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We study deviation matrices of birth–death processes+This is relevant to the control
of multidimensional queueing systems+We give an algorithm for computing devi-
ation matrices for birth–death processes+ As an application, we compute them ex-
plicitly for the M0M0s0N andM0M0s0` queues+

1. INTRODUCTION

In principle, Markov decision theory can be used to find optimal policies in con-
trolled queueing networks+Standard methods are value iteration and policy iteration
~see, e+g+, @8# !+ To execute these algorithms, one needs to store in computer memory
at least one vector the size of the state space+This is, of course, infeasible for models
with an unbounded state space+ Even if we bound the state space in an appropriate
way, often its size prohibits us from storing this vector+ This is even more so for
high-dimensional~queueing! models: Depending on the number of states per com-
ponent, in practice, models with more than, say, four state components cannot be
solved anymore+ This phenomenon is called thecurse of dimensionality.It calls for
approximation methods+ A successful method isone-step improvement.

One-step improvement is based on the policy iteration method+ This method
repeats the following two steps~see@8# for terminology!:
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1+ For a givenvalue function, compute the minimizing action in each state+
2+ Compute thevalue functionfor this new policy+

It can be shown that this gives a sequence of policies for which every policy is better
~i+e+, has lower average costs! than the previous one+

For one-step improvement, we assume that the value function has been deter-
mined for some fixed policy+By applying Step 1 once~only in states in which we are
interested!, we know we have a better policy+ This policy is used as an approxima-
tion for the optimal policy+ In general, the value of this policy cannot be computed,
let alone the optimal policy+ Therefore, it is hard to assess the quality of the one-step
improved policy+ However, for low-dimensional cases, the method has been tested
and has been shown to give surprisingly good results@6,7,9# + The crucial step is to
compute the value for some fixed policy~preferably one for which we hope that
one-step improvement gives good results!+ Both @7# and@9# can be seen as models
consisting of parallel queues with a dependency created by the control+ For certain
classes of policies, the queues behave independently+ ~The model of@6# is a priority
queue, for which there is always a dependency+! If the queues are independent, then
it can be seen that the value function is simply the sum of the values of the individual
queues, thereby reducing theN-dimensional problem toN 2 1-dimensional prob-
lems+ These are, of course, easy to solve, either numerically or by using a closed
formula+ In @7,9# , closed formulas are computed for value functions of certain queues+
These formulas depend not only on the type of queue and its parameter values but
also on the cost structure+

Thedeviation matrixof a Markov chain allows us to compute the value inde-
pendent of the cost structure+ Indeed, the deviation matrixD of a Markov chain is
independent of the cost structure; for a cost vectorc, the bias vectorv ~ for more
details, see Sect+ 3! is simply given byv5 Dc+ This means that by calculating the
deviation matrix of a Markov chain we can simply compute~by a single summation!
the bias vector for any cost structure that is a function of the state+This included cost
functions, such as queue length, idleness, and the blocking probability in finite buffer
systems+

In this article, we first introduce notation and derive some general results for
the deviation matrix in Section 2+ In Section 3, we show the relation with Markov
decision chains through the Poisson equation+ Finally, in Section 4, we derive an
algorithm for computing the deviation matrix for a special class of birth–death
processes, including theM0M0s0N andM0M0s0` queues+ In the same section, we
also derive closed-form expressions for these queues+

2. MODEL AND BASIC FORMULA FOR THE DEVIATION MATRIX

Let $jt %t be an irreducible, aperiodic, and time homogeneous Markov chain on
a countable state spaceS, which is positive recurrent+ Thus, it has a stationary
distribution that we denote byp 5 $px%x[S+ The corresponding stationary matrix
P :Sr S is the matrix with all rows equal top+
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Let us writeP~n!, n 5 0,1,2, + + + , for then-step transition probability matrix of
our Markov chain; that is,

pxy
~n! 5 P$jn 5 y6j0 5 x%;

we also setP~0! equal to the identity matrixI + The deviation matrixD is defined by

Dxy 5 lim
aF1

(
n50

`

~ pxy
~n! 2 py!an,

provided this limit exists+Note that the fundamental matrixZ5 ~I 2P1P!21 exists
with D and it relates to it in the following way:

Z 5 D 1 P+

When the state space is finite, the deviation and fundamental matrices always exist
and they can be expressed in terms of stationary probabilities and first-passage times
~cf+ @4# !+We will introduce these quantities first and then recall the formula for the
deviation matrix for the finite-state case+

