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We investigate the optimal path of the primary surplus that a government will choose to
minimize costs that derive from exceeding the Maastricht criteria and generally of a
“stability pact,” where we assume three components of costs that are related to (1) the
debt-to-GDP ratio, (2) the overall deficit-to-GDP ratio, and (3) the acceptance level of
savings in the economy. We show that various political-economic settings can result in
completely different equilibrium strategies of the debt-to-GDP ratio and the primary
deficit. The spectrum of possible optimal strategies ranges from no stationary solutions to
multiple equilibrium and cyclical solutions and from positive to negative levels of the
optimal debt-to-GDP ratio. Our results emphasize the importance of macroeconomic and
behavioral (acceptance rate of a policy) variables in order to explain complex economic
time series.
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1. INTRODUCTION

This paper is motivated by the fact that most governments of EU countries had
to implement a retrenchment program to meet the Maastricht criteria in order
to participate in the European Monetary Union (EMU). A number of papers
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[recently, Prskawetz (1998) and Prskawetz et al. (1998)] consider the dynamics of
this or similar adjustment processes. However, problems of deficits and excessive
spending will not disappear in the near future. Moreover, the constraints are soft
despite all the rhetoric. This motivates us to investigate the long run, where parts
of the Maastricht criteria are compatible with the (endogenous) steady states of a
dynamic system. However, as we demonstrate, the evolution may never reach, or
at least may not remain in, this equilibrium, or it may attain this equilibrium in a
nontrivial pattern.

There are various reasons for missing the targets, predominately positive expla-
nations from Public Choice and normative, if one believes in Keynesian control
of economies. In both cases the reason is that overachieving the target produces
little benefit, if any. On the other hand, failing to meet a criterion marginally be-
cause of increased spending has no costs, but substantial benefits, either because a
constituency, which is crucial for reelection, receives a subsidy, or because deficit
spending reduces unemployment. These last remarks highlight the connection of
this paper with the political business cycle (PBC) literature, which dates back at
least to Nordhaus (1975) and Hibbs’ (1977) partisan model; for more recent sur-
veys, see Schneider and Frey (1988), Mueller (1989), and Nordhaus (1989). The
approaches of both Nordhaus and Hibbs rely on voters who can be fooled; Alesina
(1987), however, is a first attempt to derive PBC’s when voters have rational
expectations.

Although definitely related to this literature, this paper differs in important as-
pects. First, the results in the PBC literature depend on the exogenous election date
and the nonmonotonicity of the optimal strategies of governments seeking reelec-
tion. Thus, if the election date were very far away, the cycle would disappear in all of
these models and be replaced by monotonic strategies. Second, the PBC literature
focuses on macroeconomic variables, which is problematic because important pol-
icy variables, such as monetary growth, cannot be chosen by the government, either
because of independent central banks (e.g., in Germany) or because of pegging the
currency to another currency (such as Austria and the Netherlands did with respect
to the DM). Moreover, transfers seem more important to support-seeking politi-
cians than do elusive (from the voter’s point of view) “macroeconomic” variables
[see Buchanan and Wagner (1977)]. A recent empirical investigation of PBC’s
with respect to spending patterns is that of van Dalen and Swank (1996). They
find—as expected—increasing expenditures prior to elections for both left- and
right-wing governments, albeit geared to a different clientele. Although the paper
of van Dalen and Swank (1996) and, in fact, the entire PBC literature are concerned
about a short planing horizon (with a maximum of 4 to 5 years), the accumulation
of debt and the expansion of deficits is a highly sluggish process and retrenchment
will be even more sluggish. Figure 1 shows the debt-to-GDP ratios and overall
deficit-to-GDP ratios, subsequently denoted as debt ratios and overall deficit ra-
tios, of some countries, which highlights the large time constant of this process
compared with expenditures.
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FIGURE 1. Debts and overall deficits from 1990 through 1997 for Austria, Sweden, France,
Italy, and the Netherlands [Source: Statistik Austria (1999)].

2. MODEL

We consider a long-lasting government that lacks any reelection constraint. How-
ever, to meet the Maastricht criteria (indicated by the superscript M in the follow-
ing) the government needs to adjust its debt to GDP ratio d and the overall deficit
ratio rd − u, where r denotes the nominal interest rate and u is the primary deficit
(u < 0) or primary surplus (u > 0), respectively.

Associated with the necessary retrenchment policies, the government faces costs
for debt, k(d, d M), and for the overall deficit, g(rd − u, (rd − u)M), and domestic
costs associated with the necessity to save, c(u, x), where x denotes the equilibrium
acceptance rate of savings by the public as defined later.1

Reasons for the international costs associated with large debts and deficits can
be of a normative and a positive nature. For example, high debts reduce the ratings
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of an economy, which will increase the interest costs. Positively, politicians of a
country notoriously failing to achieve the criteria might be treated at international
meetings if not like the pariah, then like poor beggars. Domestic costs associated
with deficits may be due to fiscal conservatism prevailing in some parts of the
constituency, despite decades of Keynesian policies.2

