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In this paper, we extend the strong laws of large numbers and entropy ergodic theorem for
partial sums for tree-indexed nonhomogeneous Markov chains fields to delayed versions
of nonhomogeneous Markov chains fields indexed by a homogeneous tree. At first we
study a generalized strong limit theorem for nonhomogeneous Markov chains indexed by
a homogeneous tree. Then we prove the generalized strong laws of large numbers and the
generalized asymptotic equipartition property for delayed sums of finite nonhomogeneous
Markov chains indexed by a homogeneous tree. As corollaries, we can get the similar
results of some current literatures. In this paper, the problem settings may not allow
to use Doob’s martingale convergence theorem, and we overcome this difficulty by using
Borel–Cantelli Lemma so that our proof technique also has some new elements compared
with the reference Yang and Ye (2007).
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1. INTRODUCTION

Let (kn) be a sequence of positive integers and let (an)n be a sequence of real numbers.
Zygmund [18] first gave the definition of forward delayed first arithmetic means which is
defined as follows

rn,kn
=
∑kn

i=1 an+i−1

kn
.

Agnew [1], Safanov [11], and Chow [4] have studied the relationship between the above
delayed averages and summability methods. Chow [4] has also found necessary and sufficient
conditions for the Borel summability of i.i.d random variables and simplified the proofs
of a number of well-known results such as Hsu–Robbins–Spitzer–Katz theorem. Lai [9]
studied the law of the iterated logarithm for delayed sums of independent random variables.
Recently, Gut and Stadtmüller [5,6] have studied the Laws of the single logarithm for delayed
sums of random fields. Subsequently, Gut and Stadtmüller [7] also studied the strong law
of large numbers for delayed sums of random fields. Now what we are interested in is the
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limit behavior of delayed averages of Markov chains fields indexed by trees. Also, Wang and
Yang [12] have studied the strong limit theorems of delayed stochastic sums of the functions
sequences of two variables for non-homogeneous Markov chains and a generalized entropy
ergodic theorem for non-homogeneous Markov chains with convergence almost surely. In
this paper, we want to find analogs of strong law of large numbers and Shannon entropy
theorem for the forward delayed sums of Markov chains fields indexed by a homogeneous
tree.

A tree T is a connected graph and does not contain any loop. Given any two vertices
s �= t ∈ T , let st be the unique path connecting s and t. Define the graph distance d(s, t) to
be the number of edges contained in the path st.

Let TC,N be an infinite Cayley tree with root 0, in which the root 0 has only N neighbors
and all other vertices have N + 1 neighbors. For each vertex t, there is a unique path from 0
to t, and |t| = d(0, t) for the number of edges on this path. We denote the first predecessor
of t by 1t, the second predecessor of t by 2t, and denote by nt the n-th predecessor of t. We
denote by T

(n)
(m) the subtree of T containing the vertices from level m to level n, and Ln the

set of all vertices on level n. For any two vertices s and t of tree T , write s ≤ t if s is on the
unique path from the root 0 to t. We denote by s ∧ t the vertex farthest from 0 satisfying
s ∧ t ≤ s and s ∧ t ≤ t. XA = {Xt, t ∈ A} and denote by |A| the number of vertices of A.
When the context permits, this type of tree is simply denoted by T . For good understanding
of the definition of tree graph, here we draw a graph of Cayley tree TC,2, please see the
following Figure 1.

Definition 1.1 ([15]): Let T be an infinite tree, X a finite state space, {Xt, t ∈ T} be a
collection of X -valued random variables defined on probability space (Ω,F , P ). Let

p = {p(x), x ∈ X} (1.1)

be a distribution on X , and

Pn = (Pn(x, y)), x, y ∈ X (1.2)

be stochastic matrices on X 2. If for any vertex t ∈ Ln,

Pr(Xt = y|X1t = x and Xs for t ∧ s ≤1 t)

= Pr(Xt = y|X1t = x) = Pn(x, y) ∀x, y ∈ X , (1.3)

Figure 1. A Cayley tree TC,2.

https://doi.org/10.1017/S0269964818000554 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964818000554


THE GENERALIZED ENTROPY ERGODIC THEOREM 223

and
Pr(X0 = x) = p(x) ∀x ∈ X ,

then {Xt, t ∈ T} will be called X -valued nonhomogeneous Markov chains indexed by a homo-
geneous tree T with the initial distribution (1.1) and transition matrices (1.2), or called
T -indexed nonhomogeneous Markov chains with state-space X .

