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In this paper, we investigate the scattering properties of an array of finite-length single-walled carbon nanotubes (SWCNTs),
up to terahertz frequencies. The problem is cast in terms of a Pocklington-like equation. The current density along the CNT is
described by a quasi-classical transport model, recently proposed. The numerical solution is obtained by means of the Galerkin
method. Case studies are carried out, either referred to isolated SWCNTs and an array of SWCNTs, aimed at investigating the
frequency behavior of the scattered field.
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I . I N T R O D U C T I O N

Due to their unique electrical, thermal, and mechanical proper-
ties, carbon nanotubes (CNTs) have been proposed for a wide
range of nanoelectronics applications, including interconnects
[1, 2], packages [3], transistors [4], passive devices [5], and anten-
nas [6, 7]. Recently, CNTs have been also proposed as innovative
scattering material [8], in the realization of absorbing materials
in the aircraft industry, in view of replacing conventional
materials, like polymeric sheets filled with magnetic or dielectric
loss materials, such as ferrite, permalloy. Furthermore, CNTs are
also used as filling materials in composite materials, to improve
the thermal properties of the interfaces [9].

The electromagnetic performance of CNT absorbing
materials and CNT-filled composite materials are strongly
related to their scattering response: the analysis of the scatter-
ing from CNT structures has therefore assumed a relevant role
in the literature [10–12]. The starting point is a reliable model
for the electrodynamics of CNT able to take properly into
account the graphene crystalline [13].

The p-electrons of the carbon atoms are delocalized and
contribute to the CNT electric current. An accurate electro-
magnetic model should describe both the interaction of the
p-electrons with the ions lattice and their collective effects
[14]. A possible approach is given by numerical simulations
based on first principles, according to quantum mechanics
[15]. Unfortunately, this approach is unable to simulate struc-
tures like CNT arrays, since it is likely to become computa-
tionally expensive, and hence simpler models are needed. If
interband transitions are absent, the p-electrons may be
regarded as “quasi-classical particles” and a semi-classical
model may be used to describe their dynamics. A first
example is the description of the CNT electrodynamics
within the frame of Luttinger liquid theory, given in [16].

Another approach consists in deriving the transport equation
for the p-electrons from the semi-classical theory of the elec-
trical conduction [17–19]. The authors have recently general-
ized this approach [20], including in the model the effects
related to the CNT size, chirality, and temperature.
Furthermore, they have shown [21] that the model given in
[20] is consistent with the fluid description of the CNT elec-
trodynamics proposed in [22]. The model involves the
concept of an equivalent number of conducting channels,
i.e. the number of the subbands in the neighbors of the
CNT Fermi-level that significantly contribute to the electric
conduction. In this paper, we use such a model, which is
briefly summarized in Section II.

The analysis of electromagnetic scattering from one or more
finite-length CNTs may be faced by recasting the problem
either into a Hallen or a Pocklington equation [10–12]. The
well-known problem to be handled to obtain the numerical sol-
ution of such equations is the singularity of the kernels. Usually
an approximated kernel is used, relying on the so-called thin-
wire approximation, which, however, may lead to numerical
problems (oscillations in the numerical solution at the end
points of the antenna) as pointed out in [23]. A possible sol-
ution to this problem is given in [12], where a formulation in
terms of the Hertzian potential and the Wiener–Hopf tech-
nique are used to analyze the case of semi-infinite CNTs. In
this paper, we analyze the scattering problem by using the
Pocklington formulation with the complete kernel, by means
of an analytical extraction procedure of the contribution of
the kernel singularity. Section III is devoted to the formulation
of the scattering problem, either from an isolated CNT or from
a CNT array. Section IV shows the considered case studies. A
comparison with the existing literature is provided, along
with the analysis of the array effect on the scattering.

I I . E L E C T R O D Y N A M I C S O F A C N T
S H E L L

Provided that there are no intershell tunneling currents
between adjacent CNT shells, the electromagnetic response
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of a complex structure of CNTs may be always reduced to the
study of a set of single CNT shells interacting between them
only through the macroscopic electromagnetic field.