Since a retrenchment policy cuts the population’s real income either directly
through increased taxes or indirectly through a reduction in public services and
transfers, we introduce the last cost item to purely reflect political costs. These costs
depend on the population’s understanding of the necessity and thus of the willing-
ness to save, x . As a consequence, politicians, who would like to reduce debt and
deficits, which requires dramatic changes in the primary surplus u, face adjustment
costs [for a recent survey of adjustment, albeit in a different and largely empirical
context, see Hamermesh and Pfann (1996)].3

Summarizing, a government tries to devise a strategy of primary surpluses
{u(t), t ∈ [0, ∞)}, deficits if u(t) is negative, such that the present value of the
overall costs, using the subjective discount rate ρ > 0, becomes minimal:

min
u(t)

∫ ∞

0
e−ρt [k(d, d M) + g(rd − u, (rd − u)M) + c(u, x)]dt. (1)

Formulation (1) incorporates the Maastricht criteria, d M = 0.6 and (rd − u)M =
0.03, as parameters to refer to the motivation of this investigation.4

Figure 2 is a graph of the three cost items in (1). The costs arising from debt,
k, and from deficit, g, are asymmetric with respect to the Maastricht target. In
Figure 2, a nonlinear example of the function k and a linear example of the function

FIGURE 2. Graphical representation of the costs for debt (k), deficits (g), and
retrenchment (c).
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g are drawn. Finally, a symmetric example is drawn for the political costs of
retrenchment, c, which might be asymmetric as well since excessive spending
hurts less than excessive saving.

The maximization of the objective (1) is subject to two dynamic constraints.
The first constraint is a pure accounting relation for d, the debt-to-GDP ratio (in
short, the debt) as given by5

ḋ = (r − θ)d − u = (rd − u) − θd. (2)

That is, the debt-to-GDP ratio grows by the difference between the nominal in-
terest cost r and the nominal economic growth θ minus the primary “surplus” u.6

We assume that δ := r − θ is positive and less than the subjective discount rate,
0 < δ < ρ.7

The second dynamic constraint concerns the costs to the politicians if they
“surprise” the electorate with the necessity to increase saving for Maastricht or any
other purpose. In the objective (1), we assume that voters penalize the politicians for
savings, that is, primary surpluses, exceeding the people’s willingness to support
retrenchment. These ideas are captured by the differential equation

ẋ = τ(x̄ − x), x(0) = x0. (3)

That is, the voters change their acceptance level of saving—this is what x(t)
describes in contrast to the actual saving as given by the primary surplus, u(t)—
proportional to the deviation from the equilibrium level, x̄ , which depends on
some fundamentals. This relation (3) can be explained as an adaptive expectation
mechanism, where the voters, reading new information about some fundamentals,
update their acceptance for primary surpluses depending on the time constant τ .
Another, equivalent interpretation is that the present acceptance level of retrench-
ment x depends on the history of readings and other information about debt and
savings (the primary surplus ratio or, respectively deficit if u < 0). Assuming a
linear relation, we obtain

x(t) = α

∫ t

−∞
exp(−τ(t − ν))d(ν)dν + β

∫ t

−∞
exp(−τ(t − ν))u(ν)dν. (4)

Differentiating (4) with respect to time implies (3) with a linear relation for the
equilibrium acceptance level

x̄ = α̃d + β̃u, (5)

where 0 < α̃ := α/τ, 0 < β̃ := β/τ .
Summing up, the objective of the government is to choose an optimal level of

the primary surplus (respectively, primary deficit) to minimize aggregate present
value of losses, (1), subject to the evolution of the government debt, (2), and
the equilibrium acceptance rate of savings, (3), and given an initial level of the
debt-to-GDP ratio, d(0), and the equilibrium acceptance rate of savings, x(0).
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3. OPTIMALITY CONDITIONS AND STABILITY ANALYSIS

In this section we apply Pontryagin’s maximum principle [see Feichtinger and
Hartl (1986) or Leonard and Long (1992)] to solve for the optimal time path of the
debt, the primary deficit, and the equilibrium acceptance rate of savings. By locally
linearizing the resulting dynamical system around its steady state, we determine
the local stability properties.

To simplify, we assume that the costs of debt, k(d, d M), and the domestic costs
associated with the necessity to save, c(u, x), depend on the difference of their
respective arguments:

k(d, d M) = κ k̃(d − d M), k̃ ′ > 0, (6)

c(u, x) = γ c̃(u − x), c̃′ > 0, (7)

where κ and γ are constant parameters and k̃ and c̃ are scalar functions, which
vanish for the argument zero.

The costs associated with a deficit are assumed to be linear:

g(rd − u, (rd − u)M) = ϕ[(rd − u) − (rd − u)M ], (8)

with the proportionality factor ϕ.
To solve the optimization problem, we define the current-value Hamiltonian

H(d, x, u, λ, µ) letting λ and µ denote the current-value costate variables corre-
sponding to d and x , respectively. The Hamiltonian maximizing condition8

∂ H

∂u
= 0

yields
−γ c̃′(u − x) + ϕ − λ + µβ = 0, (9)

from which we derive for interior points

u = x + (c̃′)−1((ϕ − λ + µβ)/γ )
(10)

= x + h(µβ − λ),

where we define
h(·) := (c̃′)−1((ϕ + ·)/γ ). (11)

The optimal intertemporal evolution of the system—taking into account condi-
tion (10)—is given by the canonical system

ḋ = (r − θ)d − x − h(µβ − λ)

