator
of Eq. (13) is assumed to correspond to the condition in which there is no valid response stride for
the walking generator (i.e., χk , γk , and ϕk are all zero regardless of the stride command) and acts as
a normalization quantity to facilitate comparison among all experiments. If the standard experiment
is successful, without the robot falling over before it reaches the end of the entire walking procedure,
then Eq. (13) is used as the score. However, if the robot falls over at any point, then a value of +∞ is
recorded as the score. The objective is then to find the configuration of constants with the minimum
score.

5.2. Black-box optimization using a surrogate-model-based approach
The seven effective constants discussed in Section 4.2, which can be collectively expressed as a vector
x, together with the experimental results presented in Eq. (13), establish a mapping. Given 
 as the
valid range of x, the black-box optimization problem can be described as follows:

max
x∈


�(x), � : R7 → R . (14)

Candidate solvers for this problem can be broadly categorized into three different types: the
stochastic-based approach, the sampling-based approach, and the surrogate-model-based approach.32
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Because the exhaustive experiments required by the first two types of methods may destroy the
robot before the optimal values can be obtained, the final approach appears to be the best candidate
for solving this particular problem because it imposes far fewer demands in terms of experimental
evaluation. The Design and Analysis of Computer Experiments (DACE) approach established by
Sacks33, 34 is a widely used method of this type.

DACE relies on modeling a stochastic process called Kriging to approximate the behavior of an
objective function with high nonlinearity. The basic function is expressed as follows:

y(x) = f (x)Tβ + z(x) , (15)

where f (x) is the selected base function and z(x) is a variable corresponding to the stochastic process
of interest, which follows a normal distribution with an expectation value of zero and a variance of
σ . The values of the stochastic variable z(x) at different positions x share the same distribution but
are not independent; the covariance and correlation coefficient between any two points x(i) and x(j )

are described as follows:

cov
[
z
(
x(i)

)
, z

(
x(j )

)] = σ 2R
(
θ , p, x(i), x(j )

)
,

ri

(
x(j )) = corr

[
z
(
x(i)) , z

(
x(j ))] = R

(
θ , p, x(i), x(j )) . (16)

R(θ , p, x(i), x(j )) denotes the type of correlation and is defined as

R(θ , p, x(i), x(j )) = exp

(
−

k∑
h=1

θh

∣∣∣x(i)
h − x

(j )
h

∣∣∣ph

)
, (17)

where θh denotes the correlation strength of each xh component and ph can take any value on the
interval [1, 2]. Equations (15)–(17) describe the DACE stochastic process model, or the Kriging
model.34 The parameters of this model,

{
β, σ 2, θ , p

}
, are found via maximum likelihood estimation

based on sufficient experimental points. Simultaneously, the mean square error (MSE) of the
estimation can also be obtained using Eq. (18):

ŷ(x∗) = β̂ + rT R−1( y − 1 · β̂) ,

s2(x∗) = σ 2

[
1 − rT R−1r +

(
1 − 1T R−1r

)2

1T R−11

]
,

(18)

where β̂ is the estimated coefficient of the base function (which is always a constant value without
the involvement of x); R is the matrix of the correlation functions of the experimental points, with
ri

(
x(j )

)
in Eq. (16) denoting the element in the ith row and j th column; r is the vector of the

correlation functions of x∗ and the experimental points; and y is the result vector for the experimental
points.

This stochastic process model interpolates the experimental points using a continuously derivable
function, whose minimum value can be determined numerically using a nonlinear planning algorithm.
In other words, the mapping of the seven effective parameters to the evaluation result, for which an
explicit mathematical expression was initially lacking, is replaced by a surrogate function, allowing
the problem to be solved using classical nonlinear optimization methods.

