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In this review, we discuss the potential role of metabolomics to enhance understanding of obesity-related developmental origins of health and
disease (DOHaD). We first provide an overview of common techniques and analytical approaches to help interested investigators dive into this
relatively novel field. Next, we describe how metabolomics may capture exposures that are notoriously difficult to quantify, and help to further
refine phenotypes associated with excess adiposity and related metabolic sequelae over the life course. Together, these data can ultimately help to
elucidate mechanisms that underlie fetal metabolic programming. Finally, we review current gaps in knowledge and identify areas where the field of
metabolomics is likely to provide insights into mechanisms linked to DOHaD in human populations.
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Introduction

Recent technological advances have forged a new ‘omics’ research
era encompassing genomics, epigenomics, transcriptomics,
proteomics and metabolomics analyses. As the most down-
stream constituent of the cascade, metabolomics integrates
components of systems biology, chemistry, statistics and
informatics to study low-molecular-weight compounds in
biological tissues and fluids. Metabolite patterns, also known as
‘metabolic signatures’,1 are snapshots of dynamic biochemical
activities, providing insight into underlying physiological – or
pathophysiological – processes.

In the past decade, metabolomics emerged as a versatile tool
with a broad range of applications. In this review, we highlight the
potential contribution of metabolomics to epidemiologic studies
of developmental origins of health and disease (DOHaD), which
historically focused on early life deprivation and later life cardio-
vascular and metabolic disorders.2–4 DOHaD has since expanded
to encompass a wider scope of early life exposures and a longer list
of health outcomes at different life stages. Despite substantial

growth in this field, major challenges remain including: (1)
objectively characterizing exposures that position individuals on
trajectories toward health or disease, (2) accurately characterizing
adverse cardiometabolic outcomes and (3) elucidating the
underlying mechanisms. Metabolomics may serve as a powerful
approach to tackle these challenges in the context of obesity and
obesity-related DOHaD research (Fig. 1).
In Section 1, we provide a broad technical background on the

metabolomics workflow, including analytical instrumentation
and statistical procedures, while highlighting challenges, and
sources of variability and their impact on findings. In Section 2,
we review the literature and discuss how metabolomics could
serve as a means to objectively capture exposures and outcomes
relevant to DOHaD.We first discuss howmetabolite patterns in
the mother and infant could shed light on aberrant physiological
changes that lead to later-life disease, while recognizing that
maternal metabolism may influence offspring metabolic profiles
– either directly through the placenta or indirectly via influences
on maternal hormones and/or placental metabolism. We also
introduce the idea of using metabolomics to more accurately
characterize obesity-related phenotypes throughout the life
course. In Section 3, we expose current gaps and propose future
directions regarding the use of metabolomics to enhance
understanding of mechanisms linking early life environment to
later life cardiometabolic disorders.
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Metabolomics work flow

Metabolomics is the systematic and quantitative analysis of
low-molecular-weight intermediates in biological fluids and
tissues. Currently, in the Human Metabolome Database,5

there are over 40,000 documented metabolites, which are small
molecule intermediates and products of metabolism that
include, but are not limited to: amino acids, alcohols, nucleo-
tides, vitamins, fatty acids, antioxidants and organic acids. In
this section, we describe the general work flow of metabolomic
studies (Fig. 2), discuss frequently used methods and identify
areas that merit additional research.

Research question and experimental approach

Metabolomics investigations are either targeted or untargeted.
Untargeted studies start with limited a priori information
regarding the composition of the sample, with the objective of
acquiring data on hundreds to thousands of metabolites for the
discovery of novel biomarkers. On the other hand, targeted
studies are hypothesis-driven and focus on a finite set of
metabolites within related biochemical pathways. For example,
a researcher conducting a study using an untargeted platform
might ask, ‘What metabolite patterns are associated with
obesity status?’ while one pursuing a targeted platform would
inquire, ‘Are higher levels of branched-chain amino acids
associated with obesity status?’ We summarize differences
between the two approaches in Table 1.

Specimen collection, preparation and storage

The goal of sample collection, preparation and storage is to
ensure that the specimen provides a meaningful reflection of
the metabolome in vivo. This is a critical aspect of any meta-
bolomic study, as failure to collect samples correctly could
lead to erroneous findings. Although there are currently no
evidence-based guidelines on specimen collection specifically
for metabolomics studies, we advise researchers to follow
standard operating procedures based on expert consensus for
the biosample collection and processing for molecular epide-
miological studies.6–9 Additional considerations for metabo-
lomics sample collection include study design, participant
characteristics and tissue type. Study design regarding timing of
sample collection should take into account the specific ques-
tions being asked. For example, fasting specimens provide a
steady-state ‘snapshot’; however, if the disease process under
investigation has metabolic phenotypes which emerge in
response to nutrients or exercise (e.g. type 2 diabetes), sampling
at defined time points in response to specific interventions may
be appropriate. Participant characteristics are also important. In
pediatric or adolescent populations, one might face challenges
of distinguishing between the influence of normal hormonal
changes during growth and aberrant metabolite patterns; thus,
it may be important to identify pre-pubertal/pubarchal parti-
cipants from those entering adolescence. Last but not least, the
type of tissue (e.g. plasma, serum, urine, solid tissue) carries
important implications for sample processing (e.g. urea should

Fig. 1. Areas in which metabolomics could enhance research on developmental origins of obesity and related metabolic disorders
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be removed from urine), appropriate anti-coagulants are critical
to prepare plasma, and solid tissues must be homogenized
before laboratory analysis.

Following collection, tissue or fluid samples should be
aliquoted and frozen as soon as possibleat −80°C until time of

analysis.10 Using serum-separator tubes, or via centrifugation
before freezing and storage,10 serum or plasma should be
separated from red and white cells. EDTA is a commonly used
anti-coagulant, but because it introduces interfering peaks in
chromatographic analyses in plasma, experts suggest using

Fig. 2. Metabolomics work flow.
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lithium heparin. Avoiding unnecessary freeze-thaw cycles and
practicing proper storage techniques will reduce the possibility
of metabolite degradation and minimize introduction of sys-
tematic error in metabolite profiles.11–13

To prepare the specimen for laboratory analysis, the samples
should thaw on ice and quenched to minimize enzymatic
activity. The metabolites of interest are then extracted from spe-
cimen samples. This process is complex and depends on several
factors. First, the two most commonly used techniques for
metabolomics analyses, mass-spectrometry (MS) and nuclear
magnetic resonance (NMR) (as discussed in Section 1.3), operate
on different principles and have different requirements for sample
processing. NMR exploits the unique nuclear spin of a compound
to ascertain its identity and is most effective for fluids,14 making it
necessary to convert solid tissues to liquids before analyses.
On the other hand, MS is an analytical chemistry technique that
identifies chemicals by measuring the mass-to-charge ratio and is
often paired with an ion-separation technique that is applicable
to nearly any tissue type. Furthermore, the specimen type itself
has important implications for extraction processes; details on
extraction processes are available for solid tissue,15,16 serum
and plasma,16–18 and urine.16,19 Finally, metabolite class is an
important consideration; for example, acetonitrile or perchloric
acid should be used to extract polar metabolites, while methanol/
chloroform/water is best for lipophilic metabolites.16

Analytical instrumentation

There are several technologies available for metabolic pheno-
typing. The two most frequently used are MS and NMR.14

Researchers typically couple the MS approach with an ion
separation technique, such as gas-liquid chromatography (GC)
and/or liquid chromatography (LC). GC separates analytes by
vaporizing compounds from the liquid phase into a volatile gas.
The gas chromatograph passes the specimen in gaseous form
via an inert gas carrier (helium or nitrogen) through a capillary
column that contains a stationary liquid adsorbant to promote
separation of the molecules as they travel the length of the
column. The molecules are retained by the column and elute at
different times (known as the ‘retention time’). The elution
process allows the downstream mass spectrometer to capture
and detect individual molecules based on spectral peaks unique
to each metabolite’s mass-to-charge (m/z) ratio. The other
commonly used ion-separation technique for MS is LC and the
more recent ultra performance liquid chromatography,20 both
of which separate compounds in the soluble phase by passing
the specimen as a pressurized liquid through a solid adsorbent-
filled column. Comparisons of different MS-based techniques
for metabolomics have been reviewed in detail in several
scientific articles21,22 and textbooks.23