A) Band structure of a CNT shell
A CNT is made by rolling up one or more sheets of a
mono-atomic layer of graphite (graphene). A single-walled
carbon nanotube (SWCNT) is made up by a single shell,
usually with radius of the order of few nanometers; instead,
a multi-walled carbon nanotube (MWCNT) is made by
several nested shells, with radius ranging from tens to hun-
dreds of nm. The graphene sheet is reported in Fig. 1(a),
along with the chiral vector c describing how it is rolled:
c ¼ na1 + ma2, where n and m are integers and a1 and a2

are the basis vectors of the graphene lattice, of length
|a1| = |a2| = a0 = ��

3
√

b0, being b0 ¼ 0.142 nm the intera-
tomic distance. The CNT radius is given by
rC = a0/ 2p( )

����������������
n2 + nm + m2

√
. CNTs with n ¼ 0 (or m ¼ 0)

are called zigzag, those with n ¼ m are the armchair CNTs
and those with 0 , n = m are the chiral CNTs. Although
the graphene layer is a zero-gap semiconductor, when it is
rolled up it may become either metallic or semiconducting,
depending on its geometry (e.g. [24]). The general condition
to obtain a metallic CNT is |n 2 m| ¼ 3q, where q ¼ 0, 1, 2.

In order to analyze the band structure of a CNT shell, it is
useful to start from the graphene reciprocal lattice (Fig. 1(b)),
described in the Cartesian coordinate system (kx, ky) having
the origin at the center of a hexagon, being the ky axis oriented
along the hexagon side. The basis vectors are
b1 = 2p/

��
3

√
a0, 2p/a0

( )
and b2 = 2p/

��
3

√
a0, − 2p/a0

( )
.

The first Brillouin zone of a CNT shell is the set
S = {s1, s2, . . . , sN } of N parallel segments depicted in
Fig. 1(b): the distance between two adjacent segments is

Dk⊥ ¼ 1/rc. By assuming the CNT axial length to be large
compared to the unit cell dimension, the axial wave vector
is almost continuous. On the contrary, due to the periodic
boundary condition along the CNT circumference, the trans-
verse wave vector k⊥ is quantized: mDk⊥ with m ¼ 0, 1, . . . ,
N 2 1.

The dispersion relation for the SWCNT consists of 2N one-
dimensional energy subbands Em

(+), whose expression involves
the dispersion relation of the graphene layer, given by

E(+)
g (k) = +g 1 + 4 cos

��
3

√
kxa0

2

( )
cos

kya0

2

( )[

+4 cos2 kya0

2

( )]1/2

. (1)

Here the signs + or 2 indicate the conduction and the
valence energy band, respectively, and g ¼ 2.7 eV is the
carbon–carbon interaction energy. The valence and conduc-
tion bands of the graphene touch themselves at the graphene
Fermi points. Let us denote with kF the wave number at such
points. In a neighborhood |k − kF| ,, 1/a0 of each Fermi
point, expression (2) may be approximated as
E(+)

g � h− vF |k − kF |, where vF is the Fermi velocity of the gra-
phene given by vF = 3gb/2h− (vF � 0.87 × 106m/s) and h− is
the Planck constant. Only the energy subbands that pass
through or are close to the Fermi level contribute significantly
to the nanotube axial electric current.

B) Electron transport of p-electrons
In the low-frequency range (up to terahertz), the interband
transitions are absent and a semi-classical description can be
used to model the p-electron dynamics. To describe the
p-electron dynamics in the mth CNT subband, we introduce
the distribution function fm

(+) (z, k, t), satisfying the quasi-
classical Boltzmann equation [20]:

∂f (+)
m

∂t
+ n(+)

m

∂f (+)
m

∂z
+ e

h− Ez

∂f (+)
m

∂k
= −n( f (+)

m − f (+)
0,m ), (2)

where e is the electron charge, Ez ¼ Ez(z, t) is the longitudinal
component of the electric field at the CNT surface,
n(+)
m (k) = dE(+)

m /d(h− k) is the longitudinal velocity of the con-
duction/valence electrons and n is the relaxation frequency.
The distribution at equilibrium is given by

f (+)
0,m (k) = F[E(+)

m (k)]/2p2rc, (3)

where F[E] the Dirac–Fermi distribution function with elec-
trochemical potential equal to zero, F[E] = [eE/kBT + 1]−1,
with kB being the Boltzmann constant and T the nanotube
absolute temperature. Assuming time-harmonic steady state
for the electric field and the surface current density,
i.e. Ez(z, t) = Re{Êzei(vt−bz)}, Jz(z, t) = Re{Ĵzei(vt−bz)}, the
constitutive equation for the CNT is represented as:

ŝzz(b, v)Ĵz = Êz, (4)

where ŝzz(b, v) is the CNT longitudinal conductivity in the
wave number and frequency domain. In the small