In addition to the basic Kriging modeling process used in DACE, globally and locally balanced
sampling strategies are realized using the expected improvement (EI) function,34 and an experimental
design generated using the Latin hypercube approach35 is also adopted for the initial surrogate model.
The entire iterative algorithm is summarized in Algorithm 1.
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Algorithm 1 Iterative DACE optimization for model constants

1: Create N initial points x(i) using Latin hypercube sampling;
2: Evaluate �(x(i)) in Eq. (13) by means of walking experiments, i = 1, 2 . . . N ;
3: while iteration not terminated do
4: Build surrogate model by running DACE using the set of points x(i), i = 1, 2 . . . N ;
5: Search for the maximum x̂� of the EI function proposed by Jones et al.;34

6: Evaluate �(x̂�) in Eq. (13) by means of walking experiments;
7: Add x̂� to the point set;
8: N = N + 1;
9: Search for the minimum x̂�� of �(x) in Eq. (13) and output as the current result;

10: end while

This type of surrogate-model-based optimization is performed offline; thus, although it is time-
consuming, it is not computationally demanding during reactive walking.

6. Comparison and Applicability of the Strategy
Before the simulations and experiments are presented, a brief comparison of different footstep
adaption strategies is offered and the applicability of the overall proposal is discussed.

6.1. Comparison with the MPC approach
The two objectives of the hierarchical framework are to relieve the computational burden and eliminate
the unwanted bias from the issued walking intentions that arise in the coupled approach.

The latter objective can be achieved by means of the new planning framework: when the
commanded stride remains unchanged and the robot’s walking stride has also reached an unchanging
state, the IPCR simplifies to

gxmin
N (tk+1 − tk)2

/
h < −ϕsγs < gxmax

N (tk+1 − tk)2
/
h ,

gymin
N (tk+1 − tk)2

/
h < ϕsχs < gymax

N (tk+1 − tk)2
/
h ,

0 <
5g

4r2
μmax(tk+1 − tk)2 ,

where �χ , �γ , and �ϕ in Eq. (6) have all been replaced with values of zero. χs, γs, and ϕs are
the stable strides, which will be equal to the commanded strides denoted by χc, γc, and ϕc when
the commands conform to the stride limitations described by Eq. (8). The subsequent 3D-LIPM-
based preview controller will not introduce footstep changes and will generate trajectories strictly in
accordance with these pre-defined footsteps. As a result, the planned gait will exhibit no bias from
the intentions once the entire system has reached a stable state.

For the former task, the comparison and conclusion are not so simple. The chief component of the
MPC method is quadratic programming with linear constraints, whereas the footstep optimization
defined in Eq. (9) is also of this type but on a much smaller scale (only three variables) and with
nonlinear constraints. The costs of solving these two kinds of problem can be regarded as similar, but
the MPC method must run at each sampling step, which will always be at a much higher frequency
than that of the footsteps. Additionally, the proposed footstep adaption method can run in parallel
with the COM trajectory generation on an independent processer. As a result, the proposed adaption
approach seems more beneficial. However, the MPC method, as a coupled approach, does more work
in a single cycle of optimization. It can handle uncertain errors or disturbances through dynamic
feedback. This functionality has not yet been explored via the omnidirectional vehicle model.

Stability is the last but not the least difference between these two strategies. References [2, 9]
provide substantial criteria based on ZMP theory, especially within a single support period. Therefore,
the COM trajectories and adapted footsteps will fulfill the ZMP criteria at all times. By contrast, the
footsteps generated via the approximation provided by the omnidirectional vehicle model are based
on the IPCR, which is not as precise as the constraints in the 3D-LIPM. This is because of the
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Table I. Comparison of the key parameters of the physical robot MOS used in the experiments and the model
robot used in the dynamics simulations.

Parameter name/unit Physical robot MOS Sample model in OpenHRP

Body height/mm 583 1370
Body weight/kg 5.34 97.8
COM height/mm 344 750
Foot size/mm×mm 125×95 250×180

trade-off between the abstraction layer and the model precision. However, recall that the 3D-LIPM
also differs considerably from a real humanoid robot; the stability criteria derived from this model
also are not strictly valid, but are merely a much closer approximation to a physical robot than is the
omnidirectional vehicle model.

