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Abstract
Disasters, such as cyclones, create conditions that increase the risk of infectious disease
outbreaks. Epidemic forecasts can be valuable for targeting highest risk populations before
an outbreak. The twomain barriers to routine use of real-time forecasts include scientific and
operational challenges. First, accuracy may be limited by availability of data and the
uncertainty associated with the inherently stochastic processes that determine when and
where outbreaks happen and spread. Second, even if data are available, the appropriate
channels of communication may prevent their use for decision making.
In April 2019, only six weeks after Cyclone Idai devastated Mozambique’s central region
and sparked a cholera outbreak, Cyclone Kenneth severely damaged northern areas of
the country. By June 10, a total of 267 cases of cholera were confirmed, sparking a vacci-
nation campaign. Prior to Kenneth’s landfall, a team of academic researchers, humanitarian
responders, and health agencies developed a simple model to forecast areas at highest risk of
a cholera outbreak. The model created risk indices for each district using combinations of
four metrics: (1) flooding data; (2) previous annual cholera incidence; (3) sensitivity of
previous outbreaks to the El Niño-Southern Oscillation cycle; and (4) a diffusion (gravity)
model to simulatemovement of infected travelers. As information on cases became available,
the risk model was continuously updated. A web-based tool was produced, which identified
highest risk populations prior to the cyclone and the districts at-risk following the start of the
outbreak.
The model prior to Kenneth’s arrival using the metrics of previous incidence, projected
flood, and El Niño sensitivity accurately predicted areas at highest risk for cholera.
Despite this success, not all data were available at the scale at which the vaccination
campaign took place, limiting the model’s utility, and the extent to which the forecasts were
used remains unclear. Here, the science behind these forecasts and the organizational struc-
ture of this collaborative effort are discussed. The barriers to the routine use of forecasts in
crisis settings are highlighted, as well as the potential for flexible teams to rapidly produce
actionable insights for decision making using simple modeling tools, both before and during
an outbreak.
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Introduction
Prior to May 2019, Northern Mozambique had never witnessed a storm as powerful and
potentially damaging as Cyclone Kenneth. Just six weeks after Cyclone Idai (March 2019)
devastated the country’s mid-section, sparking a cholera outbreak that resulted in over 6,600
cases and a successful mass-vaccination campaign that reached 900,000 people, Cyclone
Kenneth threatened an unprecedented repeat in the Cabo Delgado area. According to
the World Health Organization (WHO; Geneva, Switzerland) May 10 situation report,
254,750 people were affected and more than 45,000 houses were destroyed.1 By May 9,
a total of 18,000 people were displaced in accommodation centers. Water, sanitation,
and health care were all badly damaged in a region of prior cholera incidence, and hundreds
of cholera cases were subsequently recorded in and around the city of Pemba. Over 200 cases
of cholera were confirmed by June 10,2 prompting a vaccination campaign, and over 252,000
doses of the single-dose cholera vaccine were administered over several weeks.3 The scale,
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speed, and geographic scope of the impact of the two natural disas-
ters inMozambique are examples of how pre-existing endemic dis-
eases like cholera can escalate into large-scale outbreaks, resulting
in a humanitarian health crisis. These unfortunate events raise
important questions about the state of public health preparedness
and opportunities to strengthen future responses to mitigate the
morbidity and mortality due to cholera and other epidemic-prone
infections.

In the wake of disasters, including those with natural shocks
such as cyclones, disruption to infrastructure can create conditions,
such as population displacement and overcrowding, that increase
the risk of outbreaks of cholera and other infectious diseases,
particularly those that are endemic in non-disaster settings.4

When sources of clean drinking water are contaminated or inacces-
sible, for example due to flooding, cholera can rapidly spread
through shared drinking vessels or in the environment.
Although an oral vaccine stockpile exists, vaccines must be
deployed quickly in order to effectively contain the spread of
disease, and by definition the number of vaccines delivered will
be much smaller than the total population at-risk. Treatment with
oral rehydration salts and the staffing of cholera treatment centers
are also required for outbreak response and bring their own resource
allocation challenges. Since roads and other infrastructure critical
to treatment and vaccine deployment are also likely to be impacted
by flooding or other natural disasters, the logistical constraints are
often a major barrier to the success of response and containment
efforts. Given these challenges, careful consideration of how to
deploy treatment and who receives the vaccine becomes critical.