NMR spectroscopy uses an electromagnetic pulse to induce
energy transitions in nuclear spin rates of samples placed in a
static magnetic field. When a nucleus is in a magnetic field, its
nuclear spin will align in the same (alpha orientation) or
opposite (beta orientation) direction of the external magnetic
field. Most nuclei exist in the alpha orientation since it requires
less energy, so more nuclei are aligned with the external mag-
netic field than against it. NMR spectroscopy uses electro-
magnetic radiation to pump the alpha-oriented nuclei into the
beta state. When the energy is removed, the nuclei revert or

Table 1. Comparison of untargeted v. targeted approaches to metabolomics investigations

Untargeted Targeted

Uses Inductive/hypothesis generating (discovery) Deductive/hypothesis testing
To obtain global information about numerous biological
pathways

To interrogate biochemical pathways based on
a priori knowledge

Metabolic profiling; provides a snapshot of metabolome at
one point in time

Confirm findings from untargeted studies

Basic characteristics Semi-quantitative global detection of 100 s to 1000 s of
metabolites

Quantification of a small number of metabolites in
related metabolic pathways

Captures multiple biochemical pathways Captures specific pathways
Provides relative metabolite concentrations Provides absolute metabolite concentrations

Advantages Can quantify a wide range of metabolites High specificity, precision, and accuracy
Can lead to discovery of novel biomarkers Absolute quantification of chemical structures

High throughput
Shorter analysis time

Disadvantages Potential low specificity, precision, and accuracy Could miss relevant biological pathways
Metabolite patterns associated with biological condition may
require replication using targeted quantitative methods

Challenging to identify small metabolite derivatives that do
not exist in current chemical libraries

Extensive sample preparation requires inclusion of
internal references

Platform options Mass-spectrometry Mass-spectrometry or nuclear magnetic resonance
spectroscopy
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‘relax’ back into the alpha state. The fluctuation of the
magnetic field associated with the relaxation process is called
‘resonance’ and can be visualized as peaks in an NMR spectrum
to provide structural information about the molecule.14,24

The MS and NMR techniques each have their respective
strengths and weaknesses,25,26 as summarized in Table 2.
While MS has higher sensitivity and is more versatile in terms
of the types of biological specimens it can handle, it tends to
capture multiple structures of the same metabolite, making
it appear as though more metabolites are involved than in
reality. The main advantages to NMR are its ability to acquire
quantitative structural information on metabolites, relatively
minimal sample preparation, and high reproducibility.27 The
greatest limitation to NMR is insensitivity, as smaller energy
transitions from smaller molecules (i.e. sugars, amino acids) are
often obscured by those of larger molecules (i.e. phospholipids,
triglycerides, lipoproteins).

The choice of MS v. NMR depends on the goal of the study.
Generally, the ability of MS-based approaches to detect
both large and small compounds makes it a better choice for
untargeted analyses. MS can be paired with more than one ion
separation technique to accommodate the range of metabolites
in a biosample. For example, GC is better suited for analysis of
small compounds that are thermally stable and volatile (or can
be made volatile through derivatization), such as aromatic and
organic amino acids, fatty acid derivatives, steroids, flavanoids),
whereas LC is best for lipids, peptides, and nucleotides.
On the other hand, because targeted studies focus on a set of

metabolites from related biochemical pathways, they can
typically be carried out with either NMR or a single MS
separation technique.

Data pre-processing and cleaning

Metabolite identification

The raw output from MS and NMR platforms contains
thousands of signals from detected molecules that require
pre-processing and cleaning before conventional statistical
analyses. While these steps vary slightly by choice of analytic
instrumentation,26 we outline the general steps in this section.
First, overlapping peaks in an NMR spectrum or a GC/LC

chromatogram is separated into signals from individual meta-
bolites (‘deconvolution,’ now expedited with automated peak
filtering technologies28). The next steps are to identify peaks
that represent actual signals in the NMR or MS chromatogram
(peak picking)29 and synchronize the chromatograms30 or
NMR spectra31 such that each metabolite signal has the same
retention time or chemical shift in each sample (alignment).
The researcher may also choose to correct baseline tilts and
drifts in NMR data (‘baseline correction,’ done automatically
or semi-automatically), and define chemical shift bin sizes
for NMR spectra (bucketing). The final step is to identify
compounds in the sample (metabolite identification). There are
two distinct approaches to metabolite identification, termed
ion-centric and the chemocentric.32 For untargeted studies, the
most common approach is the ion-centric approach, where the

Table 2. Comparison of mass-spectroscopy (MS) and nuclear magnetic resonance (NMR) spectroscopy platforms for metabolomics

MS NMR spectroscopy

Measured
parameter

Mass-to-charge ratio (m/z) of metabolite ions separated via Resonance frequency emitted by the molecule determined by
Liquid chromatography (LC) or ultra-performance LC
(UPLC)

Polarization of the molecule by a constant magnetic field

Gas chromatography (GC) Change in energy after electromagnetic pulse
Chemical
identification

Ion peaks from chromatograph based on m/z, retention time,
and ion fragmentation are compared against a standard
chemical reference library

Shift in energy levels following application of an
electromagnetic pulse in a magnetic field provides
structural information on metabolites

Advantages High sensitivity High reproducibility
Ability to detect a wide range of chemicals can be paired with
more than one separation technique

No interaction with instrumentation enables multiple
analyses on one sample, and re-use later

Suitable for all specimen types (serum, plasma, urine, solid
tissue)

Provides large amount of structural information – especially
for larger molecules

Minimal sample preparation
Most suitable for biofluids

Disadvantages Low reproducibility Low sensitivity, especially for low-molecular-weight
compounds

Physical interaction with instrument can lead to sample
contamination

Relatively large amount of sample required

Can result in overrepresentation of chemicals with multiple
structures (increase in false discovery rate)

Large–molecular-weight molecules can obscure spectra for
smaller metabolites

Small detection range (20–24 metabolites in tissue extracts,
30–100 in urine, and 20–30 in plasma or serum)
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researcher compares the signals to a standard reference library,
such as the Human Metabolome Database,33 LipidMaps34 and
MetLin,35 to identify metabolites. Although this method is
less expensive, it runs the risk of misidentifying compounds
since these databases do not contain an exhaustive list of all the
isotopes of a given metabolite. The chemocentric approach
matches the compound to a purified authentic standard. While
this approach is markedly more expensive and time consuming,
it provides strong reproducibility and validity. In targeted
studies where the search is for a defined set of known meta-
bolites, the chemocentric approach is mandatory. Thus, the
level of technical expertise at each step influences reliability of
the results and their interpretation, a potential contributor to
inconsistencies in study findings (discussed in Section 3.1).

Data cleaning

Following pre-processing, data-cleaning steps include normal-
izing, centering, removing outliers and transforming data to
remove noise. During this step, missing values may be impu-
ted. There are two primary sources of missing metabolite data:
compound concentrations below the detectable limit of the
instrument, and data pre-processing errors such as failure to
identify true signals from the background noise. Methods to
deal with missingness include replacement with a constant
value (e.g. half the minimum detected value), or imputing a
range of values using probabilistic Bayesian principal compo-
nent analysis imputation,36 Gaussian mixture imputation,37

and collateral missing value imputation.38 The laboratory
scientist and statistician should discuss the strategy to deal
with missing metabolite data as the imputation method has
ramifications for statistical analyses.

Statistical analysis

The goal of most metabolomics studies, targeted or untargeted,
is to identify metabolites that serve as markers of biological
conditions, whether the metabolite pattern precedes that con-
dition (exposure), or whether it transpires as a consequences of
the condition (outcome). One approach is to assess relations of
each individual metabolite concentration with a binary health
condition (e.g. type 2 diabetes) or a continuous biomarker (e.g.
fasting insulin levels) using bivariate tests and/or regression
analysis. However, these approaches are fraught with the issue
of multiple testing since metabolomics studies quantify up to
thousands of compounds. Moreover, this concern not easily
resolved by corrections for multiple comparisons since meta-
bolites in related pathways will be highly correlated.