ẋ = αd + (β − τ)x + βh(µβ − λ)
(12)

λ̇ = ρλ − ∂ H

∂d
= (ρ − r + θ)λ − µα + κ k̃ ′(d − d M) + ϕr

µ̇ = ρµ − ∂ H

∂x
= (ρ + τ − β)µ + λ − ϕ.
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The stationary solution (d∗, x∗, λ∗, µ∗) of system (12), if it exists, is given by
the solution of the following set of equations:

d∗ = τ

(r − θ)(τ − β) − α
h

(
(ρ + τ)

κ k̃ ′(d∗ − d M) + ϕ(ρ + θ)

α + (ρ − r + θ)(ρ + τ − β)
− ϕ

)

x∗ = β(r − θ) + α

τ
d∗

(13)
λ∗ = ϕ − (ρ + τ − β)µ∗

µ∗ = κ k̃ ′(d∗ − d M) + ϕ(ρ + θ)

α + (ρ − r + θ)(ρ + τ − β)
.

To determine the stability properties of the steady state, we proceed according
to Dockner (1985), where a classification of the equilibria is made depending on
the values of the determinant of the Jacobian of the dynamical system (12), det J
and K , the latter being defined as follows:

K :=

∥∥∥∥∥∥∥∥

∂ ḋ

∂d

∂ ḋ

∂λ

∂λ̇

∂d

∂λ̇

∂λ

∥∥∥∥∥∥∥∥
+

∥∥∥∥∥∥∥∥

∂ ẋ

∂x

∂ ẋ

∂µ

∂µ̇

∂x

∂µ̇

∂µ

∥∥∥∥∥∥∥∥
+ 2

∥∥∥∥∥∥∥∥∥

∂ ḋ

∂x

∂ ḋ

∂µ

∂λ̇

∂x

∂λ̇

∂µ

∥∥∥∥∥∥∥∥∥
. (14)

In our model, the Jacobian is given as

J =




r − θ −1 h′(βµ∗ − λ∗) −βh′(βµ∗ − λ∗)
α β − τ −βh′(βµ∗ − λ∗) β2h′(βµ∗ − λ∗)

κ k̃ ′′(d∗ − d M) 0 ρ − r + θ −α

0 0 1 ρ + τ − β


 . (15)

The determinant of the Jacobian, det J , and K are then given, respectively, by

det J = [α + (ρ − r + θ)(ρ + τ − β)][α + (r − θ)(β − τ)]

+ τ(ρ + τ)κ k̃ ′′(d∗ − d M)h′(βµ∗ − λ∗) (16)

K = (r − θ)(ρ − r + θ) + (β − τ)(ρ + τ − β) + 2α

− κ k̃ ′′(d∗ − d M)h′(βµ∗ − λ∗). (17)

To obtain specific results on the stability property of the steady state, we specify
functions for the cost of debt, k̃(d − d M), and for the domestic cost associated with
the necessity to save, c̃(u − x), in the next section.
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4. NUMERICAL EXAMPLES

For simplicity, we assume polynomials for the costs of debt and the domestic costs
associated with the necessity to save; that is,

k̃(d − d M) = 1

b
(d − d M)b, b ≥ 1 (18)

and

c̃(u − x) = 1

a
(u − x)a, a > 1. (19)

Furthermore, we assume b to be an odd number since we postulated asymmetric
costs due to debt. The power a can be even or odd, since the domestic costs due
to deficit may be symmetric or asymmetric. The polynomial for c̃(u − x) satisfies
all properties assumed in the preceding sections.9

In what follows, we distinguish between the cases of linear costs of debt and
nonlinear costs of debt, that is, b = 1 versus b > 1.10

4.1. Model with Linear Costs of Debt

Upon substituting equations (18) with b = 1 and (19) into equations (13), (16), and
(17), the expressions for det J, K , and the equilibrium (d∗, x∗, λ∗, µ∗) simplify to

det J = [α + (ρ − r + θ)(ρ + τ − β)][α + (r − θ)(β − τ)], (20)

K = (r − θ)(ρ − r + θ) + (β − τ)(ρ + τ − β) + 2α (21)

and

d∗ = τ

(r − θ)(τ − β) − α

{
(ρ + τ)

κ + ϕ(ρ + θ)

γ [α + (ρ − r + θ)(ρ + τ − β)]

} 1
a−1

x∗ = β(r − θ) + α

τ
d∗

(22)
λ∗ = ϕ − (ρ + τ − β)µ∗

µ∗ = κ + ϕ(ρ + θ)

α + (ρ − r + θ)(ρ + τ − β)
.

This leads to Proposition 1.

PROPOSITION 1. In the case of linear costs of debt, the steady state is unique.
The stability of the equilibrium is independent of the functional form (symme-
try/asymmetry) of the costs associated with the necessity to save. There is an
even stronger result: The stability of the equilibrium is independent of the degree
of nonlinearity of the domestic costs associated with the necessity to save.
Furthermore, the stability of the unique steady state does not depend on the pa-
rameters of the costs of deficit.
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To ease the stability analysis, we fix the parameters r , θ , α, β, ρ, and take τ as
the bifurcation parameter. By choosing τ as the bifurcation parameter, we aim to
investigate the influence of the speed of adjustment of the public’s acceptance of
savings on the optimal levels of government debt and its primary deficit.