6.2. Applicability of the footstep adaption strategy
Theoretically, the proposed footstep adaption strategy can be implemented on almost any humanoid
robot, so long as it is capable of walking omnidirectionally. Moreover, the determination of the model
constants in Section 5 is based on iterative experimental optimization and requires no assumptions
other than the applicability of the 3D-LIPM to generate feasible motion. However, a physical
implementation may behave differently from expectations. For example, walking smoothness is
a fundamental requirement because no large oscillations or impulses from alternate foot landings are
considered in the vehicle model. A humanoid is assumed to move calmly and steadily if given rational
joint trajectories, even at a rapid walking speed, whereas in a physical robot, insufficient stiffness
of the mechanical structure, control error of the actuators and unavoidable impulses may introduce
large vibrations and randomness of motion, especially during rapid walking. These factors may cause
a robot to tip over before a sharp turn such as that depicted in Fig. 1. These phenomena are more
severe for an adult-sized humanoid robot than for a child-sized one because a larger robot has longer
legs, a more complex structure and larger reaction forces. However, solutions to these difficulties may
require mechanical design modifications and online stabilization, which are not discussed in detail in
this research.

7. Simulation and Experiments
Both computer simulations and physical experiments were performed to test the proposed strategy.
However, the robots used for the two types of tests were different: the simulations were performed
for a normal-sized robot to eliminate the larger randomness of motion mentioned above, whereas for
the physical implementation, we used a child-sized humanoid robot for better control of the walking
smoothness. The black-box optimization process was conducted for both kinds of robots to obtain
the best constants for each. Some of the key specifications of the robots are compared in Table I.

7.1. Simulations and discussion
OpenHRP,36 which is open source and is specifically designed for but not limited to humanoid
robotics, was chosen as the dynamics simulator. The robot model described in Table I is the sample
that is included in the OpenHRP wrapper. It was designed to walk at 0.4 s/step. The simulations were
run on a computer with an Intel Core i7 CPU and 2GB of memory with Ubuntu 10.04 installed. A
single standard walking experiment is depicted in Fig. 7.

We implemented the online footstep adaptation algorithm using NLOPT,37 an open-source
collection of optimizers. Specifically, the Augmented Lagrange Method,30 a penalty-function-based
approach, was used. The SURROGATES38 and DACE39 toolboxes for MATLAB were used for Latin
hypercube experiments, Kriging modeling and optimization. The initial values of the omnidirectional
vehicle constants, which were rather conservative, were tuned by hand and are shown in Table II.
The results of surrogate-model-based optimization, consisting of initial 49 experiments and 120
subsequent iterative walking experiments, are also shown in Table II. The values for a failed
experiment, in which the robot fell over, are also listed in the last column for comparison.
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Table II. Manually tuned values and optimization results from 49 Latin hypercube experiments and 120
iterative experiments.

Manually Manually Optimization Optimization Failed
Name/unit tuned #1 tuned #2 result #1 result #2 result

k1 −1.6 −0.2 −0.20 −0.69 −1.0
k2 1.6 0.2 0.87 0.81 1.0
k3 1.6 0.2 0.84 0.83 1.0
k5 1.0 0.2 0.97 0.96 1.0
χmax/mm 100 270 192 175 175
γmax/mm 40 80 68 66 66
ϕmax/

◦ 10 20 20 20 20
Score 0.427 0.408 0.186 0.183 +∞

Collision

Fig. 7. Overview of the simulations performed using the OpenHRP platform.

We observe from Table II that the manually tuned constants achieved values of the tracking error
that were larger than 0.4, whereas the two best results achieved scores below 0.2. Therefore, the
proposed optimization approach greatly enhances the reactive omnidirectional walking quality that
can be achieved while imposing an acceptable experimental workload (i.e., fewer than 200 trials).

The target velocity tracking results corresponding to optimization result #1 in Table II are shown
in Fig. 8. The footsteps and ZMP positions during walking are depicted in Fig. 9.

We can observe from Fig. 8 that the robot gradually sped up as it started to walk and then slowed
again before back-stepping, turning, or sidestepping, with reasonable acceleration and deceleration.
The planned footstep sequence was converted into a stable walking gait and successfully executed
by the model robot without falling over. The ZMP positions, though approaching the borders of the
feet, are all within the support polygon, especially during the period of abrupt changes in walking
intention. This outcome indicates that the robot could properly handle the inter-pace adjustments and
foot relocations by solving the optimization problem defined by Eq. (9) to smooth the sharp changes
in speed intentions and guarantee stability.

