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We study deviation matrices of birth—death procesBkis is relevant to the control
of multidimensional queueing systenWe give an algorithm for computing devi-
ation matrices for birth—death processis an applicationwe compute them ex-
plicitly for the M/M/s/N andM/M/s/o queues

1. INTRODUCTION

In principle Markov decision theory can be used to find optimal policies in con-
trolled queueing networkStandard methods are value iteration and policy iteration
(seee.g., [8]). To execute these algorithpene needs to store in computer memory
at least one vector the size of the state spahs is, of courseinfeasible for models
with an unbounded state spa&aen if we bound the state space in an appropriate
way, often its size prohibits us from storing this vect®his is even more so for
high-dimensionalqueueing models Depending on the number of states per com-
ponent in practice models with more tharsay four state components cannot be
solved anymoreThis phenomenon is called tleaerse of dimensionalityt calls for
approximation method# successful method isne-step improvement.

One-step improvement is based on the policy iteration methb method
repeats the following two stefsee[8] for terminology:
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1. For a givernvalue functioncompute the minimizing action in each state
2. Compute thevalue functiorfor this new policy

It can be shown that this gives a sequence of policies for which every policy is better
(i.e., has lower average costthan the previous one

For one-step improvementie assume that the value function has been deter-
mined for some fixed policyBy applying Step 1 onc@nly in states in which we are
interested, we know we have a better policyhis policy is used as an approxima-
tion for the optimal policyln generalthe value of this policy cannot be computed
let alone the optimal policyrhereforeit is hard to assess the quality of the one-step
improved policy However for low-dimensional caseshe method has been tested
and has been shown to give surprisingly good re$6l%&9]. The crucial step is to
compute the value for some fixed poli¢preferably one for which we hope that
one-step improvement gives good resulBoth[7] and[9] can be seen as models
consisting of parallel queues with a dependency created by the cdfratertain
classes of policieshe queues behave independer(flhe model of 6] is a priority
qgueuefor which there is always a dependendfthe queues are independetiiten
it can be seen that the value function is simply the sum of the values of the individual
queuesthereby reducing th&l-dimensional problem t®& — 1-dimensional prob-
lems These argof course easy to solveeither numerically or by using a closed
formula In[7,9], closed formulas are computed for value functions of certain queues
These formulas depend not only on the type of queue and its parameter values but
also on the cost structure

The deviation matrixof a Markov chain allows us to compute the value inde-
pendent of the cost structuredeed the deviation matribdD of a Markov chain is
independent of the cost structyfer a cost vector, the bias vector (for more
details see Sect3) is simply given byv = Dc. This means that by calculating the
deviation matrix of a Markov chain we can simply comp(lig a single summation
the bias vector for any cost structure that is a function of the.sthte included cost
functions such as queue lengtidlenessand the blocking probability in finite buffer
systems

In this article we first introduce notation and derive some general results for
the deviation matrix in Section. 2n Section 3we show the relation with Markov
decision chains through the Poisson equatkinally, in Section 4 we derive an
algorithm for computing the deviation matrix for a special class of birth—death
processesncluding theM/M/s/N andM/M/s/oo queuesin the same sectigwe
also derive closed-form expressions for these queues

2. MODEL AND BASIC FORMULA FOR THE DEVIATION MATRIX

Let {&}; be an irreducibleaperiodic and time homogeneous Markov chain on
a countable state spa& which is positive recurrenfThus it has a stationary
distribution that we denote by = {m,}.es. The corresponding stationary matrix
IT: S — Sis the matrix with all rows equal te.
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Let us writeP™,n = 0,1,2,..., for the n-step transition probability matrix of
our Markov chainthat is

Py = Plén = Yyléo=x};
we also seP© equal to the identity matrik. The deviation matrixD is defined by
D,y = lim > (p)((?,) —my)a’
aT1 n=0
provided this limit existsNote that the fundamental mati#x= (I — P + II) ! exists
with D and it relates to it in the following way

Z=D+IL

When the state space is finjtde deviation and fundamental matrices always exist
and they can be expressed in terms of stationary probabilities and first-passage times
(cf. [4]). We will introduce these quantities first and then recall the formula for the
deviation matrix for the finite-state case

Letz € She a given statd hen the taboo transition probability matrj® with
taboo state is defined by

_ pxyv y FZ
Y lo, y=z
Write ,m,, = Eﬁ‘;ong‘,). This has the well-known interpretation of being the ex-
pected number of visits of statg given the initial state, before returning ta.