Fig. 1. (a) The unrolled lattice of a CNT: lattice basis vectors of graphene, unit
cell of grapheme, and the chiral vector of the tube graphene lattice. (b) The
reciprocal graphene lattice and the first Brillouin zone referred to a CNT shell.
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perturbation limit around the equilibrium from equation (2),
we obtain [20]

ŝzz(b, v) = ie2

h−
∑
+

∑N−1

m=0

∫p/T

−p/T

∂f (+)
0m

∂k

v(+)
m

v− v(+)
m b− in

dk. (5)

The corresponding constitutive equation in the spatial and
frequency domain is given by [20]

iv
n
+ 1

( )
Jz =

1
n((n/iv) + 1)

v2
F
∂rs

∂z
+ scEz , (6)

where rs(z, v) is the surface charge density, and sc ¼MvF/
prcnR0 is the long wavelength static limit for the axial conduc-
tivity. In its expression, we have introduced the quantum
resistance R0 = ph− /e2 � 12.9 kV and the equivalent
number of conducting channels defined as

M = 2h−
vF

∑N−1

m=0

∫p/T

0
v2

F
dF

dE+
m

( )
dk. (7)

This parameter represents the average number of subbands
around the Fermi level. It depends on the number of segments
sm passing through the two circles of radius keff and centered at
the two Fermi points of graphene. The radius keff is a function
of the absolute temperature T: for keff ≪ 1/a0 it is
keff = 5kBT/h− vF , and therefore M increases as temperature
increases. Indeed the chirality of a CNT plays a relevant role
in determining M, as depicted in Fig. 2 in which the typical
behavior for metallic (a) and semi-conducting (b) CNTs is
shown.

Relation (6), which can be regarded as a non-local Ohm’s
law, may be rewritten as follows, by applying the charge con-
servation law:

ivLK Jz =
1

ivCQ

∂2Jz

∂z2
+ Ez

2prc
− RJz. (8)

Here the per-unit-length parameters (kinetic inductance
LK, quantum capacitance CQ, and resistance R) are given by:

Lk =
R0

2vFM
,

CQ = 2M
vFR0

1 + n

iv

( )
, R = nLK = nR0

2vFM
,

(9)

which generalize those used in literature (e.g. [19]), usually
referred to the case of metallic shells of small radius for
which it is M ≈ 2.

Equation (8) may be regarded as a balance of the momen-
tum of the conduction electrons and represents their transport
equation: the term on the left-hand side represents the elec-
tron inertia. The first term on the right-hand side represents
the quantum pressure arising from the zero-point energy of
the electrons, the second term describes the action of the col-
lective electric field, whereas the third one is a relaxation term
due to the collisions.

Note that the relaxation frequency may be expressed as n ¼
vF/lmfp, where lmfp is the mean free path of the electrons. In
conventional conductors, lmfp is of the orders of some nm,
and therefore it is n � 1, and hence (6) becomes a local
relation. The mean free path of CNTs, instead, may extend
up to the order of mm, and therefore the range of non-locality
is relatively large.

I I I . S C A T T E R I N G F R O M C N T

A) Scattering from an isolated CNT and from
an array of CNTs
Let us consider an isolated SWCNT of length 2L and radius rc,
with 2L ≫ rc, aligned to the z-axis of a Cartesian coordinate
system, Fig. 3(a). A plane wave E(i)(r, t) = Re{E(i)

0 (r)eivt} is
impinging on the CNT, inducing a current and a charge dis-
tribution all over its surface. Due to the linearity of the
equation involved in the problem, the total electric field can
be seen as the superposition of the incident field and the
scattered one, i.e.

E (t)(r) = E (i)
0 (r) + E (s)(r). (10)

As the current and charge distribution are almost uniform
along the CNT contour at fixed z (e.g. [22]), the current inten-
sity I(z) and the p.u.l. electric charge Q(z) are simply given by
I(z) ¼ 2prcJz(z) and Q(z) ¼ 2prcrs(z), and hence (6) may be
rewritten as

(iv/n+ 1)I(z) + n2
F

n(1 + n/iv)
dQ(z)

dz
= 1

R
Ez(z), (11)

where R is the p.u.l. resistance defined in (9) and Ez(z) is the z
component of the total electric field evaluated on the surface
of the CNT. The above equation has to be coupled with the
charge conservation law:

ivQ(z) + dI(z)
dz

= 0. (12)Fig. 2. Equivalent number of conducting channels versus CNT shell diameter,
computed at T ¼ 273 and 373 K.
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Let us introduce the magnetic vector potential A ¼ Az(z)ẑ
and the scalar electric potential V generated by the induced
current and charges evaluated at the CNT surface. The poten-
tials are expressed as