Let z[ Sbe a given state+ Then, the taboo transition probability matrixzP with
taboo statez is defined by

zpxy 5 Hpxy, y Þ z

0, y 5 z+

Write zmxy 5 (n50
`

zpxy
~n! + This has the well-known interpretation of being the ex-

pected number of visits of statey, given the initial statex, before returning toz+
Similarly, setTz 5 inf $t . 06jt 5 z,j1, + + + ,jt21 Þ z% and lettxz5 E$Tz6j0 5 x% the
first-passage time ofz when starting inx+ A straightforward computation yields

(
y

zmxy 5 txz+

These quantities can be solved using systems of linear equations+ In particular, let-
ting dxy denote the Kronecker delta

zmxy 5 dxy 1 (
a

zpxa zmay (2.1)

and taking the summation overy,

txz 5 11 (
a

zpxataz+ (2.2)

Note thatpx 5 pz{zmzx, andpz 5 10tzz+
Next we summarize some known results on deviation matrices for finite-state

chains~cf+ also@4, Thm+ 4+4+7# !+
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Theorem 2.1: Let S be finite. The deviation matrix D is the unique solution to the
following set of equations:

D 5 I 2 P 1 PD, (2.3)

PD 5 DP 5 0, PD 5 DP+ (2.4)

Moreover,

Dxy 5 pyS(
vÞy

pvtvy 2 1$xÞy% txyD (2.5)

5 Dyy 2 1$xÞy% pytxy+ (2.6)

Formula~2+6! can be heuristically explained as follows+We can say thatDxy counts
the number of visits ofy starting fromx compared to starting in a stationary situa-
tion+ The first visit toy occurs on average only aftertxy time periods, whereas from
a stationary initial state,py visits are counted for each time unit+Thus, the difference
in visits between starting inx or in stationarity from time 0 to the epoch just before
y is reached is2pytxy+ The remaining difference starting from the momenty is
reached isDyy, which indeed includes the first visit after~on average! txy time+

The theorem has two immediate interesting consequences: The first one is that
Dyy . 0+ The second one is thatDP 5 0 implies

0 5 (
y

Dxy 5 (
y

Dyy 2 (
yÞx

pytxy+ (2.7)

In turn, this implies that(yÞx pytxy does not depend onx! This statement can be
proved to hold for the countable state space case+ Unfortunately, the expressions
involved may not be finite, so that changing the order of subtraction on summation
in ~2+7! may not be allowed+ This is the case in the infinite buffer example that we
will discuss later+

For completeness,we will show independence of(yÞx pytxyonx+This is equiv-
alent to showing that(y pytxy is independent ofx+ Indeed, the term corresponding to
y equalspytyy51+

Lemma 2.1: We have that(y pytxy is independent of the initial state x; that is, there
exists a constant1 , c #` such that

(
y

pytxy 5 c for all x [ S+

As a consequence,

(
x, y

pypx txy 5 c

as well.

Proof: Denotef ~x! 5 (y pytxy; this may be infinite+ We will first argue that the
f ~x! are either all finite or all infinite+
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Assume thatf ~x! , ` for some statex+ Choose any statel Þ x, some~finite!
path fromx to l, and denote the probability of this path byq+ Then, tly # txy0q and so
f ~l ! # f ~x!0q , `+

So we may assume thatf ~x! , ` for all x+ By ~2+2!,

f ~x! 5 (
y

pyS11 (
lÞy

pxl tlyD
5 11 (

l

pxl (
yÞl

pytly

5 11 (
l

pxl ~ f ~l ! 2 1!+

By subtracting 1 from the right-hand side and writingg~x! 5 f ~x! 2 1, we get

g~x! 5 f ~x! 2 1 5 (
l

pxl g~l !;

in matrix notation,

g 5 Pg+

Integrating this yields

g 5 P~n!g,

and taking the limit on both sides and using Fatou’s lemma, we get

g $ Pg+

Suppose thatg Ó Pg+ Then, there must be at least one statex for which g~x! .
~Pg!~x!+ Since

g~l ! $ (
y

pyg~ y!,

for all statesl, we obtain, by multiplying bypl and taking the summation overl,

(
l

pl g~l ! . (
l

pl (
y

pyg~ y! 5 (
y

pyg~ y!,

a contradiction+ Thus, g~x! 5 (y pyg~ y! for all statesx+ This proves the lemma+
n

The next theorem shows essentially that formula~2+6! holds whenever the de-
viation matrix exists+