Similarly, setT, = inf{t > 0|, = z,&4,..., &1 # 2} and letr,, = E{T,|£, = X} the
first-passage time afwhen starting irx. A straightforward computation yields

2 zmxy = Txz-
y

These quantities can be solved using systems of linear equadtigmerticular let-
ting d,, denote the Kronecker delta

My = 8+ E 2Pxa 2May (2.1)
and taking the summation over
Te = 1+ é 2PxaTaz- (2.2)
Note thatry = 7,-,m,y, andm, = 1/7,,

Next we summarize some known results on deviation matrices for finite-state
chains(cf. also[4, Thm. 4.4.7]).
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THEOREM 2.1: LetSbe finite. The deviation matrix D is the unique solution to the
following set of equations

D=1I1-1II1+PD, (2.3)
IID = DIT =0, PD = DP. (2.4)
Moreover
ny = 7Ty< 2 Ty Ty = l{x#y} 7-xy> (25)
vEY
= Dy = Lz my Ty (2.6)

Formula(2.6) can be heuristically explained as followsfe can say théb,, counts
the number of visits of starting fromx compared to starting in a stationary situa-
tion. The first visit toy occurs on average only aftgf, time periodswhereas from
a stationary initial stater, visits are counted for each time unfhus the difference
in visits between starting iR or in stationarity from time 0 to the epoch just before
y is reached is-my7,,. The remaining difference starting from the momeris
reached iy, which indeed includes the first visit aftéon averaggr,, time.

The theorem has two immediate interesting consequeibesfirst one is that
D,y > 0. The second one is th&l = 0 implies

0= Dy=>Dy— > 7y (2.7)
y y y#X

In turn, this implies that, ., 7,7, does not depend oxi This statement can be
proved to hold for the countable state space chlsdortunately the expressions
involved may not be finiteso that changing the order of subtraction on summation
in (2.7) may not be allowedThis is the case in the infinite buffer example that we
will discuss later

For completenessve will show independence 9, .. 7, 7, onx. This is equiv-
alentto showing that, m, 7,y is independent of. Indeedthe term corresponding to
y equalsmyry,, = 1.

Lemma 2.1: We have thak, 7, 7, is independent of the initial state that is there
exists a constart < ¢ = co such that

D myry=c forallxes.
y

As a consequenge

2 TyTxTxy = C
X,y
as well.

Proor: Denotef (x) = X, 7, 7y; this may be infinite We will first argue that the
f(x) are either all finite or all infinite
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Assume thaf(x) < oo for some state. Choose any statie# x, some(finite)
path fromxtol, and denote the probability of this path yThen 7, = 7, /g and so
f(l)=f(x)/q < oo.

So we may assume thitx) < oo for all x. By (2.2),

f(x) =2, 7Ty<1 + % Pxi le)

y

=14 3 pa X myTy
I y#
= 1+§|‘, pa(f(l) —1).
By subtracting 1 from the right-hand side and writigigk) = f(x) — 1, we get
gu%:H@—1=2pmmh

in matrix notation
g="Pa
Integrating this yields
g=P™g,
and taking the limit on both sides and using Fatou’s lemmweaget
g = Ilg.

Suppose thag # TIg. Then there must be at least one statéor which g(x) >
(TIg)(x). Since

g(h) = > my9(y),
y
for all stated, we obtain by multiplying by 7, and taking the summation ovkr

Z mg(l) > Z m > m,a(y) = > m,a(y),
y y

a contradictionThus g(x) = >, m,g(y) for all statesx. This proves the lemma
[ ]

The next theorem shows essentially that form(@l&) holds whenever the de-
viation matrix exists

THEOREM 2.2: Suppose that there exists a unique solution D to (2.3) and (2.4).
Then, (2.5) holds.
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Proor: First, we show that the matriA with entries

8y = Dyy = Ly Ty Ty

solves(2.3). Indeed
6xy — Tyt E Pykky = 8xy — Tyt Dyy - 2 Pyk 7y Tiy
k k#y

=Dy + 8y — my (1 - pykay)
k#y
= Dyy + Oyy — Ty Tyy = Ayy.
Next, we show that this must be the only solutiékle have that
D-A=P(D-A).
This difference matrix has all diagonal elements equal t&l€o,
(D—A*=P(D—-A"
Iterating this yields
(D-A"=PY(D-A"
Taking the lim sup fot — cc and using Fatou’s lemma gives
(D—A*" =TI(D— A",

Consequently(D — A)* has bounded columnk the same manngone can show
that(D — A)~ has bounded columnblsing the fact thab — A= PV (D — A) and
dominated convergence shows that

D—A=TII(D - A).