One way to deal with the issue of multiple testing is
to reduce data dimensionality before conventional analyses.
Following data dimensionality reduction, the analyst may
examine correlations and use standard regression techniques to
assess associations with the exposure or outcome of interest.
So-called ‘unsupervised’ approaches to reduce data dimen-
sionality classify metabolites using the MS m/z values or the
NMR spectral frequencies as the sole inputs to consolidate

compounds into groups based on their interrelations without
considering the exposure or outcome. Common examples
include principal components analysis (PCA), which generates
orthogonal clusters of metabolites that explain the majority of
variance in the data;39 the analysis of variance (ANOVA)-
simultaneous component analysis,40 a combination of ANOVA
and PCA methodologies; and cluster analysis techniques, like
hierarchical cluster analysis,41 that group metabolites into
natural clusters based on the similarities between each pair of
observations. Conventional multivariable analyses may follow
these techniques to identify groups of metabolites most
strongly associated with the exposure or outcome. Recently,
network-based approaches have surfaced as way to intuitively
interpret metabolite data using a system of nodes and edges
to represent individual molecules and their interactions.
Krumsiek et al. demonstrated the feasibility using Gaussian
graphical models,42 an undirected probabilistic network
modeling technique based on partial pair-wise correlation
coefficients, to elucidate the underlying metabolic network
structure. A major challenge of unsupervised methods is
dealing with unidentified compounds. In this aspect, Gaussian
graphical models are useful because they can incorporate
metabolomics data with genomic data to infer identities of
unknown metabolites.43,44

While unsupervised approaches agnostically classify meta-
bolites, the investigator can employ supervised methods when
they have an a priori hypothesis on the relation between specific
metabolites and the biological condition. The goal of super-
vised methods is to find a model that correctly associates
the metabolites with the biological condition of interest.
Supervised methods require a training data set to generate
a model characterizing the relation between the metabolite
patterns and the biological condition. After training, the model
is run on an independent data set to assess model validity.
Finally, techniques like bootstrapping and cross-validation
optimize the model and check for overfitting. Examples of
supervised approaches include random forests,45 a classification
method that operates by constructing a multitude of decision
trees with the goal of reducing variance, partial least squares-
discriminant analysis (PLS-DA; see Fonville et al.46 for details),
which relates the independent variable (metabolite data) to the
response vector (the biological condition of interest) with a
regression model. PLS-DA classifies variables by maximizing
the discrimination between predefined sample groups. Another
supervised method is orthogonal-PLS,47 which uses orthogonal
signal correction to maximize the explained covariance, pro-
viding greater separation between the resulting components.
The biggest limitation of supervised approaches is the tendency
to overfit the data; thus, testing the model in an independent
sample is of paramount importance.

Validation and replication

A crucial aspect of working with high-throughput data is
validation and replication of findings. Investigators may
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improve the internal validity of their results by repeating
analyses in the same study sample. A robust validation
approach is to first conduct an untargeted study to identify
metabolite patterns associated with the biological condition of
interest, followed by a targeted study in the same population
with the same samples.48,49 On the other hand, replication of
results requires analyses in an independent population – either
by splitting the original study sample into ‘discovery’ and
‘replication’ groups,50 or by conducting the study in more
than one population,51 the latter of which is more common.
Currently, replication is largely lacking in metabolomics
literature – a topic of discussion later in this review.

The role of metabolomics in DOHaD research

The versatility and functionality of metabolomics bestows
potential to overcome some classic hurdles of DOHaD
research. With assistance from current literature, we discuss
ways in which metabolomics may help researchers objectively
capture DOHaD exposures, refine cardiometabolic outcomes,
and understand the etiological pathways.

Better quantification of DOHaD exposures

Dietary intake
Usual dietary intake. One of the greatest challenges of nutri-
tional assessment is accurately measuring intake. Although food
frequency questionnaires, food diaries, and 24-h recalls each
have their strengths, they are based on self-report and subject to
reporting bias and systematic error.

As the end-products of basic biochemical processes,
metabolites provide valuable information on an organism’s
physiological response to nutrient intake, and could be
especially informative for DOHaD research when quantified
during key developmental stages like pregnancy and infancy.
Although metabolomics studies on nutritional status in
pregnant women are rare, a controlled feeding study in non-
human primates during the third trimester of pregnancy
demonstrated that consumption of a high-fat diet is associated
with higher circulating levels of α- and γ-tocopherol,52 which is
in line with observational data from non-pregnant adults that
adherence to the healthy eating index53 is associated with lower
γ-tocopherol.54 Some observational studies in non-pregnant
populations examined metabolite profiles associated with
dietary patterns55,56 and intake of specific foods such as
fruits and vegetables,55 garlic, fish and tea.57 However, these
studies were conducted with different designs, populations, and
analytic platforms, leading to inconsistent findings. For
example, some – but not all – studies found that a Western
dietary pattern characterized by high fat and meat intake
corresponds with higher levels of circulating trimethylamin-N-
oxide (TMAO).58 In a study of 1003 middle-aged women
from the TwinsUK cohort, Menni et al. reported that
a diet rich in fruits and cruciferous vegetables corresponded
with higher serum concentrations of sphingolipids and

glycerophospholipids,55 but despite using the same analytical
platform Altamaier et al. were unable to replicate these findings
in 362 German men.56 Possible explanations for these
discrepancies could be the effect of sex hormones on metabolic
profiles, as well as inherent differences – perhaps partially
driven by genetics55 – in the study populations.

There is also evidence from animal studies that the gut
microbiome influences diet-related metabolic profile. For
example, in rodents, the presence and integrity of the gut
microbiota were necessary for diet-induced increases in the
metabolite TMAO.59 Moreover, in a study of twin adult
women discordant for obesity, transplant of gut microbes from
the obese twin donor into mice led to diet-induced adiposity
and elevations in the obesity-related branched chain amino
acids (BCAA) metabolite pattern, while transplant of the lean
co-twin’s microbiota prevented the increase in body mass and
obesity-associated phentoypes in the rodents.60 Preliminary
evidence in human adults withmetabolic syndrome suggests that
microbiota transplants from lean donors improves insulin
sensitivity;61 however, metabolite profiles associated with these
interventions in human populations remain to be explored.

Acute response to food intake. The majority of nutritional
metabolomics studies are based on blood specimens collected
in the fasting state. However, dynamic changes in circulating
metabolites following food intake are also relevant and infor-
mative. For example, the acute response to an oral glucose load
provides information on glucose tolerance, and during preg-
nancy, it tells of gestational diabetes risk.

Very few metabolomics studies have assessed acute responses
to food intake.62–67 Krug et al.68 administered a range of
metabolic challenges to 15 healthy normal weight men over
4 days under controlled conditions for food intake and physical
activity. The challenges included a prolonged period of fasting,
standardized liquid meal tests, an oral glucose tolerance test
(OGTT), an oral lipid tolerance test (OLTT), and exercise
testing. Using a targeted metabolomics analysis of lipids and
amino acid in blood, urine, exhaled air and breath condensate,
the investigators found that anabolic parameters exhibited
greater inter-individual variability in the post-prandial states
(standardized meals, OGTT or OLTT), whereas catabolic
parameters showed the greatest variation after fasting. Thus,
while most experts have recommended fasting samples, it is
possible that metabolic profiling of non-fasting samples could
yield equally important, albeit, different information.

Assessment of dietary interventions. Some investigations in adults
have used metabolomics analyses to assess the physiological
impact of nutritional interventions and controlled feeding
experiments over a defined time period64 – typically during the
course of a few weeks. In DOHaD research, this could be an
effective way to quantify dietary modifications in pregnant or
lactating women or in the infants themselves, and to assess
related physiological changes. For example, in a trial of
1138 European infants, Socha et al.69 found that newborns
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randomized to receive a high protein formula at ~ 8 weeks
through the 1st year of life had higher serum BCAA by
6 months of age. O’Sullivan et al.70 reported a similar pattern of
higher circulating BCAA in formula-fed as compared with
breastfed Rhesus monkeys during the 1st weeks of life.70

A similar BCAA metabolic signature has been associated with
insulin resistance and risk of developing type 2 diabetes in adult
human studies.1,51 It currently remains unclear whether
elevated BCAAs result from alteration in peripheral metabolism
of BCAA,71 increased proteolysis associated with insulin resis-
tance, or gut-derived factors.72,60 Nevertheless, these studies
not only point toward the utility of metabolomics to evaluate
physiological responses to dietary changes, but they also raise
the possibility that metabolic profiles predisposing individuals
for insulin resistance may stem from early life diet.

