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This paper studies the transition to three-dimensional flow in the wake of a cylinder
immersed in a free stream, where the cylinder is externally forced to continuously
rotate about its axis and to linearly oscillate in the streamwise direction. Floquet
stability analysis is used to assess the stability of the nominal two-dimensional flows
at a Reynolds number Re= 100 and rotation rate α=ωD/U= 3 to three-dimensional
perturbations, as a function of the amplitude and frequency of the linear oscillations.
Two modes of instability are found, distinguished by their spatial structure, temporal
behaviour and apparent mechanism. The first mode has a shorter wavelength in
the spanwise direction and appears to be linked to a centrifugal instability in the
layer of fluid near the rotating body. The second mode has a longer wavelength
and is linked to an instability of the vortex cores in the wake that is subharmonic,
leading to a period doubling. Either mode can be stable while the other is unstable,
depending primarily on the frequency of the oscillation of the cylinder. This indicates
that either mode can control the transition to a three-dimensional flow. The results
are compared to the fully three-dimensional simulation results of a rotating cylinder
elastically mounted and free to oscillate in the streamwise direction from Bourguet
& Lo Jacono (J. Fluid Mech., vol. 781, 2015, pp. 127–165), and appear to be able
to explain the surprising switching of the observed spanwise wavelength in that flow
as a change in the dominant mode, and therefore mechanism, of instability.
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1. Introduction

When considering the flow-induced vibration of a circular cylinder in a free stream,
vortex-induced vibration (VIV) is the only process capable of resulting in large-scale
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oscillations of the structure. During VIV, the body motion is predominantly in the
cross-stream direction, even if the structure can respond in the streamwise direction,
or rotate about its axis (Jauvtis & Williamson 2005; Horowitz & Williamson 2010).
However, small departures from this basic flow that break the reflection symmetry,
such as modifying the body to have an angle of attack, adding shear or turbulence to
the incoming flow, or forcing the cylinder to rotate (as done in this paper) can give
rise to completely different bluff body flow-induced vibration phenomena. Examples
of such phenomena are transverse galloping and aeroelastic flutter (Parkinson & Smith
1964; Zhao et al. 2014). Such phenomena do not necessarily result in essentially cross-
stream oscillation, like VIV does, and the body motion can have a large streamwise
component.

A particular example of such a streamwise flow-induced vibration is presented in
the recent study from Bourguet & Lo Jacono (2015) (BL15), which showed that
a cylinder elastically mounted yet constrained to oscillate only in the streamwise
direction could execute extremely large oscillations (with amplitudes over 2.5 times
the cylinder diameter) if it was forced to constantly rotate. The change in symmetry
of the boundary conditions, and the input of energy, excite flow-induced vibration
modes that are not accessible in the non-rotating cylinder case. BL15 observed a
number of exotic vortex configurations in the wake of the body and also recorded a
variety of three-dimensional structures.

Here, an attempt is made to explain the appearance of these various three-
dimensional structures using Floquet stability analysis. The underlying problem is
simplified by imposing the cylinder rotation and a purely sinusoidal streamwise
oscillation, rather than allowing the oscillation to be driven by the flow. This
simplification appears justified as the coupled motion recorded by BL15 is very
close to sinusoidal. Various combinations of amplitude and frequency are run to
encompass the range of parameters observed in the free case. Two three-dimensional
modes are found, each with a distinct spanwise wavelength, and each linked to
a unique instability mechanism. Depending on the frequency, either mode can be
the first to become unstable with increasing amplitude. Comparison with the fully
three-dimensional fluid–structure interaction simulations of BL15 shows that the first
mode to become unstable sets the wavelength and subsequent saturated dynamics of
the flow. The fact that the leading mode is a function of the frequency explains why
the three-dimensional wavelength varies as a complicated function of the rotation rate
in the fully coupled simulations.

Section 2 describes the problem set-up and the numerical methods employed.
Section 3 presents the results of the stability analysis and § 4 provides some
concluding remarks.