Theorem 2.2: Suppose that there exists a unique solution D to (2.3) and (2.4).
Then, (2.5) holds.
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Proof: First, we show that the matrixA with entries

axy 5 Dyy 2 1$xÞy% pytxy

solves~2+3!+ Indeed,

dxy 2 py 1 (
k

pykaky 5 dxy 2 py 1 Dyy 2 (
kÞy

pykpytky

5 Dyy 1 dxy 2 pyS12 (
kÞy

pyktkyD
5 Dyy 1 dxy 2 pytxy 5 axy+

Next, we show that this must be the only solution+We have that

D 2 A 5 P~D 2 A!+

This difference matrix has all diagonal elements equal to 0+ Also,

~D 2 A!1 # P~D 2 A!1+

Iterating this yields

~D 2 A!1 # P~t ! ~D 2 A!1+

Taking the lim sup fort r ` and using Fatou’s lemma gives

~D 2 A!1 # P~D 2 A!1+

Consequently, ~D 2 A!1 has bounded columns+ In the same manner, one can show
that ~D 2 A!2 has bounded columns+ Using the fact thatD 2 A 5 P~t !~D 2 A! and
dominated convergence shows that

D 2 A 5 P~D 2 A!+

Thus, D 2 A has constant columns+ Since it has zero diagonal elements, the whole
matrix must be identically 0+ As a consequence, D 5 A+

This shows the validity of formula~2+6!; that is,Dxy5 Dyy2 1$xÞy%pytxy+Using
thatPD 5 0, we obtainDyy 5 py (vÞy pvtvy+ n

The natural question arises whether the reverse implication holds; that is, pro-
vided the right-hand side of~2+6! is finite, does it yield a unique solution of~2+3! and
~2+4!? It yields a solution of~2+3! indeed+However, it is not clear whether~2+4! holds
without any further conditions+

A possible counterexample could be an ergodic, embeddedM0GI01 queue with
a suitable service time distribution+ If the service time distribution has a finite first
moment but an infinite second one, then the stationary distribution has an infinite
first moment~e+g+, see@3,Chap+ 14+4# !+ By homogeneity properties and the fact that
downward jumps have size at most 1, one can show thattxy 5 c~x 2 y!,
x . y, for some constantc+ Indeed, applying Theorem 2+2 yields that a unique so-
lution to ~2+3! and~2+4! cannot exist+ In that case,(v.y pvtvy 5 (v.y pvc~v2 y! is
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necessarily finite+ This contradicts the fact that the stationary distribution does not
have a finite first moment+

Requiring the service time distribution to have at best a finite~21e!th moment,
for some sufficiently smalle . 0, yields finite expressions in the right-hand side of
~2+6!+Defining the matrixA with entriesaxy through~2+6!, it easily follows that~2+3!
is satisfied+ However, it is not clear whetherPA converges+We believe not+

To guarantee the existence of unique solutions to~2+3! and~2+4!, one can use the
following theorem from@2# +The contractive Lyapunov function condition used there
is satisfied by our examples studied later+

Theorem 2.3: Consider an aperiodic, irreducible, and time homogeneous Markov
chainjt on a countable state spaceS. Suppose thatjt satisfies the following con-
tractive Lyapunov function criterion: There exists a state z[ S, a positive function
f :Sr R with infx f ~x! . 0, and a positive constanta such thatzPf # exp2af+ Then,
the Markov chain is positive recurrent; in particular, it is f-exponentially ergodic
(see [1] ). Then, the deviation matrix D is the unique f-bounded solution to (2.3) and
(2.4) and the following formula holds:

D 5 ~I 2 P! (
n50

`

zP~n! ~I 2 P!+ (2.8)

3. THE POISSON EQUATION

The deviation matrix plays an important role in Markov decision chains+ In a Markov
decision chain, the transition matrixP depends on the policyf :Sr A,with A the set
of actions+ Therefore, we often writeP~ f ! instead ofP+ There are also immediate
costsc 5 $c~x!%x[S+

An intermediate step in many algorithms~e+g+, policy iteration, or the approx-
imation algorithm described in Sect+ 1! is solving the Poisson equation

c 2 g 5 v2 P~ f !v

for a given policyf+ Under the conditions of Theorem 2+3, the Poisson equation has
a unique solution up to a constant, namelyv5 Dc andg 5 Pc ~ for P 5 P~ f !!+

We make some observations on computational issues+Choose any setA, Sand
suppose that(y[A Dyyc~ y! converges+ This is true for any finite set+ Then, by Theo-
rem 2+2, vA given by

vA~x! 5 v~x! 2 (
y[A

Dyyc~ y! 5 2 (
y[A,Þx

pytxyc~ y! 1 (
yÓA

~Dyy 2 1$ yÞx% pytxy!c~ y!