Thus D — A has constant columnSince it has zero diagonal elemerttse whole
matrix must be identically QAs a consequenc® = A.

This shows the validity of formulé2.6); that is Dy, = Dyy — 1.y 7y 7y,. Using
thatTID = 0, we obtainDy, = 7, >, ., 7, Ty. [

The natural question arises whether the reverse implication jiblalisis pro-
vided the right-hand side ¢2.6) is finite, does it yield a unique solution ¢2.3) and
(2.4)? Ityields a solution of2.3) indeed Howeverit is not clear whethef2.4) holds
without any further conditions

A possible counterexample could be an ergpeimbedded//Gl/1 queue with
a suitable service time distributioli the service time distribution has a finite first
moment but an infinite second onken the stationary distribution has an infinite
firstmoment(e.g., seq 3, Chap 14.4]). By homogeneity properties and the fact that
downward jumps have size at mosf dne can show that,, = c(x — y),

x >y, for some constant. Indeed applying Theorem 2 yields that a unique so-
lution to (2.3) and(2.4) cannot existin that caseX,-., 7,7,y = 2~y 7,C(v — Y) iS
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necessarily finiteThis contradicts the fact that the stationary distribution does not
have a finite first moment

Requiring the service time distribution to have at best a fif#ite € ) th moment
for some sufficiently smakk > 0, yields finite expressions in the right-hand side of
(2.6). Defining the matrixA with entriesa,, through(2.6), it easily follows tha(2.3)
is satisfied However it is not clear whethefl A convergesWe believe nat

To guarantee the existence of unique solutior{28) and(2.4), one can use the
following theorem fronj2]. The contractive Lyapunov function condition used there
is satisfied by our examples studied later

THEOREM 2.3: Consider an aperiodic, irreducible, and time homogeneous Markov
chainé; on a countable state spa& Suppose thag; satisfies the following con-
tractive Lyapunov function criterion: There exists a state 3, a positive function

f: S— Rwithinf, f(x) > 0, and a positive constamat such that Pf = exp *f. Then,

the Markov chain is positive recurrent; in particular, it is f-exponentially ergodic
(see [1]). Then, the deviation matrix D is the unique f-bounded solution to (2.3) and
(2.4) and the following formula holds:

D=(l-1) § LP™( —1I). (2.8)
n=0

3. THE POISSON EQUATION

The deviation matrix plays an importantrole in Markov decision ch&msMarkov
decision chainthe transition matri¥ depends on the polidy S— A, with Athe set
of actions Therefore we often writeP( f) instead ofP. There are also immediate
costsc = {c(X)}yes-

An intermediate step in many algorithr(esg., policy iteration or the approx-
imation algorithm described in Sedj is solving the Poisson equation

c—g=v—P(f)v

for a given policyf. Under the conditions of Theorem3the Poisson equation has
a unique solution up to a constanamelyv = Dc andg = IIc (for P = P( f)).

We make some observations on computational isti@sose any s& C Sand
suppose that, e Dyyc(y) convergesThis is true for any finite seThen by Theo-
rem 22, va given by

UA(X) = U(X) - 2 Dyyc(y) == 2 77-y7'><yc(y) + E (Dyy_ ky#x}wyTxy)C(y)
yEA YEA #X YEA

is a solution as wellWhen the state space is finiteee can always také = S.

Suppose the costs have equal signs or can be made to have equal signs by adding a

constantThe latter is the caséor instancewhen the costs have a monotone struc-

ture Then it follows immediately that thes(x) have equal signhis allows for

numerically stable algorithms for computing a solution of the Poisson equation
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4. THE DEVIATION MATRIX FOR THE M/M/s/N AND M/M/s/~ QUEUES

By virtue of Theorem 2, we need to compute hitting times and stationary proba-
bilities in order to explicitly calculate the deviation matri%e will do so through
formulas for,m,,.