2. Methodology

2.1. Base flows
The simulations were conducted using a well-validated spectral-element method
(Thompson, Hourigan & Sheridan 1996). For the base flow, the code solved the
incompressible Navier–Stokes equations in a frame of reference travelling with the
centre of the cylinder

∂u
∂t
=−(u · ∇)u−

1
ρ
∇p+µ∇2u− ẍ,

∇ · u= 0,

 (2.1)
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where u is the velocity field, t is time, ρ is the fluid density, p is the pressure field,
µ is the fluid dynamic viscosity and ẍ= [ẍ 0]T is the acceleration of the frame of
reference, equal to the linear acceleration of the cylinder linear motion given by

x= Ad sin(2πfdt), (2.2)

where x is the displacement from the origin in the streamwise direction, Ad is the
amplitude and fd is the frequency of oscillation.

Since the circular cylinder is axisymmetric, the cylinder rotation was implemented
by simply imposing the tangential velocity at the cylinder surface as a Dirichlet
boundary condition. The boundary conditions for the velocity at the other boundaries
were as follows. At the boundaries upstream and lateral of the cylinder, a Dirichlet
boundary condition was used to impose the free stream velocity minus the frame
velocity. At the downstream or outlet boundary, a Neumann boundary condition was
imposed with the value of the gradient of the velocity in the normal direction set to
zero.

For the pressure, a high-order Neumann condition was imposed at the body and the
upstream and lateral boundaries, with the value of the pressure gradient in the normal
direction derived from the Navier–Stokes equations (Gresho & Sani 1987; Karniadakis,
Israeli & Orszag 1991). At the downstream or outlet boundary, a Dirichlet condition
was imposed, with the value of the pressure set to zero.

The spectral-element method solved equations (2.1) in the weak or variational form,
similar to all finite-element-based methods. The domain was decomposed into 916
quadrilateral elements, that were free to have either straight or constant-radius curved
sides. These elements were further internally decomposed by using seventh-order
Lagrange polynomials as shape functions. These Lagrange polynomials were
associated with Gauss–Legendre–Lobatto quadrature points for efficient calculation of
the spatial integrals required for the weak form solution. A thorough description of
spectral-element methods can be found in Karniadakis & Sherwin (2005).

Temporal discretization employed a three-way time splitting scheme (e.g. see
Thompson et al. 2006). Here, the integration from the start to the end of a time
step was split into three substeps: the first substep integrated the advection and
frame acceleration terms (the first and fourth terms on the right-hand side of
(2.1)) to a velocity field at an intermediate time using an explicit second-order
Adams–Bashforth scheme; the second substep integrated the pressure term from
this first intermediate velocity field to a second intermediate time using an implicit
second-order Crank–Nicolson scheme; the third substep integrated the diffusion term
from this second intermediate field to the velocity field at the end of the step using
an implicit second-order Crank–Nicolson scheme.

To solve for the pressure, the divergence of the second substep equation was taken,
and the incompressibility constraint was imposed on the velocity field at the end of
the substep. This results in a Poisson equation that can be solved for the pressure
field, which can then be used to complete the second substep.

Details of this spectral-element scheme can be found in the textbook from
Karniadakis & Sherwin (2005).

Previous studies have shown that the domain size can be important in flows such
as those studied here. The domain size has been fixed throughout the study at
Ω ∈ [−20D : 90D][−55D : 55D], similar to other recent studies of similar flows (Rao
et al. 2013; Bourguet & Lo Jacono 2015). The mesh resolution has been assessed
by varying the order of the polynomial shape functions of the spectral elements. The
results show that base flow quantities vary by less than 0.1 %, and eigenvalues from
the Floquet stability analysis vary by less than 1 % when varying the polynomial
order from seven to eight.
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2.2. Perturbation fields and stability analysis
The Floquet methodology relies on a periodic base flow. All the simulations
undertaken here happen to be periodic within the parameters tested. The first step for
the global Floquet stability analysis is to form equations that govern the evolution of
small perturbations. This is done by decomposing the velocity and pressure fields into
base flow and perturbation components, substituting this into the equations of motion
outlined in (2.1), subtracting the terms for the base flow, and linearizing (discounting
nonlinear terms). The resulting equations are

∂u′

∂t
=−((u · ∇)u′ + (u′ · ∇)u)−

1
ρ
∇p′ +µ∇2u′,

∇ · u′ = 0,

 (2.3)

where u′ is the perturbation velocity field and p′ is the perturbation pressure field.
This system can be further decomposed by considering perturbations that are harmonic
in the spanwise direction. Doing so results in a set of equations that decouple for
different spanwise wavelengths, λ, and the wavelength appears explicitly in the
equations (Barkley & Henderson 1996).