is a solution as well+ When the state space is finite, we can always takeA 5 S+
Suppose the costs have equal signs or can be made to have equal signs by adding a
constant+ The latter is the case, for instance, when the costs have a monotone struc-
ture+ Then, it follows immediately that thevS~x! have equal signs+ This allows for
numerically stable algorithms for computing a solution of the Poisson equation+
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4. THE DEVIATION MATRIX FOR THE M/M/s/N AND M/M/s/` QUEUES

By virtue of Theorem 2+2, we need to compute hitting times and stationary proba-
bilities in order to explicitly calculate the deviation matrix+We will do so through
formulas forymxv+

We will first compute these quantities for the time-discretized approximation of
a birth–death process on the nonnegative integers with the following boundedness
conditions on the jump rates+ For lx andµx, the birth and death rates in statex,
respectively, such thatµ0 5 0, assume that

0 , lim inf
xr`

lx

µx

# lim sup
xr`

lx

µx

, 1,

0 , inf
x

~lx 1 µx! # sup
x

~lx 1 µx! , `+

Let N 5 inf $x6lx 5 0%, whereN may be infinite if all birth rates are positive+ After
suitable renormalization, we obtain an approximating Markov chain on$0, + + + ,N%
with the following transition probabilities:

pxy 5 5
lx, y 5 x 1 1, x , N

µx, y 5 x 2 1, x . 0

12 (
sÞx

pxs, y 5 x+

This Markov chain trivially satisfies the conditions of Theorem 2+3 wheneverN is
finite; it also satisfies these conditions whenN is infinite+ This can be shown by
constructing a suitable Lyapunov function+

Lemma 4.1: Choose state z. 0 with supx$zlx0µx , 1+ Next, we determine a num-
ber of positive constants satisfying the following conditions:

~i! Choosed with exp$d% # infx$zµx0lx+
~ii ! Let g and c, 1 be such thatexp$2g% # infx#zµx0lx and ~1 1 c!~1 1

~exp$2g%04!z! # exp$d%+
~iii ! Finally, let a satisfysupx~12 exp$2a%!0lx # c~exp$2g%04!z andl0~11

~exp$2g%04!! # exp$2a%+

Let

bx 5 H~exp$2g%04!x, x # z

bz, x . z+

Then, the function f defined recursively by f~0! 5 1 and f~x! 5 ~1 1 bx! f ~x 2 1!,
x . 0, is a Lyapunov function that satisfies the conditions of Theorem 2.3 with taboo
state0 and contraction factorexp$2a%+
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Proof: We need to check that(y 0 pxy f ~ y! # exp$2a% f ~x!+ Forx5 0, this reduces
to checking

l0~11 b1! # exp$2a%+

This follows immediately from~iii !+ For x . 0, we have to check that

µxS f ~x!

11 bx
D1 ~12 lx 2 µx! f ~x! 1 lx f ~x!~11 bx11! # exp$2a% f ~x!

or

bx11 1
12 exp$2a%

lx

#
µx

lx

bx

11 bx

+ (4.1)

For x , z, this follows from the fact that

2bx11 5 2Sexp$2g%

4 Dx11

# 2
µx

4lx

bx #
µx

lx

bx

11 bx

,

since 11 bx , 2 and~1 2 exp$2a%!0lx # cbz # bx11 by ~iii !+ For x $ z, ~4+1!
reduces to

bz 1
12 exp$2a%

lx

#
µx

lx

bz

11 bz

+

This is implied by

bz~11 c! # exp$d%
bz

11 bz

,

or, dividing both sides bybz and multiplying them by 11 bz, by

~11 c!~11 bz! # exp$d%+

The latter is true by~ii !+ n

We would like to point out that one can take any state for the taboo state+ In that
case, it suffices to change the functionf defined in the lemma, in state 1+

The stationary distribution expressed in terms ofpy is known to be given by

px 5 5py

lx21 {{{ ly

µx {{{ µy11

, x . y

py

µy {{{ µx11

ly21 {{{ lx

, x , y+

For computing theymxv, we have to do some work+ Note that forx # v, y andx $
v. y,we haveymxv5 ymvv+ Indeed, to reachy from suchx,we must reachv first, and
from then on, the number of visits to statev is exactly the same as if we had started
in v+
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Similarly, for x . y . v andx , y , v, we haveymxv5 0+ Further, for v5 y,

ymxy 5 H1, x 5 y

0, x Þ y+
(4.2)