In Figure 3, a plot of the stationary values d∗, x∗, and u∗ versus τ is shown,
where the other parameters are fixed at a = 4, γ = 2,000, κ = 1, ϕ = 0.1, α = 0.9,
β = 0.1, r = 0.05, θ = 0.031, and ρ = 0.055.11 An enlargement of this plot for
small values of τ is given in Figure 4.

FIGURE 3. Plot of the stationary values of debt-to-GDP ratio, d∗, and of the deficit-to-GDP
ratio, x∗, and the optimal value of the primary deficit in the steady state, u∗ versus τ . For
τ < 1.513, the stability of the steady state is shown in Figure 4.

FIGURE 4. Enlargement of Figure 3 for small values of τ .
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For τ < β − (r − θ) − 2
√

α (which equals 0.246 for the assumed parameter
values in Figure 4) the steady state exhibits saddlepoint stability with local mono-
tonicity. This means that, for given initial states, choosing the corresponding initial
conditions of the costates from the stable, two-dimensional manifold ensures con-
vergence to the steady state, where the time path into the steady state is locally
monotone. All other initial conditions of the costates lead to divergence. For
β − (r − θ) − 2

√
α < τ < β + r − θ − 2ρ (0.246 < τ < 0.809), the steady state

still exhibits saddlepoint stability but with transient oscillations. This means that
the time path into the steady state is now oscillating.

For τ = β + r − θ − 2ρ and for τ = β + r − θ (τ = 0.809 and τ = 0.919, respec-
tively, in Figure 4), the eigenvalues are purely imaginary and thus these parameter
values are candidates for a Hopf bifurcation. Although we could not prove the ex-
istence of limit cyles for τ = β + r − θ , despite the existence of purely imaginary
eigenvalues, we can prove that limit cycles cannot emerge at the bifurcation point
τ = β + r − θ − 2ρ. This analysis is provided in the Appendix. Consequently, for
values of τ between these bifurcation points, the system exhibits instability. Note
that the length of this interval of instability only depends on the politician’s dis-
count rate ρ. Saddlepoint stability with transient oscillations is again obtained
for β + r − θ < τ < β − r + θ + 2

√
α (0.919 < τ < 1.513 in Figures 3 and 4,

respectively). For β − r + θ + 2
√

α ≤ τ < β + α/(r − θ) (1.513 < τ < 6.163 in
Figure 3), the system still exhibits saddlepoint stability, but with a locally monotone
path into the steady state.

At τ =β + α/(r − θ) (τ = 6.163 in Figure 3), the determinant of the Jacobian
is equal to zero. In equation (22), it can be seen that d∗ and x∗ exhibit a pole
at τ = β + α/(r − θ) (τ = 6.163 in Figure 3). For values of τ greater than this
parameter value, det J is negative, and the dynamical system is unstable except
for the nongeneric case in which the initial conditions stem from a particular, one-
dimensional manifold of the state space. Consequently, the values of d∗ and x∗

greater than this threshold are economically uninteresting. The fact that det J and
d∗ have opposite signs, leads to Proposition 2.

PROPOSITION 2. Stability requires the government to be a lender.

Proof. See Appendix.

4.2. Model with Nonlinear Costs of Debt

Upon substituting (18) and (19) into equations (13), (16), and (17), the expressions
for det J , K , and the system of implicit equations to determine the equilibria
(d∗, x∗, λ∗, µ∗) become

det J = [α + (ρ − r + θ)(ρ + τ − β)][α + (r − θ)(β − τ)]

+ (b − 1)
τ

γ

ρ + τ

a − 1
κ(d∗ − d M)b−2

(
ϕ + βµ∗ − λ∗

γ

) 2−a
a−1

, (23)
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K = (r − θ)(ρ − r + θ) + (β − τ)(ρ + τ − β) + 2α

− b − 1

a − 1

κ

γ
(d∗ − d M)b−2

(
ϕ + βµ∗ − λ∗

γ

) 2−a
a−1

, (24)

and

d∗ = τ

(r − θ)(τ − β) − α

{
(ρ + τ)

κ(d∗ − d M)b−1 + ϕ(ρ + θ)

γ [α + (ρ − r + θ)(ρ + τ − β)]

} 1
a−1

x∗ = β(r − θ) + α

τ
d∗

(25)
λ∗ = ϕ − (ρ + τ − β)µ∗

µ∗ = κ(d∗ − d M)2 + ϕ(ρ + θ)

α + (ρ − r + θ)(ρ + τ − β)
.

This leads to Proposition 3.

PROPOSITION 3. In the case of nonlinear costs of debt, one has to distinguish
whether the degree of nonlinearity of the costs of debt, b, is higher than the degree
of nonlinearity of the costs associated with the necessity to save, a. If b ≥ a, there
exist either none, one, or exactly two equilibria, whereas for b < a, there exist at
least one equilibrium and at most three equilibria.

The proposition can be verified by using the rule of Descartes, which allows one
to estimate the number of zeros of a polynomial, and neglecting the solutions that
would lead to a minimum of the Hamiltonian. Since the proof is extremely technical
and provides no further insight into the dynamics of the system, we refrain from
presenting the proof, but it can be obtained on request from the authors.

