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Shrinkage estimation procedures such as ridge regression and the lasso have been
proposed for stabilizing estimation in linear models when high collinearity exists
in the design+ In this paper, we consider asymptotic properties of shrinkage esti-
mators in the case of “nearly singular” designs+

1. INTRODUCTION

Consider the linear regression model

Yi � b0 � b1 x1i � {{{� bp xpi � «i

� b0 � xi
Tb� «i , (1)

where «1, + + + ,«n are independent and identically distributed ~i+i+d+! random vari-
ables with mean 0 and variance s 2 + For simplicity, we will assume that the
predictors are centered to have mean 0 and that the intercept b0 is always esti-
mated by PY+ This assumption allows us to focus on estimation of b1, + + + ,bp,
but it is not essential+

Throughout this paper, we will assume that the xi ’s are nearly collinear in
the sense that the matrix

Cn �
1

n �
i�1

n

xi xi
T (2)

is nonsingular for each n but that

Cnr C, (3)

where C is singular; we will refer to such designs as “nearly singular+”

I thank Hannes Leeb and Benedikt Pötscher and also the referees for their valuable comments+ This research was
supported by a grant from the Natural Sciences and Engineering Research Council of Canada+ Address corre-
spondence to Keith Knight, Department of Statistics, University of Toronto, 100 St+ George St+, Toronto, ON
M5S 3G3, Canada; e-mail: keith@utstat+toronto+edu+

Econometric Theory, 24, 2008, 323–337+ Printed in the United States of America+
DOI: 10+10170S0266466608080146

© 2008 Cambridge University Press 0266-4666008 $15+00 323

https://doi.org/10.1017/S0266466608080146 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466608080146


The exact definition of near singularity ~which will be given in the next
section! is an asymptotic one, but in practice, a nearly singular design might
be characterized as one where the smallest eigenvalue ~or eigenvalues! of
Cn is small compared to the trace of Cn+ In some cases, the near singularity
is, in fact, a consequence of the model; see, for example, Phillips ~2001!+ It
is well known that ordinary least squares ~OLS! estimation, although unbi-
ased, leads to parameter estimates with large variance+ Several alternative meth-
ods, which trade bias for variance, have been proposed to deal with this
problem; these methods include ridge regression ~Hoerl and Kennard, 1970!,
partial least squares ~Wold, 1984; Lorber, Wanger, and Kowalski, 1987!, con-
tinuum regression ~Stone and Brooks, 1990!, the “lasso” ~Tibshirani, 1996;
Radchenko, 2004!, and the smooth clipped absolute deviation ~SCAD! penalty
of Fan and Li ~2001!+

Under the condition

max
1�i�n

xi
T��

i�1

n

xi xi
T��1

xi r 0 as nr `, (4)

the OLS estimator, which we will denote by Zbn
~0! , is asymptotically normal;

more precisely, we have

��
i�1

n

xi xi
T�102

~ Zbn
~0!� b! d

&& N ~0,s 2I ! (5)

~Srivastava, 1971!+ Note that the condition ~4! can be rewritten as

1

n
max
1�i�n

xi Cn
�1 xi r 0,

which if Cn tends to a nonsingular matrix C is equivalent to

1

n
max
1�i�n

xi
T xi r 0;

moreover, if C is nonsingular then the asymptotic normality in ~5! can be
expressed as

Mn ~ Zbn
~0!� b! d

&& N ~0,s 2C�1 !+ (6)

The convergence in ~5! is very general and quite useful in practice even in
the case of nearly singular designs; on the other hand, generalizing ~5! to esti-
mators obtained after shrinkage procedures ~such as ridge regression or the lasso!
or automatic model selection procedures ~such as the Akaike information crite-
rion @AIC# ! is difficult+ Results such as ~6! ~where the normalization is by a
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sequence of constants rather than a sequence of matrices! turn out to be easier
to obtain and can give considerable insight into the properties ~from a large-
sample perspective! of the particular estimator+

2. PENALIZED LEAST SQUARES ESTIMATION

Regularization is a frequently used technique in statistics for obtaining estima-
tors in situations where standard estimators are unstable or otherwise poorly
defined+