Finally, sincepv5 ymyvpy, we have, for x 5 y,

ymyv 5 5
lv21 {{{ ly

µv {{{ µy11

, v . y

µy {{{ µv11

ly21 {{{ lv
, v , y+

The only cases left to consider are the casesv# x , y andy , x # v+
Let y , x , v+ Then, by ~2+1!,

ymyv 5 ly{ymy11 v +

For x 5 y 1 1, we get, writing Dymxv5 ymx11 v2 ymxv,

Dymy11 v 5
µy11

ly11
ymy11 v ,

and forx . y 1 1,

ymxv 5 ~12 lx 2 µx!ymxv1 lx{ymx11 v1 µx{ymx21 v ,

so that

Dymxv 5
µx

lx

Dymx21 v

5
µx {{{ µy11

lx {{{ ly11
ymy11 v

5
µx {{{ µy11

lx {{{ ly
ymy v

5
µx {{{ µy11

lx {{{ ly

lv21 {{{ ly

µv {{{ µy11

5
lv21 {{{ lx11

µv {{{ µx11

+
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As a consequence, for x, v . y,

ymxv 5 ymy11 v1 (
l5y11

x21

Dymlv

5 (
l5y11

min$x, v% l l{{{lv21

µl{{{µv

5 (
l5y11

min$x, v% pv

l l21pl21

5 (
l5y11

min$x, v% pv

µl pl

+ (4.3)

By the same reasoning, we find, for x, v , y,

ymxv 5 (
l5max$x, v%

y21 µv11 {{{ µl

lv {{{ l l l
5 (

l5max$x, v%

y21 pv

l l pl

+ (4.4)

For the first-passage times, we thus find, for x . y,

txy 5 (
v.y

ymxv

5 (
v5y11

x

ymvv1 (
v$x11

ymxv

5 (
v5y11

x

(
l5y11

v l l {{{ lv21

µl {{{ µv
1 (
v$x11

(
l5y11

x l l {{{ lv21

µl {{{ µv

5 (
l5y11

x

(
v$l

l l {{{ lv21

µl {{{ µv

5 (
l5y11

x

(
v$l

pv

µl pl

, (4.5)

and similarly forx , y,

txy 5 (
l5x

y21

(
v#l

µv11 {{{ µl

lv {{{ l l

5 (
l5x

y21

(
v#l

pv

l l pl

+ (4.6)

Next, we calculateDyy in terms of the stationary probabilities:

Dyy 5 py (
vÞy

pvtvy

5 py (
v.y

pv (
l5y11

v

(
r$l

pr

µl pl

1 py (
v,y

pv (
l5v

y21

(
r#l

pr

l l pl

5 py (
l.y
S(
v$l

pvD2 1

µl pl

1 py (
l,y
S(
v#l

pvD2 1

l l pl

+ (4.7)
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By expression~4+7!,

Dy11, y11

py11

2
Dyy

py

5 2S (
v$y11

pvD2 1

µy11py11

1 S(
v#y

pvD2 1

lypy

5
1

lypy
H2S (

v$y11

pvD2
1 S(

v#y

pvD2J
5

1

lypy
H(
v#y

pv2 (
v$y11

pvJ +
Therefore, writing

vy11 5 (
v#y

pv2 (
v$y11

pv , (4.8)

we find that

Dy11, y11 5
ly

µy11

Dyy 1
1

µy11

vy11, (4.9)

Dy21, y21 5
µy

ly21

Dyy 2
1

ly21

vy+ (4.10)

This suggests the following algorithm for computing the deviation matrix+

Algorithm for computing D

Step 1+ Choose a reference states and computeDss+

Step 2+ For y 5 s,s2 1, + + + do: computevy and set

Dy21, y21 5
µy

ly21

Dyy 2
1

ly21

vy+

Step 3+ For y 5 s,s1 1, + + + do: computevy11 and set

Dy11, y11 5
ly

µy11

Dyy 1
1

µy11

vy11+

Step 4+ For anyy andx, computeDxy for x Þ s using formulas~2+6! and~4+5!
or ~4+6!+

N-State Truncations. Suppose that the stationary distribution for the infinite
system has exponentially decaying tails+ Let us truncate the state space by throwing
away all states larger thanN and sending the disappearing mass flowing from state
Nback to itself+Then, the entries of the deviation matrix for the truncated system and
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the corresponding entries for the original system differ by a factor that decays ex-
ponentially quickly withN+ This follows easily from the above algorithm and for-
mula~2+5!+

Let us next introduce the time-discretized approximations of theM0M0s0N and
M0M0s0` queues and calculate their deviation matrices+

M/M/s/N Queue

This is a system withs servers and a buffer~waiting room! of sizeN 2 s for some
integerN $ s+ This means that the total amount of jobs in the system can be at
mostN+

The time-discretized approximation has the following service rates:

µx 5 Hxµ, x # s

sµ, x . s+

Asuitable reference state is the states,which is the boundary of the set of states where
the service rates are nonhomogeneous and the one where they are homogeneous+

The stationary distribution is given by

px 5 5ps

s!

x! S µ

l
Ds2x

5 ps

s!

x! ss2x rx2s, x , s

psS l

sµ
Dx2s

5 psrx2s, x . s,

(4.11)

wherer 5 l0sµand where, by normalization,

ps 5
1

(
l51

s

r2l
~s!!