Similar to the model with linear costs to debt, we can state some stability prop-
erties of the equilibria from equations (23) and (24).

PROPOSITION 4. Stability requires the government either to be a lender or to
hold debt exceeding the Maastricht threshold.

The proof is given in the Appendix. For further stability analysis, we consider first
the case of a higher order of costs of debt than for the costs of deviating from the
public’s acceptance level of savings and set a = 2 and b = 3, where, at most, two
equilibria exist. Furthermore, we again fix the other parameter values at r = 0.05,
θ = 0.031, α = 0.1, β = 0.9, ϕ = 0.1, and κ = 1, and alternatively take τ , γ , and
ρ as bifurcation parameters. Hence, we investigate the effects of changes in the
speed of adjustment of the public’s acceptance of savings, τ , the weight of the
domestic cost associated with the necessity to save, γ , and the social time discount
rate, ρ, on the equilibrium value of national debt.

In Figures 5–7, the stationary values of debt, d∗, are plotted versus τ , γ , and
ρ respectively, with baseline levels set at τ = 7, γ = 2,000, and ρ = 0.055. These
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FIGURE 5. Bifurcation diagram of the stationary value of d∗ versus τ . The unstable equilib-
rium is indicated by a dashed line; the stable equilibrium is represented by a solid line.

FIGURE 6. Bifurcation diagram of the stationary value of d∗ versus γ . The unstable equilib-
rium is indicated by a dashed line; the stable equilibrium is represented by a solid line.

FIGURE 7. Bifurcation diagram of the stationary value of d∗ versus ρ. The unstable equilib-
rium is indicated by a dashed line; the stable equilibrium is represented by a solid line.
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bifurcation diagrams show that the steady state undergoes a saddle-node bifurca-
tion, which means that two equilibria collide and annihilate. For parameter values
to the left of the bifurcation point, there does not exist any equilibrium, whereas
two equilibria exist to the right of the bifurcation point.

In these examples, the lower equilibrium is unstable, so that there exists a thresh-
old (around the lower equilibrium) above which the system converges toward the
upper equilibrium, and below which the system can converge toward a boundary
solution, say, of balanced budgets.

Next, we look for a numerical example in the case of b < a. In this case, there
exist at least one equilibrium and at most three equilibria. For instance, setting
a = 4 and b = 3, fixing the other parameters as in the examples above, that is,
γ = 2,000, κ = 1, ϕ = 0.1, α = 0.9, β = 0.1, r = 0.05, θ = 0.031, and ρ = 0.055,
and taking τ as the bifurcation parameter yields a unique equilibrium. Figure 8
provides a plot of the stationary values of d∗, x∗, and u∗ versus τ .

For τ < 0.245, the equilibrium exhibits saddlepoint stability with locally mono-
tonic paths, whereas for 0.245 < τ < 0.604 the equilibrium is still saddlepoint
stable but the path in the steady state is now oscillating.

FIGURE 8. Plot of the stationary values of d∗, x∗, and u∗ versus τ . For τ ≥ 6.163 the equi-
librium is unstable.
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At τ = 0.604, a simple pair of eigenvalues becomes purely imaginary, which
defines a candidate for a Hopf bifurcation. In fact, a subcritical Hopf bifurcation
occurs, which means that the stable equilibrium and a coexisting unstable limit
cycle collapse into an unstable equilibrium. For 0.604 < τ < 1.163, the steady state
is unstable, where either all eigenvalues exhibit positive real parts or one eigenvalue
is negative and the other ones are positive or have positive real parts. For τ = 1.163,
the eigenvalues are again purely imaginary, but the corresponding first Lyapunov
coefficient of the Hopf bifurcation, as derived by the program package CONTENT,
is of size 10(−7). Therefore, no reliable statements about the behavior at τ = 1.163
can be given.

For τ > 1.163, saddlepoint stability is again obtained, where for 1.163 < τ <

1.445 the path into the steady state is oscillating, and for τ > 1.445 the path is
locally monotone.

According to numerical computations, for τ ≥ 6.163, the equilibrium loses sta-
bility as det J becomes negative. Since d∗ exhibits a pole at τ = 6.163, the exact
value of the zero of det J cannot be computed.

Analyzing the unstable limit cycle, which collides with the equilibrium at
τ = 0.604, for values below that point, one encounters a subcritical flip bifur-
cation at τ = 0.589089. At a subcritical flip-bifurcation point, an unstable limit
cycle bifurcates to an unstable limit cycle with approximately twice the period of
the unstable limit cycle before the bifurcation. Furthermore, the latter changes sta-
bility; that is, the limit cycle exhibits saddlepoint stability with a two-dimensional
stable manifold. Figure 9 provides a plot of the stable limit cycle and the unstable
limit cycle, which, shortly after the bifurcation has approximately twice the period
than before the bifurcation.12 It can be seen that the limit cycles lie entirely in the
domain d < 0.

For initial values between the stable and unstable limit cycle, it is optimal to ap-
proach the stable limit cycle. Pursuing the optimal strategy, one passes four regions
of different behavior. For instance, starting at the arrowhead in Figure 9, where the
debt level reaches its maximum and the primary surplus is slightly positive, the
primary surplus increases and the government gets more and more in the position
of a lender. As the primary surplus reaches its maximum at approximately 0.13,
one enters the second region, which can be characterized by decreasing levels of
debt and primary surplus. As the primary surplus turns into deficits, the debt starts
to increase. In the fourth and last region, the primary deficits decrease, but the debt
still rises.