We will consider estimating b by minimizing the penalized least squares ~LS!
criterion

�
i�1

n

~Yi � xi
Tf!2 � ln �

j�1

p

6fj 6g (7)

for a given ln where g � 0; the resulting estimator will be denoted through-
out by Zbn, thereby suppressing its dependence on both g and ln with Zbn

~0!

denoting the OLS estimator ~with ln � 0!+ These so-called Bridge estimators
were introduced by Frank and Friedman ~1993! as a generalization of ridge
regression ~which occurs for g � 2!+ The special case when g � 1 corre-
sponds to the lasso ~Tibshirani, 1996!+ Properties of these estimators have been
studied by, among others, Fu ~1998!, Knight and Fu ~2000!, Radchenko ~2004!,
and Leeb and Pötscher ~2006!+ For g � 1, the estimators minimizing ~7! have
the potentially attractive feature of being exactly 0 if ln is sufficiently large,
thus combining parameter estimation and model selection; indeed model selec-
tion methods such as AIC and the Bayesian information criterion ~BIC! can
be viewed as limiting cases as g r 0+ Also note that when g � 1, the objec-
tive function ~7! is not convex and the estimator Zbn can be quite sensitive to
the choice of ln; more precisely, when g � 1, the mapping from ln to Zbn will
have jump discontinuities+ The SCAD penalty of Fan and Li ~2001! is a non-
convex penalty ~indexed by two parameters! that combines the features of a
lasso-type penalty ~for small parameter values! with an AIC-type penalty ~for
larger parameter values!+

We could also replace ~7! by a penalized LS criterion that allows us a sepa-
rate tuning parameter for each coefficient:

�
i�1

n

~Yi � xi
Tf!2 � �

j�1

p

ln
~ j ! 6fj 6g+ (8)

It is straightforward to generalize the results of this paper to estimators obtained
by minimizing ~8!+ The objective function ~7! is more common in practice; typ-
ically, the predictors are scaled to have a variance of 1+

In this section, we will consider the asymptotic behavior of Bridge estima-
tors when the design is nearly singular+ More precisely, suppose that Cn ~as
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defined in ~3!! is nonsingular but tends to a singular matrix C+ In particular, we
will assume that

an~Cn � C!r D0 (9)

for some sequence $an% tending to infinity where D0 is positive definite on the
null space of C ~i+e+, vvvvTD0vvvv � 0 for nonzero vvvv with Cvvvv � 0!+ Note that D0 is
necessarily nonnegative definite on the null space of C so that it is not too
stringent to require it to be positive definite on this null space+ If D0 is not
positive definite on the null space of C then we can modify ~9! to obtain appro-
priate limiting distributions; this will be considered in the next section+ We are
also assuming ~at least implicitly! that the near singularity affects all the pre-
dictors in the model+ Applications where the condition ~9! holds are given in
Phillips ~2001! and Gabaix and Ibragimov ~2006!+ A referee has also pointed
out a possible connection to the problem of weak instruments ~cf+ Stock,Wright,
and Yogo, 2002!, for example, in two-stage least squares estimation+ Caner ~2004,
2006! considers nearly singular designs in the context of generalized method
of moments ~GMM! estimation+

To obtain consistency and limiting distributions for Zbn minimizing ~7!, we need
to impose conditions on the sequence $ln% so that it does not grow too quickly+
In the case where C is nonsingular, Knight and Fu ~2000! showed that to obtain
nondegenerate limiting distributions for Mn ~ Zbn � b!, we require ln 0Mn r l0

for g � 1 and ln0ng02 r l0 for g � 1; for nearly singular designs, the growth
criterion for $ln% will be somewhat more stringent+