In this context, epidemic forecasts that would allow policy mak-
ers and aid agencies to target the highest risk populations leading
up to an outbreak, and to prioritize particular locations for the
deployment of the vaccine, would be a valuable decision-making
tool. Infectious disease forecasting is extremely challenging, and
the level of uncertainty associated with the inherently stochastic
processes that determines when and where outbreaks happen
and how they spread can be overwhelming, particularly in areas
where data quality is low and reporting is unreliable. However,
recent advances in statistical and mechanistic model frameworks,
and the advent of new data streams on basic population-level
parameters from mobile devices and social media, offer promise
of forecasts that can at least provide some information about where
to expect cholera to emerge and spread.5–7

Apart frommethodological and data-availability issues involved
in building disease transmission models, the heart of the matter for
health response remains tightly linked to multi-actor coordination
and data logistics, including the capacity to translate research
protocols and findings between academics and emergency
responders. Emergency responders are aware of context-specific,

post-disaster conditions that can shape how health operations
are planned to mitigate an outbreak of disease. For example, the
commencement of vaccination campaigns in Mozambique
occurred during the Holy Month of Ramadan, requiring a close
integration of community engagement and social mobilization
campaigns to ensure successful vaccination rates. In 2009,
Malcolm MacLachlan proposed a transdisciplinary model of
“integrative expertise” with the aim to integrate a wider diversity
of disciplines to address global health challenges. The approach
and vision aim to recognize and build a body of expertise between
disciplines and practices that value context, research processes, and
the interplay of knowledge domains.8 Over the past decade, trans-
disciplinary research has played an increasing role in the National
Institutes of Health (NIH; Bethesda, Maryland USA) research
activities,9 and the West African Ebola epidemic prompted
discussions of how academics and humanitarians can best work
together in emergencies.10 However, there is a need to better
understand transdisciplinary disaster global health research that
is translational in purpose with the aim to impact near real-time
health response activities.

Report
Here, an approach to cholera forecasting in near real-time that
reflects the work of a team of academic researchers, humanitarian
responders, and health agencies directly responding in
Mozambique before and during Cyclone Kenneth (Figure 1) is
described. Simple analytic methods were used for speed and clarity,
and a web-based tool was created for identifying the highest risk
populations prior to the cyclone, as well as a tool for forecasting once
cholera emerged. The risk maps were produced and shared in near
real-time with humanitarian responders in Mozambique, including
the InstitutoNacionalDe Saúde (INS;National Institute ofHealth)
andMinistério da Saúde (MiSAU;Ministry ofHealth) staff and the
Expanded Programme on Immunization (EPI) teams at the
Centers for Disease Control and Prevention (CDC; Atlanta,
Georgia USA) and WHO. Through constant communication,
the analytical results produced were matched to the needs of policy
makers. These simple models accurately predicted key locations of
emergent infection in Pemba and Mecufi.

Nevertheless, significant challenges remained for connecting
model outputs with real-time, tactical decision making given
persistent barriers to uptake of new research during a rapid,
on-going, multi-stakeholder response. It is unclear the extent to
which decisions on the ground were influenced by these risk maps,
but this approach represents an important case study in how
real-time forecasting could work on a more routine basis. In
particular, the rapid formation of flexible teams that include diverse
academic disciplines and individuals with operational experience

Kahn © 2019 Prehospital and Disaster Medicine

Figure 1. Organizational Structure Reflecting the Team of Academic Researchers, Humanitarian Responders, and Health
Agencies.
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and humanitarian data expertise that are in close proximity to
implementation of interventions will be critical to the use of
forecasts in public health emergencies moving forward. Some of
the bottlenecks and constraints for scaling this approach in the
future are discussed. In particular, even when the supply of
real-time information is provided, without technical capacity to
understand forecasts, and interest in using them to make decisions,
these efforts will fail to have impact.

Methods
A simple analytic approach was used, combining information on the
extent of flooding from the cyclones, previous cholera outbreaks, and
population sizes to forecast the spread of cholera from the two dis-
tricts, Beira and Pemba, that weremost affected byCyclone Idai and
Cyclone Kenneth, respectively. For each district in Mozambique,
the risk of a cholera outbreak was modeled based on four metrics.
First, for each district, publicly available projected and actual
disaster-specific flood datawere obtained fromCopernicus (European
Commission; Brussels, Belgium).11,12 Annual cholera incidence
from previous years13 and the sensitivity of previous outbreaks to
the El Niño-Southern Oscillation cycle14 were used as a measure
of the districts’ vulnerability to cholera outbreaks independent of
the impact of the cyclones. Finally, a diffusion (gravity) model was
used to simulate movement of infected travelers from Beira or
Pemba, using Facebook Data for Good (Facebook Inc.; Palo Alto,
California USA) high-resolution population data.15 The gravity
model,16 which is commonly used in epidemiological models in the
absence of detailed mobility data, assumes that travel from Pemba
or Beira occurs based on their population size, the population size
of the receiving district, and the geodesic distance between the source
and the receiving district according to the formula:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
populationsource