Figure 10 shows the time path on the ensuing stable limit cycle. It can be seen
that the equilibrium acceptance rate of saving closely follows the time path of the
primary surplus, but with an implicit time lag of approximately one period and at
a substantially lower level. The first can be explained through the dynamic adjust-
ment process of the equilibrium acceptance rate of saving in relation to prevailing
and past levels of national debt and primary surpluses/deficits, respectively. There-
fore, every change in the level of debt or primary surplus precedes a change in the
public’s acceptance level of savings.
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FIGURE 9. Plot of the stable (solid line) and unstable (dotted line) limit cycles for τ = 0.588
in the state space (d, x) (above) and in the control state space (d, u) (below). The cross
denotes the stable equilibrium.

FIGURE 10. Time path of d (solid line), x (dashed line), and u (dashed-dotted line) on the
stable limit cycle for τ = 0.588. The left scale corresponds to x and u, and the right scale
corresponds to d.
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Decreasing τ , one encounters three further flip bifurcations at τ = 0.587737,
τ = 0.587492, and τ = 0.587441. A detailed analysis of the series of flip
bifurcations and further complexities would go beyond the scope of this paper
and therefore it will be part of a future work.

5. DISCUSSION

The stability analysis in the preceding section has highlighted the importance of
the functional form of the costs associated with the public debt, k̃, and the public’s
acceptance rate of savings, c̃, as related to the optimal long-run dynamics of public
debt and deficit.

Linear costs of public debt (as assumed in Section 4.1) imply that the optimal
strategy for the government is to accumulate an overall surplus (rd∗ − u∗, where
u∗ < 0 and d∗ < 0) each period for a very slow adjustment process (= very small
values of τ in Figure 4). If the speed of adjustment is slightly higher, the optimal
strategy is unstable, where the length of the interval of instability depends only
on the discount rate. The more shortsighted that the politician is, the lower is the
threshold level of the speed of adjustment from which the strategy of accumulating
an overall surplus changes to an unstable equilibrium strategy. Increasing the
speed of adjustment even further leads again to an optimal strategy characterized
by the accumulation of a surplus. The faster the public reacts to deviations of
the deficit from the equilibrium acceptance rate of savings (increasing values of
τ in Figures 3 and 4), the more the government adopts the position of a lender
(increasing values of d∗). This strategy enables the government to increase its social
benefit as accruing through negative costs whenever d∗ < 0. If the adjustment
rate of the public surpasses a critical value (at τ = 6.163), the optimal level of
government surplus d∗ loses stability.

Analytical calculations show that the stability of the unique equilibrium is in-
dependent of the costs due to deficit and of the domestic costs associated with the
necessity to save in the case of linear costs of debt. The corresponding parameters
only scale the equilibrium values.

The optimal strategy of the government is drastically altered if we consider
nonlinear costs of public debt as in Section 4.2. With nonlinear, concave-convex
costs, where the degree of nonlinearity of the costs of debt is higher than the degree
of nonlinearity of the costs associated with the necessity to save, there exist two
possible stationary solutions, of which the lower equilibrium is unstable. There
exists a threshold [in the sense of Skiba (1978) and Dechert and Nishimura (1983)]
such that starting with sufficiently high debts will cause convergence to the high-
debt equilibrium, whereas starting with low debts can lead to a boundary solution,
say of no debts. Hence, this political-economic setting provides some reasons for
history dependence (e.g., debt problems persisting for decades in Latin America
and in some southern European countries on the one hand and low debts or even
accumulating surpluses in Switzerland and Luxembourg on the other hand) and
hysteresis.
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The existence of such an equilibrium strategy depends on the various parameters
of the system. For instance, a slow public adjustment process and small public costs
(= small values of τ and γ in Figures 5 and 6) as well as a small time discount
rate for the government (= a low value of ρ in Figure 7) imply that no equilibrium
strategy exists. Furthermore, the degree of nonlinearity of the costs of deviating
from the public’s equilibrium acceptance level of savings determines whether an
equilibrium strategy exists. However, the existence of the equilibrium strategy does
not depend on whether the costs due to the necessity to save are even or odd.

The equilibrium strategy drastically changes if the degree of nonlinearity of
the costs associated with the necessity to save exceeds the degree of nonlinearity
of the costs due to debt. For our numerical example, the optimal strategy for the
government is very similar to the case of linear costs of debt, except that, now,
limit cycles occur. In particular, for 0.587441 < τ < 0.589089, the optimal strategy
might be oscillating, which means that phases of primary surpluses follow phases
of primary deficits.

As our results indicate, the optimal levels of debt and deficit and their stability
will be considerably influenced by the functional forms assumed for the costs of
debt and for the costs associated with the necessity to save, which we postulate.
With this regard, it is interesting to compare our results to the related work of
Grienauer (1996) and Prskawetz (1998). In fact, our model is an extension of their
work insofar as we assume an additional cost term, namely, the costs due to deficit.
The functional forms of the costs and their most complex outcome in each of the
papers is summarised in Table 1.