These equations were solved using the same spectral-element method as outlined
above. Dirichlet boundary conditions stating that the perturbation was zero were
imposed at the cylinder surface and the upstream and lateral boundaries. The
zero-normal-gradient condition was imposed at the outflow boundary. For the pressure
perturbation, the condition for the normal pressure gradient was the same as that
imposed on the base flow. The analysis progressed by first evolving the base flow
to a periodic state, then the base flow and perturbation flow were integrated in time
together.

Floquet stability analysis progresses by looking for eigenvectors and associated
eigenvalues of a linear operator L that maps a system from one period to the next.
In the context of the flow considered here

u′(t+ T)= Lu′(t), (2.4)

where T is the period. In implementation, the operator L is never explicitly formed; its
action is calculated by integrating the equations governing the perturbation evolution
(2.3) forward by one period. Further details of performing linear stability using this
time-stepper approach can be found in Tuckerman & Barkley (2000) and details of the
implementation used here are presented in Leontini, Lo Jacono & Thompson (2015).

Since the operator is not explicitly formed, its corresponding eigenvectors and
eigenvalues cannot be found directly. However, the leading eigenvectors (those with
the largest eigenvalues) can be found through iteratively applying the operator, i.e.
integrating over multiple periods. Here, the leading eigenvectors and eigenvalues are
found using Arnoldi iteration.

These leading eigenvalues are the most relevant from a stability point of view.
Equation (2.4) shows that the eigenvalues can be interpreted as the ratio of the
perturbation field from one period to the next. If there is an eigenvalue (here referred
to as the Floquet multiplier, µf ) such that |µf | > 1, then the perturbation field is
growing from one period to the next, and the base flow is unstable. Hence, the aim
of the analysis is to determine for which parameters the base flow is stable (all
|µf |6 1) or unstable (at least one |µf |> 1). The eigenvector associated with a given
eigenvalue is often referred to as a Floquet mode – it is basically the perturbation
flow field.
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2.3. Problem set-up
The basic problem investigated is that of a circular cylinder immersed in a free
stream. The cylinder is rotating at a constant rate about its axis, while simultaneously
performing harmonic oscillations in the streamwise direction. Simulations were
conducted for flows with constant Reynolds number Re=UD/ν= 100 and normalized
rotation rate α = ωD/U = 3, where U is the free stream velocity, D is the cylinder
diameter, ν is the kinematic viscosity and ω is the rotation rate. The normalized
amplitude Ad = A/D and frequency fd = fD/U, where A and f are the amplitude and
frequency of streamwise oscillation respectively, were systematically varied over the
ranges 0< Ad < 2.4 and 0.04 6 fd 6 0.11.

3. Results

3.1. Floquet multiplier spectra
Figure 1 presents the magnitude of the Floquet multiplier, |µf |, as a function of the
spanwise wavelength, λ. Each panel shows data for a single frequency of oscillation,
while each line represents data for a constant amplitude. It is clear that for the lower
frequencies, there are two clear peaks in these Floquet multiplier spectra. Each peak
can be associated with a distinct mode of instability. One of these modes (that focused
around the shorter wavelengths and is marked with red lines and points in the figure)
has a real, positive Floquet multiplier. The other (marked with blue lines and points
in the figure) has a real, negative Floquet multiplier, indicating it is a subharmonic
mode which repeats over two oscillations of the body.

As the frequency is increased, the peaks in the spectra for both modes shift towards
shorter wavelengths. Typically (except for the case at fd= 0.06) the subharmonic mode
becomes unstable first, i.e. has a Floquet multiplier |µf |> 1 at a lower amplitude than
the shorter-wavelength mode. However, |µf | for the shorter-wavelength mode increases
very rapidly with amplitude, and if the amplitude is increased beyond the critical point
where |µf |= 1, the value of |µf | for the shorter-wavelength mode quickly exceeds that
of the subharmonic mode.