It is worth mentioning that asymptotic results tend to undersell the value of
shrinkage estimation in practice+ The reason for this is simple+ Shrinkage is
used in practice to reduce the variability in the estimation of parameters that
are “small” by forcing their estimates toward 0 ~or setting them to 0!+ How-
ever, from an asymptotic perspective, the only parameters that are “small” are
those that are exactly 0 as all other parameters can be ~with probability tending
to 1 as nr `! distinguished as different than 0+ Thus for a parameter bk whose
value is nonzero, shrinkage generally produces bias in the resulting estimator
that may or may not vanish asymptotically, and the resulting asymptotic bias is
typically not compensated by a reduction in the asymptotic variance+ On the
other hand, if bk � 0 then shrinkage will typically reduce the asymptotic vari-
ance of the estimator ~without any asymptotic bias!, which leads to a sort of
superefficiency in these cases+ Obviously, it is desirable to produce estimators
that have no asymptotic bias when bk � 0 and are superefficient when bk � 0;
such estimators exist but can be extremely sensitive to small perturbations in
the data or changes in the choice of tuning parameters+ The asymptotic results
are very useful in giving insight into how sensitive a given methodology is to
the choice of tuning parameters+

A useful tool in the development of the asymptotic distribution of the penal-
ized LS estimators is the notion of epi-convergence in distribution, which is
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discussed in Pflug ~1995!, Geyer ~1994, 1996!, and Knight ~1999!+ A sequence
of random lower semicontinuous functions $Zn% on � p ~taking values in
@�`,`# ! epi-converges in distribution to Z ~Zn

e�d
&& Z! if for closed rectan-

gles R1, + + + ,Rk with open interiors R1
o , + + + ,Rk

o , we have

P� inf
u�R1

Z~u! � a1, + + + , inf
u�Rk

Z~u! � ak�
� lim inf

nr`
P� inf

u�R1

Zn~u! � a1, + + + , inf
u�Rk

Zn~u! � ak�
� lim sup

nr`
P� inf

u�R1
o
Zn~u! � a1, + + + , inf

u�Rk
o
Zn~u! � ak�

� P� inf
u�R1

o
Z~u! � a1, + + + , inf

u�Rk
o
Z~u! � ak�

for all real a1, + + + ,ak+ Epi-convergence in distribution is particularly useful
for studying estimators that minimize ~or maximize! objective functions sub-
ject to constraints and also estimators that minimize discontinuous ~but lower
semicontinuous! objective functions; the best known weak convergence for func-
tions, which is based on uniform convergence on compact sets ~van der Vaart
and Wellner, 1996!, is poorly suited to these types of objective functions+
However, this type of weak convergence, when applicable, does imply epi-
convergence in distribution+

The limiting distributions of “argmin” estimators can often be determined
via epi-convergence of the associated objective functions; in particular, if

Zn~Un ! � inf
u

Zn~u!� op~1!

and Zn
e�d
&& Z where Z has a unique minimizer U then Un

d
&& U provided that

Un � Op~1!+ For an application of epi-convergence in distribution in the con-
text of estimation in nonregular econometric models, see Chernozhukov and
Hong ~2004! and Chernozhukov ~2005!+

In the case where $Zn% are convex with Zn
e�d
&& Z ~where the minimizer of

Z, U, is unique! then the condition Un � Op~1! is guaranteed, and so Un
d
&& U+

Moreover, in the case of convexity, finite-dimensional weak convergence of
$Zn% to Z is sufficient for Zn

e�d
&& Z provided that Z is finite ~with probability

1! on an open set ~Geyer, 1996!; however, for nearly singular designs, this lat-
ter condition is not satisfied as the appropriate limiting objective function is
finite only on a lower dimensional subspace of � p + Finite-dimensional weak
convergence implies epi-convergence in distribution if $Zn% is stochastically
equi–lower semicontinuous as defined in Knight ~1999!+

We will now consider the asymptotic behavior of nearly singular designs under
fairly weak conditions+ We will assume that Cn is nonsingular for all n and
satisfies ~9! for some sequence $an% + Define bn � ~n0an!