Remark 1.1: If for all n,
Pn = (P (x, y)), x, y ∈ X , (1.4)

then {Xt, t ∈ T} will be called X -valued homogeneous Markov chains indexed by a homoge-
neous tree.

Remark 1.2: For the Cayley tree TC,N , when N = 1, a nonhomogeneous Markov chain
indexed by a tree will reduce to a nonhomogeneous Markov chain on line.

Let T be the homogeneous tree TC,N . If (Xt)t∈T is a nonhomogeneous Markov chain
indexed by tree T with finite state space X defined as Definition 1.1. Let (αn)∞n=0 and
(φ(n))∞n=0 be two sequences of nonnegative integers such that limn→∞ φ(n) = ∞. Denote

fαn,φ(n)(ω) = − 1

|T (αn+φ(n))
(αn) |

[log Pr(Xt, t ∈ Lαn
) +

αn+φ(n)∑
k=αn+1

∑
t∈Lk

log Pk(X1t,Xt)], (1.5)

where log is the natural logarithm. fαn,φ(n)(ω) will be called generalized entropy density of
(Xt)t∈T

(αn+φ(n))
(αn)

. If αn ≡ 0 and φ(n) = n, fαn,φ(n)(ω) will reduce to the classical entropy of

(Xt)t∈T (n) defined as follows

fn(ω) = − 1
|T (n)| [log Pr(X0) +

n∑
k=1

∑
t∈Lk

log Pk(X1t,Xt)], (1.6)

fn(ω) will be called the entropy density of (Xt)t∈T (n) . The convergence of fn(ω) to a con-
stant in a sense (L1 convergence, convergence in probability, a.e. convergence) is called
the Shannon–McMillan theorem or the entropy theorem or the asymptotic equipartition
property (AEP) in information theory.

The subject of tree-indexed processes has been deeply studied and made abundant
achievements. Benjamini and Peres [2] have given the notion of the tree-indexed Markov
chains and studied the recurrence and ray-recurrence for them. Berger and Ye [3] have stud-
ied the existence of entropy rate for some stationary random fields on a homogeneous tree.
Ye and Berger (see [16,17]), by using Pemantle’s result [10] and a combinatorial approach,
have studied the Shannon–McMillan theorem with convergence in probability for a PPG-
invariant and ergodic random field on a homogeneous tree. Yang and Liu [14] and Yang
[13] have studied a strong law of large numbers for Markov chains fields on a homogeneous
tree (a particular case of tree-indexed Markov chains and PPG-invariant random fields).
Yang and Ye [15] have established the Shannon–McMillan theorem with convergence almost
surely for nonhomogeneous Markov chains on a homogeneous tree. Huang and Yang (see [8])
have studied the Shannon–McMillan theorem in the sense of almost surely for finite homo-
geneous Markov chains indexed by a uniformly bounded infinite tree. Recently, Wang and
Yang [12] have studied the strong limit theorems of delayed stochastic sums of the functions
sequences of two variables for nonhomogeneous Markov chains and a generalized entropy
ergodic theorem for nonhomogeneous Markov chains with convergence almost surely.
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In this manuscript, we first study a generalized strong limit theorem for nonhomoge-
neous Markov chains indexed by a homogeneous tree TC,N . Then we prove the generalized
strong law of large numbers and the generalized AEP for delayed sums of finite nonhomo-
geneous Markov chains indexed by a homogeneous tree which are the extensions of some
results of [15] and [12].

2. SOME LEMMAS

In this section, we at first give a lemma which is very useful for proving our main results.
Then as corollaries, we give two useful limit theorems for delayed sums of the frequencies of
occurrence of states and the ordered couples of states for nonhomogeneous Markov chains
indexed by homogeneous tree TC,N .