We will first compute these quantities for the time-discretized approximation of
a birth—death process on the nonnegative integers with the following boundedness
conditions on the jump rate&or A, andy, the birth and death rates in state
respectivelysuch tha, = 0, assume that

Y Ax
O<lIliminf = =limsup— <1,

x—oo Uy x—oo My

0 <inf(Ax + ) = sup(A, + L) < oo,

Let N = inf{x| A, = 0}, whereN may be infinite if all birth rates are positivAfter
suitable renormalizatigrwe obtain an approximating Markov chain ¢@y..., N}
with the following transition probabilities

A y=x+1x<N

P—x, y:X_l,X>0
Py =

1_prs, y=X

S#X

This Markov chain trivially satisfies the conditions of Theorer® @heneveN is
finite; it also satisfies these conditions whinis infinite. This can be shown by
constructing a suitable Lyapunov function

LEmMA 4.1: Choose state z 0 with sup=,A./Hlx < 1. Next we determine a num-
ber of positive constants satisfying the following conditions

(i) Chooses with exp{d} = inf,=, iy /A.
(i) Lety and c< 1 be such thaexp{—vy} = inf,—,u/A, and (1 + ¢)(1 +
(exp{—v}/4)?) = exp{s}.
(iii) Finally, let« satisfysup (1 — exp{—a})/A, = c(exp{—y}/4)?and Ay(1 +
(exp{—v}/4) = exp{—a}.

Let

X

_ {(exp{—y}/4)", X=2Z

Bz, X>z

Then, the function f defined recursively bpf= 1 and f(x) = (1 + B,) f(x — 1),
x>0, is a Lyapunov function that satisfies the conditions of Theorem 2.3 with taboo
state0 and contraction factoexp{—a}.
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Proor: We need to check thal, o py, f(y) = exp{—a}f(x). Forx=0, this reduces
to checking
Ao(1+ B1) = exp{—a}l.

This follows immediately frondiii ). Forx > 0, we have to check that

ux(lf-i(-)fg)x> + (1_ Ay — I-lx)f(x) + )\xf(x)(1+ﬁx+1) = EXp{—a}f(X)

or

Bﬁﬁws& P
)lX /\x1+ﬁx

(4.1)

Forx < z, this follows from the fact that

exp{_7}>x+l Hx Hx Bx
2B, =2 ——") =2-Xp8, = ,
Pria ( 4 = 4/\X’B<AX1+BX
since 1+ B, < 2 and(1 — exp{—a})/A, = ¢B, = By, 1 by (iii). Forx = z, (4.1)
reduces to
+ 1- exp{—a} < & B
‘ Ax A1+ B,
This is implied by
Bz
1+c)= —
B2(1+c) = exp{s} 1+ B,

or, dividing both sides by, and multiplying them by % 3,, by
(1+c)(1+ B,) = exp{s}.
The latter is true byii). u

We would like to point out that one can take any state for the taboa #tateat
case it suffices to change the functidndefined in the lemmgan state 1
The stationary distribution expressed in termsrgis known to be given by

S L T
ypx"'l-'ly+l,

.

’ hy oo ben

oo
y)\yﬂ v Ay

For computing thgm,,, we have to do some worklote that forx = v < yandx=

v >y, we havg m,, =,m,,. Indeedto reachy from suchx, we must reach first, and
from then onthe number of visits to stateis exactly the same as if we had started
inw.
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Similarly, for x >y > v andx <y < v, we havg,m,, = 0. Furtherforv =y,

1, x=y
my, = 4.2
YO0, x#y. (4.2)

Finally, sincer, = ym,, 7, we havefor x =y,

Ny ooe Ay
—, v>y
m, - W oo Hyoa
Ty e Mo
—, v <y.
Ayoq o0 Ay

The only cases left to consider are the casesx < y andy < X = v.
Lety < x<w.Then by (2.1),

yMy, = Aysy My,
Forx=y+1, we getwriting Aym,, = My 1, —yM,,,

Hy1

Ayrny-#lu =T

m,
yilly+1vs
/\y+l ’
and forx >y +1,
y“'xu = (1_ /\x - ux)ymxu + )\x'ymx+lu + ux'ymxflvv

so that

Hx

Aymxu = /\_Aymx—lu
x
. Mx =+ Myt
Ay o Ayis yMy+10
_ Mx «oe Hy+a
A ooe Ay y My

My + o+ Hyt+a )\v—l Ay
Ax oo )\y Mo v+ Myt

Apo1 -0 Axgn
THRSPRTE
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As a Consequen(;énr X, v > Y,
Xx—1

ymxz) = ymy+1v + 2 Ayrnlv
I=y+1

min{x,v} /\I'“Av—l
I=y+1 MMy

min{x,v}

Ty

1IZy+1 A—aT—g
min{x,v} w,

I=y+1 M7

(4.3)