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
populationdestination

p

distance
(1)

Each metric was scaled between zero and one to obtain four inde-
pendent risk indices where “zero” indicates the lowest risk and “one”
indicates the highest risk.The average of the four risk indiceswas then
used to calculate the final risk index for each cyclone. Additionally, in
the case of Cyclone Kenneth, to respond to the outbreak in real-time
as information about cases became available, the diffusion model risk
index was calculated as the weighted average of the simulated travel
from all places that reported cases in the previous week, with the
weights determined by the proportion of cases for each reporting
district. A web-based tool was produced for conveying the model
results, identifying highest risk populations prior to the cyclone and
the districts at highest risk following the start of the outbreak.17

The web-based tool was developed using the Shiny platform in
RStudio Version 1.1.423 (RStudio Inc.; Boston, Massachusetts,
USA), and the resultswere initially communicated throughblog posts
byDirect Relief (Santa Barbara,California USA) and shared through
thepublicly available informationportalReliefWeb, a digital service of
the UN Office for the Coordination of Humanitarian Affairs
(OCHA; New York USA/Geneva, Switzerland).18,19 All code and
data for replicating the results are publicly available on GitHub
(GitHub Inc.; San Francisco, California USA).20

Results
The model based on Cyclone Kenneth’s projected path, previous
incidence, and El Niño risk (Figure 2 and Table 1) accurately pre-
dicted the places at highest risk of cholera. Pemba and Mecufi

districts, where cholera cases were reported, had the third and fifth
highest risk scores, respectively. The updated risk predictions based
on the gravity model and reported flood data, following the initial
reports of cholera cases in Pemba, are shown in Figure 3.

Discussion
Using simple modeling methods, areas at high-risk for cholera fol-
lowingCyclone Kenneth were successfully identified. Themodeling
itself and creation of the risk scores were quick and easily adaptable
when additional relevant data sources became available. Despite this
success, not all data were available at the scale at which the vaccine
campaign took place, limiting the model’s utility. Specifically,
vaccination campaign planning was conducted in Cabo Delgado
at the neighborhood level (Admin 4), yet publicly available boundary
data were only available for district subdivisions (ie, “postos”) at the
Admin 3 level. Additional discussions were requiredwith theHealth
Cluster and the Ministry of Health representatives in Pemba to
access Admin 4 boundary data and link to available population data
sources to update the model at the relevant operational scale.
Obtaining data sources and aggregating them to the same

Kahn © 2019 Prehospital and Disaster Medicine

Figure 2. Districts at Highest Risk from Projected Path of
Cyclone Kenneth (Black Line) Using the Metrics of Previous
Incidence, Projected Flood, and El Niño Sensitivity.
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administration level were the rate-limiting steps. To bolster future
efforts, common operational humanitarian data at the scale of
operational activities should continue to be reviewed and made
available aspart of a preparedness framework, to account for planning
requirements specific to emergency response.

For forecasts of infectious disease transmission to be useful to
health- and humanitarian-response policy makers in the aftermath
of natural disasters, they must be made available in near real-time
and continuously updated before and during an outbreak as infor-
mation becomes available. To date, there are few examples of this
actually working successfully. During the 2013-2016West African
Ebola outbreak, many attempts were made to forecast the spread of
Ebola in real-time, with varying levels of accuracy.21,22 While
efforts have been made to increase data availability in the midst
of outbreaks,23,24 one challenge to forecasting is that epidemiologi-
cal data are typically not shared in formats that are easily analyzed
by agencies involved. Other information necessary for forecasting,
such as the population distribution and density, and – crucially –
the population mobility patterns that will spread disease, is often
lacking at the scale, format, and timeliness needed to be integrated
into models. What data are available can often be on the wrong
spatial resolution.

Exacerbating these data availability issues, the modeling itself
requires substantial expertise that is generally found among
researchers in academic institutions and covers more than one area
of expertise (eg, geographic information systems, mapping, and
infectious disease modeling). Health practitioners, and even
academic medical or public health researchers, may not have the
modeling literacy or familiarity to quickly interpret the model or
understand its limitations and generalizability, limiting their ability
to translate findings to response decision makers. Academics often
do not have access to responding agencies and do not know the
relevant policy questions. Thus, the data, human capacity, and
appropriate communication channels are often lacking for rapid
response to a potential or emerging outbreak. These issues in infor-
mation management, trusted relationships, and transdisciplinary
and trans-practice team communication skills create compounded
collaboration challenges.