In pediatric populations, controlled feeding studies are
challenging and thus, rare. In a small study (n = 24) of 8-year-
old boys, Bertram et al.73 detected differences in serum and
urine metabolites following a 7-day nutritional challenge of a
diet rich in meat v. milk protein. Specifically, the investigators
observed lower urinary hippurate levels after the milk-rich
diet, and higher urinary excretion of creatine, histidine and
urea after the meat-rich diet, but minimal alterations in
serum metabolites. These findings shed light on how the type
of biosample provides information on different aspects of
physiology. For example, tissues with relatively fast turnover
rates like plasma, serum and urine provide systemic informa-
tion regarding ongoing processes. On the other hand storage
tissues like hair and nails might reflect long-term dietary intake
and accumulation of environmental exposures.74 Characterizing
the diversity and abundance of metabolites in each tissue type is
an ongoing effort.

Maternal adiposity and glycemia

Another set of key DOHaD exposures is maternal metabolic
status, often assessed using pre-pregnancy body mass index
(BMI), gestational weight gain and gestational glucose toler-
ance. Because body composition assessment in pregnant
women is challenging, maternal metabolic phenotyping could
reveal metabolic derangements associated with pre-pregnancy
obesity or excess gestational weight gain. In a case-control
study of 67 hyperglycemic and 50 normoglycemic women,
Scholtens et al.75 used an MS-based approach targeting amino
acids paired with an untargeted GC-MS panel to interrogate
plasma metabolites during the second trimester of pregnancy.
Hyperglycemic mothers had higher circulating BCAA than
normoglycemic women, which is consistent with evidence
from non-pregnant populations.1

Smoking

Pre- and postnatal tobacco exposure engenders several adverse
health effects. Although circulating cotinine levels are
conventionally used to quantify short-term tobacco smoke
exposure, metabolomic profiling may provide a functional

physiological ‘read-out.’ In a study of 1241 men and women
from the Cooperative Health Research in the Region of
Augsburg (KORA) study, Xu et al.76 quantified baseline
metabolite profiles in never, former, and current smokers, and
assessed change in metabolite profiles in fasting serum samples
of participants who stopped smoking during 7 years of follow-
up. In addition to detecting alterations in metabolites involved
in oxidative stress and atherosclerotic plaque development in
current smokers, the investigators found that the metabolic
signatures were reversible among smoking-quitters, suggesting
that at least in adults, metabolomics biomarkers are sensitive to
changes in exposure status. Given the persistent associations
of prenatal tobacco exposure with offspring adiposity and
cardiometabolic risk,77 it would be interesting to see whether
metabolic differences are also present.

Physical activity

Physical activity is an emerging DOHaD exposure. Metabo-
lomic studies conducted in adults indicate distinct metabolic
signatures associated with exercise, mainly driven by an acute
rise in lactate and pyruvate.78–82 Some investigations found
evidence of higher BCAA catabolism and consequently, lower
levels in serum and higher excretion in urine in response to
physical activity.81,82 In a series of in vitro and in vivo studies,
Roberts et al. identified β-Aminoisobutyric acid as an exercise-
induced myocyte metabolite that elicits beneficial effects on
glycemia in rodent and human adipose tissue.83 Less is known
regarding how longer-term exercise influences metabolic pat-
terns. This is not only due to differences in the type, intensity,
and length of training in each study, but also inter-individual
variation in response to exercise.82,84,85

While current evidence may not yet provide a strong basis to
examine metabolite profiles of physical activity as a main
exposure in the context of DOHaD, physical activity should be
considered as a covariate in metabolomics studies.

Refining outcomes

Although weight and other anthropometric measurements are
simple and non-invasive ways to assess cardiometabolic risk,
metabolic disturbances vary widely among persons of similar
body size. For example, a unique subset of ‘metabolically
healthy but obese’ persons exhibit favorable lipid, cytokine, and
inflammatory profiles despite excess adiposity.86–88 Researchers
have also noted the ‘metabolically unhealthy normal weight’
phenotype characterized by an adverse metabolic profile (i.e.
insulin resistance, inflammation, dyslipidemia) despite being
normal weight.89 Metabolic phenotyping could fine-tune
definitions of DOHaD risk phenotypes throughout the life
course.

Fetal and early life outcomes

DOHaD researchers have traditionally used size at birth, often
determined by standardizing birth weight with gestational age- and
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sex-specific reference data,90 as an indicator of intrauterine growth.
Infants weighing less than the 10th percentile are categorized
as small-for-gestational age (SGA), while those who fall above
the 90th percentile are considered large-for-gestational age
(LGA). Both ends of the spectrum are associated with greater
cardiometabolic risk. However, as with the paradigm of the
metabolically healthy-obese and metabolically unhealthy-
normal-weight phenotypes, fetal growth is a very crude measure
of the intrauterine environment. Furthermore, it is unlikely that
all SGA and LGA newborns exhibit metabolic risk, and not all
appropriate for gestational age (AGA) babies are metabolically
healthy. For instance, a baby who was exposed to both maternal
smoking and gestational diabetes might fall into the AGA
weight range but be far from metabolically healthy.

Cord blood metabolomic profiling could improve assess-
ment of adverse fetal growth outcomes. Although we are not
aware of any metabolomics studies of LGA infants, a few case-
control studies compared metabolite profiles in umbilical cord
blood at delivery between normal weight newborns and infants
that were SGA,91 low birth weight,92 very low birth weight93,94

and intra-uterine growth restricted.95 These studies revealed
alterations in amino acid and lipid metabolites, possibly due to
impaired nutrient transfer to the fetus during development. In
DOHaD investigations, fetal growth is not only assessed as an
outcome, but also considered a determinant of future disease
risk; it remains to be shown whether metabolic signatures at
birth are predictive of later health outcomes.

Life course outcomes: childhood obesity and cardiometabolic status

One of the more well-established areas of metabolomics
pertinent to obesity-related DOHaD is characterization of
metabolic signatures associated with insulin resistance.96 In a
seminal study that aimed to describe the metabolic signature of
an insulin resistant state, BCAAs clearly separated the cases
from the controls.1 Subsequently, researchers reported eleva-
tions in BCAAs before development of insulin resistance97 and
type 2 diabetes51 in non-pregnant adults, suggesting that
BCAAs may serve as an upstream indicator of diabetes risk.
While there are fewer pediatric metabolomics studies,
McCormack et al. used a targeted approach to capture amino
acids and reported that higher BCAA at baseline predicted
worsening of insulin resistance among the 17 pre-pubescent
children over 18 months of follow-up.97 Likewise, we recently
found a positive association between a BCAA metabolite pat-
tern and an androgen steroid hormone pattern with obesity
during mid-childhood and several markers of cardiometabolic
risk, including greater insulin resistance, triglyceride levels, an
altered adipocytokine profile, and inflammation.98 Further-
more, maternal obesity prior to conception was associated with
higher BCAA in offspring in mid-childhood, even after
accounting for the child’s BMI. Such findings support the
utility of metabolomics to provide a more nuanced under-
standing of metabolic derangements that accompany, and
perhaps precede, classic cardiometabolic biomarkers.

Perspectives

Current gaps in literature

Lack of replication

One of the major shortcomings of current literature is lack of
replication – both in terms of attempts to replicate findings, as
well as the consistency in results. Remedying the former will
require conscious effort from researchers and planning for
replication during study design development. For example,
researchers could split the study population into ‘discovery’ and
‘replication’ groups, or they could conduct the investigation in
more than one cohort in a collaborative consortium. Not
so long ago in genetic epidemiology, association studies of
complex metabolic traits and diseases were characterized by
many reports from small study populations without much
replication. In recent years, consortia of several genome-wide
association studies made it possible to combine data from
multiple cohorts around the world. Metabolomics still has
a ways to go before reaching this stage. First, although
some cohorts may be using the same commercial platforms,
there is no consensus regarding approaches to data cleaning/
pre-processing, methods for data reduction, or statistical
approach – all of which directly impact consistency of findings.
To address this issue, we must identify sources of variability in
each step of the metabolomics pipeline (Fig. 2). Second,
investigators have to agree on standardized methods for sample
collection and laboratory processing, best practices for analy-
tical techniques, and methods to combine data from common
or different platforms. While effort has been initiated by the
Metabolomics Standards Initiative and the Chemical Analysis
Working Group,99 considerable work is still needed to achieve
consensus.