102 and define Zn to be
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Zn~u! � �
i�1

n

@~«i � uTxi 0bn !
2 � «i

2#� ln �
j�1

p

~6bj � uj 0bn 6g � 6bj 6g !+ (10)

If Zbn minimizes ~7! then the minimizer of ~10! is simply bn~ Zbn � b!; the objec-
tive function Zn in ~10! is simply a rescaled version of the objective function
~7! with constants subtracted to ensure convergence+ Note that because bn �
o~Mn !, the estimators will have a slower rate of convergence than when C is
nonsingular+

The following result was given in Knight and Fu ~2000!+

THEOREM 1+ Assume the linear model (1) where Cn in (2) satisfies (3),
(4), and (9) where C is singular and D0 is positive definite on the null space
of C. Define W to be a 0 mean multivariate normal random vector such that
Var~uTW ! � s 2uTD0u � 0 for each nonzero u satisfying Cu � 0. Let Zbn

minimize (7) for some g � 0 and ln � 0.

(i) If g � 1 and ln0bn r l0 � 0 then

bn~ Zbn � b!rd argmin$Z~u! :Cu � 0%,

where

Z~u! � �2uTW � uTD0 u � l0 �
j�1

p

uj sgn~bj !6bj 6g�1.

(ii) If g � 1 and ln0bn r l0 � 0 then

bn~ Zbn � b!rd argmin$Z~u! :Cu � 0%,

where

Z~u! � �2uTW � uTD0 u � l0 �
j�1

p

$uj sgn~bj !� 6uj 6I ~bj � 0!%.

(iii) If g � 1 and ln 0bn
g r l0 � 0 then

bn~ Zbn � b!rd argmin$Z~u! :Cu � 0%,

where

Z~u! � �2uTW � uTD0 u � l0 �
j�1

p

6uj 6gI ~bj � 0! .

Proof+ Define Zn as in ~10!+ First of all, we must show in each case that
Zn

e�d
&& Z0 where Z0~u!� Z~u! for u satisfying Cu � 0 and Z0~u!�` other-

wise+ This follows by first showing finite-dimensional weak convergence of
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$Zn% to Z0 ~Zn
f�d
&& Z0! and then stochastic equi–lower semicontinuity ~e-1-sc!

~Knight, 1999! of $Zn% ; note that, because Z0 is not finite on an open set,
Zn

f�d
&& Z0 is not sufficient for Zn

e�d
&& Z0 even when Zn is convex ~i+e+, when

g � 1!+ Finally, we must show that

argminu Zn~u! � bn~ Zbn � b!� Op~1!+

When g� 1, this holds automatically from the convexity of the Zn’s; for g � 1,
it can be established by noting that the quadratic part of Zn is growing faster
~in 7u7! than the nonconvex penalty+ �

Note that for g � 1, the limiting distribution will typically depend on l0

whereas for g � 1, this is only true if at least one of the bj’s is 0+ However, if
g � 1 and at least one bj is 0 then the mapping from l0 to the limiting distri-
bution will have discontinuities; this mapping is continuous for g � 1 because
of the convexity ~in u! of the limiting objective function V for any l0+

The condition on ln in part ~iii! of Theorem 1 can be modified to achieve
the “best of both worlds” for g � 1, that is, no asymptotic bias for estimators
of nonzero parameters and superefficiency for estimators of zero parameters+
We do this by assuming that ln 0bn

tr l0 � 0 where g � t � 1+ Although this
seems attractive, it should be noted that this is an asymptotic condition and
does not really give much insight regarding the choice of ln for fixed n+

Example 1

Consider a design with p predictors with common mutual correlation rn+Assum-
ing the predictors are normalized to have variance 1, we have

Cn � �
1 rn J rn

rn 1 J rn

I I L I

rn J rn 1
� ;

we will assume that rn r 1 and an~1 � rn! r c � 0+ In this case, $Cn% con-
verges to a matrix C ~of all 1’s! and an~Cn � C! r D0 where

D0 � �
0 �c J �c

�c 0 J �c

I I L I

�c J �c 0
� +

~In this example, the form of D0 is not particularly important+! If the matrices
are p � p then the null space of C is the space of vectors u with u1 � {{{ �
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up � 0+ For the sake of illustration, let us suppose that b1, + + + ,bp are all non-
zero and take g � 1+ Then the limiting objective function Z in Theorem 1 is

Z~u! � �2uTW � uTD0 u � l0 �
j�1

p

uj sgn~bj !6bj 6g�1

for u1 � {{{� up � 0, (11)

where

l0 � lim
nr`
ln�an

n
�102

+

By Theorem 1, we have ~setting bn � ~n0an!
102!