3.2. Spatial structure and mechanism of instability of the two modes
Example instantaneous images of each of the modes are presented in figure 2. The
contour lines in the figures represent vorticity of the base flow and the colour contours
represent levels of the spanwise vorticity of the perturbation field.

For the shorter-wavelength harmonic mode, the perturbation is focused in the layer
of fluid directly adjacent to the body. Together with the closed streamlines around the
body, this is taken as evidence that a centrifugal instability mechanism plays a role
in the destabilization of this mode.

For the longer-wavelength subharmonic mode, a potential instability mechanism
is not as clear. There appears to be some growth very close to the body, again
suggesting a centrifugal mechanism. However, the subharmonic nature of the mode
suggests some interaction between wake vortices of the same sign separated in time
by one period (Yildirim, Rindt & van Steenhoven 2013), generated by the break in
symmetry of the wake stemming from the body rotation. The low-frequency example
image shown in figure 2 supports this idea, with growth of the perturbation in the
wake vortices. However, this evidence of growth in the wake vortices is not as clear
at higher frequencies. While it seems likely the same cooperative mechanism (i.e.
centrifugal instability near the body supplemented by further growth via interaction
of wake vortices) exists at the higher frequencies, a definitive conclusion cannot be
drawn.
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FIGURE 1. Magnitude of the Floquet multiplier |µf | as a function of spanwise wavelength
λ. Each curve represents a unique value of the amplitude of oscillation Ad. Each panel
contains data for one frequency of oscillation fd: (a) fd = 0.05; (b) fd = 0.06; (c) fd = 0.07;
(d) fd= 0.08; (e) fd= 0.09; ( f ) fd= 0.11. Lines and points marked in red represent data for
the harmonic mode, those in blue represent data for the subharmonic mode. Filled black
points mark a common amplitude for which one of the modes is close to marginally stable.
Red points mark example cases shown in figure 2. (a–c) Show that the subharmonic mode
is first quenched, then amplified with increasing frequency. Harmonic mode data is not
presented for the higher frequencies in (d–f ) as the mode is not resolved in the range of
wavelengths tested at these frequencies.

3.3. Critical values of amplitude and wavelength
Figure 3 plots the critical amplitude (the lowest amplitude at which |µf | = 1) and the
critical wavelength (the wavelength for which |µf | = 1) for both the harmonic and
subharmonic modes as a function of the oscillation frequency fd. Figure 3(a) shows
that typically, the subharmonic mode becomes unstable at a lower amplitude than the
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(a) (b)

FIGURE 2. Spatial structure of the two modes. Red/blue colour contours represent
positive/negative spanwise vorticity of the perturbation field while solid/dashed contour
lines represent positive/negative base flow vorticity. (a) Short-wavelength harmonic mode
for wavelength λ= 1.0. (b) Longer-wavelength subharmonic mode for wavelength λ= 1.6.
Amplitude Ad = 1.5 and frequency fd = 0.05 in both cases.
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FIGURE 3. (a) The critical amplitude Ac
d for instability for each of the modes as a

function of the frequency of oscillation, and (b) the wavelength of the mode at this
critical condition. The harmonic mode data are shown in red, the subharmonic mode
data are shown in blue. Black points indicate measurements of amplitude, frequency and
wavelength taken from fully three-dimensional DNS simulations of the freely vibrating
cylinder BL15. The data in (a) show that typically the subharmonic mode becomes
unstable at a lower amplitude of oscillation; except in the range 0.05< fd < 0.07, where
the harmonic mode becomes unstable first with increasing amplitude. The data in (b) show
that the wavelength of the harmonic mode is consistently shorter than the subharmonic
mode.

harmonic mode, implying that for amplitudes of oscillation at least up to the critical
amplitude, |µf | for the subharmonic mode is greater than |µf | for the harmonic mode.
The exception to this is in the range 0.05 < fd < 0.07, where the harmonic mode is
the first to become unstable with increasing amplitude. For comparison with the freely
oscillating case, this is important as it might be expected that as the amplitude of the
free case develops from zero, the first mode to become unstable will be the mode
that will go on to the fully saturated three-dimensional flow. Of course, this is not
universal – nonlinear effects that will occur as the amplitude moves further from the
critical amplitude could mean the fully saturated flow bears little or no resemblance to
the linear mode calculated here. However, if there is a bifurcation sequence leading to
the fully saturated flow, the first step in this sequence will be governed by which of
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the linear modes is unstable first with increasing amplitude, subject to equal projection
of the background noise onto the modes.