For comparison, the footsteps and ZMP positions from the failed experiment presented in
Table II are depicted in Fig. 10. The configuration shares the same maximum stride as in
optimization result #2 but includes different values of k1, k2, and k3, which mean that the
robot does not adapt its footsteps but instead reaches its walking intentions in a single step.
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Fig. 8. Footstep adaptation results in a standard experiment with the optimized model constants.
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Fig. 9. Footsteps and the corresponding ZMP positions in a standard experiment with the optimized model
constants. (a) Walking forward and backward. (b) Transition from straight walking to turning. (c) Transition
from turning to sidestepping. (d) Transition from sidestepping to stopped.

Consequently, it cannot complete the walking experiment because the ZMP positions fall outside of
the supporting polygon. This result illustrates the necessity of foot location adaptation during reactive
walking.

An arbitrary command sequence was then issued after the standard experiments were performed,
and the robot was able to follow it while maintaining walking stability, as illustrated in Fig. 11.
This result demonstrates that the constants reported in Table II are suitable not only for the standard
experiment but also for general reactive omnidirectional walking.
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Fig. 10. Footsteps and the corresponding ZMP positions in a failed experiment.
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Fig. 11. The tracking results for an arbitrary stride command sequence using the black-box-optimized constants.

7.2. Deployment on a physical humanoid robot
The entire scheme was also tested on a physical robot named MOS (Master Of Soccer; see the
left-hand side of Fig. 12), whose forebear participated in the humanoid league of the RoboCup
from 2012 to 2014, operated by team TH-MOS40 and team IKid.41 It is equipped with a two-level
control system, as shown in Fig. 12 (right): the upper onboard computer handles decision-making,
footstep generation, and hip-foot trajectories, whereas the lower controller is responsible for inverse
kinematics calculations and the dispatch of joint commands in real time. The procedure used to record
and optimizing the model constants was the same as in the simulations, except that the experiments
were performed directly on MOS.

The generation of footsteps via optimization as defined in Eq. (9) can be completed in less than 100
ms, which is only 1/3 of the duration of a single step and therefore satisfies the real-time requirement.

With its own optimized constants, MOS was issued omnidirectional commands as walking
intentions; the snapshots of the walking sequence shown in Fig. 13 correspond to the footstep
sequence shown in Fig. 14.

As observed from these snapshots and the stride-following footsteps, the robot was able to track
the issued walking intentions to the greatest possible extent, and the sharp changes in the commands
were smoothed, just as in the simulations. While walking, the robot gradually transitioned from
back-stepping to leftward turning and then to forward walking. The online stride adaptation strategy
was therefore successfully verified on this small robot with a limited computational capacity.

Although a set of model constants was determined using the same procedure as in the simulations,
the approach does not satisfy the assumption of Eq. (15) because a physical experiment lacks
determinacy. Even given the same model constants, the performance of a real robot tends to be
variable, and the optimization does not converge if the experiment conditions are not carefully
controlled. Fortunately, this shortcoming does not invalidate the applicability of the strategy as a
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Fig. 12. Appearance of the humanoid robot MOS and its control system.

Fig. 13. Snapshots of MOS following the omnidirectional walking intentions in physical robot experiments.
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Fig. 14. Footstep sequence following the omnidirectional walking commands issued to MOS.

whole because there are already several solutions available for noisy systems of this type, such as
that proposed in ref. [42], and these methods will be tested on a real robot in future research.

8. Conclusion and Future Work
In this paper, we present a foot placement strategy for omnidirectional reactive walking following
arbitrary intentions, representing the following contributions to the field:

A hierarchical planning framework is proposed that separates the footstep adaptation task from
that of COM trajectory generation. Thus, the time interval for footstep planning is increased to one
stride, and the heavy computational load is relieved. The planner can be implemented on a physical
robot with quite limited computing power.

A novel omnidirectional moving vehicle model is adopted to analytically describe the IPCR in
terms of inequalities. Through nonlinear optimization based on these inequalities and other kinematic
constraints, it is possible to generate the foot locations that best follow the issued commands while
eliminating the unnecessary bias from the desired strides that arises in the coupled approach.