Lack of longitudinal and experimental studies

Another major limitation in the existing literature is the lack of
longitudinal investigations, which are crucial to ascertaining
temporal relations. One way to clarify temporality is to obtain
repeated samples to evaluate how changes in metabolic
signatures correspond with hormonal/physiological changes.
Among the few examples, metabolite patterns measured at
7-year intervals in non-pregnant adults from the KORA study
showed that they were relatively stable over time.100 In a recent
study of 180 healthy pregnant women in China, Luan et al.101

found marked within-person changes in metabolites involved
in biopterin, phospholipid, amino acid and fatty acid metabo-
lism across the three trimesters of pregnancy.94,96–101 The
other type of longitudinal design assesses the biological out-
come after the exposure. For example, McCormack et al.
assessed the relation of metabolite patterns measured at baseline
with development of insulin resistance in children. However,
that study population comprised only 17 participants and the
follow-up relatively short (18 months),97 emphasizing the need
for additional prospective investigations during growth and
development. Experimental studies are also helpful to provide
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insight on metabolic adaptations to interventions, such as
dietary modifications and exercise. As evidenced in Section 2,
these are rare in non-pregnant adults and almost non-existent
in pregnant women and children.

Focusing on the strengths of metabolomics

Metabolomics is poised to enhance our understanding of
cardiometabolic disease etiology in several ways. First, it pro-
vides information not only on how metabolite patterns relate to
a biological condition, but also on the interrelations of meta-
bolites in a biosample, and with respect to the exposure(s)/
outcome(s) of interest, providing insight on components and
interactions of relevant biochemical pathways. Considering
that physiological consequences are often a result of alterations
in several molecular pathways, these holistic approaches pro-
vide a more comprehensive portrait than single biomarkers.

Second, metabolomic analyses can be carried out in nearly
any biosample (e.g. blood, urine, serum, hair, nails, saliva,
adipose tissue), enabling assessment of how physiological dis-
turbances manifest in tissue specimens. Dyadic bio-samples
from mothers and children can be used for metabolic profiling
analyses. A few studies have assessed maternal blood and cord
blood91,92,94 to make inference on nutrient exchange and
placental function among growth restricted infants. There have
also been a few studies assessing metabolite profiles of amniotic
fluid and urine of women who developed gestational diabetes,
although the findings have not been consistent and the
evidence is limited by small sample size.102,103

Third, metabolomics can provide insight into DOHaD
pathways. Several placental metabolomics studies assessed
metabolic phenotypes of hypoxic conditions, including some
in vitro investigations testing the effect of hypoxia on placental
explants.104–107 These studies pointed out similarities in pla-
cental metabolite profiles between hypoxic conditions and
pre-eclampsia106 or intra-uterine growth restriction,104 impli-
cating their involvement in the pathogenesis of these adverse
birth outcomes.

Finally, although the dynamic nature of metabolites is
challenging, it represents an opportunity to evaluate the effects
of short-term exposures, such as hyperglycemia during the oral
glucose tolerance test,68 where we know that maternal post-
load hyperglycemia is associated with adverse fetal outcomes.
Exposing specific dyregulated pathways during post-prandial
states, or detecting differences in hyperglycemic pregnant
women in fasting v. post-prandial states will enhance prognosis
and management.

In spite of these strengths, it is important to keep limitations
of data interpretation in mind. For example, biofluids reflect
several concomitant physiological processes and thus preclude
the ability to distinguish the precise source of aberrant meta-
bolite patterns. One must exercise caution when speculating on
the underlying cause of alterations in metabolism, whether they
are due to increased production v. lower utilization, dietary
intake, the gut microbiome or genetic differences.

Future directions

Metabolomics, in combination with the other omics fields,
may help to elucidate the biological processes that underlie
the complexity of DOHaD etiology. For example, a recent
study used integrated physiology to assess fuel utilization and
metabolic flexibility, and metabolomic and lipidomic profiling
to generate hypotheses and identify targets for subsequent
experimental studies.108 Similar approaches that integrate
metabolomics with genomics, epigenomics, transcriptomics
and proteomics, will reveal a more complete picture of
DOHaD mechanisms. Metabolites produced by gut micro-
biota also deserve further investigation based on current
evidence regarding its contribution to energy regulation, and
because it could be a key mediator between early life factors
such as maternal microbiota, mode of delivery, and early infant
feeding practices and later-life outcomes.109Additionally,
genetics concepts such as Mendelian randomization raise the
possibility of combining genetic and metabolomics data to
generate information on unidentified metabolites43,44 or to
determine causality between metabolite patterns and physio-
logical outcomes.110,111 Other promising avenues leverage
metabolomics for discovery and hypothesis generation, with
follow-up studies in functional in vitro models or animal
studies. For example, after identifying elevations in the
furan fatty acid metabolite 3-carboxy-4-methyl-5- propyl-2-
furanpropanoic acid (CMPF) in women with getational
diabetes, Prentice et al. conducted a series of cellular and animal
experiments to demonstrate that CMPF could induce β-cell
dysfunction, and potentially contribute to progression to type 2
diabetes.112

Conclusions

Metabolomics has potential to be a powerful tool for DOHaD
research, but variability in approaches to each step of the work
flow has yielded inconsistent results that make the literature
difficult to interpret. At this point, we can make the following
recommendations for DOHaD investigators interested in using
metabolomics for their research: (1) clearly define research aims
a priori (e.g. hypothesis generation v. hypothesis testing),
(2) plan for replication with adequate sample sizes and (3) when
forming the research team, include laboratory, biochemical and
statistics/bioinformatics expertise.
As the field of metabolomics continues to grow, advancements

should be driven by experimental evidence on best technical and
analytical practices. The challenges in the next phase of meta-
bolomics investigations are to efficiently and accurately harvest
high-throughput metabolite data, and to integrate them with
genomic, transcriptomic and proteomic profiles. In the future,
collaborative efforts from multiple cohorts and from consortia of
metabolomics data will improve power and generalizability of
findings, eventually leading to a better understanding of pertur-
bations that lead to chronic conditions such as type 2 diabetes,
obesity and cardiovascular disease.

74 M. F. Hivert and W. Perng et al.

https://doi.org/10.1017/S204017441500001X Published online by Cambridge University Press

https://doi.org/10.1017/S204017441500001X


Acknowledgments

The authors would like to thank Ryan D. Michalek, PhD for
his feedback on the manuscript. They are also grateful to Clary
Clish, PhD and Andrea Baccarelli, MD PhD for their initial
insights on the use of metabolomics for DOHaD research.

Conflicts of Interest

B.S.K. is the inventor on general metabolomics-related IP that
has been licensed to Metabolon via Weill Medical College of
Cornell University and for which he receives royalty payments
via Weill Medical College of Cornell University. He also con-
sults for and has a small equity interest in the company.
Metabolon offers biochemical profiling services and is
developing molecular diagnostic assays detecting and mon-
itoring disease. Metabolon has no rights or proprietary access to
the research results presented and/or new IP generated under
these grants/studies. B.S.K.'s interests were reviewed by the
Brigham and Women’s Hospital and Partners Healthcare in
accordance with their institutional policy. Accordingly, upon
review, the institution determined that B.S.K.’s financial
interest in Metabolon does not create a significant financial
conflict of interest (FCOI) with this research. The addition of
this statement where appropriate was explicitly requested and
approved by BWH.

Funding

EO and WP were supported by the National Institutes of
Health (K24 HD069408). WP was additionally supported by
the Thomas O. Pyle Fellowship Fund, Harvard Pilgrim Health
Care Institute. Grant: US NIH (R37 HD 034568).

References

1. Newgard CB, An J, Bain JR, et al. A branched-chain amino acid-
related metabolic signature that differentiates obese and lean
humans and contributes to insulin resistance. Cell Metab. 2009;
9, 311–326.

2. Barker DJ, Winter PD, Osmond C, Margetts B, Simmonds SJ.
Weight in infancy and death from ischaemic heart disease. Lancet.
1989; 2, 577–580.

3. Barker DJ, Osmond C. Infant mortality, childhood nutrition,
and ischaemic heart disease in England and Wales. Lancet. 1986;
1, 1077–1081.