By the same reasoninge find, for x, v <,

y—1 y—1
TR m,
yMy = 2 = 2 . (4.4)
I=max{x,v} Ay oee AII I=max{x,v} Ay

For the first-passage timgse thus find for x >y,

xy: 2 meI)

U>y

X

= > ym,+ > ,m,

v=y+1 v=Xx+1
X v
A e N

-y Al s s A

v=y+1l=y+1 M ==+ Hy v=x+1l=y+1 M =+ Hy
X
A Ay
l=y+1ov=I HI pv

X 7Tv

(4.5)

b
1=y+10=I M 7|

and similarly forx <\,

22“1}4-1"' :E v ) (46)

xo=l Ay et A I=x o=l AT

Next, we calculateD,, in terms of the stationary probabilities

Dyy = my 2 Ty Toy

v#FY

=y 2 m, 2

o>y I=y+1r=| K7 v<y =v r=l )l|7T|

3 (S u—mz(z U) e @.7)

1>y \ v=I I<y \v=I
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By expression(4.7),

Dy+1,y+1 I:)yy 2 1 2 1
Ln P (3 af———(Zm
Ty+1 Ty v=y+1 “y+17Ty+l v=y Ayﬂ'y
1

Therefore writing

Uy+1 = Z Ty 2 Ty, (48)
v=y v=y+1
we find that
Ay 1
Dyi1,yr1= = Dy + ——vy4q, (4.9)
uy+1 y+1
by 1

D v,. (4.10)

y-Ly-1"7" /\y—l yy )\yﬂ y
This suggests the following algorithm for computing the deviation matrix

Algorithm for computing D

Step 1 Choose a reference statand computé®g,,
Step 2 Fory =s,s—1,... do: computev, and set

y 1

Dy-1y-1= A W)
y—1 y-1

vy.

Step 3 Fory =s,s+1,... do: computevy.; and set

D Moot
= — — U .
kv |J~y+1 Y Hy+1 vt
Step 4 For anyy andx, computeD,, for x # s using formulag2.6) and(4.5)
or (4.6).

N-State Truncations. Suppose that the stationary distribution for the infinite
system has exponentially decaying tallst us truncate the state space by throwing
away all states larger thathand sending the disappearing mass flowing from state
N back to itself Then the entries of the deviation matrix for the truncated system and
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the corresponding entries for the original system differ by a factor that decays ex-
ponentially quickly withN. This follows easily from the above algorithm and for-
mula(2.5).

Let us next introduce the time-discretized approximations oMyd/s/N and
M/M/s/c0 queues and calculate their deviation matrices

M/M/s/N Queue

This is a system witls servers and a buffdivaiting roomn) of sizeN — s for some
integerN = s. This means that the total amount of jobs in the system can be at

mostN.
The time-discretized approximation has the following service rates
X, X=S
Hx =
Sl X>s.

Asuitable reference state is the stgtehich is the boundary of the set of states where
the service rates are nonhomogeneous and the one where they are homageneous
The stationary distribution is given by

VAT s!
J— — — JE—— X—Ss
7TSX! —WSX!SS_Xp , X<S

A

Ty = (4.11)

A \xs
773(5]_) =msp*S X>S,

wherep = A/spand whergby normalization

_ 1
Ts = s j (s)! N-s
glp | (s— s .zzopl
1-p

S sl )
- = _ _N+1-s
.:21’0 (s—Iys*tt P

Let us first calculat®gsandv, in terms ofzg:

Zos(Snf o ()

s I>s\ v=I I<s\v=l )

Il
SHi=s v=0 i=sp'S \o= U

= EZP"S<§Ip”>2+ S!’;:TSE : (E £>2. (4.12)
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The first term in(4.12) is simple to further comprise

N—I 2
7T
v - s I=s(1 — 2,N-1+1 4 2N-2I+2
(S ) - g S 2 )

Ts _ _
= w(p_pNJrl s_z(N_S)(l_p)pN+l s

+ prs+2 _ p2N72S+2)
T

m(ﬂ (1-p)(2N—2s+1)pN*7s

2N72S+2)‘

—p
As a consequence

2

s
ss m(ﬂ a1- p)(2N 2s+ 1)pN+l s p2N—25+2)
S.p7 7TS || pUSU 2
TV ' 4.13
sSA gsp's' <UESI ol ( )
Calculation ofv yields
y—s N+1-s
v=y
v o (4.14)
2 2 T, —-1= 27752 |Ssupv—s_1, y<S.
v=y—1