~s2 l !! sl 1 (
l50

N2s

r l

5
12 r

(
l51

s

r2l
s! l

~s2 l !! sl11 2 rN112s

+

Let us first calculateDssandvy in terms ofps:

Dss

ps

5 (
l.s
S(
v$l

pvD2 1

sµpl

1 (
l,s
S(
v#l

pvD2 1

lpl

5
ps

sµ (
l.s

r l2sS(
v50

N2l

rvD2

1
s! r2sps

ssl (
l,s

l!

r lsl S(
v#l

rvsv

v! D2

+ (4.12)
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The first term in~4+12! is simple to further comprise:

ps

sµ (
l.s

r l2sS(
v50

N2l

rvD2

5
ps

sµ~12 r!2 (
l.s

r l2s~12 2rN2l11 1 r2N22l12!

5
ps

sµ~12 r!3 ~ r 2 rN112s 2 2~N 2 s!~12 r!rN112s

1 rN2s12 2 r2N22s12!

5
ps

sµ~12 r!3 ~ r 2 ~12 r!~2N 2 2s1 1!rN112s

2 r2N22s12!+

As a consequence,

Dss5
ps

2

sµ~12 r!3 ~ r 2 ~12 r!~2N 2 2s1 1!rN112s 2 r2N22s12!

1
s! r2sps

2

ssl (
l,s

l!

r lsl S(
v#l

rvsv

v! D2

+ (4.13)

Calculation ofvy yields

vy 5 512 2 (
v$y

pv5 1 2 2ps

r y2s 2 rN112s

12 r
, y $ s

2 (
v#y21

pv2 1 5 2ps (
v50

y21 s!

v! ss2v rv2s 2 1, y , s+

(4.14)

Next, we will expressDyy in terms ofDssandps+ Using~4+9! and the expression for
vs11, it follows that

Ds11, s11 5 rDss1
1

sµ
2

2ps

sµ

r 2 rN112s

12 r
+

Consequently,

Ds12, s12 5 rDs11, s11 1
1

sµ
2

2ps

sµ

r2 2 rN112s

12 r

5 r2Dss1
1

sµ

12 r2

12 r
2

4ps

sµ~12 r!
r2 1

2ps

sµ~12 r!

12 r2

12 r
rN112s+

Iterating this yields

Ds1k, s1k 5 rkDss1
12 rk

sµ~12 r!
2

2kps

sµ~12 r!
rk 1

2ps

sµ~12 r!

12 rk

12 r
rN112s+
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Next, we obtainDs21,s21 from ~4+10! and the expression forvs:

Ds21, s21 5 r21Dss2
2ps

l (
r50

s21 s!

r! ss2r r r2s 1
1

l
+

Iterating this easily yields

Ds2k, s2k 5
s!

~s2 k!! sk r2kDss2
2ps

l (
l51

k ~s2 l !!

~s2 k!! sk2l r l2k (
r50

s2l s!

r! ss2r r r2s

1
1

l (
l51

k ~s2 l !!

~s2 k!! sk2l r l2k+

Finally, we will calculateDxy for xÞ y and express these in terms ofDyy+We need to
consider a number of different cases+

Case 1: s# x

~i! y . x+We have

Dxy 5 Dyy 2 pytxy

5 Dyy 2
psr y2s

l (
l5x

y21S12 (
v.l

pv

pl

D
5 Dyy 2

psr y2s

l Srs

ps
(
l5x

y21

r2l 2 (
l5x

y21

(
v.l

rv2lD
5 Dyy 2

psr y2s

l~12 r!Srs112y 2 rs112x

ps

2 (
l5x

y21

~ r 2 rN2l11!D
5 Dyy 2

r 2 r y112x

l~12 r!
1

psr y112s~ y 2 x!

l~12 r!

2
ps

l~12 r!2 ~ rN2s12 2 rN1y2x2s12!