A comparison of the optimal level of debt and its stability between these three
papers shows that the degree of nonlinearity of the costs due to debt mainly de-
termines the possible modes of stability. More specifically, our first numerical
example and Grienauer (1996) assume linear costs due to debt and, in both cases,
the most complex behavior that can occur is saddlepoint stability. On the contrary,
in our second numerical example and in Prskawetz (1998), the assumption of more
pronounced nonlinearities in the costs due to debt can lead to multiple and more
complex equilibria such as a limit cycle. Note that it is not the form of the cost func-
tion (i.e. even versus odd functions), but the degree of nonlinearity of the costs of
debt that leads to more complex behavior such as limit cycles or multiple equilibria.

TABLE 1. Functional forms of the assumed cost terms and the most complex out-
come in the different models

Costs due Costs due to Most complex
Reference to debt necessity to save outcome

This paper, Section 4.1 Linear Nonlinear polynomial Unique equilibrium
This paper, Section 4.2 Nonlinear Nonlinear polynomial Multiple equilibria

polynomial, odd and limit cycles
Grienauer (1996) Linear Exponential Unique equilibrium
Prskawetz (1998) Quadratic Exponential Limit cycles
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NOTES

1. By introducing these costs, we represent the Maastricht criteria as soft rather than as hard and
binding constraints [for retrenchment under hard constraints, see Prskawetz et al. (1998)]. This seems
realistic and thus plausible, given the workings of international politics, because nobody would argue
for an exclusion from the existing Union if the criteria are not met literally. In fact, even prior to the
Monetary Union these Maastricht criteria were not been binding, but rather were soft constraints, since
movements in the right directions were accepted as well, for example, in the case of Italy.

2. For example, Mueller (1989) writes that, prior to Keynes (the legacy of the Keynesian economics
lowered this esteem for balanced budgets), running a deficit was considered an immoral act by the public
so that politicians at that time transgressed this norm with great peril. Switzerland and Luxembourg
may be a particular modern example where budget deficits are apparently still highly penalized so that
balanced budgets are the rule.

3. In fact, real-world government expenditures proceed by precedence so that the current surplus
or deficit is the outcome of historically granted (or abolished) “contracts” and “rights” [compare Alt
and Chrystal (1983) and Feichtinger and Wirl (1991)]. For example, Pierson (1995) recommends
to reelection-seeking politicians to “make tiny, almost imperceptible cuts frequently, simple one-off
change now that will result in substantial savings later on, off-load the costs to the future (generations).”
Indeed, Sobel (1998) finds (for the United States and differing between Democrats and Republicans) that
both tax increases and expenditure cuts carry high political costs, surprisingly of a similar magnitude.

4. The Maastricht criteria are based on the average value of d M = 60% of the debt-to-GDP ratio for
the 12 community members in 1990. Assuming a steady-state growth rate of nominal income equal to
5%, the value of the overall deficit, rd − u, which is consistent with this long-run stationary equilibrium
is exactly (rd − u)M = 3% [see Corsetti and Roubini (1992)].

5. Time arguments t are omitted henceforth; the dot notation in (2) refers to the derivative with
respect to t .

6. The assumption that growth is independent of debts is made for reasons of simplicity, and allow-
ing for a feedback of debt on the rate of growth will not alter the dynamics substantially. Presumably,
the feedback will be small over the domain imposed by the penalties in the objective reflecting the con-
straints of the Maastricht treaty. Moreover, we have refrained from endogenously explaining economic
growth in order to highlight the dynamics of an optimal retrenchment policy.

7. The short-sightedness of politicians is reflected by the usual assumption that the subjective
discounting ρ exceeds the rate of interest r . Yet, the formal analysis can be carried out under the much
less stringent demand that subjective discounting exceeds the difference between interest and growth
rates.

8. To ensure a maximum, the second-order condition

∂2 H

∂u2
< 0

must hold. This condition is equal to c̃′′ > 0, and it will be checked as the functional forms are specified.
9. Applying equation (19) to the definition of h yields h(µβ − λ) = [(ϕ + µβ − λ)/γ ][1/(a−1)].

For odd powers, that equation has a positive and a negative root, where only the positive root fulfills
the second-order maximum condition. For even powers, the solution is unique and the second-order
condition always holds.

10. All subsequent numerical computations were performed with MATHEMATICA [Wolfram
(1997)], LOCBIF [Khibnik et al. (1992)] and CONTENT [Kuznetsov (1998)].

11. Since a, κ , γ , and ϕ do not influence the stability of the equilibrium, they are set in order
to scale the equilibrium values. The α = 0.1 and β = 0.9 values reflect the idea that people are more
concerned about the primary surplus/deficit ratio than about the debt ratio in forming the acceptance
level. The average of the long-run interest rates in Austria of the years 1997, 1998, and 1999 equals
0.05 and the average annual nominal GDP growth rate in Austria from 1996 through 1999 amounts
to 0.031 [Austrian Institute of Economic Research (2000)]. As mentioned earlier, the time preference
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rate of the politician has to fulfill the side condition ρ > r − θ . On the other hand, if ρ is very high, the
decisionmaker gets more and more myopic and cares less about the level of debt.