Figure 3(b) shows that the critical wavelengths of the two modes are typically
well separated, and both decrease with increasing frequency. The separation of the
wavelengths of the two modes presents an interesting prediction: if there is a situation
in the freely oscillating case where the frequency can vary, it may be possible to
switch the mode which leads the transition, and this may result in a change in the
wavelength of the flow. The comparison below in § 3.4 shows that this is indeed the
case.

Around fd = 0.06, the subharmonic mode is quenched. This is due to the fact
that as the amplitude is increased beyond the critical value for the harmonic mode,
the growth rate or Floquet multiplier for the harmonic mode increases very rapidly
– much more rapidly than the Floquet multiplier for the subharmonic mode. This
high sensitivity to the amplitude also supports the idea that this mode is driven by
the centrifugal instability of the layer of fluid adjacent to the cylinder. Imagine a
perturbation introduced as a wave packet at a location inside the layer of fluid inside
the closed streamlines that encircle the body. For the perturbation to grow, this wave
packet must grow over the time it takes to make one orbit around the cylinder (Bayly
1988). Therefore, the time scale for the multiplication of this growth rate is the orbit
time, which will be similar to the rotation time of the cylinder itself. For the cases
tested here, α = 3. A frequency of fd = 0.06 gives a period of T = 16.66, implying
the cylinder makes 50 rotations per oscillation cycle. A small increase in the ratio of
the perturbation from one rotation to the next therefore results in a huge increase in
the ratio of the perturbation from one oscillation to the next.

3.4. Comparison with the freely vibrating case
Here, these controlled oscillation stability results are used to interpret three-
dimensional DNS simulation results of a rotating cylinder that is elastically mounted
and free to oscillate in the streamwise direction presented by BL15. In this previous
study, it was reported that the clear three-dimensional structures were formed, and
that there was no clear relationship between the spanwise wavelength of these
structures and the frequency, amplitude, or reduced velocity U∗ − U/( fnD), where
fn =
√

k/m/(2π), k is the spring stiffness and m is the cylinder mass.
For four values of U∗= 9, 11, 15.5 and 23, the amplitude and wavelength measured

during the freely oscillating simulations are plotted as a function of the measured
response frequency in figure 3. The rotation parameter α= 3 is the same in the freely
oscillating cases and the stability cases presented here. It is clear that the amplitude
of the response is just enough to exceed the critical amplitude required for three-
dimensional instability. It is also clear that the measured wavelength is reasonably well
predicted by the critical wavelength of the first mode to become unstable. A striking
feature is the large drop in wavelength measured in the DNS between the cases at
fd = 0.04 and fd = 0.06 (U∗= 23 and U∗= 15.5). This corresponds to a change in the
first mode to become unstable from the subharmonic mode to the harmonic mode.

This change in mode is also highlighted in figure 4. Space–time diagrams are shown
for the DNS simulations, plotting contours of the spanwise velocity as a function of
time and spanwise distance z, along a line located at (x, y)= (5, 0) for the same four
values of U∗ as presented in figure 3. These diagrams show that in the DNS, the only
case that repeats on the oscillation period (1-periodic) is that at U∗ = 15.5 – all the
others repeat over two cycles, i.e. all the others are subharmonic (2-periodic).
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(Ad = 0.96, fd = 0.084) 
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(Ad = 0.9, fd = 0.08) 

DNS, U* = 15.5 
(Ad = 1.42, fd = 0.059) 

Floquet 
(Ad = 1.4, fd = 0.06) 