Lemma 2.1: Let T be the homogeneous tree TC,N . If (Xt)t∈T is a nonhomogeneous
Markov chain indexed by tree T with finite state space X defined as Definition 1.1, and
{(gn(x, y))∞n=1} be functions defined on X 2. Let

Gn(ω) =
αn+φ(n)∑
k=αn+1

∑
t∈Lk

E[gk(X1t,Xt)|X1t], (2.1)

here and thereafter we always let γ > 0, (αn)∞n=0 and (φ(n))∞n=0 be two sequences of
nonnegative integers such that limn→∞ φ(n) = ∞. Set

D(γ) = {ω : lim sup
n→∞

1
an

αn+φ(n)∑
k=αn+1

∑
t∈Lk

E[g2
k(X1t

,Xt)eγ|gk(X1t,Xt)||X1t] = M(γ, ω) < ∞},

(2.2)

Hn(ω) =
αn+φ(n)∑
k=αn+1

∑
t∈Lk

gk(X1t,Xt). (2.3)

Suppose that

an = |T (αn+φ(n))
(αn) |,

∞∑
n=1

exp(−εan) < ∞, (2.4)

for any ε > 0, then

lim
n→∞

Hn(ω) − Gn(ω)
an

= 0 a.e. on D(γ). (2.5)

Remark 2.1: If {(gn(x, y))∞n=1} are uniformly bounded, then equation (2.2) holds obviously.

Proof of Lemma 2.1.: Let λ be a nonzero real number, define

tαn,φ(n)(λ, ω) =
e
λ
∑αn+φ(n)

k=αn+1

∑
t∈Lk

gk(X1t,Xt)∏αn+φ(n)
k=αn+1

∏
t∈Lk

E[eλgk(X1t,Xt)|X1t]
, n = 1, 2, . . . (2.6)
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let Fn = σ(XT (n)
), it is easy to see that

E[tαn,φ(n)(λ, ω)] = E[E[tαn,φ(n)(λ, ω)|Fαn+φ(n)−1]]

= E[tαn,φ(n)−1(λ, ω)E[

∏
t∈Lαn+φ(n)

eλgαn+φ(n)(X1t ,Xt)∏
t∈Lαn+φ(n)

E[eλgαn+φ(n)(X1t ,Xt)|X1t]
|Fαn+φ(n)−1]

= E[tαn,φ(n)−1(λ, ω)

∏
t∈Lαn+φ(n)

E[eλgαn+φ(n)(X1t ,Xt)|X1t]∏
t∈Lαn+φ(n)

E[eλgαn+φ(n)(X1t ,Xt)|X1t]
]

= E[tαn,φ(n)−1(λ, ω)] = · · · = E[tαn,1(λ, ω)] = 1. (2.7)

For any ε > 0, by using Markov inequality we have
∞∑

n=1

Pr

(
log tαn,φ(n)(λ, ω)

an
≥ ε

)
=

∞∑
n=1

Pr(tαn,φ(n)(λ, ω) ≥ exp(εan))

≤
∞∑

n=1

E[tαn,φ(n)(λ, ω)]
exp(εan)

=
∞∑

n=1

exp(−εan) < ∞. (2.8)

For any ε > 0, by using Borel–Cantelli lemma it is easy to get that

lim sup
n→∞

log tαn,φ(n)(λ, ω)
an

≤ 0 a.e. (2.9)

By equations (2.6), (2.9) and simple computation, we obtain that

lim sup
n→∞

1
an

αn+φ(n)∑
k=αn+1

∑
t∈Lk

{
λgk(X1t,Xt) − log E[eλgk(X1t,Xt)|X1t]

} ≤ 0 a.e. (2.10)

Letting 0 < λ < γ, dividing both sides of above inequality by λ, we arrive at

lim sup
n→∞

1
an

αn+φ(n)∑
k=αn+1

∑
t∈Lk

{
gk(X1t,Xt) − 1

λ
log E[eλgk(X1t,Xt)|X1t]

} ≤ 0 a.e. on D(γ),

(2.11)
by using the inequalities lnx ≤ x − 1(x > 0) and 0 ≤ ex − 1 − x ≤ 2−1x2e|x|, as 0 < λ ≤ γ,
from (2.11) it follows that

lim sup
n→∞

1
an

αn+φ(n)∑
k=αn+1

∑
t∈Lk

{
gk(X1t,Xt) − E[gk(X1t,Xt)|X1t]