12. The numerical bifurcation analysis as well as the calculation of the limit cycles were done with
the program package CONTENT [Kuznetsov (1998)].
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APPENDIX

A.1. PROOFS OF PROPOSITIONS

Proof of Proposition 2. As mentioned earlier, the case det J < 0 leads to instability.
Thus det J > 0 is necessary (but not sufficient) for stability.

For our specific parameter set, we have already seen that d∗ < 0 is equal to det J > 0.
Now we will establish this fact analytically. Equation (20) yields

sign det J = sign[α + (ρ + τ − β)(ρ − r + θ)] sign[α + (β − τ)(r − θ)]. (A.1)

Neglecting the positive constants in (22), the sign of d∗ is determined by

sign d∗ = sign[(τ − β)(r − θ) − α] sign{[α + (ρ + τ − β)(ρ − r + θ)]
1

a−1 }. (A.2)

If a is even, equation (27) simplifies to

sign d∗ = −sign[α + (β − τ)(r − θ)] sign[α + (ρ − r + θ)(ρ + τ − β)]
(A.3)

= −sign det J.

In the case of odd a, the first-order maximum condition (9) implies ϕ − λ + µβ ≥ 0, which
transforms to

(ρ + τ)
ϕ(ρ + θ)

α + (ρ − r + θ)(ρ + τ − β)
≥ 0

in the steady state. Therefore, a necessary condition to ensure the existence of a steady
state is α + (ρ − r + θ)(ρ + τ − β) ≥ 0 for odd a. Consequently, equations (26) and (27)
simplify to

sign det J = sign[α + (β − τ)(r − θ)] (A.4)

and
sign d∗ = sign[(τ − β)(r − θ) − α], (A.5)

which can be combined to
sign d∗ = −sign det J. (A.6)

Proof of Proposition 4. As mentioned already in the proof of Proposition 2, we want
to exclude the case of det J < 0, which leads to instability.
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Similar to the proof of Proposition 2, one can show that the first summand of det J and d∗

have opposite signs, which implies the first term of det J < 0 whenever d∗ > 0. Furthermore,
if d∗ is below d M , then the second term of det J is negative.

Summing up, for 0 < d∗ < d M both terms of det J are negative, which means that such
an equilibrium will be definitively unstable. For d∗ < 0 and d∗ > d M , the sign of det J is
ambiguous.

A.2. ANALYSIS OF CANDIDATES FOR A HOPF BIFURCATION

In case of the supercritical Hopf bifurcation, the stable fixed point bifurcates into an un-
stable fixed point and a stable periodic orbit. Contrarily, in the case of the subcritical Hopf
bifurcation, the stable fixed point and a coexisting unstable periodic orbit collapse into an
unstable fixed point.

To prove the (non)-existence of limit cycles we consider the flow on the center manifold,
because limit cycles can exist only on the center manifold. First, the canonical system has
to be transformed into the following form:

ẏ = Ay + �(y, z),
(A.7)

ż = Bz + �(y, z), (y, z) ∈ R2 × R2,

where
�(0, 0) = 0, D�(0, 0) = 0,

�(0, 0) = 0, D�(0, 0) = 0,

and A is a 2 × 2 matrix having eigenvalues with zero real parts and B is a 2 × 2 matrix
having eigenvalues with nonzero (in our case, positive) real parts. For this purpose, we use
the following transformation:




y1

y2

z1

z2


 = T −1




d − d∗

x − x∗

λ − λ∗

µ − µ∗


 , (A.8)

where T is the matrix of eigenvectors corresponding to the real Jordan normal form. Ac-
cording to Wiggins (1990), the center manifold is an invariant manifold, which can be
represented locally as follows:

W c(0) = {(y, z) ∈ R2 × R2|z = ψ(y), |y| < ε, ψ(0) = 0, Dψ(0) = 0},

for ε sufficiently small. The dynamics of (32) restricted to the center manifold for v suffi-
ciently small, are given by the following two-dimensional vector field:

v̇ = Av + �(v, ψ(v)), v ∈ R2.

Furthermore, any point on W c(0) must satisfy

Dψ(y)[Ay + �(y, ψ(y))] = Bψ(y) + �(y, ψ(y)). (A.9)
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Fortunately, the function ψ can be approximated by power series, which can be derived by
a comparison of coefficients.

In our case, applying the transformation (33) to the canonical system yields the following
form of a system of differential equations:

ẏ = Ay

ż = Bz + �(y)

for τ = β + r − θ − 2ρ and
ẏ = Ay + �(z)

ż = Bz

for τ = β + r − θ . At the first candidate for a Hopf bifurcation, it is unnecessary to compute
the center manifold, because the flow on the center manifold is already determined by

ẏ = Ay.

Since the flow is linear, limit cycles cannot emerge. This phenomenon is sometimes called
degenerate Hopf bifurcation.

For the second candidate for a Hopf bifurcation, an invariant manifold satisfying condi-
tion (34) is given by z ≡ 0. The flow on this center manifold is linear and the Hopf bifurcation
is degenerate. However, the center manifolds need not to be unique. However, the approxi-
mation of the center manifold with power series yields only the manifold z ≡ 0, because the
function � is a cube root, which does not affect the comparison of coefficients. Summing
up, there may emerge limit cycles for the τ = β + r − θ , but they can only be detected by
luck.
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