5 Dyy 2
12 r y2x

sµ~12 r!
1

psr y2s~ y 2 x!

sµ~12 r!
2

ps~ rN112s 2 rN111y2x2s!

sµ~12 r!2 +

~ii ! s# y , x+ In this case,

Dxy 5 Dyy 2 pytxy

5 Dyy 2
psr y2s

sµ (
l5y11

x

(
v$l

rv2l

5 Dyy 2
psr y2s

sµ~12 r! (
l5y11

x

~12 rN112l !

5 Dyy 1
psr y2s~ y 2 x!

sµ~12 r!
2

ps~ rN112s 2 rN111y2x2s!

sµ~12 r!2 +
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~iii ! y , s+ Then,

Dxy 5 Dyy 2 pytxy

5 Dyy 2 py (
l5y11

s
12 (

v,l

pv

lµpl

2 py (
l5s11

x

(
v$l

pv

sµpl

5 Dyy 2
r ysy

y! µ (
l5y11

s ~l 2 1!!

r lsl 1
pss! r y2s

y! ss2yµ (
l5y11

s

(
v,l

~l 2 1!! rv2l

v! sl2v

2
pss! r y2s

y! ss112yµ

x 2 s

12 r
1

pss! r y2s

y! ss112yµ

rN112x 2 rN112s

~12 r!2

5 Dyy 1
pss! r y2s~s2 x!

y! ss2ysµ~12 r!
2

pss!~ rN111y22s 2 rN111y2x2s!

y! ss2ysµ~12 r!2

2
r ysy

y! µ (
l5y11

s ~l 2 1!!

r lsl 1
pss! r y2s

y! ss2yµ (
l5y11

s

(
v,l

~l 2 1!! rv2l

v! sl2v +

Case 2: s. x

~i! y $ s+ Now we have

Dxy 5 Dyy 2 pytxy

5 Dyy 2 py (
l5x

s21

(
v#l

pv

lpl

2 py (
l5s

y21
12 (

v.l

pv

lpl

5 Dyy 2
psr y2s

l (
l5x

s21

(
v#l

l! rv2l

v! sl2v 2
r

l~12 r!
~12 r y2s!

1
psr y2s11~ y 2 s!

l~12 r!
2

ps

l~12 r!2 ~ rN122s 2 rN121y22s!

5 Dyy 2
12 r y2s

sµ~12 r!
1

psr y2s~ y 2 s!

sµ~12 r!
2

ps~ rN112s 2 rN111y22s!

sµ~12 r!2

2
psr y2s

µ (
l5x11

s

(
v,l

~l 2 1!! rv2l

v! sl2v +

~ii ! s . y . x+ Now,

Dxy 5 Dyy 2 pytxy

5 Dyy 2 py (
l5x

y21

(
v#l

pv

lpl

5 Dyy 2
pss! r y2s

y! ss2yl (
l5x

y21

(
v#l

l!

v! sl2v rv2l

5 Dyy 2
pss! r y2s

y! ss2yµ (
l5x11

y

(
v,l

~l 2 1!!

v! sl2v rv2l+
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~iii ! s . x . y+ Finally,

Dxy 5 Dyy 2 pytxy

5 Dyy 2 py (
l5y11

x
12 (

v,l

pv

lµpl

5 Dyy 2
r ysy

y! µ (
l5y11

x ~l 2 1!!

r lsl 1
pss! r y2s

y! ss2yµ (
l5y11

x

(
v,l

~l 2 1!! rv2l

v! sl2v +

Let us summarize these expressions+ For any two numbersx andy, we use the
notationx ∨ y 5 sup$x, y% andx ∧ y 5 inf $x, y%+

Theorem 4.1: The deviation matrix of the M0M0s0N queue has the following entries:

Dss5
ps

2

sµ~12 r!3 ~ r 2 ~12 r!~2N 2 2s1 1!rN112s 2 r2N22s12!

1
s! r2sps

2

ssl (
l,s

l!

r lsl S(
v#l

rvsv

v! D2

,

and for~x, y! Þ ~s,s!,

Dxy 5
r y2ss!

~ y ∧ s!! ss2y∧s Dss1
r~ y∨s2x∨s!∨0 2 r y∨s2s

sµ~12 r!

1
pss! r y2s

~ y ∧ s!! ss2y∧ssµ~12 r!
~2s2 x ∨ s2 y ∨ s!

1
pss! r y2s

~ y ∧ s!! ss2y∧ssµ~12 r!2

3 ~ rN112s 1 rN111y2x∨s2s 2 rN111y22s 2 rN111y∨s22s!