Az(z) = Lm0T{I}(z), V(z) = 1
Ce0

T{Q}(z), (13)

where Lm0 = m0/4p, Ce0 = 4p10, T is the linear integral
operator

T{u}(z) =
∫L

−L
g(z − z′)u(z′)dz′, (14)

defined through the following kernel:

g(z) = 2
p

K(m2)
r

+ gv(z), (15)

K is the complete elliptic integral of the first kind,
r =

��������
4r2

c+z2
√

and m ¼ 2rc/r. As the CNT radius is electrically
small for the typical frequencies of interest (up to THz), the
term gv(z) in (15) is satisfactorily approximated by

gv(z) � −ik
sin (kr/2)

kr/2
exp (−ikr/2). (16)

Applying (13), the total longitudinal electric field Ez(z) is
given by

Ez(z) = −ivAz(z) − dV(z)
dz

+ E(i)
0z (z), (17)

being E0z
(i)(z) the longitudinal component of the incident field.

Applying the above results, the current distribution I(z)
along the CNT is the solution of the following system of
integro-differential equations:

[iv(LkI + Lm0T{I}) + RI] + d
dz

Q
CQ

+ 1
Ce0

T{Q}

( )

= E0z, ivQ + dI
dz

= 0, (18)

where the kinetic inductance Lk and the quantistic capacitance
CQ have been introduced in (9). The solution of (18) may be
performed numerically. If no approximation is given to the

kernel (e.g. thin-wire approximation as in [6–10]) the numeri-
cal model must properly take into account for the logarithmic
singularity appearing in the static part of the kernel g(z) when
z = (z − z′) � 0:

g0(z) � − 1
prc

ln
z

8rc

( )
for z/2rc ,, 1. (19)

Once the CNT current distribution I(z) is known, the
related far-field scattered field can be directly evaluated as:

Es
u(r, u) = ivm0

e−ikr

4pr

∫L

−L
I(z′)eikz′ cos (u)dz′,

Hs
w(r, u) = 1

6
Es
u(r, u)

(20)

being 6 the free-space intrinsic impedance.

B) Scattering from an array of CNTs
The above model can be also used effectively for analyzing the
scattering from an array of SWCNTs providing that the tun-
neling currents between adjacent CNTs may be disregarded.
Following the stream of what has been done above, let us con-
sider a 1D array of identical SWCNTs arranged along the
x-axis of a Cartesian coordinate system and parallel to the
z-axis, as depicted in Fig. 3(b). Each of them has a length 2L
and radius rc. The system is always illuminated by a plane
wave E(i)(r, t) = Re{E(i)

0 (r)eivt}. The current and p.u.l.
charge are almost uniform along the contour of each CNT
at fixed z, i.e. for any CNT Ii(z) ¼ 2prc Jz,i(z) and Qi(z) ¼
2prcrs,i(z). Therefore, the ith CNT constitutive equation is
the same of the single CNT one, (11). The potentials may be
expressed as

Az,i(z; xi, xj) = Lm0

∑
j=1,N

Ti{I( j)}(z; xi, xj),

Vi z( ) = 1
Ce0

∑
j=1,N

Ti{Qj}(z; xi, xj), (21)

where Lm0 = m0/4p, Ce0 = 4p10, and T is the linear integral
operator

Ti u{ } z; xi, xj
( )

=
∫L

−L
gij(z′, xi, xj)u z′

( )
dz′, (22)

Fig. 3. (a) The single-CNT scattering problem; and (b) a linear array of CNTs.
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defined through the kernel:

gi,j =
1

4p

∫p
0

e−ikRij

Rij
df′, (23)

being Ri,j =
�����������������������
(z − z′)2 + xi − xj

( )2
√

.

As done for the case of an isolated CNT, the problem is
solved without any kernel approximation, by using a
Galerkin finite-element scheme, and an analytical integration
of the kernel singularity.