}

≤ lim sup
n→∞

1
an

αn+φ(n)∑
k=αn+1

∑
t∈Lk

{ 1
λ

log E[eλgk(X1t,Xt)|X1t] − E[gk(X1t,Xt)|X1t]
}

≤ lim sup
n→∞

1
an

αn+φ(n)∑
k=αn+1

∑
t∈Lk

{E[eλgk(X1t,Xt) − 1 − λgk(X1t,Xt)|X1t]
λ

}

≤ λ

2
lim sup

n→∞
1
an

αn+φ(n)∑
k=αn+1

∑
t∈Lk

{
E[g2

k(X1t,Xt)eλ|gk(X1t,Xt)||X1t]
}

≤ λ

2
M(γ, ω) < ∞ a.e. on D(γ). (2.12)
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Letting λ → 0+ in (2.12), it follows that

lim sup
n→∞

1
an

αn+φ(n)∑
k=αn+1

∑
t∈Lk

{
gk(X1t,Xt) − E[gk(X1t,Xt)|X1t]

} ≤ 0 a.e. on D(γ). (2.13)

Let −γ ≤ λ < 0. By (2.10), we similarly get

lim inf
n→∞

1
an

αn+φ(n)∑
k=αn+1

∑
t∈Lk

{
gk(X1t,Xt) − E[gk(X1t,Xt)|X1t]

} ≥ 0 a.e. on D(γ). (2.14)

Now, (2.5) can be derived easily from (2.13) and (2.14). The proof of lemma 2.1 is completed.
�

Remark 2.2: If α = 0, φ(n) = n, tαn,φ(n)(λ, ω) = t0,n(λ, ω) will be reduced to a nonnegative
martingale, then by Doob’ martingale theorem, we can obtain Theorem 1 in reference Yang
and Ye [15]. Obviously in our Lemma 2.1, the stochastic sequence tαn,φ(n)(λ, ω) is not a
martingale, so that we cannot use Doob’s martingale theorem directly. That is the main
difficulty we need to overcome in our proof.

Let Sαn,φ(n)(i)(i ∈ X ) be the number of i in the set of random variables X
T

(αn+φ(n))
(αn) =

{Xt, t ∈ T
(αn+φ(n))
(αn) }; Sαn,φ(n)(i; j) be the number of couple (i; j) in the set of random

couples {(X1t,Xt), t ∈ T
(αn+φ(n))
(αn+1) }, these are

Sαn,φ(n)(i) =
αn+φ(n)∑

k=αn

∑
t∈Lk

δi(Xt), (2.15)

Sαn,φ(n)(i; j) =
αn+φ(n)∑
k=αn+1

∑
t∈Lk

δi(X1t)δj(Xt). (2.16)

Corollary 2.1: Let T be the homogeneous tree TC,N and (Xt)t∈T be a nonhomoge-
neous Markov chain indexed by tree T with finite state space X defined as Definition 1.1.
Sαn,φ(n)(i) is defined as (2.15), (αn)∞n=0 and (φ(n))∞n=0 are two sequences of nonnegative
integers such that limn→∞ φ(n) = ∞, letting an = |T (αn+φ(n))

(αn) |, then we have

lim
n→∞

1
an

{
Sαn,φ(n)(i) −

αn+φ(n)∑
k=αn+1

∑
t∈Lk

Pk(X1t, i)
}

= 0 a.e. (2.17)

Proof: Let gk(x, y) = δi(y) in Lemma 2.1. It is easy to see that {gk(x, y), k ≥ 1} satisfy
the condition (2.2) of Lemma 2.1. Noting that

Hn(ω) =
αn+φ(n)∑
k=αn+1

∑
t∈Lk

gk(X1t,Xt) =
αn+φ(n)∑
k=αn+1

∑
t∈Lk

δi(Xt) = Sαn,φ(n)(i) −
∑

t∈Lαn

δi(Xt),

(2.18)

Gn(ω) =
αn+φ(n)∑
k=αn+1

∑
t∈Lk

E[gk(X1t,Xt)|X1t] =
αn+φ(n)∑
k=αn+1

∑
t∈Lk

Pk(X1t, i). (2.19)
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Noting that∑
t∈Lαn