Next, we will expresD,, in terms ofDgsandws. Using(4.9) and the expression for
vst 1, it follows that
1 277. p— pN+1fs
Dsi1,s+1 = pDsst T S—us 1o,
Consequently

1 27Ts p2_pN+1fs

sH osp 1-p
1 1-p?2 A7

Dsi2,si2 = pPDsi1si1 T

2ms  1—0p

— .2 2 N+1-s
= p?Dgs+ — - p+ —— p
F sul-p  spl-p) sul—p) 1-p
Iterating this yields
1- 2kar 2 1-—pk
Ds+k,s+k = kass p > « : £ pN+1 :

sil-p) sul-p” Tsui—p 1-p
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Next, we obtainDs_; s_; from (4.10) and the expression fax:

- 2wl o 1
Pt =P D SR B 0 G
Iterating this easily yields
sl 27 K (s—1)! sl
De,.,=—— p%D..— S 7 7 -k r—s
stksk T (g Ik P ) g‘l(s—k)!sk'p = s P
11X  (s=I)

— - 77 l-k
A= (s—Kis P

Finally, we will calculateD,, for x # y and express these in termsif,. We need to
consider a number of different cases

Case 1: s=x
(i) y> x. We have

Dyy = Dyy = 7y 7y

Ts |=x I=x v>I
_ D B 77_Spyfs ps+17y _ ps+17x B yil(p B pN_|+1)
44 )\(1_ p) Ty I=x
p—p” 7 mp Y= %)
~ BT s 1-
A= p) A1-p)
— L N—s+2 _ _N+y—Xx—s+2
A= p)? (p p )
C1opr mptHy X m(phte e pN )
Y sp1 - p) Su(1— p) sp(1— p)?

(i) s=y<x. Inthis case

Dyy = Dyy — 7y 7yy

X

> 2p!

SH 1=y+10=

—S
msp”

= Dyy—

msp¥ S a _
— D _ (1_pN+1 I)
Y sl - p) .El
,n.spy—s(y_ X) B 7Ts(pN+l_S _ pN+1+y—x—s)

SU(1— p) SU(1— p)?

yy
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(i) y<s Then
Dyy = Dyy = 7y Ty
. 1-> 7,
v<l
— T
Y %1 Iy, yl %1; Sp
_ B p¥sY & (I-1! mslpys 2 (I=D'pv~
Yooyl I=y+1 p's' YISV S on vls' ™Y
77.Ss!pyfs X—S ,n_ss!pyfs pN+lfx _ pN+1fs
YIS L-p YISt (1 p)?
,n.ss!py—s(s_ X) WSS!(pN+1+y_23 _ pN+1+y—x—s)
=D, + -
Y yIsSYsp(1 - p) y!s*Ysp(1 - p)?
p¥sY & (I1=-1! mslpy™s 2 (=1 po!
Yyl 5 p's YISV s wls
Case 2: s> x
(i) y=s. Now we have
Dyy = Dyy = 7y 7y
1 >,
v=>|
= Wyzle A7, Y 2 A
7 P < e P ~
=Dy — : - 1-p"")
A iSomivls A(l—p)
—s+1
7sp’ ° (y_ s) _ Ts (pN+275_ pN+2+y*23)
A(1—p) A(1-p)?
1— pyfs ,n_spyfs(y _ S) WS(pNJrlfs _ pN+1+y725)
=D — _
Y sp1 - p) Su(1 - p) Sp(1 - p)?
mp & o (1= Dp
M |=x+1v<l vlslv 7
(i) s>y > x. Now,
Dyy = Dyy — 7Ty7'xy
yy 1=x v=I )\7T|
meSlpY S YL Il .
TPy T ey > 1al-o P I
yIs* YA [ Sisivls
mSlpY s (=2 o

%% -
yIsSYH S vls'
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(iii) s> x>y.Finally,

Dyy = Dyy = 7y 7y
1-> 7,
X v<l
yl =y+1 |U7T|
-D p’s’ & (I—-1!  mslp X (I=D!p*”
Yooylp St p's YISSM 1S ols

Let us summarize these expressidher any two numbers andy, we use the
notationx Oy = sup{x, y} andx Oy = inf{x, y}.