FIGURE 4. (a) Space–time diagrams taken by recording the spanwise velocity at (x, y)=
(5, 0) over time from the three-dimensional DNS simulations for the four sample cases.
Red/blue contours represent positive/negative velocity. The solid line at z= 4 is simply to
highlight the behaviour over time at a given spatial location. Only the case at U∗ = 15.5
repeats every period, showing the change from the subharmonic mode to the harmonic
mode. (b) Two pairs of images of isosurfaces of ωx at one instant, first for U∗ = 11 and
then for U∗= 15.5. Each pair consists of an image taken from the three-dimensional DNS
simulations and an image reconstructed from the stability calculations at similar amplitude
and frequency. Arrows indicate correspondence between the space–time diagram and the
isosurface image. These images show the structure of the flow is well predicted by the
linear Floquet mode.

That the change for a 2-periodic to 1-periodic mode is associated with a change
in the linear mode leading the instability is supported by the isosurface images
of figure 4. Isosurfaces of streamwise vorticity are shown for a case at U∗ = 11
(2-periodic) and U∗= 15.5 (1-periodic), from the DNS simulations. Plots of the same
variable are also shown for two Floquet cases with amplitude and frequency that
almost match the DNS cases, where the three-dimensional field has been reconstructed
from the leading Floquet mode. The similarity between the flow fields from the DNS
and Floquet simulations indicates that the change in leading Floquet mode leads to a
change in the structure of the fully saturated three-dimensional flow.

Therefore, the lack of any regular relationship between the amplitude, frequency and
reduced velocity of the freely oscillating case modelled in the DNS simulations is
explained. The wavelength selected in the freely oscillating case is a function of which
mode is the first to become unstable, and this is a function of frequency of oscillation.

3.5. Relationship to the non-oscillating rotating cylinder
Rao et al. (2013) presented an in-depth study of the three-dimensional modes present
in the wake of a rotating cylinder that is not oscillating over a range of rotation rates
covering the value α = 3 used in the present study. Due to the low frequencies used
here, a comparison with the limiting case of no oscillation is warranted.

However, the two situations – oscillating and non-oscillating – have major
differences in flow topology; the primary one being that the oscillating flows here
exhibit periodic vortex shedding, and the non-oscillating cases do not. In fact, the
non-oscillating cases do not exhibit a traditional wake at all, as the high-speed rotation
effectively wraps all the vorticity produced at the cylinder surface around the cylinder,
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and the flow remains steady. These differences rule out a quasisteady explanation
of the oscillating case. Regardless, two modes grow on the steady flow: mode E, a
steady–steady bifurcation, with a critical spanwise wavelength of approximately 1.3
for Re= 100; mode F, a centrifugal instability with a critical wavelength less than 1.

The similarity in wavelength between mode E and the subharmonic mode found
here may suggest a similar instability mechanism, which Rao et al. (2013) conjectures
may be a combination of centrifugal and hyperbolic effects. This is plausible in the
oscillating case too, and § 3.2 discusses the potential for a cooperative mechanism.

The centrifugal mode F instability is also very similar to the harmonic mode found
here. As this mode is an instability of the region of flow enclosed by the streamlines
orbiting the cylinder, it is almost unaffected by the vortex shedding in the wake, and
hence its appearance in both the oscillating and non-oscillating case is not surprising.
Rao et al. (2013) also presents further evidence in this regard, showing that the trend
of critical Re for mode F is practically unaffected by the onset of a low-frequency
vortex shedding mode at higher rotation rates.

Therefore, while not quantitatively similar, it appears that the instability mechanisms
that occur in the non-oscillating case are qualitatively similar to those found here for
the oscillating case.

4. Concluding remarks

Floquet stability analysis of a rotating cylinder performing streamwise oscillations
in a free stream has been conducted. Two distinct modes, with different wavelengths
and distinct mechanisms of instability, have been identified, and both of them can lead
the transition to three-dimensional flow. The stability results are used to interpret the
measurements of three-dimensional structures in three-dimensional DNS simulations of
a rotating cylinder that is freely oscillating in the streamwise direction – the stability
results are able to explain that the non-monotonic relationship between the response
amplitude, frequency and reduced velocity is due to a change in the linear mode which
leads the transition to three-dimensional flow, which is a function of the frequency of
oscillation.
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