bn~ Zbn � b! d
&& argmin$Z~u! : u1 � {{{� up � 0%+

It is interesting to compare this limiting distribution to the limiting distribution
of the OLS estimator:

bn~ Zbn
~0!� b! d

&& argmin$Z0~u! : u1 � {{{� up � 0%,

where Z0 is simply Z in ~11! setting l0 � 0+ The size of the asymptotic bias of
Zbn relative to Zbn

~0! ~which is unbiased! depends on the coefficients of u1, + + + ,up

in the penalty

l0 �
j�1

p

uj sgn~bj !6bj 6g�1+

Note that these coefficients are bounded ~in b! only if g � 1 ~the lasso! and
that the bias vanishes for g � 1 ~i+e+, Zbn � Zbn

~0!� op~bn
�1!! if, and only if, b1 �

{{{ � bp whereas for g � 1, this same condition holds under the weaker con-
dition sgn~b1! � {{{ � sgn~bp!+ It should be noted also that the preceding
discussion does not depend on the form of the matrix D0+

Next suppose that b1 � 0 and b2 � {{{ � bp � 0+ If g � 1 and l0 � 0 then
the joint limiting distribution of the estimators of b2, + + + ,bp will have positive
probability mass at 0 and because the limiting distribution lies in the null space
of C, this implies that the limiting distribution of bn~ Zbn1 � b1! has positive
probability mass at 0+

Theorem 1 can be extended to model selection methods such as AIC and
BIC+ Suppose that Zbn minimizes

n ln� 1

n �
i�1

n

~Yi � xi
Tf!2�� ln �

j�1

p

I ~fk � 0!; (12)
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for AIC, ln � 2 whereas for BIC, we have ln � ln~n!+ The following result
gives the limiting distribution in AIC-like situations where ln r l0 � ~0,`!+

THEOREM 2+ Assume the linear model (1) where Cn in (2) satisfies (3), (4),
and (9) where C is singular and D0 is positive definite on the null space of C.
Suppose that Zbn minimizes (12) and ln r l0 � 0. Then

bn~ Zbn � b! d
&& argmin$Z~u! :Cu � 0%,

where

Z~u! �
1

s 2
~uTD0 u � 2uTW !� l0 �

j�1

p

@I ~bj � 0!� I ~uj � 0!I ~bj � 0!#

with uTW ; N ~0,s 2uTD0u! for u in the null space of C.

Proof+ Define the objective function

Zn~u! � n ln� 1

n �
i�1

n

~«i � xi
T u0bn !

2�� n ln�1

n �
i�1

n

«i
2�

� ln �
j�1

p

I ~bj � uj 0bn � 0! (13)

and note that it is minimized at u � bn~ Zbn � b!+ First of all, outside of the null
space of C, it is easy to see that Zn~u!

p
&& `+ For u in the null space of C, we

have

n ln� 1

n �
i�1

n

~«i � xi
T u0bn !

2�� n ln�1

n �
i�1

n

«i
2�

�
1

s 2 � 1

bn
2 �

i�1

n

~xi
T u!2 �

2

bn
�
i�1

n

xi
T u«i�� op~1!

f�d
&&

1

s 2
~uTD0 u � 2uTW !+

For the penalty term,

ln �
j�1

p

I ~bj � uj 0bn � 0!r l0 �
j�1

p

@I ~bj � 0!� I ~uj � 0!I ~bj � 0!# +

Thus we have Zn
f�d
&& Z+ Epi-convergence in distribution follows by establish-

ing e-l-sc ~Knight, 1999!; we need to show that for each bounded set B, e � 0,
and d � 0, there exist u1, + + + ,um � B and open neighborhoods O~u1!, + + + ,O~um!
such that
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B � �
i�1

m

O~ui !

and

lim sup
nr`

P��
i�1

m � inf
u�O~ui !