4. Barker DJ, Gluckman PD, Godfrey KM, et al. Fetal nutrition and
cardiovascular disease in adult life. Lancet. 1993; 341, 938–941.

5. Wishart DS, Jewison T, Guo AC, et al. HMDB 3.0 – The
Human Metabolome Database in 2013. Nucleic Acids Res. 2013;
41 (Database issue) D801–D807.

6. TuckMK, ChanDW, Chia D, et al. Standard operating procedures
for serum and plasma collection: early detection research network
consensus statement standard operating procedure integration
working group. J Proteome Res. 2009; 8, 113–117.

7. Holland NT, Smith MT, Eskenazi B, Bastaki M. Biological
sample collection and processing for molecular epidemiological
studies. Mutat Res. 2003; 543, 217–234.

8. John MW. ed. Metabolomics methods and protocols. InMethods
in Molecular Biology (ed. Weckwerth W), 2007; pp. 3–7.
Humana Press: Totowa, NJ.

9. Dunn WB, Broadhurst D, Begley P, et al. Procedures for
large-scale metabolic profiling of serum and plasma using gas
chromatography and liquid chromatography coupled to mass
spectrometry. Nat Protoc. 2011; 6, 1060–1083.

10. Dietmair S, Timmins NE, Gray PP, Nielsen LK, Kromer JO.
Towards quantitative metabolomics of mammalian cells:
development of a metabolite extraction protocol. Anal Biochem.
2010; 404, 155–164.

11. Teahan O, Gamble S, Holmes E, et al. Impact of analytical bias in
metabonomic studies of human blood serum and plasma. Anal
Chem. 2006; 78, 4307–4318.

12. Saude E, Sykes B. Urine stability for metabolomic studies: effects
of preparation and storage. Metabolomics. 2007; 3, 19–27.

13. Yin P, Peter A, Franken H, et al. Preanalytical aspects and sample
quality assessment in metabolomics studies of human blood. Clin
Chem. 2013; 59, 833–845.

14. DunnWB, Broadhurst DI, Atherton HJ, Goodacre R, Griffin JL.
Systems level studies of mammalian metabolomes: the roles of
mass spectrometry and nuclear magnetic resonance spectroscopy.
Chem Soc Rev. 2011; 40, 387–426.

15. Wu H, Southam AD, Hines A, Viant MR. High-throughput
tissue extraction protocol for NMR- and MS-based
metabolomics. Anal Biochem. 2008; 372, 204–212.

16. Beckonert O, Keun HC, Ebbels TM, et al. Metabolic profiling,
metabolomic and metabonomic procedures for NMR
spectroscopy of urine, plasma, serum and tissue extracts. Nat
Protoc. 2007; 2, 2692–2703.

17. Want EJ, O’Maille G, Smith CA, et al. Solvent-dependent
metabolite distribution, clustering, and protein extraction for serum
profiling with mass spectrometry. Anal Chem. 2006; 78, 743–752.

18. Bruce SJ, Tavazzi I, Parisod V, et al. Investigation of human blood
plasma sample preparation for performing metabolomics using
ultrahigh performance liquid chromatography/mass
spectrometry. Anal Chem. 2009; 81, 3285–3296.

19. Gika HG, Theodoridis G, Extance J, Edge AM,Wilson ID. High
temperature-ultra performance liquid chromatography-mass
spectrometry for the metabonomic analysis of Zucker rat urine.
J Chromatogr B Analyt Technol Biomed Life Sci. 2008; 871,
279–287.

20. Wu N, Clausen AM. Fundamental and practical aspects of
ultrahigh pressure liquid chromatography for fast separations.
J Sep Sci. 2007; 30, 1167–1182.

21. Dettmer K, Aronov PA, Hammock BD. Mass spectrometry-
based metabolomics. Mass Spectrom Rev. 2007; 26, 51–78.

22. Dunn WB. Current trends and future requirements for the mass
spectrometric investigation of microbial, mammalian and plant
metabolomes. Phys Biol. 2008; 5, 011001.

23. Robertson DG and Lindaon J. Metabonomics in Toxicity
Assessment. 2005. CRC Press: Boca Raton, FL.

24. Edwards J. Principles of NMR [online]. Retrieved 3 March 2013
from http://www.process-nmr.com/nmr1.htm

25. Lenz EM, Wilson ID. Analytical strategies in metabonomics.
J Proteome Res. 2007; 6, 443–458.

26. Issaq HJ, Van QN, Waybright TJ, Muschik GM, Veenstra TD.
Analytical and statistical approaches to metabolomics research.
J Sep Sci. 2009; 32, 2183–2199.

Metabolomics in DOHaD of obesity 75

https://doi.org/10.1017/S204017441500001X Published online by Cambridge University Press

https://doi.org/10.1017/S204017441500001X


27. Dumas ME, Maibaum EC, Teague C, et al. Assessment of
analytical reproducibility of 1H NMR spectroscopy based
metabonomics for large-scale epidemiological research: the
INTERMAP Study. Anal Chem. 2006; 78, 2199–2208.

28. Scheltema R, Decuypere S, Dujardin J, et al. Simple
data-reduction method for high-resolution LC-MS data in
metabolomics. Bioanalysis. 2009; 1, 1551–1557.

29. Katajamaa M, Oresic M. Processing methods for differential
analysis of LC/MS profile data. BMC Bioinformatics. 2005;
6, 179.

30. Skov T, van den Berg F, Tomasi G, Bro R. Automated alignment
of chromatographic data. J Chemom. 2006; 20, 484–497.

31. Forshed J, Torgrip RJ, Aberg KM, et al. A comparison of methods
for alignment of NMR peaks in the context of cluster analysis.
J Pharm Biomed Anal. 2005; 38, 824–832.

32. Evans AM, Mitchell MW, Dai H and DeHaven C. Categorizing
ion – features in liquid chromatography/mass spectrometry
metobolomics data. J Postgenom. 2012; 2:3.

33. Wishart DS, Knox C, Guo AC, et al. HMDB: a knowledgebase
for the human metabolome. Nucleic Acids Res. 2009; 37
(Database issue) D603–D610.

34. Fahy E, Subramaniam S, Murphy RC, et al. Update of the LIPID
MAPS comprehensive classification system for lipids. J Lipid Res.
2009; 50(Suppl.), S9–S14.

35. Smith CA, O’Maille G, Want EJ, et al. METLIN: a metabolite
mass spectral database. Ther Drug Monit. 2005; 27, 747–751.

36. Oba S, Sato MA, Takemasa I, et al. A Bayesian missing value
estimation method for gene expression profile data.
Bioinformatics. 2003; 19, 2088–2096.

37. Ouyang M, Welsh WJ, Georgopoulos P. Gaussian mixture
clustering and imputation of microarray data. Bioinformatics.
2004; 20, 917–923.

38. Sehgal MS, Gondal I, Dooley LS. Collateral missing value
imputation: a new robust missing value estimation algorithm for
microarray data. Bioinformatics. 2005; 21, 2417–2423.

39. Jolliffe IT. Principal Component Analysis. 1986. Springer-Verlag:
New York.

40. Smilde AK, Jansen JJ, Hoefsloot HC, et al. ANOVA-
simultaneous component analysis (ASCA): a new tool for
analyzing designed metabolomics data. Bioinformatics. 2005; 21,
3043–3048.

41. Beckonert O, Bollard ME, Ebbels T, et al. NMR-based
metabonomic toxicity classification: hierarchical cluster analysis
and k-nearest-neighbour approaches. Analytica Chimica Acta.
2003; 490, 3–15.

42. Krumsiek J, Suhre K, Illig T, Adamski J, Theis FJ. Gaussian
graphical modeling reconstructs pathway reactions from high-
throughput metabolomics data. BMC Syst Biol. 2011; 5, 21.

43. Krumsiek J, Suhre K, Evans AM, et al. Mining the unknown: a
systems approach to metabolite identification combining genetic
and metabolic information. PLoS Genet. 2012; 8, e1003005.

44. Shin SY, Fauman EB, Petersen AK, et al. An atlas of genetic
influences on human blood metabolites. Nat. Genet. 2014; 46,
543–550.

45. Truong Y, Lin X, Beecher C. Learning a complex metabolomic
dataset using random forests and support vector machines.
Proceedings of the Tenth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2004;
Seattle, WA, USA.