δi(Xt)

an
≤ Nαn

Nαn + Nαn+1 + · · · + Nαn+φ(n)
→ 0, as n → ∞,

so that the conclusion (2.17) is derived from Lemma 2.1 directly. �

Corollary 2.2: Under the same conditions of Lemma 2.1, let Sαn,φ(n)(i, j) be defined
as (2.16), then

lim
n→∞

1
an

{
Sαn,φ(n)(i, j) −

αn+φ(n)∑
k=αn+1

∑
t∈Lk

δi(X1t)Pk(i, j)
}

= 0 a.e. (2.20)

Proof: Let gk(x, y) = δi(x)δj(y) in Lemma 2.1. It is easy to see that {gk(x, y), k ≥ 1}
satisfy the condition (2.2) of Lemma 2.1. Noting that

Hn(ω) =
αn+φ(n)∑
k=αn+1

∑
t∈Lk

gt(X1t,Xt) =
αn+φ(n)∑
k=αn+1

∑
t∈Lk

δi(X1t)δj(Xt) = Sαn,φ(n)(i, j), (2.21)

Gn(ω) =
αn+φ(n)∑
k=αn+1

∑
t∈Lk

E[gt(X1t,Xt)|X1t] =
αn+φ(n)∑
k=αn+1

∑
t∈Lk

δi(X1t)Pk(i, j). (2.22)

so that equation (2.20) is true because of Lemma 2.1. We complete the proof. �

3. MAIN RESULTS

In this section, we mainly prove the strong law of large numbers for frequencies of occurrence
of states and the pairs of states for delayed sums of nonhomogeneous Markov chain indexed
by a homogeneous tree TC,N and the generalized entropy ergodic theorem for the model.

Theorem 3.1: Let T be the homogeneous tree TC,N and (Xt)t∈T be a nonhomogeneous
Markov chain indexed by tree T with finite state space X defined as Definition 1.1. (αn)∞n=0

and (φ(n))∞n=0 are two sequences of nonnegative integers such that limn→∞ φ(n) = ∞.
Let Sαn,φ(n)(i) and Sαn,φ(n)(i, j) be defined as before, P = (P (i, j))i;j∈X be another finite
transition matrix and be ergodic. If

lim
n→∞Pn(i, j) = P (i, j), ∀i, j ∈ X , (3.1)

then

(i) lim
n→∞

Sαn,φ(n)(i)
an

= πi, a.e. ∀i ∈ X , (3.2)

(ii) lim
n→∞

Sαn,φ(n)(i, j)
an

= πiP (i, j) a.e. ∀i, j ∈ X , (3.3)

where π is the unique stationary distribution determined by the transition matrix P .
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Proof: Proof of (i). Obviously it is easy to see that

αn+φ(n)∑
k=αn+1

∑
t∈Lk

Pk(X1t, j) =
αn+φ(n)∑
k=αn+1

∑
t∈Lk

∑
i∈X

δi(X1t)Pk(i, j) (3.4)

αn+φ(n)∑
k=αn+1

∑
t∈Lk

∑
i∈X

δi(X1t)P (i, j) =
∑
i∈X

P (i, j)
αn+φ(n)∑
k=αn+1

∑
t∈Lk

δi(X1t)

= N
∑
i∈X

P (i, j)
αn+φ(n)−1∑

k=αn

∑
t∈Lk

δi(Xt)

= N
∑
i∈X

Sαn,φ(n)−1(i)P (i, j). (3.5)

From (3.1), there is no difficulty to derive that

lim
n→∞

1
an

αn+φ(n)∑
k=αn+1

∑
t∈Lk

[Pk(X1t, j) − P (X1t, j)] = 0, (3.6)

where an = |T (αn+φ(n))
(αn) |. Then we have by (2.17) and (3.6)

lim
n→∞

1
an

{
Sαn,φ(n)(j) −

αn+φ(n)∑
k=αn+1

∑
t∈Lk

P (X1t, j)
}

= lim
n→∞

1
an

αn+φ(n)∑
k=αn+1

∑
t∈Lk

∑
i∈X

δi(X1t)[Pk(i, j) − P (i, j)]

= 0 a.e.∀j ∈ X . (3.7)

That is, ∀j ∈ X

lim
n→∞

⎧⎨
⎩ 1

|T (αn+φ(n))
(αn) |

Sαn,φ(n)(j) − 1

|T (αn+φ(n)−1)
(αn) |

∑
i∈X

Sαn,φ(n)−1(i)P (i, j)

⎫⎬
⎭ = 0 a.e. (3.8)