Zn~u! � min~e�1, Zn~ui !� e!�� � d+

First of all, note that Zn is finite for each n with discontinuities at points that
do not depend on n+ If B does not intersect the null space of C then e-l-sc is
straightforward; for each n, Zn is approximately a quadratic function that is
tending to �`+ On the other hand, if B does intersect the null space of C then
we can take u1, + + + ,um to lie in this null space and obtain the desired inequal-
ity+ It remains only to establish that bn~ Zbn � b! � Op~1!; this follows because
for n � some n0, we have Zn~0! � ~l0 � e!p, and there exists a compact set
Ke such that

lim sup
nr`

P� inf
u�Ke

Zn~u! � ~l0 � e!p� � e

for each e � 0+ Thus bn~ Zbn � b! � Op~1!+ �

As noted previously, AIC corresponds to the case where l0 � 2; Theorem 2
confirms the well-known fact that AIC is not a consistent model selection method
in the sense that if br�1 � {{{� bp � 0 then asymptotically AIC gives positive
probability to models with at least one of br�1, + + + ,bp nonzero+ Note however
that the parameter estimators computed by minimizing AIC are themselves con-
sistent ~in this case bn-consistent!+ So-called consistent model selection proce-
dures such as BIC have ln r ` at some ~usually slow! rate+

THEOREM 3+ Assume the linear model (1) where Cn in (2) satisfies (3), (4),
and (9) where C is singular and D0 is positive definite on the null space of C.
Suppose that Zbn minimizes (12) where ln r �` with ln � o~bn

2! . Then

bn~ Zbn � b! d
&& argmin$Z~u! :Cu � 0%,

where

Z~u! � 	
1

s 2
~uTD0 u � 2uTW ! if bj � 0 or bj � 0, uj � 0 for all j � 1, + + + , p

�` if bj � 0 and uj � 0 for some j

with uTW ; N ~0,s 2uTD0u! for u in the null space of C.
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Proof+ When ln r `, we can rewrite Zn in ~13! as

Zn~u! � n ln� 1

n �
i�1

n

~«i � xi
T u0bn !

2�� n ln�1

n �
i�1

n

«i
2�

� ln �
j�1

p

@I ~bj � uj 0bn � 0!� I ~bj � 0!# +

Then for bj � 0,

ln @I ~bj � uj 0bn � 0!� I ~bj � 0!# � �ln I ~bj � �uj 0bn !

r 0

uniformly over compact sets ~and thus this convergence is also epi-convergence!+
On the other hand if bj � 0 then

ln @I ~bj � uj 0bn � 0!� I ~bj � 0!# � ln I ~uj 0bn � 0!

� ln I ~uj � 0!

r �0 for uj � 0

` for uj � 0,

where this pointwise convergence can be extended to epi-convergence+ Now
note that if ln grows too quickly then Zn may be minimized at some [un having
7 [un7 � O~bn!; this possibility is ruled out by the assumption that ln � o~bn

2!
and so argmin~Zn! � Op~1!+ �

The form of the penalty in the asymptotic objective effectively forces the
limiting distribution of bn Zbnj to be a point mass at 0 when bj � 0+

Example 2

Consider a design with Cn defined as in Example 1 with b1 � {{{ � bp � 0+
When 0 � 0 � rn � r � 1, then Table 1 gives the limiting distribution of
the estimated model size for p � 5 and p � 10 for r � 0, 0+5, 0+9; given that
we have a “null” model here, the correct model size is 0+ Table 1 suggests
that as r r 1, the probability of selecting a model of size 1 decreases and the
probabilities of selecting a model of size 0 or 2 increase+ The result of
Theorem 2 suggests that if an~1 � rn! r c � 0 then the probability of AIC
selecting a model of size 1 tends to 0; this is somewhat misleading as the
mapping u � �j�1

p I ~uj � 0! is not continuous at any u having at least one 0
component+
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3. OTHER POINTS OF INTEREST

3.1. Higher Order Near Singularity

Theorems 1 and 2 require that the matrix D0 be positive definite on the null
space of C+ Unfortunately, this is not always true; Phillips ~2001! gives an exam-
ple involving polynomial regression with “slowly varying” predictors where
this condition is violated+

The near singularity condition an~Cn � C! r D0 with uTD0u � 0 for non-
zero u satisfying Cu � 0 can be generalized as follows+We start by recursively
defining matrices H1, D1, H2, D2, + + + such that