46. Fonville JM, Richards SE, Barton RH, et al. The evolution of
partial least squares models and related chemometric approaches
in metabonomics and metabolic phenotyping. J Chemom. 2010;
24, 636–649.

47. Trygg J, Wold S. Orthogonal projections to latent structures
(O-PLS). J Chemom. 2002; 16, 119–128.

48. Shi H, Vigneau-Callahan KE, Shestopalov AI, et al.
Characterization of diet-dependent metabolic serotypes: primary
validation of male and female serotypes in independent cohorts
of rats. J Nutr. 2002; 132, 1039–1046.

49. Shi H, Vigneau-Callahan KE, Shestopalov AI, et al.
Characterization of diet-dependent metabolic serotypes: proof of
principle in female and male rats. J Nutr. 2002; 132, 1031–1038.

50. Skol AD, Scott LJ, Abecasis GR, Boehnke M. Joint analysis is
more efficient than replication-based analysis for two-stage
genome-wide association studies. Nat Genet. 2006; 38, 209–213.

51. Wang TJ, Larson MG, Vasan RS, et al. Metabolite profiles and
the risk of developing diabetes. Nat Med. 2011; 17, 448–453.

52. Cox J, Williams S, Grove K, Lane RH, Aagaard-Tillery KM.
A maternal high-fat diet is accompanied by alterations in the
fetal primate metabolome. Am J Obstet Gynecol. 2009; 201, 281.
e281–281.e289.

53. Kennedy ET, Ohls J, Carlson S, Fleming K. The Healthy
Eating Index: design and applications. J Am Diet Assoc. 1995; 95,
1103–1108.

54. Guertin KA, Moore SC, Sampson JN, et al. Metabolomics in
nutritional epidemiology: identifying metabolites associated with
diet and quantifying their potential to uncover diet-disease
relations in populations. Nat Genet. 2014; 100, 208–217.

55. Menni C, Zhai G, Macgregor A, et al. Targeted metabolomics
profiles are strongly correlated with nutritional patterns
in women. Metabolomics. 2013; 9, 506–514.

56. Altmaier E, Kastenmuller G, Romisch-Margl W, et al.
Questionnaire-based self-reported nutrition habits associate with
serum metabolism as revealed by quantitative targeted
metabolomics. Eur J Epidemiol. 2011; 26, 145–156.

57. Floegel A, von Ruesten A, Drogan D, et al. Variation of serum
metabolites related to habitual diet: a targeted metabolomic
approach in EPIC-Potsdam. Eur J Clin Nutr. 2013; 67, 1100–1108.

58. Steffen LM, Zheng Y, Steffen BT. Metabolomic biomarkers
reflect usual dietary pattern: a review. Curr Nutr Rep. 2014; 3,
62–68.

59. Wang Z, Klipfell E, Bennett BJ, et al. Gut flora metabolism of
phosphatidylcholine promotes cardiovascular disease. Nature.
2011; 472, 57–63.

60. Ridaura VK, Faith JJ, Rey FE, et al. Gut microbiota from twins
discordant for obesity modulate metabolism in mice. Science.
2013; 341, 1241214.

61. Vrieze A, Van Nood E, Holleman F, et al. Transfer of intestinal
microbiota from lean donors increases insulin sensitivity in
individuals with metabolic syndrome. Gastroenterology. 2012;
143, 913–916, e917.

62. Llorach R, Urpi-Sarda M, Jauregui O, Monagas M,
Andres-Lacueva C. An LC-MS-based metabolomics approach
for exploring urinary metabolome modifications after cocoa
consumption. J Proteome Res. 2009; 8, 5060–5068.

63. van Velzen EJ, Westerhuis JA, van Duynhoven JP, et al.
Phenotyping tea consumers by nutrikinetic analysis of polyphenolic
end-metabolites. J Proteome Res. 2009; 8, 3317–3330.

76 M. F. Hivert and W. Perng et al.

https://doi.org/10.1017/S204017441500001X Published online by Cambridge University Press

https://doi.org/10.1017/S204017441500001X


64. Johansson-Persson A, Barri T, Ulmius M, Onning G, Dragsted LO.
LC-QTOF/MS metabolomic profiles in human plasma after
a 5-week high dietary fiber intake. Anal Bioanal Chem. 2013; 405,
4799–4809.

65. Gurdeniz G, Rago D, Bendsen NT, et al. Effect of trans fatty acid
intake on LC-MS and NMR plasma profiles. PLoS One. 2013; 8,
e69589.

66. Schmidt MD, Dwyer T, Magnussen CG, Venn AJ. Predictive
associations between alternative measures of childhood adiposity
and adult cardio-metabolic health. Int J Obes (Lond). 2011; 35,
38–45.

67. Bondia-Pons I, Nordlund E, Mattila I, et al. Postprandial
differences in the plasma metabolome of healthy Finnish subjects
after intake of a sourdough fermented endosperm rye bread versus
white wheat bread. Nutr J. 2011; 10, 116.

68. Krug S, Kastenmuller G, Stuckler F, et al. The dynamic range of
the human metabolome revealed by challenges. FASEB J. 2012;
26, 2607–2619.

69. Socha P, Grote V, Gruszfeld D, et al. Milk protein intake, the
metabolic-endocrine response, and growth in infancy: data from a
randomized clinical trial. Am J Clin Nutr. 2011; 94(6 Suppl.),
1776s–1784s.

70. O’Sullivan A, He X,McNiven EM, et al. Early diet impacts infant
rhesus gut microbiome, immunity, and metabolism.
J Proteome Res. 2013; 12, 2833–2845.

71. Herman MA, She P, Peroni OD, Lynch CJ, Kahn BB. Adipose
tissue branched chain amino acid (BCAA) metabolism modulates
circulating BCAA levels. J Biol Chem. 2010; 285, 11348–11356.

72. Lu J, Xie G, Jia W, Jia W. Insulin resistance and the metabolism
of branched-chain amino acids. Front Med. 2013; 7, 53–59.

73. Bertram HC, Hoppe C, Petersen BO, et al. An NMR-based
metabonomic investigation on effects of milk and meat protein
diets given to 8-year-old boys. Br J Nutr. 2007; 97, 758–763.

74. Scheepers PT. The use of biomarkers for improved retrospective
exposure assessment in epidemiological studies: summary of an
ECETOC workshop. Biomarkers. 2008; 13, 734–748.

75. Scholtens DM, Muehlbauer MJ, Daya NR, et al. Metabolomics
reveals broad-scale metabolic perturbations in hyperglycemic
mothers during pregnancy. Diabetes Care. 2014; 37, 158–166.

76. Xu T, Holzapfel C, Dong X, et al. Effects of smoking and
smoking cessation on human serum metabolite profile: results
from the KORA cohort study. BMC Med. 2013; 11, 60.

77. Oken E, Levitan EB, Gillman MW. Maternal smoking during
pregnancy and child overweight: systematic review and meta-
analysis. Int J Obes (Lond). 2008; 32, 201–210.

78. Enea C, Seguin F, Petitpas-Mulliez J, et al. (1)H NMR-based
metabolomics approach for exploring urinary metabolome
modifications after acute and chronic physical exercise. Anal
Bioanal Chem. 2010; 396, 1167–1176.

79. Lewis GD, Farrell L, Wood MJ, et al. Metabolic signatures of
exercise in human plasma. Sci Transl Med. 2010; 2, 33ra37.

80. Netzer M, Weinberger KM, Handler M, et al. Profiling the
human response to physical exercise: a computational strategy for
the identification and kinetic analysis of metabolic biomarkers.
J Clin Bioinforma. 2011; 1, 34.

81. Pechlivanis A, Kostidis S, Saraslanidis P, et al. (1)H NMR-based
metabonomic investigation of the effect of two different exercise
sessions on the metabolic fingerprint of human urine. J Proteome
Res. 2010; 9, 6405–6416.

82. Pechlivanis A, Kostidis S, Saraslanidis P, et al. 1H NMR study on
the short- and long-term impact of two training programs of
sprint running on the metabolic fingerprint of human serum.
J Proteome Res. 2013; 12, 470–480.