THEOREM 4.1: The deviation matrix of the f1/s/N queue has the following entrtes

7T2

—)3(/) (1— p)(2N — 25+ 1) pN+1s — p2N-25+2)

DSS
su(l

S.-2 I

Sy Sz,

A iSp's o= v

and for(x,y) # (s,s),

(yOs—xOs)0 __  ylIs—s

p’ sl P P
— D+
(yOs)tssvs SU(1—p)
msSlpY™
(y Os)!s> yDSsu(l p)

Dy, =

(2s—x0Os—y0Os)

S pY”
(y O9)!sYSsp(1— p)?

% (pN+1fs+ pN+l+y7xDsfs _ pN+1+y725_ pN+1+th5725)
+pysy( (e LI (|—1)!>
VI oytst1 p's' I=yOs+1 p's'
msSlpY~s S (1= pv! S (1= po!

Fors=1, the expressions become much simpler since the inhomogeneous part
of the state space disappeé&rt also[5]). The stationary probabilities are given by

« 1-p
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Then

X N-+1

—P , x>0.

vX=1—2p -,

Note that we only need,, x > 0 for calculating the diagonal @.
First computing the diagonal element corresponding ol yields

D1, (1-3p+3p>—(1—p)p""?(2N—1) — p>"*2).

T (1 p"2(- p)p

Plugging this into the expressions 0y, gives

I:)yy: u(l_(2y+1)Py(1_P)

1-p""1)2(1=p)
+(2y =1—=2N)pNVTH (1 = p) — p*E).
Checking the off-diagonal elementse finally find the following general expres-

sion for the entries of the deviation matfif. [5], where the same formula has been
derived in a slightly different format

CoroLLARY 4.2 (to Theorem 41): In the single server case=s 1, the deviation
matrix of the MM/s/N queue has entries

1
Y UL p) (L pNh?
X (pYP(L—pNH2 = (y+x—1)pY(1—p)(1—pN*T)
+ pN+y7><+1 _p2N+yfx+2 _ 2py(l_ ,D) +pN+1 _p2N+2
— 2Np"YH (1 - p)).

D

M/M/s/x0 Queue

This queue has exactly the same transition mechanism a8/tigs/N queug only
the buffer size is infinitely largé.e., N = o0). Note that the infinite buffer systemis
only positive recurrent wheh < sp. In that casgit satisfies the conditions of Lemma
4.1. ConsequentlyTheorem 23 appliesand so the deviation matrix exists and sat-
isfies the conditions of Theorem22

The formulas derived for the general one-buffer network evidence that the sta-
tionary probabilitiesfirst-passage timesnd thus the deviation matrix for the in-
finite buffer case can be obtained from the corresponding expressions for the finite
buffer case by taking the limN — co.

Thus the stationary probabilities satisf}.11), wherg in this case

1-p
i st
>p!
= (

s—1)ls'*

Ts =
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For the diagonal entries of the deviation mattiaking the limitN — oo in the

expressions in TheoremMgives the following result

THEOREM 4.3: The deviation matrix of the K/s/co queue has entries

2

wip slp~sme I! pUs’\?
Dss > + : 2 Z 1

- Sll(l_P)3 A i Plsl o=t V!

and for(x,y) # (s,5),

(yOs—xCs) 00 yOs—s

pY s p —p
=~ D+
Y (yOs)rssys 7% su(1—p)

D

msSlpYs
+ S
(yOs)!s> syl —p)

+pysy< s (- 9 (|—1)!>

(2s—xOs—yOs)

VI \ oyt p's' I=yCs+1 p's'
msSlp¥s s (=1 po! N i D (=1 po!
(yOoss™u\ jR.1.2  ols'™ locmi1am ols'TY )7

The formulas forD,, in the finite and infinite buffer systems have the same
format whenevey < s, and forD,,, x # y, wheneverx,y < s. They only differ
throughDgsand .

Next, we consider the single server case 1. The stationary probabilities are
given by

m = p*(1—p).

A general formula for the deviation matrix entries is obtained by passing to the limit
N — oo in the corollary to Theorem.4 (Corollary 42).

CoRrOLLARY 4.4 (to Theorem 48): In the single server case=s 1, the deviation
matrix of the MM/s/co queue has entries

1

Dy = ————
You-p)

(PP = (y+x+1)p¥(1-p)).
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