Multiplying both sides of equation (3.8) by P (j, k), and adding them together for j ∈ X
and using (3.8) again, we have

lim
n→∞

⎧⎨
⎩ 1

|T (αn+φ(n))
(αn) |

∑
j∈X

Sαn,φ(n)(j)P (j, k)

− 1

|T (αn+φ(n)−1)
(αn) |

∑
i,j∈X

Sαn,φ(n)−1(i)P (i, j)P (j, k)

⎫⎬
⎭

https://doi.org/10.1017/S0269964818000554 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964818000554


THE GENERALIZED ENTROPY ERGODIC THEOREM 229

= lim
n→∞

⎧⎨
⎩ 1

|T (αn+φ(n))
(αn) |

∑
j∈X

Sαn,φ(n)(j)P (j, k) − Sαn,φ(n)+1(k)

|T (αn+φ(n)+1)
(αn) |

⎫⎬
⎭

+ lim
n→∞

⎧⎨
⎩ Sαn,φ(n)+1(k)

|T (αn+φ(n)+1)
(αn) |

− 1

|T (αn+φ(n)−1)
(αn) |

∑
i∈X

Sαn,φ(n)−1(i)P (2)(i, k)

⎫⎬
⎭ = 0 a.e.,

(3.9)

where P (l)(i, k) (l is a positive integer) is the l-step transition probability determined by
the transition matrix P . By induction, for all M ≥ 1, we have

lim
n→∞

⎧⎨
⎩ Sαn,φ(n)+M (k)

|T (αn+φ(n)+M)
(αn) |

− 1

|T (αn+φ(n)−1)
(αn) |

∑
i∈X

Sαn,φ(n)−1(i)P (M+1)(i, k)

⎫⎬
⎭ = 0 a.e. (3.10)

Since
lim

M→∞
P (M+1)(i, k) = πk, k ∈ X , (3.11)

and
∑

i∈X Sαn,φ(n)−1(i) = |T (αn+φ(n)−1)
(αn) |, thus (3.2) can be obtained from (3.11) and (3.10).

Proof of (ii). Similarly to (3.5), we have

αn+φ(n)∑
k=αn+1

∑
t∈Lk

δi(X1t)P (i, j) = NSαn,φ(n)−1(i)P (i, j) (3.12)

From (3.1), we can see that

lim
n→∞

1

|T (αn+φ(n)−1)
(αn) |

αn+φ(n)∑
k=αn+1

∑
t∈Lk

δi(X1t)[Pk(i, j) − P (i, j)] = 0. a.e. (3.13)

(3.3) can be derived from equations (2.20), (3.12), and (3.13). In fact, it is easy to see that

lim
n→∞

Sαn,φ(n)(i, j)

|T (αn+φ(n))
(αn) |

= lim
n→∞

Sαn,φ(n)−1(i)P (i, j)

|T (αn+φ(n)−1)
(αn) |

= πiP (i, j). a.e.

The proof of Theorem 3.1 is completed. �

Theorem 3.2: Under the same conditions of Theorem 3.1, let |X | = b, an = |T (αn+φ(n)−1)
(αn) |,

(αn)∞n=0 and (φ(n))∞n=0 be two sequences of nonnegative integers such that limn→∞ φ(n) =
∞, fαn,φ(n)(ω) be defined as before. If for any ε > 0, suppose that the following condition
is satisfied,

∞∑
n=1

bNαn
exp(−εan) < ∞, (3.14)

then
lim

n→∞ fαn,φ(n)(ω) = −
∑
i∈X

∑
j∈X

πiP (i, j) log P (i, j) a.e. (3.15)

where π is the unique stationary distribution determined by the transition matrix P .
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Proof: Here Lαn
denotes the set of vertices on level αn of homogeneous tree T . Since

E[exp(| log Pr{Xt, t ∈ Lαn
)}|] =

∑
xLαn

exp(− log Pr(XLαn = xLαn ))Pr(XLαn = xLαn )

= b|Lαn | = bNαn
, (3.16)

for any ε > 0, by Markov inequality and (3.14), we have

∞∑
n=1

Pr{ | log Pr{Xt, t ∈ Lαn
)}|

an
≥ ε}

≤
∞∑

n=1

E[exp(| log Pr{Xt, t ∈ Lαn
)}|]

exp(εan)