1
r ysy

y! µ S (
l5y∧s11

s ~l 2 1!!

r lsl 2 (
l5y∧s11

x∧s ~l 2 1!!

r lsl D
2

pss! r y2s

~ y ∧ s!! ss2y∧sµS (
l5y∧s11

s

(
v,l

~l 2 1!! rv2l

v! sl2v 1 (
l5x∧s11

s

(
v,l

~l 2 1!! rv2l

v! sl2v D+
Fors51, the expressions become much simpler since the inhomogeneous part

of the state space disappears~cf+ also@5# !+ The stationary probabilities are given by

px 5 rx
12 r

12 rN11 +
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Then,

vx 5 12 2
rx 2 rN11

12 r
, x . 0+

Note that we only needvx, x . 0 for calculating the diagonal ofD+
First, computing the diagonal element corresponding tos5 1 yields

D11 5
1

~12 rN11!2~12 r!µ
~12 3r 1 3r2 2 ~12 r!rN12~2N 2 1! 2 r2N12!+

Plugging this into the expressions forDyy gives

Dyy 5
1

~12 rN11!2~12 r!µ
~12 ~2y 1 1!r y~12 r!

1 ~2y 2 1 2 2N!rN1y11~12 r! 2 r2N12!+

Checking the off-diagonal elements, we finally find the following general expres-
sion for the entries of the deviation matrix~cf+ @5# ,where the same formula has been
derived in a slightly different format!+

Corollary 4.2 ~to Theorem 4+1!: In the single server case s5 1, the deviation
matrix of the M0M0s0N queue has entries

Dxy 5
1

µ~12 r!~12 rN11!2

3 ~ r~ y2x!∨0~12 rN11!2 2 ~ y 1 x 2 1!r y~12 r!~12 rN11!

1 rN1y2x11 2 r2N1y2x12 2 2r y~12 r! 1 rN11 2 r2N12

2 2NrN1y11~12 r!!+

M/M/s/`̀̀ Queue

This queue has exactly the same transition mechanism as theM0M0s0N queue, only
the buffer size is infinitely large~i+e+, N5`!+ Note that the infinite buffer system is
only positive recurrent whenl , sµ+ In that case, it satisfies the conditions of Lemma
4+1+ Consequently, Theorem 2+3 applies, and so the deviation matrix exists and sat-
isfies the conditions of Theorem 2+2+

The formulas derived for the general one-buffer network evidence that the sta-
tionary probabilities, first-passage times, and, thus, the deviation matrix for the in-
finite buffer case can be obtained from the corresponding expressions for the finite
buffer case by taking the limitN r `+

Thus, the stationary probabilities satisfy~4+11!, where, in this case,

ps 5
12 r

(
l51

s

r2l
s! l

~s2 l !! sl11

+

256 G. M. Koole and F. M. Spieksma

https://doi.org/10.1017/S0269964801152071 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964801152071


For the diagonal entries of the deviation matrix, taking the limit N r ` in the
expressions in Theorem 4+1 gives the following result+

Theorem 4.3: The deviation matrix of the M0M0s0` queue has entries

Dss5
ps

2 r

sµ~12 r!3 1
s! r2sps

2

ssl (
l,s

l!

r lsl S(
v#l

rvsv

v! D2

and for~x, y! Þ ~s,s!,

Dxy 5
r y2ss!

~ y ∧ s!! ss2y∧s Dss1
r~ y∨s2x∨s!∨0 2 r y∨s2s

sµ~12 r!

1
pss! r y2s

~ y ∧ s!! ss2y∧ssµ~12 r!
~2s2 x ∨ s2 y ∨ s!

1
r ysy

y! µ S (
l5y∧s11

s ~l 2 1!!

r lsl 2 (
l5y∧s11

x∧s ~l 2 1!!

r lsl D
2

pss! r y2s

~ y ∧ s!! ss2y∧sµS (
l5y∧s11

s

(
v,l

~l 2 1!! rv2l

v! sl2v 1 (
l5x∧s11

s

(
v,l

~l 2 1!! rv2l

v! sl2v D+
The formulas forDyy in the finite and infinite buffer systems have the same

format whenevery , s, and forDxy, x Þ y, wheneverx, y , s+ They only differ
throughDssandps+

Next, we consider the single server cases51+ The stationary probabilities are
given by

px 5 rx~12 r!+

A general formula for the deviation matrix entries is obtained by passing to the limit
N r ` in the corollary to Theorem 4+1 ~Corollary 4+2!+

Corollary 4.4 ~to Theorem 4+3!: In the single server case s5 1, the deviation
matrix of the M0M0s0` queue has entries

Dxy 5
1

µ~12 r!
~ r~ y2x!∨0 2 ~ y 1 x 1 1!r y~12 r!!+
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