83. Roberts LD, Bostrom P, O'Sullivan JF, et al. β-Aminoisobutyric
acid induces browning of white fat and hepatic β-oxidation and is
inversely correlated with cardiometabolic risk factors. Cell Metab.
2014; 19, 96–108.

84. Huffman KM, Slentz CA, Bateman LA, et al. Exercise-induced
changes in metabolic intermediates, hormones, and inflammatory
markers associated with improvements in insulin sensitivity.
Diabetes Care. 2011; 34, 174–176.

85. Yan B, AJ, Wang G, et al. Metabolomic investigation into
variation of endogenous metabolites in professional athletes
subject to strength-endurance training. J Appl Physiol (1985).
2009; 106, 531–538.

86. Brochu M, Tchernof A, Dionne IJ, et al. What are the physical
characteristics associated with a normal metabolic profile despite a
high level of obesity in postmenopausal women? J Clin Endocrinol
Metab. 2001; 86, 1020–1025.

87. Karelis AD. Metabolically healthy but obese individuals. Lancet.
2008; 372, 1281–1283.

88. Karelis AD, Faraj M, Bastard JP, et al. The metabolically healthy
but obese individual presents a favorable inflammation profile.
J Clin Endocrinol Metab. 2005; 90, 4145–4150.

89. Thomas EL, Parkinson JR, Frost GS, et al. The missing risk: MRI
and MRS phenotyping of abdominal adiposity and ectopic fat.
Obesity (Silver Spring). 2012; 20, 76–87.

90. Oken E, Kleinman KP, Rich-Edwards J, Gillman MW.
A nearly continuous measure of birth weight for gestational
age using a United States national reference. BMC Pediatr.
2003; 3, 6.

91. Horgan RP, Broadhurst DI, Walsh SK, et al. Metabolic profiling
uncovers a phenotypic signature of small for gestational age in
early pregnancy. J Proteome Res. 2011; 10, 3660–3673.

92. Ivorra C, Garcia-Vicent C, Chaves FJ, et al. Metabolomic
profiling in blood from umbilical cords of low birth weight
newborns. J Transl Med. 2012; 10, 142.

93. Alexandre-Gouabau MC, Courant F, Moyon T, et al. Maternal
and cord blood LC-HRMS metabolomics reveal alterations
in energy and polyamine metabolism, and oxidative stress
in very-low birth weight infants. J Proteome Res. 2013; 12,
2764–2778.

94. Tea I, Le Gall G, Kuster A, et al. 1H-NMR-based metabolic
profiling of maternal and umbilical cord blood indicates altered
materno-foetal nutrient exchange in preterm infants. PLoS One.
2012; 7, e29947.

95. Favretto D, Cosmi E, Ragazzi E, et al. Cord blood metabolomic
profiling in intrauterine growth restriction. Anal Bioanal Chem.
2012; 402, 1109–1121.

96. Morris C, O’Grada C, Ryan M, et al. The relationship between
BMI and metabolomic profiles: a focus on amino acids. Proc Nutr
Soc. 2012; 71, 634–638.

97. McCormack SE, Shaham O, McCarthy MA, et al. Circulating
branched-chain amino acid concentrations are associated with
obesity and future insulin resistance in children and adolescents.
Pediatr Obes. 2013; 8, 52–61.

98. Perng WGM, Fleisch AF, Michalek RD, et al. Metabolomic
profiles of childhood obesity. Early Nutrition Conference 2014.

Metabolomics in DOHaD of obesity 77

https://doi.org/10.1017/S204017441500001X Published online by Cambridge University Press

https://doi.org/10.1017/S204017441500001X


99. Sumner LW, Amberg A, Barrett D, et al. Proposed minimum
reporting standards for chemical analysis Chemical Analysis
Working Group (CAWG) Metabolomics Standards
Initiative (MSI). Metabolomics. 2007; 3, 211–221.

100. Yousri NA, Kastenmuller G, Gieger C, et al. Long term
conservation of human metabolic phenotypes and link to
heritability. Metabolomics. 2014; 10, 1005–1017.

101. Luan H, Meng N, Liu P, et al. Pregnancy-induced metabolic
phenotype variations in maternal plasma. J Proteome Res. 2014;
13, 1527–1536.

102. Graca G, Goodfellow BJ, Barros AS, et al. UPLC-MS metabolic
profiling of second trimester amniotic fluid andmaternal urine and
comparison with NMR spectral profiling for the identification of
pregnancy disorder biomarkers.Mol Biosyst. 2012; 8, 1243–1254.

103. Graca G, Duarte IF, Barros AS, et al. Impact of prenatal
disorders on the metabolic profile of second trimester amniotic
fluid: a nuclear magnetic resonance metabonomic study.
J Proteome Res. 2010; 9, 6016–6024.

104. Horgan RP, Broadhurst DI, Dunn WB, et al. Changes in the
metabolic footprint of placental explant-conditioned medium
cultured in different oxygen tensions from placentas of small for
gestational age and normal pregnancies. Placenta. 2010; 31,
893–901.

105. Heazell AE, Brown M, Dunn WB, et al. Analysis of the
metabolic footprint and tissue metabolome of placental villous
explants cultured at different oxygen tensions reveals novel redox
biomarkers. Placenta. 2008; 29, 691–698.

106. Dunn WB, Brown M, Worton SA, et al. Changes in the
metabolic footprint of placental explant-conditioned culture
medium identifies metabolic disturbances related to hypoxia and
pre-eclampsia. Placenta. 2009; 30, 974–980.

107. Tissot van Patot MC, Murray AJ, Beckey V, et al. Human
placental metabolic adaptation to chronic hypoxia, high altitude:
hypoxic preconditioning. Am J Physiol Regul Integr Comp Physiol.
2010; 298, R166–R172.

108. Kurland IJ, Accili D, Burant C, et al. Application of combined
omics platforms to accelerate biomedical discovery in diabesity.
Ann NY Acad Sci. 2013; 1287, 1–16.

109. Putignani L, Del Chierico F, Petrucca A, Vernocchi P,
Dallapiccola B. The human gut microbiota: a dynamic interplay
with the host from birth to senescence settled during childhood.
Pediatr Res. 2014; 76, 2–10.

110. Wurtz P, Kangas AJ, Soininen P, et al. Lipoprotein subclass
profiling reveals pleiotropy in the genetic variants of lipid
risk factors for coronary heart disease: a note on Mendelian
randomization studies. J Am Coll Cardiol. 2013; 62,
1906–1908.

111. Timpson NJ, Nordestgaard BG, Harbord RM, et al. C-reactive
protein levels and body mass index: elucidating direction of
causation through reciprocal Mendelian randomization. Int J
Obes (Lond). 2011; 35, 300–308.

112. Prentice KJ, Luu L, Allister EM, et al. The furan fatty acid
metabolite CMPF is elevated in diabetes and induces
beta cell dysfunction. Cell Metab. 2014; 19, 653–666.

78 M. F. Hivert and W. Perng et al.

https://doi.org/10.1017/S204017441500001X Published online by Cambridge University Press

https://doi.org/10.1017/S204017441500001X

	Metabolomics in the developmental origins of obesity and its cardiometabolic consequences
	Introduction
	Metabolomics work flow
	Research question and experimental approach
	Specimen collection, preparation and storage

	Fig. 1Areas in which metabolomics could enhance research on developmental origins of obesity and related metabolic disorders 
	Fig. 2Metabolomics work flow
	Analytical instrumentation

	Table 1Comparison of untargeted v.
	Data pre-processing and cleaning
	Metabolite identification


	Table 2Comparison of mass-spectroscopy (MS) and nuclear magnetic resonance (NMR) spectroscopy platforms for metabolomics
	Outline placeholder
	Data cleaning

	Statistical analysis
	Validation and replication

	The role of metabolomics in DOHaD research
	Better quantification of DOHaD exposures
	Dietary intake
	Usual dietary intake
	Acute response to food intake
	Assessment of dietary interventions
	Maternal adiposity and glycemia
	Smoking
	Physical activity

	Refining outcomes
	Fetal and early life outcomes
	Life course outcomes: childhood obesity and cardiometabolic status


	Perspectives
	Current gaps in literature
	Lack of replication
	Lack of longitudinal and experimental studies

	Focusing on the strengths of metabolomics
	Future directions

	Conclusions
	Acknowledgments
	ACKNOWLEDGEMENTS
	References