H1 � an~Cn � C!� D0 , (14)

an
~1!H1r D1, (15)

Hk � an
~k�1!Hk�1 � Dk�1 k � 2,3, + + + , (16)

an
~k!Hkr Dk k � 2,3, + + + + (17)

Now define the following subspace of the null space of C:

Sk � $vvvv :Cvvvv� D0 vvvv� {{{� Dk�1 vvvv� 0, vvvvTDk vvvv � 0 for vvvv� 0%+ (18)

Note that Sk is always well defined ~if C, D0, + + + ,Dk in ~14!–~17! are well
defined! as it contains at least the vector 0+ However, we are most interested in
cases where Sk is larger+ We can then redefine bn in terms of an

~1! , + + + ,an
~k! as

follows:

Table 1. Limiting distributions of estimated model size for
AIC with p � 5 and 10 predictors, and mutual interpredictor
correlations of r � 0, 0+5, and 0+9+ The probability estimates
are based on 10,000 replications and have a standard error of
at most 0+005+

p � 5 p � 10
Est+
size r � 0 r � 0+5 r � 0+9 r � 0 r � 0+5 r � 0+9

0 0+43 0+46 0+52 0+18 0+22 0+23
1 0+40 0+31 0+15 0+36 0+24 0+07
2 0+14 0+19 0+31 0+28 0+35 0+54
3 0+03 0+03 0+02 0+13 0+12 0+07
.3 0+00 0+00 0+00 0+06 0+07 0+08
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bn � � n

an
~1!� {{{� an

~k!�102

+ (19)

Then it can be shown that the conclusions of Theorems 1 and 2 hold with bn

defined as in ~19!, Var~uTW ! � s 2uTDku � 0 for u � Sk defined in ~18!, Dk

replacing D0 in the definition of Z~u!:

bn~ Zbn � b! d
&& argmin$Z~u! : u � Sk %+

It is also possible to extend the results of this paper to cases where different
degrees of near singularity exist in disjoint subsets of variables; in this case,
we will obtain different convergent rates for the estimators of the parameters in
the different subsets+ For example, if xi � vec~xi

~1! , xi
~2! ! then

Cn �
1

n �
i�1

n

xi xi
T

� �Cn
~11! Cn

~12!

Cn
~21! Cn

~22!�+
Suppose that Cn r C where Cn

~11! r C ~11! ~nonsingular! and Cn
~22! r C ~22!

~singular! with an~Cn
~22! � C ~22! ! r D0

~22!; then it is also reasonable to assume
that an

102~Cn
~12! � C ~12! ! r D0

~12! ~and likewise for Cn
~21! !+ In this case, writing

b � vec~b ~1!,b ~2! !, we would typically ~i+e+, subject to other regularity condi-
tions! have

�Mn ~ Zbn
~1!� b ~1! !

bn~ Zbn
~2!� b ~2! !

� d
&& �V ~1!

V ~2!
�,

where bn � ~n0an!
102 + For shrinkage estimation minimizing ~7!, we would need

to choose ln to match the slowest rate of convergence to obtain nondegenerate
limiting distributions+

3.2. Maximum Likelihood and GMM Estimation

The results of this paper extend naturally to maximum likelihood estimation
where the information matrix is nearly singular+ In regular models where the
log-likelihood function is locally quadratic, it is straightforward to extend Theo-
rems 1 and 2; applications would include model selection and shrinkage esti-
mation for so-called generalized linear models, which include logistic regression
and log-linear Poisson regression+ As mentioned previously, the notion of near
singularity may be very useful in determining the asymptotic behavior of esti-
mation procedures with weak instruments+ In the context of GMM and gener-
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alized empirical likelihood estimation, Caner ~2004, 2006! has investigated
similar issues+

It is worth noting that there is a considerable literature on estimation for
models where the information matrix is singular; for some recent examples,
see Barnabani ~2002! and Rotnitzky, Cox, Bottai, and Robins ~2000!+ In such
cases, typically the limiting distributions of maximum likelihood estimators are
concentrated on a lower dimensional subspace or have a slower rate of conver-
gence than the standard rate+
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