=
∞∑

n=1

bNαn

exp(εan)
< ∞. (3.17)

By Borel–Cantelli lemma, we get

lim
n→∞

log Pr{Xt, t ∈ Lαn
)}

an
= 0, a.e. (3.18)

Letting gk(x, y) = log Pk(x, y) and γ = 1/2 in lemma 2.1, and noting that

E[(log Pk(X1t
,Xt))2e

1
2 | log Pk(X1t,Xt)||X1t]

=
∑
j∈X

P
− 1

2
k (X1t, j)(log Pk(X1t

,Xt))2Pk(X1t, j)

=
∑
j∈X

P
1
2

k (X1t, j)(log Pk(X1t
,Xt))2 ≤ 16be−2, (3.19)

Gn(ω) =
αn+φ(n)∑
k=αn+1

∑
t∈Lk

E[gk(X1t,Xt)|X1t]

=
αn+φ(n)∑
k=αn+1

∑
t∈Lk

∑
j∈X

Pk(X1t, j) log Pk(X1t, j), (3.20)

Hn(ω) =
αn+φ(n)∑
k=αn+1

∑
t∈Lk

gk(X1t,Xt) =
αn+φ(n)∑
k=αn+1

∑
t∈Lk

log Pk(X1t,Xt), (3.21)

combining equations (3.20) with (3.21), it follows from Lemma 2.1 that

lim
n→∞

1
an

αn+φ(n)∑
k=αn+1

∑
t∈Lk

{log Pk(X1t,Xt) −
∑
j∈X

Pk(X1t, j) log Pk(X1t, j)} = 0 a.e. (3.22)

https://doi.org/10.1017/S0269964818000554 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964818000554


THE GENERALIZED ENTROPY ERGODIC THEOREM 231

Now we can derive that

| 1

|T (αn+φ(n))
(αn) |

αn+φ(n)∑
k=αn+1

∑
t∈Lk

∑
j∈X

Pk(X1t, j) log Pk(X1t, j) −
∑
i∈X

∑
j∈X

πiP (i, j) log P (i, j)|

≤ | 1

|T (αn+φ(n))
(αn) |

αn+φ(n)∑
k=αn+1

∑
t∈Lk

∑
i,j∈X

δi(X1t)Pk(i, j) log Pk(i, j)

− 1

|T (αn+φ(n))
(αn) |

αn+φ(n)∑
k=αn+1

∑
t∈Lk

∑
i,j∈X

δi(X1t)P (i, j) log P (i, j)|

+ | 1

|T (αn+φ(n))
(αn) |

αn+φ(n)∑
k=αn+1

∑
t∈Lk

∑
i,j∈X

δi(X1t)P (i, j) log P (i, j) −
∑

i,j∈X
πiP (i, j) log P (i, j)|

≤
∑

i,j∈X

1

|T (αn+φ(n))
(αn) |

αn+φ(n)∑
k=αn+1

∑
t∈Lk

|Pk(i, j) log Pk(i, j) − P (i, j) log(i, j)|

+
∑

i,j∈X
|P (i, j) log P (i, j)| · | 1

|T (αn+φ(n))
(αn) |

αn+φ(n)∑
k=αn+1

∑
t∈Lk

δi(X1t) − πi|. (3.23)

By the continuity of the function f(x) = x log x and equation (3.1), for any i, j ∈ X , it
follows that

lim
n→∞

1

|T (αn+φ(n))
(αn) |

αn+φ(n)∑
k=αn+1

∑
t∈Lk

|Pk(i, j) log Pk(i, j) − P (i, j) log P (i, j)| = 0.