I V . C A S E S T U D Y

A) Transmitting property of an isolated CNT
shell
In the first case study, the transmitting antenna in [6] is con-
sidered. The CNT length is L ¼ 10 mm, the radius rc ¼

2.72 nm, the parameter 1/n ¼ 3 ps, and the temperature is
T ¼ 300 K. The excitation input used in our simulations is
the frill generator [25] defined by

Ein(z) = 1
2 ln (b/a)

e−ikRA

RA
− e−ikRB

RB

[ ]
, (24)

where

RA =
��������
z2 + r2

c

√
, RB =

������������
z2 + (2rc)

2
√

. (25)

Figure 4 shows the current distribution on the CNT
antenna at various frequencies. The results obtained here are
in good agreement to those obtained in [6], with little differ-
ences due to the thin-wire approximation used in [6] to evalu-
ate the kernel.

B) Scattering from an isolated CNT shell
Let us first introduce a benchmark case to test the validity of
our model. In the following, we refer to the case study of an
isolated SWCNT of length 20 mm analyzed in [11]. In order
to compare the results, we assume the same operating con-
ditions as in [11], where the incident field is a TEM wave

Fig. 4. Current distribution on the CNT antenna at (a) 10 GHz, (b) 160 GHz, (c) 292 GHz, and (d) 578 Ghz.

Fig. 5. Scattered electric field for a 20 mm-long CNT, with radius of 2.72 nm at
300 K, illuminated by a TEM plane wave impinging orthogonally. The
scattered field has been evaluated at a distance of 100 mm.
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with wavevector perpendicular to the CNT axis and the field is
evaluated at a distance of 100 mm.

Figure 5 shows the scattered electric field for the two CNT
lengths, computed for variable frequencies up to 1 THz, in the

angular direction of the maximum scattering. The plots high-
light the strong dependence of the scattering characteristics
from the CNT length, as already pointed out in the literature
[11]. The results obtained here are in good agreement with
those obtained in [11]. Figure 6 reports the current distri-
butions computed at the frequencies indicated in Fig. 5 with
circles, corresponding to the first two maxima and the first
minimum.

C) Scattering from an array of CNTs
Let us consider the case of an array of nine identical CNTs,
of radius rc ¼ 2.72 nm, length 2L ¼ 8 mm, 1/n ¼ 3 ps at the
temperature is T ¼ 300 K. The nanotubes are equispaced and
the inter-axis distances analyzed are Dx ¼ L/4 ¼ 1 mm, Dx ¼

L/2 ¼ 2 mm, and Dx ¼ L ¼ 1 mm. For these distances, the tun-
neling currents between adjacent CNTs are negligible. The inci-
dent field, as in the isolated CNT simulations, is assumed to be a
TEM wave with wave vector perpendicular to the CNT axis and
the field is evaluated at a distance of 100 mm. When the inter-
axis distance is comparable to the CNT half-length the current
distribution along the nanotubes resembles one of the isolated
CNTs and the scattered field can be evaluated considering the
nine CNTs as if they do not interact electromagnetically.

These results are reported in Fig. 7. In Fig. 7(a), the current
distribution on the central CNT of the array, when the struc-
ture is illuminated by a TEM plane wave of wavelength
300 mm, is reported in the case of isolated CNT and for
three considered inter-axis distance. In Fig. 7(b), the
maximum value of the scattered electrical field is reported in
the same conditions.

V . C O N C L U S I O N S

Electromagnetic scattering properties of finite-length
SWCNTs, either isolated or in arrays, have been investigated
up to terahertz frequencies. The scattering problem has been
formulated in terms of a Pocklington-like integral equation.
The electromagnetic behavior of each CNT shell is described
through a semi-classical fluid model. The integral equation
is solved using a Galerkin finite-element scheme without
any kernel approximation, because the kernel singularity is
analytically integrated. An array of CNTs is simulated,
showing that the mutual coupling is negligible if the inter-axis
distance is comparable to the semi-length of the CNT. The
coupling is mainly due to the electrostatic interaction
between the CNT: this result can be useful to decrease the
computational burden of simulating large arrays. Since the
proposed approach allows dealing with a CNT shell of arbi-
trary chirality, it can be used for analyzing the electromagnetic
scattering from more complex structures composed of single-
walled CNTs with different chirality such as multi-walled
CNTs and bundles of CNTs, providing that the direct coup-
ling of electronic states of adjacent CNT shells may be dis-
regarded (intershell tunnelling currents are negligible) and
only the electromagnetic coupling is important.
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Fig. 7. (a) Current distribution on the central CNT of the array when the
structure is illuminated by a TEM plane wave of wavelength 300 mm. (b)
Electric field magnitude scattered by the array. The scattered field has been
evaluated at a distance of 100 mm.

Fig. 6. Spatial distributions of the current along the CNT at the frequencies
indicated in Fig. 5.
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