By solving a black-box optimization problem based on the mapping between the evaluation
of a standard walking experiment and the seven effective model constants, it is possible to avoid
complex derivations of the unique characteristics of humanoid walking dynamics, and the surrogate-
model-based approach can be adopted to reduce the necessary number of experiments. The constants
determined using this method do not function only for the standard experiments from which they are
obtained but rather are equally applicable to arbitrary walking intentions.

In this paper, only large variations in the issued commands were addressed using the proposed
methods; the problem of stride adaptations necessitated by disturbances such as external forces or
uneven terrain remains uninvestigated. Future work may focus on a unified strategy to cope with all
of these situations. In addition, the performance gap between a computer simulation and a physical
robot with regard to surrogate-model-based optimization is also worthy of further investigation.
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Appendix A. Mathematical derivation of the IPCR inequalities from the omnidirectional
vehicle model
xN and yN are obtained from Eq. (3) as shown in Eq. (A1):

xN = Fxh

G
,

yN = Fyh

G
.

(A1)

By combining these expressions with Eqs. (1) and (2) and using the gravity equation G = mg, we
obtain Eq. (A2):

xN = − (v̇x + ωvy)h

g
,

yN = − (v̇y + ωvx)h

g
.

(A2)

g is the gravitational constant. When χ , γ , and ϕ are defined as the stride in the forward direction, the
stride in the lateral direction, and the turning angle, respectively, Eq. (A3) below holds for (tk, tk+1),
which is the time duration of a single step:

χ =
∫ tk+1

tk

vxdτ ,

ϕ =
∫ tk+1

tk

ωdτ .

(A3)

https://doi.org/10.1017/S0263574717000157 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574717000157


Footstep adaptation strategy 77

Under the assumption of piecewise constant acceleration within a step, integration of both sides
of Eq. (A2) yields

∫ tk+1

tk

xNdτ = −
∫ tk+1

tk

(v̇x + ωvy)h

g
dτ = −h

g

(
δvx +

∫ tk+1

tk

ωvydτ

)
,

∫ tk+1

tk

yNdτ = −
∫ tk+1

tk

(v̇y + ωvx)h

g
dτ = −h

g

(
δvy +

∫ tk+1

tk

ωvxdτ

)
,

(A4)

where δvx and δvy are the variations in vx and vy during (tk, tk+1) and are related to δχ and δγ as
follows:

δχ = 1

2
δvx(tk+1 − tk) ,

δγ = 1

2
δvy(tk+1 − tk) .

(A5)

Because of the constant acceleration assumption, we can approximate the second term in Eq. (A4)
as ∫ tk+1

tk

ωvxdτ ≈ ϕχ

tk+1 − tk
. (A6)

When δvx , δvy , and the second integration term are replaced with Eqs. (A5) and (A6), Eq. (A4)
becomes ∫ tk+1

tk

xNdτ ≈ − h

g(tk+1 − tk)
(2δχ + ϕγ ) ,

∫ tk+1

tk

yNdτ ≈ − h

g(tk+1 − tk)
(2δγ + ϕχ) .

(A7)

Because xN and yN are bounded in definite ranges of (xmin
N , xmax

N ) and (xmin
N , xmax

N ), respectively,
from Eq. (4), the following can be derived:

xmin
N (tk+1 − tk) <

∫ tk+1

tk

xNdτ < xmax
N (tk+1 − tk) ,

ymin
N (tk+1 − tk) <

∫ tk+1

tk

yNdτ < ymax
N (tk+1 − tk) .

(A8)

Thus, we obtain the first two constraint functions in Eq. (6). For the final constraint regarding
turning, Mz in Eq. (5) is replaced with Jcε, and integration of both sides yields

∫ tk+1

tk

μdτ =
∫ tk+1

tk

JCε

G
dτ = JC(ωk+1 − ωk)

G
= 2JCδϕ

G(tk+1 − tk)
,

∥∥∥∥
∫ tk+1

tk

μdτ

∥∥∥∥ < μmax(tk+1 − tk) .

(A9)

Because a spherical shape with Jc = (2/5)mr2 is supposed for the centralized mass, from Eq. (A9),
we ultimately obtain

‖δϕ‖ <
5g

4r2
μmax(tk+1 − tk)2 , (A10)

which serves as the final inequality in Eq. (6), thus concluding the procedure.
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