Since
∑αn+φ(n)

k=αn+1

∑
t∈Lk

δi(X1t) = NSαn,ϕ(n)−1(i), it is also easy to see that the second term
of last inequality of (3.23) tends to zero as n tends to infinity. Thus, the left-hand side in
first inequality (3.23) comes to zero a.e. as n tends to infinity, i.e.,

lim
n→∞

1

|T (αn+φ(n))
(αn) |

αn+φ(n)∑
k=αn+1

∑
t∈Lk

∑
j∈X

Pk(X1t, j) log Pk(X1t, j)

=
∑
i∈X

∑
j∈X

πiP (i, j) log P (i, j). a.e. (3.24)

Combining with (1.4), (3.18), (3.22), (3.24), we arrive at

lim
n→∞ fαn,φ(n)(ω) = − lim

n→∞
1

|T (αn+φ(n))
(αn) |

[log Pr(Xt, t ∈ Lαn
) +

αn+φ(n)∑
k=αn+1

∑
t∈Lk

log Pk(X1t,Xt)]

= − lim
n→∞

1

|T (αn+φ(n))
(αn) |

αn+φ(n)∑
k=αn+1

∑
t∈Lk

log Pk(X1t,Xt)
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= − lim
n→∞

1

|T (αn+φ(n))
(αn) |

αn+φ(n)∑
k=αn+1

∑
t∈Lk

∑
j∈X

Pk(X1t, j) log Pk(X1t, j)

= −
∑
i∈X

∑
j∈X

πiP (i, j) log P (i, j) a.e., (3.25)

where the second equation holds because of (3.18), the third equation can be obtained
by (3.22), and the last equation holds by using (3.24). The proof of Theorem 3.2 is
completed. �

Remark 3.1: In proof of Theorem 3.2, the condition (3.14) is new and necessary to proof
the equation (3.18) which is a new prerequisite for delay version of AEP from zero-delay
version. For case αn ≡ 0, we do not need to put the condition (3.14) on.

Let αn ≡ 0 and φ(n) = n, we can easily get the following results which have been proved
in reference [15].

Corollary 3.1 (See [15]): Let T be the homogeneous tree TC,N , and (Xt)t∈T be a non-
homogeneous Markov chain indexed by tree T with finite state space X defined as
Definition 1.1, let

Sn(i) =
∑

t∈T (n)

δi(Xt), (3.26)

Sn(i, j) =
∑

t∈T (n)/{0}
δi(X1t)δj(Xt), (3.27)

and fn(ω) be defined as (1.5). Let P = (P (i, j))i;j∈X be another finite transition matrix and
be ergodic. If

lim
n→∞Pn(i, j) = P (i, j), ∀i, j ∈ X , (3.28)

then

(i) lim
n→∞

Sn(i)
|T (n)| = πi, a.e. ∀i ∈ X , (3.29)

(ii) lim
n→∞

Sn(i, j)
|T (n)| = πiP (i, j) a.e. ∀i, j ∈ X , (3.30)

(iii) lim
n→∞ fn(ω) = −

∑
i∈X

∑
j∈X

πiP (i, j) log P (i, j) a.e., (3.31)

where π is the unique stationary distribution determined by the transition matrix P .

Now we give two examples which imply our conditions (3.1) and (3.14) respectively.

Example 3.1: Condition (3.1) can be easily satisfied. For example, let X = {1, 2}, we con-
sider the 2 × 2 transition matrices on S, for n = 1, 2, 3, 4, 5 . . ., let Pn and P are stochastic
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matrices defined as follows

Pn =

(
1
2 − 1

2n
1
2 + 1

2n

1
2 + 1

2n
1
2 − 1

2n

)
,

P =

(
1
2

1
2

1
2

1
2

)
.

Obviously, P is ergodic, and its unique stationary distribution is π = (π(1), π(2)) = (1
2 , 1

2 ).
It is obviously that limn→∞ Pn(i, j) = P (i, j) for any i, j ∈ X .

Example 3.2: If αn ≡ 0, condition (3.14) is satisfied naturally. Suppose that αn �= 0 and
N = 1, as we all have known that the nonhomogeneous chains indexed by trees reduce to
nonhomogeneous Markov chains on line. Now let us come to construct a example of positive
term series which satisfies condition (3.14). Letting X = {1, 2, 3, . . . , b}, for any positive
integer n ≥ 1, if αn = φ(n) = n, then an = n + 1. By simple computation for any ε > 0, we
have

bNαn+1

exp (εan+1)
/

bNαn

exp (εan)
=

1
exp (ε)

< 1, (3.32)

thus our condition (3.14) can be easily derived by D’Alembert convergence criteria for
positive series.

Remark 3.2: For case αn �= 0 and N = 1, our model is reduced to nonhomogeneous Markov
chains on line. At the same time, our condition (3.14) is equivalent to condition (2.1) of
Lemma 1 in reference [12].
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