There is a clear distinction to be made between data sets that are
already available and need only be compiled on the right spatial
scale for a particular location, and real-time data that emerges in
the course of an outbreak. The first data sets are amenable to

curation and storage in central repositories, and there have
been efforts to make these available through WorldPop
(Southampton, England), Facebook, the Humanitarian Data
Exchange (OCHA), and other groups.25–27 The second category
of data sets, which are muchmore important – the timing, location,
and number of disease cases, for example – are much more difficult
to generate and curate on the time-scale of an outbreak. The
agencies that collect such data often do so in difficult conditions
where data collection and dissemination in the formats needed
for modelling are simply not a priority. As a result, if they are
reported publicly at all, these data are likely to be reported as a
sporadically updated pdf document that is not immediately
amenable to further analysis.

Furthermore, articulating the policy decisions that need to be
made in a way that is amenable to a modeling framework is
challenging, particularly as most agency workers and humanitarian
health responders are not trained in the design or interpretation of
epidemiological models. For example, the question of which
districts to prioritize for vaccination efforts to avoid the spread

Province District Population

Nampula Lalaua 98,397

Cabo Delgado Chiúre 171,264

Cabo Delgado Pemba 313,852

Tete Moatize 416,709

Cabo Delgado Mecufi 37,910

Nampula Meconta 201,581

Cabo Delgado Montepuez 256,119

Zambezia Inhassunge 101,215

Sofala Dondo 668,971

Cabo Delgado Macomia 114,785
Kahn © 2019 Prehospital and Disaster Medicine

Table 1. Districts at Highest Risk from Projected Path of
Cyclone Kenneth Using the Metrics of Previous Incidence,
Projected Flood, and El Niño Sensitivity

Kahn © 2019 Prehospital and Disaster Medicine

Figure 3. Districts at Highest Risk after Cyclone Kenneth
Made Landfall Using the Metrics of the Reported Flood
Data and the Gravity Model.
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of cholera is a reasonable modeling question, but the specific village
targets and where to put treatment centers may not be. Similarly,
models can provide insight into relative risks and compare different
intervention scenarios, but they rarely make useful predictions
about absolute numbers of cases. This mismatch between the need
to make concrete decisions about the allocation of limited
resources, and the potential value and limitations of modeling,
can paralyze efforts on both sides to translate findings to the field.
Previous literature has called for advances in transdisciplinary
knowledge domains between researchers across disciplines and
practitioners to make sense of empirical knowledge.28 This study
forecasting the spread of cholera described here supports the need
for advancements in the analytical pipelines for rapid disease
forecasting, and a focus on building networks of interdisciplinary
teams for crisis response.29

There are two aspects from this study that are particularly
important; first, the modeling team was embedded in an academic
environment that facilitated broad engagement with domain-
specific experts across a range of fields, and at other institutions
(in this case Justin Lessler and other cholera experts at Johns
Hopkins University [Baltimore, Maryland USA]). Academics
are well-positioned to conduct this work because they are at the
forefront of the science of forecasting and infectious disease
epidemiology. Second, the involvement of experts at agencies like
Direct Relief andNetHope (McLean, Virginia USA), and a hybrid
team member from NetHope and Northwestern University
(Evanston, Illinois USA) that understood the methods and value
of modeling, allowed for constant feedback with the WHO,
Health Cluster, and others on the ground, and importantly, for
well-formulated, policy-relevant modeling questions to be relayed
to the modeling team, and model results to be communicated back
to policy makers.

A recurring issue for the sustainability of an approach like this is
that of incentives. Currently, many actors responding directly to a
crisis may not see enough value in modeling that they are willing to
change current practice and invest time during an emergency to
collect and curate data and absorb information from risk maps.
Academics are not incentivized to respond to outbreaks, and in fact
in many cases, they are obliged not to, because they are funded on
grants which dictate how they use their time. Since the turn-around
time for grants is lengthy, outbreaks are often over before any rapid
grant mechanism could possibly take effect. Despite the enormous
pool of expertise available for modeling and analysis, therefore, only
flexible funding that supports participation in such teams can pro-
vide sustainable academic engagement. As forecasting methods
continue to develop and improve, there is a need to systematically
incorporate modeling into outbreak response and to better under-
stand the types of data and human logistics that need to be organ-
ized in sufficient time, and with sufficient connection to the
relevant response networks, that such modeling might influence
operational strategy.

Conclusion
This study was an example of how a small, flexible team of research-
ers and implementing humanitarian responders can work together to
produce forecasts in near real-time, before and during an outbreak. In
the aftermath of two devastating cyclones, simple modeling tech-
niques produced accurate predictions of the emergence and spread
of cholera that had the potential to guide decisions in the response.
Using a transdisciplinary approach, co-design and co-production
occurred30 regularly during the effort among academics, non-
academics, and hybrid team members with both roles. This experi-
ence and the lessons learned from it can inform an important
template that could be replicated and scaled in the future.
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